

 Today’s DBMSs: How autonomic are they?

Said Elnaffar, Wendy Powley, Darcy Benoit, and Pat Martin
{elnaffar, wendy, benoit, martin}@cs.queensu.ca

Technical Report 2003-469

School of Computing, Queen’s University
Kingston, Ontario, Canada K7L 3N6

September 2003

Abstract

Database Management Systems (DBMSs) are complex
systems whose manageability is increasingly becoming
a real concern. Realizing that expert Database
Administrators (DBAs) are scarce and that the cost of
hiring them is a major part of the Total Cost of
Ownership (TCO) makes an urgent call for an
Autonomic DBMS (ADBMS) that is capable of
managing and maintaining itself. In this paper, we
examine the characteristics that a DBMS should have in
order to be considered autonomic. We assess the
position of today’s DBMSs by drawing example features
from popular, commercial database products, such as
DB2 UDB, SQL Server, and Oracle. We argue that
today's DBMSs are still far from being autonomic. We
highlight the source of difficulties towards achieving
that goal, and sketch the most important research
terrains that need investigation in order to have
ADBMSs one day.

1. Introduction

Database management systems (DBMSs) are a vital
component of many mission-critical information
systems and, as such, must provide high performance,
high availability, excellent reliability and strong
security. These DBMSs are managed by expert
Database Administrators (DBAs) who must be
knowledgeable in areas such as capacity planning,

physical database design, systems tuning and systems
management.

DBAs face increasingly more difficult challenges
brought about by the growing complexity of DBMSs,
which stems from several sources:

• Increased emphasis on Quality of Services
(QoS). DBMSs are components of larger
systems, such as electronic commerce
applications, that support different levels of QoS
depending on users’ needs. A DBMS must
provide service guarantees in order that the
overall system can satisfy the end-to-end QoS
requirements.

• Advances in database functionality,
connectivity, availability, and heterogeneity.
DBAs must grapple with complex decisions
about hardware platforms, schema design,
constraints and referential integrity, primary
keys, indexes, materialized views, the allocation
of tables to disks, and shared-nothing, shared-
everything, or SMP-cluster topology.

• Ongoing maintenance. Once designed,
databases require substantial human input to
build, configure, test, tune, and operate. DBAs
handle table reorganization, data statistics
collection, backup control, security modeling
and administration, disaster recovery planning,
configuration and performance tuning, problem
analysis, and more.

 1

• Burgeoning database size. Data warehouses
containing tens of terabytes of data are not
uncommon. Popular applications such as SAP
typically create more than 20,000 tables and
support thousands of users simultaneously [4].

• E-Service era. The problems described above
become more apparent where the internet
presents to the DBMSs a broad diversity of
workloads with high variability under
sophisticated multi-tier architectures.

DBMS customers and vendors, because of the
spiraling complexity, have recently begun to place an
increased emphasis on reducing the Total Cost of
Ownership (TCO) of systems. Despite the dramatic
recent growth in database sizes, TCO is increasingly
dominated by human costs, specifically the DBAs. A
1998 study by the Aberdeen Group [19] showed that a
five-year, 25-user implementation of a leading
industrial RDBMS incurred 81 percent of its TCO from
the human costs of training, maintenance, and
implementation. Similarly, a TCO report from D.H.
Brown Associates [20] that compared two leading
database products for both data warehouse and online
transaction processing (OLTP) applications found that
human costs represented a large component of TCO in
all cases. Moreover, skilled DBAs and application
developers are scarce.

Autonomic computing systems are a proposed
approach to solving the above problems. An autonomic
computing system has the following properties [27]:

• The system is “aware of itself” and able to act
accordingly.

• The system is able to configure and reconfigure
itself under varying and unpredictable
conditions.

• The system is able to recover from events that
cause it to malfunction.

• The system is able to anticipate optimized
resources needed to perform a task.

• The system is able to protect itself.

We believe that Autonomic Database Management
Systems (ADBMS) are a desirable long-term research
goal. In pursuing this goal it is useful to evaluate current
DBMSs in light of the properties of autonomic
computing systems in order to judge what has been
accomplished to date and what problems remain to be
solved.

