Splicing on Routes versus

Shuffle and Deletion along Trajectories
Technical Report 2003-471

Michael Domaratzki*

School of Computing, Queen’s University,
Kingston, Ontario, Canada K7L 3NG6.
email: domaratz@cs.queensu.ca

1 Introduction

Splicing on routes (see Section 2 for definitions) was introduced by Mateescu
[7] to model generalizations of the crossover splicing operation (see, e.g.,
Kececioglu and Gusfield [6]). Crossover splicing simulates the manner in
which two DNA strands may be spliced together at multiple locations to
form several new strands, see Mateescu for a discussion [7].

Splicing on routes generalizes the crossover splicing operation by speci-
fying a set T of routes which restricts the way in which splicing can occur.
The result is that specific sets of routes can simulate not only the crossover
operation, but also such operations on DNA such as the simple splicing and
the equal-length crossover operations (see Mateescu for details and defini-
tions of these operations [7]). Splicing on routes is also a generalization of
the shuffle on trajectories operation, introduced by Mateescu et al. [8], which
is itself a generalization of the shuffle operation. Shuffle on trajectories again
restricts the way in which words may be shuffled together by imposing a set
of restrictions in the form of a language T of trajectories.

Recently, the author has introduced the notion of deletion along trajec-
tories [1]. This concept unifies several deletion operations, many of which

*Research supported by an NSERC PGS-B graduate scholarship.

have been studied extensively by Kari and others [2, 3, 4, 5]. Deletion along
trajectories serves to provide an inverse (in the sense of Kari [3]) to shuf-
fle on trajectories, which allows us to generalize certain language equations
considered by Kari [3], see [1] for details.

In this note, we consider the simulation of splicing on a route by shuffle
and deletion along trajectories. We show that there exist three fixed weak
codings 71, 79, w3 such that for all routes ¢, we can simulate the splicing on ¢
of two languages L1, L, by a fixed combination of the shuffle and deletion of
the same languages Ly, L, along the routes 7 (t), mo(t), m3(¢). As a corollary,
it is shown that every unary operation defined by splicing on routes can also
be performed by a deletion along trajectories.

2 Definitions

For additional background in formal languages theory, please see Yu [9]. Let
Y be a finite set of symbols, called letters. Then ¥* is the set of all finite
sequences of letters from X, which are called words. The empty word e is
the empty sequence of letters. The length of a word w = wyws - - - w, € X*,
where w; € X, is n, and is denoted |w|. Note that € is the unique word of
length 0. A language L is any subset of ¥*.

We denote by N the set of natural numbers: N = {0,1,2,...}. Given
alphabets 3, A, a morphism is a function h : £* — A* satisfying h(zy) =
h(z)h(y) for all ,y € ¥*. A morphism h : ¥* — A* is said to be a weak
coding if h(a) € A + e for alla € X.

We recall the definition of shuffle on trajectories, originally given by Ma-
teescu et al. [8]. Shuffle on trajectories is defined by first defining the shuffle
of two words = and y over an alphabet 3 on a trajectory ¢, which is simply
a word in {0,1}*. We denote the shuffle of 2 and y along trajectory ¢ by
Tl y.

If =ax', y=>y (with a,b € X) and ¢t = et’ (with e € {0,1}), then

L — a(z' wyp by') if e = 0;
et ¥ = blax' wypy') ife=1.

frx=ar' (a€X),y=cand t=cet' (e € {0,1}), then

R a(x'wye) if e =0;
A I/ otherwise.

fr=ey=0by (beX)and t=et' (e € {0,1}), then

| blewpy) ife=1;
€ et Y = { 1] otherwise.

We let 2.y = 0 if {x,y} # {€}. Finally, if x = y = ¢, then el e = € if
t = € and () otherwise.

We extend shuffle on trajectories to sets 77 C {0,1}* of trajectories as
follows:

TWry = Ua:Luty.
ter

Further, for L, Ly C X*, we define

We now define deletion along trajectories, which models deletion oper-
ations controlled by a set of trajectories [1]. Let x,y € ¥* be words with
z=ax',y="0y (a,b € X). Let t be a word over {i,d} such that ¢t = et’ with
e € {i,d}. Then we define z ~», y, the deletion of y from z along trajectory
t, as follows:

a(x' ~p by') if e =1i;

Ty Y = ' ~p if e=d and a = b;
1) otherwise.

Also, if x = az’ (a € ¥) and t = et’ (e € {i,d}), then

o e — a(x’ ~yp €) if e =1;
R) otherwise.

Ifx #e€ v~y =¢e Further, ¢ ~, y = e if t = y = e. Otherwise,
e~y =0.

Example 2.1 Let x = abcabe, y = bac and t = (id)®. Then we have that
x~spy = ach. If t = i?d%i then v ~, y = 0.

