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Abstract

In certain physical systems measuring one variable of the system

modi�es the values of any number of other variables unpredictably.

We show in this paper that under these conditions a parallel approach

succeeds in carrying out the required measurement while a sequential

approach fails. Speci�cally, we show that for a nonlinear dynamical

system, namely, the Belousov-Zhabotinskii chemical reaction, mea-

surement disturbs the equilibrium of the system and causes it to enter

into an undesired state. If, however, several measurements are per-

formed in parallel, the e�ect of perturbations seems to cancel out and

the system remains in a stable state.
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1 Introduction

Let S be a physical system, such as one studied by biologists (e.g., an ecosys-

tem), or one maintained by engineers (e.g., a nuclear reactor). The system

has n variables which are to be measured. One property of S is that measur-

ing one of its variables modi�es the values of any number of other variables of

the system unpredictably. We show in this paper that under these conditions

a parallel approach succeeds in carrying out the required measurement while

a sequential approach fails.

Usually, the main purpose of parallelism is to speed up computations

that would otherwise require an inordinate amount of time if performed se-
quentially (that is, using one processor). Thus, in parallel computation, n

processors, n > 1, cooperate to solve a computational problem by working on
it simultaneously. Theoretical and practical results have been obtained over

the last twenty �ve years, demonstrating that parallelism yields signi�cant
improvements not only in the speed with which a solution is arrived at, but
also in the quality of the solution itself. The level of improvement achieved

through parallel computation in each case varied over a wide range depending
on the problem being solved: from sublinear, to linear, or even superlinear in
the number of processors used on the parallel computer. Furthermore, those

results were obtained within conventional paradigms (such as, for example,
when all the data required by a computation are available at the outset), as

well as unconventional paradigms (such as, for example, when the data arrive
in real time and the results must be delivered by a certain strict deadline).
For surveys of these results, see [1, 2, 5, 18].

An important characteristic of traditional analyses of parallel computa-
tion is that the conditions governing the computational environment are, in

a fashion, fully determined by the human in charge and the model of compu-
tation used. For example, in a real-time computation, if it is deemed that the
arrival rate of the data is too high, it is possible for the people responsible for

the computation to slow down the arrival rate, or to extend the deadline by

which a solution is to be delivered, or to use a faster computer, and so on. A
radical departure from this paradigm was taken recently. In [3], the focus is

on computational environments in which a computation can succeed if and
only if it is performed in parallel. In these environments, it is the laws of na-

ture that prevail, rather than human-imposed computational circumstances

or conditions on the computation. Speci�cally, it is shown that the princi-
ples governing such �elds as physics, chemistry, and biology, are responsible
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for causing the inevitable failure of any sequential approach to solving the

problem at hand, while at the same time allowing a parallel approach to

succeed. A typical example of such principles is the uncertainty involved in

measuring several related variables of a physical system. Another principle

expresses the way in which the components of a system in equilibrium react

when subjected to outside stress.

An example environment in which these phenomena manifest themselves

is dynamical systems. In general, a system is a collection of elements that

interact with one another. The system is characterized by a number of vari-

ables among which relationships of cause and e�ect hold. In particular, the

system receives a number of inputs and produces a number of outputs based
on these inputs. In a static system, the current values of the outputs depend

only on the instantaneous values of the present inputs. If, on the other hand,
the system has memory such that current outputs are based on present as
well as past inputs, it is said to be a dynamical system. Here, variables are

time-dependent. Excitations and responses vary with time. Moreover, the
derivatives of variables with respect to time at any moment depend on the
values of these variables at that moment [8]. Examples of dynamical sys-

tems include electrical systems, mechanical systems, thermal systems, 
uid
systems, and so on.

An illustration of how the ideas in [3] apply to dynamical systems is
presented in [4]. There, it is shown that a resistance-inductance-capacitance
(RLC) circuit certain variables of which are measured sequentially (in other

words, one after the other), undergoes signi�cant perturbations that a�ect its
dynamical behavior. By contrast, these perturbations are usually eliminated
when the measurements are performed in parallel, that is, when the variables

are measured simultaneously. This result con�rmed the existence of physical

systems with the property that certain operations on them can be performed

successfully in parallel but not sequentially.
The RLC circuit considered in [4] is a linear dynamical system [7]. As

such, the e�ect of the perturbations it experiences from measurement of its

variables is, in general, relatively small. A natural question to ask therefore

is whether dynamical systems that are nonlinear su�er more dramatically

from sequential measurements of their attributes. In this paper we provide
an example to illustrate the role played by parallelism when measurements

are performed on nonlinear systems.