The goal of this paper is therefore to examine current
DBMSs with respect to their embodiment of the
concepts of autonomic computing systems. We focus on
three popular DBMS products, namely IBM DB2
Universal Database Version 8.1 [29], Oracle 9i [24] and
Microsoft SQL Server 2000 [26]. Our objective is to
report on the current state of practice with respect to
autonomic DBMSs based on a review of generally
available materials such as research papers, white
papers and system documentation. We provide
examples, not an exhaustive list, of autonomic features.
We do not attempt to draw comparisons between the
DBMSs.

In examining the DBMSs, we believe that the
autonomic features available in the systems can be
identified as belonging to one of the following general
categories, which correspond to the kinds of tasks that
are typically performed by DBAs:

• Plug-n-Play DBMSs. These features support
system set-up and initialization. They include
initial capacity planning, DBMS installation,
configuration, and deployment, and data
migration.

• Physical and Logical Design. These features
include support for tasks related to laying out
the data on the storage devices and structuring
them properly. Examples of such tasks are the
selection of the most efficient indexes and
materialized views, and partitioning tables [8].

• Ongoing Preventive Maintenance. This
category encompasses features that aim to keep
the system stable and performing satisfactorily.
They support the phase in which the DBMS
self-monitors in order to perform ongoing tasks
such as self-tuning and self-reorganizing.
Examples include support for defragmenting
data and re-structuring indexes, creating
backups, updating statistics, space
management, user management, and table and
object maintenance.

• Problem Diagnosis and Correction. These
features help with identifying any anomalies in
the system and determining their root cause,
notifying the administrators, and taking
corrective actions and tuning.

• Availability and Disaster Recovery. These
features help the DBMS get back to its stable
state or recover from a disaster. For example,
the DBMS should be able to carefully analyze
its log and identify the correct set of backup

 2

assets it retains in order to get the system
operational. They also support multiple server
synchronization and maintenance.

The remainder of the paper is organized as follows.
Section 2 presents our survey of the autonomic features
of three popular commercial DBMSs. Section 3
summarizes the survey and points out further
functionality required in DBMSs to achieve the goal of
autonomic DBMSs. Section 4 summarizes the paper and
presents our conclusions.

2. How autonomic are current DBMSs?

Ganek and Corbi identify important, general
properties of an autonomic computing system [27]. In
this section, we discuss the DBMS-specific autonomic
characteristics and devote a sub-section to each
characteristic in which we first detail what kind of
automation a characteristic implies in the realm of
DBMSs and then list some concrete examples drawn
from commercial DBMSs that best match the
description of the particular autonomic characteristic.
We should note again that this is not meant to be an
exhaustive list of features provided by the various
DBMSs but instead we wish to outline where DBMSs
are today in terms of autonomic capabilities.

2.1 Self-optimizing

Self-optimization is one of the most challenging
features to include in a DBMS. It allows a DBMS to
perform any task and execute any service utility in the
most efficient manner given the present workload
parameters, available resources, and environment
settings. Obviously, the most important task in need of
optimization is the execution of a query.

 Since SQL statements are deemed the basic
components of a DBMS workload, a remarkable effort
has been devoted towards query optimization. In fact,
optimizing queries is one of the most apparent
autonomic features of today’s DBMSs. In general,
query optimization involves query translation (rewriting
a query as a more efficient, semantically equivalent
query), the generation of a cost-efficient execution plan
and dynamic runtime optimizations [16][17][18][9].

 The most complex task of query optimization is
the choice of execution plan. Plans are generated based
on cost models. In order to obtain more accurate
models, the optimizer uses statistics and takes into
account the column distributions to estimate the

cardinality of the query. It is important for these
statistics to be up to date and accurate, however this has
traditionally be a disruptive process. Oracle [23] and
SQL Server [21][22] provide facilities that
automatically determine which columns require
histograms and also which tables require new statistics.
When the DBA issues the command to update the
statistics, only those flagged by system will be updated.
Oracle also supports a dynamic sampling feature that
gathers statistics on the fly while a query is being
optimized.

 Query optimization can be time consuming and,
for some queries, the time to optimize may not be worth
the time spent on optimization. The DB2 optimizer
allows the user to adjust the amount of optimization
each query experiences. More sophisticated models,
such as those found in Oracle [23] and SQL Server [26],
automatically determine the appropriate amount of
optimization on a per-query basis.

 The majority of query optimizers adapt the
produced cost models to the hardware settings such as
the number and the speed of CPUs, network connecting
machine clusters and the setup of storage devices.
Therefore, the final cost models can be intricate [18] as
they include factors such as the hit ratio, the various
configurations of memory areas (multiple buffer pools,
sort heaps, catalogue cache, etc.), the cost of building
temporary tables versus re-scanning tables, non-
uniformity of data distribution and pre-fetching.