Let T C {i,d}*. Then

x”’Ty:USEMt?J-
teT

We extend this to languages as expected: Let Ly, Ly C ¥* and T C {4, d}"*.
Then

Ly~ Ly = U T o Y.
Note that ~»p is neither an associative nor a commutative operation on
languages, in general.

We define the concept of splicing on routes, and note the difference be-
tween deletion on trajectories from splicing on routes, which allows discarding
symbols from either input word. In particular, a route is a word ¢ specified
over the alphabet {0,0, 1,1}, where, informally, 0, 1 means insert the symbol
from the appropriate word, and 0, 1 means discard that symbol and continue.

Formally, let z,y € ¥* and ¢ € {0,0,1,1}*. We define the splicing of z
and y, denoted x <y y, recursively as follows: if x = az’, y = by’ (a,b € X)
and t = ct’ (c € {0,0,1,1}), then

a(z' >y y) if ¢ =0;
(' <y y) ife=0;
b(xy ') ife=1;
(xxp y) ife=1.

T DXy Y =

If z = ax’ and t = ct’, where a € ¥ and ¢ € {0,0, 1,1}, then

a(x' <y €) if ¢ = 0;
Ty €=1< (' >xpe) if c=0;
0 otherwise.

If y = by and t = ct’, where a € ¥ and ¢ € {0,0,1,1}, then

bleddy ') if ¢ = 1;
ey y =1 (expy)) ifc=T1;
0 otherwise.

Finally, we set € b<; € = € if t = € and () otherwise. We extend p<; to sets of
trajectories and languages as expected.

4

3 Simulation of Splicing on Routes

We now demonstrate that splicing on routes can be simulated by a combi-
nation of shuffle on trajectories and deletion along trajectories.

Theorem 3.1 There erists weak codings w1, : {0,1,0,1}* — {4,d}* and a
weak coding w3 : {0,1,0,1}* — {0,1}* such that for all t € {0,0,1,1}*, and
for all z,y € ¥*, we have

LD Y = (T ~omy)) W) (Y ~may 7).

Proof. We first define the weak codings: let 7y, m : {0,0,1,1}* — {4, d}*
and w3 : {0,0,1,1} — {0,1}* be given by

m(0) = i m@ = 4 m(l) = ¢ 7T1(D = €&
m(0) = ¢ 7T2(9) = ¢ m(l) = i 7T2(1) = d;
m(0) = 0 m(0) = & m(1) = L ml) = e

We first show the left-to-right inclusion. Let z € x <, y. The result is by
induction on |¢|. If |[t| = 0, then x = y = 2z = e. Thus, we can easily verify
that z € (€ ~ €)W (€ ~ €).

Let [t| > 0. Then ¢ = ct for ¢ € {0,0,1,1}. We prove only the case where
¢ =0 and ¢ = 0. The other two cases are similar and are left to the reader.

(a) ¢ = 0. Then 2 = az’ and z € a(z’ <y y) for some 2/ € ¥*. Thus,

z = az' for some 2’ € (2' <y y). By induction, 2’ € (2’ ~ @)
E*) Warg(t) (y (1) E*). Let u € () Y*and v €y o (¢ >* be
such that 2’ € uiz, @) v.
Note that 7 (t) = 4m(t'). Thus by definition of ~, au € x ~y 1y X*.
Similarly, as m(t) = ma(t'), v € y ~ryqy X, Finally m3(t) = 0ms(t').
Thus, autiir,@ v = a(ugeyv) 2 a2’ = z. Thus, the result holds for
c=0.

(b) ¢ = 0. Then z = az’ and z € (2’ <y y) for some 2/ € X*. Thus, by
induction z € (2" ~r, (1)) Wayw) (Y ~>mpwy XF). Let u € 2’ ~r 1y
Y and v € y ~p,r) X be such that 2 € wii,) v.
Note in this case that () = dm(t'). Thus, u € & ~»,, ;) X*. Similarly,
as mo(t) = ma(t'), v € Yy ~opy XF. Finally, m3(t) = m3(t'). Thus,
Ullly(p) U = ULz, U D 2. Thus, the result holds for ¢ = 0.

3

We now prove the reverse inclusion. Let 2 € (2~) %) Wiry) (Y ~ma(t)
¥*). We show the result by induction on ¢. For |t| = 0, ¢ = e. Thus
m(t) = mo(t) = m3(t) = e. By definition of wy, Liw, Ly is non-empty
iff € € Ly N Ly, which implies z = e. Thus, € € (x ~, ¥*), and similarly
for y in place of . By definition of ~»;, this implies that x = y = €. Thus,
z € z <y y, by definition. The inclusion is proven for |t| = 0.