In general, most engineering systems, and in particular those chemical

systems of interest in this paper, are required to stay in a stable equilibrium
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state. However, perturbations due to certain measurement operations may

result in an instability known as a Hopf bifurcation. After the bifurcation,

the equilibrium state will be unstable and the system will be in a new un-

desired state, such as periodic or chaotic. Thus, Hopf bifurcations should be

avoided. On the other hand, it is usually required to know the detailed dy-

namical process of such systems, and a measurement near a Hopf bifurcation

is needed. If a measurement causes a Hopf bifurcation, and the system, for

example a chemical reaction, goes to a new state, the components and their

quantity in the new state are very di�erent from the old state [12]. Thus, in

order to design a better measurement scheme, the perturbations caused by

measurements should be considered.
In this paper, we extend our study begun in [4] to nonlinear dynamical

systems. In such systems, the state variables, that is, the variables describing
the behavior of the system, are related to one another by nonlinear functions.
A speci�c nonlinear dynamical system is selected for this study, namely, the

so-called Belousov-Zhabotinskii chemical reaction (BZ-reaction). The e�ect
of measurements on the dynamical behavior of the BZ-reaction is analyzed.
It is shown here that measurement disturbs the equilibrium of the system and

causes it to enter into an undesired state. If, however, several measurements
are performed in parallel, the e�ect of perturbations seems to cancel out and

the system remains in a stable state.
The remainder of this paper is organized as follows. In section 2, a hypo-

thetical physical system is described whose behavior changes when measure-

ments are performed on its variables. A concrete system with this property
is described in section 3 along with an analysis of the e�ect of parallelism
when measuring the system's variables. Some concluding remarks are o�ered

in section 4.

2 Computational Problem

A physical system S possesses the following characteristics:

1. For n > 1, the system possesses a set of n variables (or properties),
namely, q1; q2; : : : ; qn. Each of these variables is a physical quantity

(such as, for example, temperature, humidity, density, pressure, electric

charge, and so on). These quantities can be measured and/or controlled

independently, each at a given discrete location (or point) within S.
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Henceforth, qi, 1 � i � n, is used to denote a variable as well as the

discrete location at which this variable is measured and/or controlled.

2. The system is in a state of equilibrium, meaning that the values q1, q2,

: : :, qn satisfy a certain global condition C(q1, q2, : : :, qn).

3. At regular intervals, the state of the physical system is to be recorded.

In other words, the values q1; q2; : : : ; qn are to be measured at a given

moment in time where C(q1, q2, : : :, qn) is satis�ed. Each interval has

a duration of T time units; that is, the state of the system is measured

every T time units.

4. If the values q1; q2; : : : ; qn are measured one by one, each separately and

independently of the others, this disturbs the equilibrium of the system.
Speci�cally, suppose (without loss of generality) that q1; q2; : : : ; qi�1
have already been measured, for some i, 1 < i < n. Now, when qi is
subsequently measured, at least one other value qj, 1 � j � n and j 6= i,
will change unpredictably shortly thereafter (within one time units),

such that C(q1, q2, : : :, qn) is no longer satis�ed. Most importantly, the
values of qi+1; qi+2; : : : ; qn, none of which has yet been registered, may

be altered irreparably.

This last property of S is reminiscent of a number of well-known princi-
ples that manifest themselves in many sub�elds of the physical and natural

sciences and engineering, as illustrated in what follows.

Uncertainty in measurement

The phenomenon of interest here occurs in systems where measuring one

variable of a given system a�ects, interferes with, or even precludes the sub-
sequent measurement of another variable of the system. It is important to

emphasize that the kind of uncertainty of concern in this context is in no way

due to any errors that may be introduced by an imprecise or not su�ciently

accurate measuring apparatus.

1. In quantum mechanics, Heisenberg's uncertainty principle puts a limit

on our ability to measure simultaneously pairs of `complementary' vari-

ables. Thus, the position and momentum of a subatomic particle, or

the energy of a particle in a certain state and the time during which
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that state existed, cannot be de�ned at the same time to arbitrary ac-

curacy [6]. In fact, what this principle says is that once one of the two

variables is measured (however accurately, but independently of the

other), the act of measuring itself introduces a disturbance that a�ects

the value of the other variable. For example, suppose that at a given

moment in time t0 the position p0 of an electron is measured. Assume

further that it is also desired to determine the electron's momentum

m0 at time t0. When the momentum is measured, however, the value

obtained is not m0, as it would have been changed by the previous act

of measuring p0.