 During query execution, cost models will be able
to benefit from the self-validation mechanism proposed
by. DB2’s Learning Optimizer (LEO) [10]. LEO is a
promising, smart optimizer that learns from prior
experiences by self-validating the cardinality model of
queries, using the actual cardinalities measured by
executing queries with similar predicates. This
technology has not been commercialized yet but
expected to be part of DB2’s engine soon [15].

 Dynamic adjustments to the execution strategy at,
or during, runtime will result in more efficient use of
hardware resources such as memory, disk and CPU,
thus resulting in better overall performance. Oracle
provides automatic memory allocation [23] so that each
query has the appropriate amount of memory (within
DBA specified limits). Memory usage may be adjusted
even while the query is executing. DB2 and Oracle
both provide an automatic query parallelism selection
mechanism that determines at runtime when it is
beneficial to employ parallel execution, and determines
the most effective degree of query parallelism across
SMP CPUs. Dynamic runtime optimizations not only

 3

ensure optimal execution of an individual query but
optimal execution in the context of all executing
queries.

 In addition to query optimization, a DBMS must
also optimize the various utilities such as backup,
restore, statistics collection and data load utilities to
ensure that these jobs, when possible, are run during
non-peak times and that they make the most efficient
use of resources. DB2’s Load utility, for example,
automatically optimizes its performance after examining
its environment settings. The Load utility performs
mass insertions of data into a target table. It carries out
its job efficiently by exploiting a series of parallel I/O
sub-agents for pre-fetching, SMP parallelism degree,
and the amount of memory available for buffering and
sorting. Furthermore, the Load utility maintains the
index of the processed table by making a non-trivial
decision, depending on the complexity of the index data
structure, of either rebuilding completely, or building
the index incrementally as each data tuple is inserted.

 The conditions of a database environment are ever
changing and there will always be room for
optimization. An autonomic DBMS will recognize this
need, evaluate the current status and environment and
take the necessary action. The DBMS must always be
looking for ways to optimize overall system
performance.

2.2 Self-configuring

 The performance of a DBMS depends on the
configuration of the hardware and software
components. An autonomic DBMS should provide
users with reasonable “out of the box” performance and
dynamically adapt its configuration to provide
acceptable, if not optimal, performance in light of
constantly changing conditions. An ADBMS should
recognize changes in its environment that warrant re-
configuration, for example a workload change that
places a new demand on the resources or the addition of
new hardware, and it must react quickly with
appropriate adjustments. It should also be able to
reconfigure itself without severely disrupting online
operations. A DBMS configuration includes
performance parameters (or knobs), resource
consumption thresholds, and the existence of auxiliary
data structures such as indexes and materialized views
in the database schema.

 The ability to dynamically adjust DBMS tuning
parameters without DBMS shut-down has only just
emerged in the most recent versions of DB2, Oracle and

SQL Server. For several tuning parameters, however,
applications must disconnect before the new values take
effect thus causing a disruption of service. Nonetheless,
the ability to dynamically adjust some tuning
parameters greatly increases the potential for self-
configuration features in future DBMS releases.

 Static “out of the box” configurations obviously
cannot provide acceptable performance under all
circumstances. Typically the configuration must be
tailored to the application and the hardware
environment. Therefore, DBMSs provide
configuration wizards such as DB2’s Configuration
Advisor. This tool configures over 35 parameters
pertaining to server agents, I/O subagents, logging,
sorting, etc. Each parameter value is set in light of
system characteristics such as total memory available,
number of disks, and number of CPUs, and user-
supplied information. A recent version of DB2’s
advisor demonstrated remarkable effectiveness in
configuring the system for OLTP workloads [11].

 Configuration advisors are tools to assist with
initial configuration but the settings are, in most cases,
static. The goal of an autonomic DBMS is to provide
dynamic adjustment of these settings. Little support is
provided for this type of self-configuration. SQL
Server and Oracle both provide some degree of
automatic memory management. These systems
allocate memory as needed by the database, limiting
memory allocation when either a user-imposed limit is
reached or the system’s physical resources run low.