Let |t| > 0. Thus, there is some ¢ € {0,0,1,1}, and ¢ € {0,0,1,1}*
such that t = ct’. We distinguish between four cases, for each choice of ¢ in
{0,0,1,1}, however, we only prove the cases ¢ = 0 and ¢ = 0. The other two
cases are very similar, and are left to the reader.

(a) ¢ = 0. Note that m(t) = im(t'), mo(t) = ma (') and 7w3(t) = Om3(t).
Let u,v € ¥* be words such that u € x ~y, 1) X%, v € Y~y X* and
Z € Ulllzgp) V.

As m3(t) = Oms(t'), we have, by definition of 11;, that u = av/, 2 = a2’
and 2" € v W, pyv for some a € ¥ and ', 2" € ¥*. Now, as au’ €
T~) 5, there exists 2’ € ¥* such that x = a2’ and v’ € '~ ()
¥*. Also, note that v € y ~+r,) X*. Thus, combining these yields
that

!

2 € (2 ~omw) BF) Wy (Y ~mp) BF).
By induction, 2z’ € 2’ by y. Thus,

z=az € a(x' > y) = (ax’ Moy y) = (x <4 y).
Thus, the inclusion is proven.

(b) ¢ = 0. Then m(t) = dm(t'), ma(t) = ma(t') and m3(t) = m3(¢'). Let
u,v € X* be such that u € ¥~) X', v € y ~rye) XF and 2 €
Ul za(t) V-

As u € & ~oq) B*, let ug € X" be such that u € o ~r 1) ug. As
m(t) = dmy(t'), there are some b € ¥, 2',uj € ¥* such that x = ba',
ug = bugy and u € '~y uy. Thus, u € 2’ ~ 1y X*. Note that v €
Y ~may B0 Thus, 2 € uttn @y v C (2" ~omyey B) W@y (4 ~maw)
¥*). By induction, z € 2’ > y. Thus, we can see that (ba' <y y) =
x' <y y © z. This proves the inclusion.

The result is now proven. ®

Corollary 3.2 There exist weak codings m,ma, w3 such that for all T C
{0,0,1,1}* and Ly, Ly, C ¥,

Ly >y Ly = U(L1 () B) Way(r) (L2 ~my() T).
teT

Unfortunately, the identity
Ly vy Ly = (Ly ~ 1) 27) Wag(r) (Lo ~) £7)

does not hold in general, even if L, Ly are singletons and |T| = 2. For
example, if L; = {ab}, Ly = {cd} and T = {0011, 0011}, then

Li<ip Ly = {bc,ad};
(L1 ~r(T) E*)Uim,(T) (Ls (T ¥) = {ac,ad, be,bd}.

However, if T is a unary set of routes, by which we mean that T" C
{0,0}*1", then we have the following result, which is easily established:

Corollary 3.3 Let T C {0,0}*1". Then for all L C ¥*,
L >ap =1L i (T) .

We refer the reader to Mateescu [7, pp. 4-5] for a discussion of unary oper-
ations defined by splicing on routes.

4 Conclusion
We have demonstrated how to simulate splicing on a route by a fixed com-
bination of shuffle and deletion along trajectories.

References

[1] DoMARATZKI, M. Deletion along trajectories. Tech. Rep. 2003-464,
School of Computing, Queen’s University at Kingston, 2003.

[2] KARI, L. Generalized derivatives. Fund. Inf. 18 (1993), 27-39.

[3] KArI, L. On language equations with invertible operations. Theor.
Comp. Sci. 132 (1994), 129-150.

[4] KARI, L., AND THIERRIN, G. k-catenation and applications: k-prefix
codes. J. Inf. Opt. Sci. 16, 2 (1995), 263-276.

[5] KARIL, L., AND THIERRIN, G. Maximal and minimal solutions to lan-
guage equations. J. Comp. Sys. Sci. 53 (1996), 487-496.

[6] KECECIOGLU, J., AND GUSFIELD, D. Reconstructing a history of re-
combinations from a set of sequences. In Proc. 5th ACM-SIAM SODA
1994 (1994), pp. 471-480.

[7] MATEEScU, A. Splicing on routes: a framework of DNA computation.
In Unconvential Models of Computation (1998), C. Calude, J. Casti, and
M. Dinneen, Eds., Springer, pp. 273-285.

[8] MATEEscU, A., ROZENBERG, G., AND SALOMAA, A. Shuffle on tra-
jectories: Syntactic constraints. Theor. Comp. Sci. 197 (1998), 1-56.

9] Yu, S. Regular languages. In Handbook of Formal Languages, Vol. I,
G. Rozenberg and A. Salomaa, Eds. Springer-Verlag, 1997, pp. 41-110.