2. In digital signal processing the uncertainty principle is exhibited when
conducting a Fourier analysis. Complete resolution of a signal is pos-

sible either in the time domain t or the frequency domain w, but not
both simultaneously. This is due to the fact that the Fourier transform

is computed using eiwt: Since the product wt must remain constant,
narrowing a function in one domain, causes it to be wider in the other
[10, 14]. For example, a pure sinusoidal wave has no time resolution,

as it possesses nonzero components over the in�nitely long time axis.
Its Fourier transform, on the other hand, has excellent frequency reso-

lution: It is an impulse function with a single positive frequency com-
ponent. By contrast, an impulse (or delta) function has only one value
in the time domain, and hence excellent resolution. Its Fourier trans-

form is the constant function with nonzero values for all frequencies
and hence no resolution.

Other examples in this class include image processing, sampling theory, spec-
trum estimation, image coding, and �lter design [17].

Each of the phenomena discussed typically involves two variables in equi-

librium. Measuring one of the variables has an impact on the value of the

other variable. The system S, however, involves several variables (two or
more). In that sense, its properties, as listed at the beginning of this section,

are extensions of these phenomena.

3 Measurement in Dynamical Systems

The dynamical system of concern here consists of at least two variables and

two system parameters. The system's behavior, namely, equilibrium, peri-
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odic, or chaotic, is determined by the parameters and the initial values of

the variables. When one or more parameters change, the dynamical system

may experience a phase transition, that is, a change of state (equilibrium

point, period, chaos). Near the critical points, any perturbations, such as

those arising when performing measurements on the variables, may cause a

phase transition. The old state is unstable, and a new state appears.

Often, such as in chemical reactions, it is desirable that the system be

in a stable equilibrium point state. Further, the state close to the phase

transition critical point may be chosen in order, for example, to speed up the

reaction. In this case, some perturbations caused by measurements may lead

to undesired phase transitions. Simultaneous measurements on two or more
variables, on the other hand, can prevent the phase transition as shown in

what follows.
In dynamics, the phase transition is studied by a so-called bifurcation

analysis. When the form of the system equations is known, we can obtain

the condition and stability of the phase transition (bifurcation) as a function
of the system parameters. The pertubations caused by measurements are
usually equivalent to modifying the values of the parameters. Therefore,

an analytical form of the bifurcation is useful to analyze the perturbations
caused by measurements.

A simple but common bifurcation from equilibrium point to period or
chaos is Hopf bifurcation. When a system is in Hopf bifurcation, the eigen-
values of the Jacobian have zero real part but nonzero imaginary part, and

the �rst derivative of the real part with respect to the state variables is not
zero. With these conditions, one can determine when the system is in Hopf
bifurcation.

3.1 An Example of A Nonlinear Dynamical System

The Oregonator model of the BZ reaction is as follows [9, 13, 16]:

_� = s(� � ��+ �� q�2)

_� = s�1(�� � ��+ f�) (1)

_� = w(�� �)

where � / [HBrO2], � / [Br�], � / [Ce(IV)], and s; w; q, and f are parame-
ters. All variables and parameters are nonnegative.
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The equilibrium point (��; ��; ��) of the system is the solution of equation

(1) by letting _� = _� = _� = 0:

�� = [�q + 1� f +
q
(q � 1 + f)2 + 4q(1 + f)]=2q

�� = f ��=(1 + ��) (2)

�� = ��:

The Jacobian of the system is

J =

2
64
s(��� + 1� 2q��) s(1� �� 0

�s�1 + �� s�1(�1� ��) s�1f

w 0 �w

3
75 : (3)

By letting

jJ � I�j = 0; (4)

we can obtain a form of the eigenvalue � and the system variables. Rather

than solving the equation for �, which would be complicated, we search
instead for Hopf bifurcations using the Hopf bifurcation conditions. Let

� = a+ ib, where a and b are real, and substitute it into equation (4). This
yields two equations for the real and imaginary parts. Letting a = 0 and
b 6= 0, we obtain the following two equations:

w� s� sb2+ s2��w+2sq��+2sq��2+2s2q��w+2s��� s��� s2w+ ��w = 0 (5)

s2��b2 + wfs� wfs��� 2sq��w � 2sq��2w � 2s��w + s��w + sw + b2 + ��b2

�s2b2 + 2s2q��b2 + swb2 = 0: (6)

Solving equation (5) for b2 and substituting in equation (6), we obtain
the expression for the Hopf bifurcation. The condition @a

@c
ja=0 6= 0 can also

be checked, where c stands for s; f; q, or w.
For convenience, we set s = 1:27 and w = 0:161. Figure 1 plots the

relation between the other two parameters f and q when the system is in
Hopf bifurcation. When the values of f and q are taken in the regime marked
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Figure 1: The system in Hopf bifurcation.

by `stable', the system is in a stable equilibrium point state as shown in
Fig. 2(a). When the values are taken in the region marked by `unstable',
the equilibrium point is unstable, and a new stable periodic state appears

as displayed in Fig. 2(b). From the stable equilibrium point state to the
periodic state, the system experiences a Hopf bifurcation.