 Self-configuring features of an ADBMS should
include support for determining the optimal set of
indexes and materialized views to be used by the query
optimizer. All the DBMSs provide an index advisor
(DB2’s Design Advisor [12][13], SQL Server’s Index
Wizard, and Oracle’s Index Tuning Wizard) that
recommends a suitable set of indexes.
Recommendations are based on SQL statements that are
either automatically captured from the DBMS or
supplied by the user, as well as space constraints.
Similar to the index advisor, SQL Server [14] and
Oracle [25] also recommend the materialized views that
the system can benefit from.

2.3 Self-healing

 A fundamental requirement of a DBMS is that the
database remains in, or can be restored to, a consistent
state at all times. A DBMS must reliably log all
operations, periodically archive the database and be able
to use the logs and backups to recover from failure.

 4

Ideally an ADBMS should recognize when a full or
incremental backup is necessary and perform these
operations with minimal system disruption. In the event
of catastrophic failure, an ADBMS should be able to
retrieve the most recent backup, restore to the consistent
point just before the failure, then resume its halted
operations after handling the exceptions.

 All DBMSs support logging, backup and recovery
mechanisms. Non-catastrophic failures (that is, those
that can be repaired using only log files) are typically
initiated automatically by the DBMS. The DBMS
system can recognize that the database is in an
inconsistent condition and use the log files to restore to
a consistent state.

 DB2 has a recovery tool, the Recovery Expert,
which analyzes the recovery assets available and
recommends a technique to be selected. For example, if
a set of tables needs to be recovered to a point in time
five minutes ago, Recovery Expert may recommend that
the log be analyzed in order to generate UNDO SQL to
effect the recovery. DB2’s Automatic Incremental
Restore mechanism uses the backup history for
automatically searching for the correct backup images
needed to complete the restore process successfully.

 SQL Server and Oracle allow the DBA to set a
recovery interval parameter that specifies a target for
recovery time in seconds. The DBMS automatically
adjusts the underlying logging and recovery systems in
order to maintain the required recovery time.

 Oracle provides automated facilities to ensure
database backup integrity. A backup monitor assures
that backups are performed as necessary in order to
guarantee recovery.

 The concept of self-healing also applies to the
ability of the DBMS to correct problems that are
interfering with good system performance or those that
prevent an operation from completing. Oracle provides
the ability to resume operations (such as a batch load)
following corrective action (such as the addition of
more disk space in the event that an “out of space” error
occurs) [24].

2.4 Self-protecting

Database protection implies at least the following
aspects: database security [5] [6], privacy [7], analytical
auditing mechanisms, and admission control strategies.
These features shield the DBMS from potential, errant
requests that may deteriorate its performance or bring
the DBMS down.

 All multi-user DBMSs provide authentication
mechanisms that prevent unauthorized users from
accessing the database. Of course, human intervention
will always be required to determine those who should
be granted access. Database privacy ensures that users
are granted access only to the portions of the database
that are required. DBMSs provide the ability to grant
different types of access (select, insert, update, delete)
to database objects. Current DBMSs differ in the level
of access granularity; DB2 and SQL Server provide
security on a per table basis whereas Oracle provides
row-level security.

 An ADBMS should provide auditing mechanisms
where logs are used to track all DBMS activity. The
DBMS can use this information to track trends, analyze
potential threats, support future security planning, and
assess the effectiveness of countermeasures. DBAs
should define their auditing strategies based on their
knowledge of the application or database activity
around sensitive data, and the ADBMS should setup
and take care of the detailed configuration.

 Data encryption is a key element in protecting
data as it adds an essential level of protection from
intruders who break through firewalls or operating
system and network features. It also deters malfeasance
from internal users. The best solutions minimize
performance impact by monitoring only the information
that's critical from a security point of view instead of
entire databases.

 Admission and application control is essential for
ADBMSs to protect the system from database requests
that may deteriorate performance and/or undesirably
consume system resources. DB2 provides mechanisms
for controlling applications that are submitted for
execution and those that are currently executing, based
on the resources they consume. The first type of control
is called a "predictive governor" because it uses the
query optimizer's estimate of the relative resources each
query is expected to consume to limit surges of arriving
or long-running queries that could saturate the server.
The second type is called a "reactive governor" because
it monitors the actual resources consumed to prevent
runaway queries from wasting resources.

 The Oracle Resource Manager [24] provides
automatic prioritization that detects long running
operations and limits resource consumption so that
other users do not experience delays. The proactive
governor permits the ability to limit the number of
concurrent long-running operations and prevents
execution of resource intensive operations during peak
periods. In addition, service level agreements can be

 5

specified and monitored. A specified event is triggered
if the service level agreement is violated.

2.5 Self-organizing

 An ADBMS should be capable of dynamically re-
organizing and re-structuring the layout of data stored
in databases (e.g., tables), associated auxiliary data
structures (e.g., indexes), and any system-related data
(e.g., system catalog) in order to optimize performance.
An ADBMS should assist in the initial layout of data on
disks and should be able to shift data from one disk to
another to even out disk demands. This ability is not
present in current DBMSs, however Oracle does
provide the ability to move tables while on-line [24].

 To make efficient use of system resources, DB2,
Oracle and SQL Server permit dynamic online index
reorganization to reclaim leaf level storage. SQL
Server also provides a feature that can automatically
shrink the size of allocated database files where more
than 25% of the allocated space is not being used [26].

 Other self-organizing aspects of SQL Server can
be found in the selection of available wizards for data
modeling [26]. The Mining Model Wizard is used to
create mining models used to analyze data patterns. A
Partition Wizard is available to help split data cubes
into separate physical partitions on the disk. A Storage
Design Wizard can be used to help design aggregations
for data cubes while the Usage-Based Optimization
Wizard can be used to determine the appropriate
aggregations for a given data cube.

2.6 Self-inspecting

 Bowing to the principle if you don’t measure it
then you don’t know it, an ADBMS should “know
itself” in order to make intelligent decisions pertaining
to all autonomic features discussed in the previous
sections. The DBMS must collect, store and analyze
relevant information about its components,
performance, and workload. This information should
be utilized in optimizing the performance, detecting
any potential problems, updating statistics about the
stored data, ensuring integrity of data read from disk,
scheduling maintenance utilities, and in identifying
interesting trends in the workload. The results of this
constant inspection should be effectively presented to
DBAs (using GUI interface, for example) and be
available as input for other autonomic components and
operations.

 Current DBMSs are rich in self-inspection tools
that collect performance information and provide
feedback to a DBA. Using the DB2 Health Center or
the Oracle Manager Console, a DBA can specify which
parts of the system to monitor. Areas include storage
usage, memory consumption for caching and sorting,
logging behavior, and application concurrency.
Performance data are collected and stored in a data
warehouse. The monitoring tools examine the system
for signs of unhealthiness and issue health alerts via
email messages, pages, or records written to the
notification log. It can also run corrective scripts or
tasks when health alerts are issued. Supporting tools
are used to view real-time and historical health alerts,
display and enable optional execution of suggested
resolution actions, and support configuration changes.

 Monitored data are stored and can be used by
analysis tools such as The DB2 Performance Expert. A
collection of reports can be run against the historical
data (with correlation of system changes, such as
increasing storage) to flag warnings and give advice.

 Both DB2 and Oracle provide facilities to collect
buffer pool activity data and model changes to the
objects in the buffer pools (including sizes) so a DBA
can see the effects of changing buffer pool sizes without
actually making the changes to the production system.

 The Maintenance Advisor is a tool that DBAs can
use to examine DB2 statistics and make
recommendations on what maintenance utilities should
be run. It can build scripts or JCL and can schedule
maintenance tasks.

 Problem determination and diagnosis are supported
by utilities such as DB2’s db2support utility that
collects system description about the database
configuration, storage devices, network, operating
system, and machine specification, and captures a
number of database diagnostic files and control
structures. All collected data are formatted as HTML
pages that are easy to browse by the administrators.
DBAs can run db2support also in an interactive mode in
which they can describe the problem scenario by
answering a sequence of questions driven by a built-in
diagnostic decision tree.

 Another example of automated inspection is DB2’s
ability to perform Sector Consistency Checking for page
I/Os that ensures the integrity of read data by detecting
any corruptions caused, for example, by incomplete
I/Os. This inspection mechanism exploits consistency
bits that verify that the pages read from disk into
memory are not “partial pages” or have not been

 6

erroneously modified or corrupted. The net result is a
continual validation for the data read by the DBMS.

 Oracle, DB2 and SQL Server support utilities to
collect statistical information about the stored data (for
example, their distributions) to assist the query
optimizer develop the most efficient execution plan of a
query. In an ADBMS, the collection of these statistics
should be dynamic and initiated automatically.