As mentioned previously, it is desired that the system be in a stable

equilibrium point. When measurement is performed sequentially, the pertur-
bations, on q for example, may lead the system from the stable regime to an

unstable regime. Now if we measure simultaneously, the perturbations may
change the values of f and q simultaneously, and it is possible for f and q

still to be located in the stable regime. In this case, simultaneous measure-

ment keeps the system stable. We elaborate this point more formally in what

follows.

3.2 Analysis

For the Oregonator model of the BZ reaction, the condition for the system
in Hopf bifurcation is expressed by equation 6 (after substituting for b2 from

equation 5 and for ��, ��, and �� from equation 2). In this equation, the system's
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Figure 2: Time series of the BZ reaction, when the parameters are chosen in
the stable regime (a,b,c), and unstable regime (d,e,f), respectively.
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four parameters are related nonlinearly. For simplicity, let us assume that

the measurement disturbs only two of them. When f = 1:0 and q = 0:05,

we obtain w as a function of s,

w � (2
p
0:013s8 + 0:453s6 + 16:043s4 + 110:565s2 + 755:289

�0:225s4 � 1:356s2 � 54:965)=(1:028s3 + 16:062s) ; (7)

where s and w are not less than zero.

Fig. 3(a) displays w changing with s. When the values of w and s are on

the curve, the system is in Hopf bifurcation. Above the curve, the system is

in stable equilibrium state. Under the curve, the equilibrium is unstable. It

is seen from the �gure that the unstable parameter regime increases rapidly
as w decreases. If before the measurement, w and s are near 0.5 and 5,
respectively, the system is in a stable equilibrium state. In this case, a

measurement that causes w to decrease will easily lead the system to an
undesired state.

If we perform several measurements simultaneously, when w is perturbed,

s may be perturbed too simultaneously. It is easy to see from Fig. 3(a) that
the perturbation on s is helpful to decrease the e�ect of the perturbation on

w. For example, if initially w = w0 = 0:5 and s = s0 = 5:0, the system
is in the stable regime. Now, if a measurement disturbs �w = �0:06 and
�s > 1 or < �1, the system is still located in the stable regime at (w; s) =

(w0 +�w; s0 +�s).
Similarly, when we �x f = 1:0 and s = 1:27, the Hopf bifurcation con-

dition is expressed by w and q as shown in Fig. 3(b). Here, only the per-
turbation causing q to increase is useful for releasing the e�ect from the
perturbation on w. Again, Fig. 3(c) is the Hopf bifurcation diagram when

s = 1:27 and q = 0:05. The perturbation on both w and f can be better
than on w or f alone. The same conclusion can be drawn from Fig. 3(d)
where w = 0:161 and s = 1:27 are �xed.

4 Conclusion

A hypothetical physical system is described in [3] with the property that

certain operations on its variables can only succeed if performed in parallel.

Instances of these operations include measuring or setting a number of phys-

ical attributes of the system, such as temperature, pressure, voltage, and so

on. Success or failure of these operations is determined by the laws of nature
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Figure 3: Hopf bifurcation diagrams of the B-Z reaction. (a) f = 1:0 and

q = 0:05; (b) f = 1:0 and s = 1:27; (c) s = 1:27 and q = 0:05; (d) w = 0:161
and s = 1:27.
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governing the behavior of the system. Examples of these laws are Heisen-

berg's uncertainty principle in quantum mechanics, which puts a limit on our

ability to measure with a high degree of accuracy pairs of `complementary'

variables, Le Châtelier's principle of chemical systems in equilibrium, and

the homeostatic principle in biology which is concerned with the behavior

displayed by an organism under stress.

A concrete example of such a system was presented in [4]. There, a simple

RLC circuit is described whose dynamical behavior is signi�cantly a�ected by

sequential measurements of its variables. A parallel measurement approach,

on the other hand, greatly mitigates these perturbations and often eliminates

them altogether. It should be noted that our interest in [4] was in the short-
term dynamical behavior of the RLC circuit. Such behavior is important in

the context of real-time control applications, where the variables of a system
need to be monitored on a permanent basis and measured at regular intervals
[11]. By contrast, it is clear that the long-term behavior of the RLC circuit

(a linear dynamical system) is very simple: The circuit settles into a stable
equilibrium state.