3. Analysis – what is missing?

Despite the many advances that have been made
towards autonomic database management systems,
much work remains to reduce the amount of human
intervention required by these systems. We can
summarize the most significant shortcomings in the
following points:

• High need for human input and intelligence.
Current DBMSs provide many tools and utilities
to assist the DBA in tasks such as initial
configuration, system monitoring and problem
analysis, but in most cases these tasks still
require a significant amount of input,
intelligence and decision making on the part of
the DBA. Furthermore, the human inputs
required are often error-prone and not
permanently reliable given the constant change
in the system environment and the
characteristics of the workload over time.

• Need for Dynamic Adaptation. Tuning
advisors, for example, have proven useful in the
initial setup of the database system, however the
settings do not adapt to changes in the system
environment or workload. The tasks of
initiating system monitoring and determining
that a configuration adjustment is necessary are
still, for the most part, left up to the DBA. An
ADBMS will constantly collect performance
metrics (incurring as little overhead cost as
possible) and determine when, and which,
resources should be adjusted to maintain or
improve performance.

• Lack of ability to reset DBMS parameters on-
line. Dynamic tuning requires that all resources
and configuration parameters be adjustable
without system disruption. Although close,
DBMSs do not yet provide this capability. Note
that being able to reset DBMS parameters
dynamically is a mere prerequisite to enable

autonomic features but it does not offer any kind
of intelligent strategies.

• Lack of analytical capabilities. Many of the
advisors and tools currently available are based
on “rules of thumb” or heuristics that capture the
human expertise programmatically. Robust
analytical models and accurate prediction
mechanisms are required for the more difficult
tuning and configuration tasks. Currently
corrective action typically depends on the
DBA’s experience. Future DBMSs should learn
from the DBA’s experience thus building an
extensive knowledge base of information that
can be used for problem determination and
problem solving.

• No smart maintenance strategies. Database
utilities such as rebinding, statistics gathering,
table and index reorganization and backup are
currently provided by the DBMSs. However, an
autonomic DBMS must have the ability to
predict when is the best time to run these utilities
(for example, depending on the workload peaks)
and how long they will take to finish.

• Inability to run some operations on-line.
Some of the vital database operations such as
deframenting data, updating statistics, and
pruning important data structures like indexes
can not be performed without bringing the
DBMS down.

• Lack of on-line schema evolution. This feature
should allow changing schema aspects without
incurring an outage. Applications are not static.
Tables are modified, columns are dropped from
tables and indexes, data types for columns are
changed, indexes need to be renamed, partitions
need to be added, and so on (see [32] for a newly
proposed approach). These changes must be
made online.

• Lack of standard interface with other
systems. Current DBMSs do not show adequate
enablement of autonomic features that allow
smooth integration and synergy between the
DBMS, as a middleware, and others such as
Web Servers. Standards must be developed for
autonomic systems to communicate and share
information.

• Not exploiting the characteristics of the
workload. Most of the current DBMSs overlook
analyzing the characteristics of the workload
and its behavior over time. ADBMSs should

 7

tune themselves as a function of the present
workload intensity, trend, and properties.

• Trivial security and privacy strategies.
Current security and privacy features do not
offer any kind of clever strategies that help the
DBMS develop or change its protective plans.
For example, an ADBMS should have the
ability to analyze and draw intelligent
conclusions about the attacks, their types, and
their trends. Agrawal et al. propose more
interesting ideas to improve DBMSs’ privacy
[7].

Despite the efforts undertaken by industry-led
projects such as IBM’s SMART and Microsoft’s
AutoAdmin, we have not witnessed a real change to the
DBMS infrastructure that is necessary for making the
transition to a fully autonomic system.

4. Conclusions

Autonomic DBMSs, that is DBMSs that can manage
themselves, are an attractive solution to complexity and
total cost of ownership problems associated with
DBMSs. We examined three popular database products,
namely DB2, Oracle and SQL Server, from the
viewpoint of autonomic computing systems. We find
that, while all three products now contain features of an
ADBMS there is still a long way to go before we can
claim that DBMSs are autonomic computing systems.

We conclude that ADBMS research should focus in
four main areas. The first area is the development of a
proper infrastructure to allow the clean introduction of
autonomic computing system features. Current research
literature proposes two very different paths to
ADBMSs. One is a revolutionary approach that argues
for a complete redesign of DBMSs with fine-grained
components [30][31] or components that provide a
RISC-like interface [28]. This RISC-style facilitates
individual management of the components and
controlled interactions between them. The second
approach is evolutionary [27] and identifies a set of
phases that existing systems can be taken through in
order to become autonomic systems. We feel the
evolutionary approach makes the most sense for
existing DBMS products.

The second main area of research for ADBMSs is
intelligent decision-making tools. It is important that
DBMSs become able to independently analyze and act
upon the information they collect about their
performance. A key component of this progress will be

the development of effective mathematical models and
feedback control loops that can be used to make more
accurate performance prediction and reach better tuning
decisions.

The third main area of research is the efficient and
automatic collection and exploitation of data about the
operation and performance of DBMSs. In order to
mange itself an ADBMS will have to increase both the
volume of monitoring data and the frequency with
which it is collected. An ADBMS will also require
workload characterization techniques [3] to
automatically extract the necessary information from
this data. Statistical models and data mining techniques
[1][2] can be useful for exploring interesting properties
in the DBMS’s workload.

 The fourth main area of research is the development
of a useful model of the system itself. A model must
exist in order for DBMSs to know themselves. The
model will have to efficiently represent the resources
used by the ADBMS, the relationships between these
resources, the workload of the ADBMS and the current
state of the ADBMS.

Finally, we do not think that progressing towards
ADBMSs will mean the demise of DBAs. It will mean
the end of repetitive administrative tasks, freeing DBAs
to spend more time on new applications and on the
business policies and strategies. Furthermore, DBAs
will be needed to evaluate and select recommendations
before they are implemented. Once comfortable with
system recommendations, DBAs can enable a DBMS to
take actions automatically and simply report on them.

5. Acknowledgments

We thank IBM Canada, the Natural Sciences and
Engineering Research Council of Canada (NSERC) and
Communications and Information Technology Ontario
(CITO) for their support.

6. References

[1] Elnaffar, S., Martin, P., and Horman, R. Automatically
Classifying Database Workloads. Proceedings of ACM
Conference on Information and Knowledge Management (CIKM
ACM ’02), November 2002.

[2] Elnaffar, S. A Methodology for Auto-Recognizing DBMS
Workloads. Proceedings of Centre for Advanced Studies
Conference (CASCON ’02), October 2002.

[3] Elnaffar, S., and Martin, P. Characterizing Computer
Systems’ Workloads. Technical Report 2002-461, School of
Computing, Queen’s University, Canada, Dec. 2002.

 8

[4] Office of the Information and Privacy Commissioner,
Ontario. Data Mining: Staking a Claim on Your Privacy,
January 1998.

[5] S. Castano, M. Fugini, G. Martella, and P. Samarati.
Database Security. AddisonWesley, 1995.

[6] C. Landwehr. "Formal Models of Computer Security". ACM
Computing Surveys, 13(3):247–278, 1981.

[7] Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y.
"Hippocratic Databases". VLDB 2002, Hong Kong, China.
VLDB Endowment, in press 2002.

[8] Rao, J., Zhang, C., Lohman, G., Megiddo, N. , "Automating
Physical Database Design in a Parallel Database System", Proc.
2002 ACM SIGMOD, Madison, WI, 2002.

[9] Gassner, P., Lohman, G.M., Schiefer, K.B. and, Wang, Y.
"Query Optimization in the IBM DB2 Family", IEEE Data
Engineering Bulletin, 16(4), 1993, pp. 4-18.

[10] M. Stillger, G. M. Lohman, V. Markl, M. and, Kandil,
“LEO - DB2's LEarning Optimizer”, VLDB 2001, Rome, Italy,
pp. 19-28.

[11] E. Kwan, S. Lightstone, A Storm and, L. Wu, IBM Server
Group, "Automatic Configuration for IBM DB2 Universal
Database", online,
http://www.redbooks.ibm.com/redpapers/pdfs/
redp0441.pdf.

[12] G. Lohman, G. Valentin, D. Zilio, M. Zuliani and, A.
Skelly, "DB2 Advisor: An optimizer Smart Enough to
Recommend Its Own Indexes", Proceedings, 16th IEEE
Conference on Data Engineering, San Diego, CA, 2000.

[13] B. Schiefer and G. Valentin. "DB2 Universal Database
Performance Tuning", IEEE Data Engineering Bulletin, 22(2),
June 1999, pp. 12-19.

[14] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R.
Narasayya. "Automated Selection of Materialized Views and
Indexes for SQL Databases", VLDB 2000, pp. 496-505.