In this paper, we extended our study to nonlinear dynamical systems.

The e�ect of measurements on the dynamical behavior of the Belousov-
Zhabotinskii chemical reaction was analyzed using Hopf bifurcation theory.

We showed that measurement disturbs the equilibrium of the system and
causes it to enter into an undesired state. Therefore, both the short and long
term behaviors of the system could be changed by perturbations. If, however,

several measurements are performed in parallel, the e�ect of perturbations
seems to cancel out and the system remains in a stable state. We note in
passing, for its historical interest, the fact that one of pioneers in the �eld of

computation, Alan Turing, did some important work in chemistry during the

early 1950's, particularly on chemical reactions with nonlinear kinetic laws

[15]. We feel that revisiting this subject from a computational viewpoint
�ttingly closes the scienti�c cycle (as well as the historical one).

The example of [4] and that of this paper are both of systems that are

a�ected by measurements, in the sense that measuring one of their variables

(or several sequentially) disturbs their equilibrium. An open question for

further investigation is to study the role of parallelism in systems whose
equilibrium is disturbed when the values of their variables are deliberately

modi�ed (rather than merely measured) by an external operator.

13



References

[1] S.G. Akl, Parallel Computation: Models And Methods, Prentice Hall,

Upper Saddle River, New Jersey, 1997.

[2] S.G. Akl, Superlinear performance in real-time parallel computation, to

appear in Journal of Supercomputing.

[3] S.G. Akl, Computing in the presence of uncertainty: Disturbing the

peace, Proceedings of the International Conference on Parallel and Dis-

tributed Processing Techniques and Applications, Las Vegas, Nevada,

June 2003.

[4] S.G. Akl and W. Yao, An application of parallel computation to dy-
namical systems, Technical Report No. 2003-466, School of Computing,

Queen's University, Kingston, Ontario, June 2003, 10 pages.

[5] J. Blazewicz, K. Ecker, B. Plateau, and D. Trystram, Eds., Handbook
on Parallel and Distributed Processing, Springer Verlag, Berlin, 2000.

[6] B.H. Bransden and C.J. Joachain, Quantum Mechanics, Pearson Edu-
cation, Harlow (Essex), England, 2000.

[7] L.O. Chua, C.A. Desoer and E.S. Kuh, Linear and Nonlinear Circuits,

McGraw-Hill, New York, 1987.

[8] C.M. Close, D.K. Frederick, and J.C. Newell, Modeling and Analysis of

Dynamic Systems, John Wiley, New York, 2002.

[9] R.J. Field and R.M. Noyes, Oscillations in chemical systems. IV. Limit

cycle behavior in a model of a real chemical reaction, The Journal of

Chemical Physics, Vol. 60, No. 5, 1974, 1877{1884.

[10] D. Gabor, Theory of communication, Proceedings of the Institute of

Electrical Engineers, Vol. 93, No. 26, 1946, 420{441.

[11] V. Gazi, M.L. Moore, K.M. Passino, W.P. Shackleford, F.M. Proctor,

and J.S. Albus, The RCS Handbook: Tools for Real-Time Control Sys-

tems Software Development John Wiley, New York, 2001.

[12] P. Gray and S.K. Scott, Chemical Oscillations and Instabilities: Non-

linear Chemical Kinetics, Oxford University Press, New York, 1993.

14



[13] P. Richetti, J.C. Roux, F. Argoul and A. Arneodo, (1987). From

quasiperiodicity to chaos in the Belousov-Zhabotinskii reaction II. Mod-

eling and theory, The Journal of Chemical Physics, Vol. 86, No. 6, 1987,

3339{3356.

[14] C.E. Shannon, Communication in the presence of noise, Proceedings of

the IRE, Vol. 37, 1949, 10{21.

[15] A.M. Turing, The chemical basis of morphogenesis, Philosophical Trans-

actions of the Royal Society of London, Series B, Vol. 237, No. 641, 1952,

pp. 37{72.

[16] J.S. Turner, J.C. Roux, W.D. McCormick and H.L. Swinney, Alternat-

ing periodic and chaotic regimes in a chemical reaction-Experiment and
theory, Physics Letters A Vol. 85, No. 1, 1981, 9{12.

[17] R. Wilson and G.H. Granlund, The uncertainty principle in image pro-
cessing, IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, Vol. PAMI-6, No. 6, 1984, 758{767.

[18] A.Y. Zomaya, Ed., Parallel Computing: Paradigms and Applications,
International Thomson Computer Press, London, England, 1996.

15