[15] Guy M. Lohman, Sam Lightstone, "SMART: Making DB2
(More) Autonomic". VLDB 2002, pp. 877-879.

[16] H. Pirahesh, J. M. Hellerstein, W. Hasan, “Extensible/Rule
Based Query Rewrite Optimization in Starburst”, Procs. 1992
ACM SIGMOD Conference, 1992, pp. 39-48.

[17] H. Pirahesh, T. Y. C. Leung, W. Hasan, “A Rule Engine for
Query Transformation in Starburst and IBM DB2 C/S DBMS”,
Procs. 1997 IEEE Intl. Conf. On Data Engineering, 1997, pp.
391-400.

[18] P. Gassner, G. M. Lohman, K. B. Schiefer, Y. Wang.
“Query Optimization in the IBM DB2 Family”, IEEE Data
Engineering Bulletin, 16(4), 1993, pp. 4-18.

[19] “Database Cost of Ownership Study,” The Aberdeen Group
1998. http://relay.bvk.co.yu/progress/aberdeen/aberdeen.htm.

[20] D.H. Brown Associates, “DB2 UDB vs. Oracle8i: Total
Cost of Ownership,” D.H. Brown Associates, Inc., Port Chester,
NY., December 2000. http://www.breakthroughdb2.com/.

[21] Ashraf Aboulnaga and Surajit Chaudhuri. "Self-tuning
Histograms: Building Histograms Without Looking at Data",
Proceedings of ACM SIGMOD, Philadelphia, 1999.

[22] Surajit Chaudhuri and Vivek Narasayya. "Automating
Statistics Management for Query Optimizers". Proceedings of
16th International Conference on Data Engineering, San Diego,
USA 2000.

[23] Query Optimization in Oracle 9i. An Oracle White Paper,
February 2002.
http://technet.oracle.com/products/bi/pdf/o9i_optimization_twp.
pdf.

[24] Oracle 9i Manageability Features. An Oracle White Paper,
September 2001.
http://www.oracle.com/ip/deploy/database/oracle9i/collateral/m
a_bwp10.pdf

[25] Oracle 9i Materialized Views. An Oracle White Paper,
May 2001.
http://technet.oracle.com/products/oracle9i/pdf/o9i_mv.pdf

[26] Microsoft SQL Server 2000 Documentation, Microsoft
Corporation, 2002.

[27] A. G. Ganek and T. A. Corbi. "The Dawning of the
Autonomic Computing Era". IBM Systems Journal, 42, 1,
March 2003.

[28] Gerhard Weikum, Axel Mönkeberg, Christof Hasse, Peter
Zabback: "Self-tuning Database Technology and Information
Services: From Wishful Thinking to Viable Engineering".
VLDB 2002, pp. 20-31.

[29] IBM, DB2 Universal Database Version 8.1 Administration
Guide: Performance, IBM Corporation, 2003.

[30] J. McCann, "The Database Machine: Old Story, New
Slant?" Proceedings of the first Biennial Conference on
Innovative Data Systems Research, VLDB, January 5-8
2003.

[31] S. Harizopoulos and A. Ailamaki, "A Case for Staged
Database Systems" Proceedings of the first Biennial
Conference on Innovative Data Systems Research,
VLDB, January 5-8 2003.

[32] P. Bernstein, "Applying Model Management to
Classical Meta Data Problems" Proceedings of the first
Biennial Conference on Innovative Data Systems
Research, VLDB, January 5-8 2003.

 9

http://relay.bvk.co.yu/progress/aberdeen/aberdeen.htm
http://www.breakthroughdb2.com/
http://technet.oracle.com/products/bi/pdf/o9i_optimization_twp.pdf
http://technet.oracle.com/products/bi/pdf/o9i_optimization_twp.pdf
http://www.oracle.com/ip/deploy/database/oracle9i/collateral/ma_bwp10.pdf
http://www.oracle.com/ip/deploy/database/oracle9i/collateral/ma_bwp10.pdf
http://technet.oracle.com/products/oracle9i/pdf/o9i_mv.pdf

	Introduction
	How autonomic are current DBMSs?
	Self-optimizing
	Self-configuring
	Self-healing
	Self-protecting
	Self-organizing
	Self-inspecting

	Analysis – what is missing?
	Conclusions
	Acknowledgments
	We thank IBM Canada, the Natural Sciences and Engineering Re
	References

