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Abstract

We consider the decidability of existence of solutions to language equations in-
volving the operations of shuffle and deletion along trajectories. These operations
generalize the operations of concatenation, insertion, shuffle, quotient, sequential
and scattered deletion, as well as many others. Our results are constructive in
the sense that if a solution exists, it can be effectively represented. We show both
positive and negative decidability results.

1 Introduction

Work on language equations is one of the core areas of formal language theory [10]. Much
of the classical work deals with equations over the Boolean operations, concatenation and
Kleene closure. Recent research [2, 5, 7, 8] has investigated the question of decidability of
existence of solutions to equations of the form X1¦X2 = X3, where ¦ is a binary operation
on languages, and some of X1, X2, X3 are fixed languages and some are unknowns.

As a particular case of the above type of equations we get the shuffle decomposition
problem for regular languages, that is, the question whether a given regular language
can be written as a shuffle of two languages in a non-trivial way. In spite of its appar-
ent simplicity the question remains still open for general regular languages [2, 5]. The
decomposition of regular languages with respect to catenation is known to be decidable
[9, 13].

In this paper, we focus on operations ¦ which are taken from the class of operations
defined by shuffle on trajectories [11]. Shuffle on trajectories provides a unifying framework
for studying various language composition operations. The complementary notion of
deletion along trajectories introduced by the first author [3] provides, in the sense of Kari
[7], the inverse of shuffle on trajectories and makes it possible to attack in a systematic
way questions of decidability of existence of solutions to equations involving shuffle on
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trajectories. Some positive decidability results have already been completed by the first
author [3].

We establish for certain classes of trajectories the decidability of the existence of a
decomposition for a given regular language. However, our results leave open the question
for the trajectory (0 + 1)∗ corresponding to ordinary shuffle [2, 5]. Also we show that
for given regular languages L1, L2, and R we can decide whether or not there exists a
trajectory T such that L1 T L2 = R, where T denotes shuffle along the trajectory T .
To conclude we provide undecidability results for equations involving one or two variables.

2 Definitions and Preliminary Results

For additional background in formal languages and automata theory, please see Yu [14].
Let Σ be a finite set of symbols, called letters. Then Σ∗ is the set of all finite sequences
of letters from Σ, which are called words. The empty word ε is the empty sequence of
letters. The length of a word w = w1w2 · · ·wn ∈ Σ∗, where wi ∈ Σ, is n, and is denoted
|w|. Note that ε is the unique word of length 0. A language L is any subset of Σ∗. By L,
we mean Σ∗ −L, the complement of L. If L is a language over alphabet Σ, we denote by
alph(L) the set of all symbols of Σ occurring in words of L (alph(L) ⊆ Σ).

A deterministic finite automaton (DFA) is a five-tuple M = (Q, Σ, δ, q0, F ) where Q is
the finite set of states, Σ is the alphabet, δ : Q×Σ → Σ is the transition function, q0 ∈ Q
is the distinguished start state, and F ⊆ Q is the set of final states. We extend δ to
Q×Σ∗ in the usual way. A word w ∈ Σ∗ is accepted by M if δ(q0, w) ∈ F . The language
accepted by M , denoted L(M) is the set of all words accepted by M . A language is called
regular if it is accepted by some DFA. A DFA M = (Q, Σ, δ, q0, F ) is complete if δ(q, a)
is defined for all (q, a) ∈ Q× Σ.

A nondeterministic finite automaton (NFA) is a five-tuple M = (Q, Σ, δ, q0, F ) where
Q, Σ, q0 and F are as in the deterministic case, while δ : Q × (Σ ∪ ε) → 2Q is the
nondeterministic transition function. Again, δ is extended to Q× Σ∗ in the natural way.
A word w is accepted by M if δ(q0, w) ∩ F 6= ∅. It is known that the language accepted
by an NFA is regular.

We recall the definition of shuffle on trajectories, originally given by Mateescu et al.
[11]. Shuffle on trajectories is defined by first defining the shuffle of two words x and y
over an alphabet Σ on a trajectory t, which is simply a word in {0, 1}∗. We denote the
shuffle of x and y along the trajectory t by x t y.

If x = ax′ and y = by′ (with a, b ∈ Σ) then if t = et′ (with e ∈ {0, 1}), we have that

x et′ y =

{
a(x′ t′ by

′) if e = 0;
b(ax′ t′ y

′) if e = 1.

If x = ax′ (a ∈ Σ) and y = ε, then

x et′ ε =

{
a(x′ t′ ε) if e = 0;
∅ otherwise.

2



If x = ε and y = by′ (b ∈ Σ), then

ε et′ y =

{
b(ε t′ y

′) if e = 1;
∅ otherwise.

If x = y = ε, then ε t ε = ε if t = ε and ∅ otherwise. Finally, x ε y = ∅ if {x, y} 6= {ε}.
We extend shuffle on trajectories to sets T ⊆ {0, 1}∗ of trajectories as follows:

x T y =
⋃
t∈T

x t y.

Further, for L1, L2 ⊆ Σ∗, we define

L1 T L2 =
⋃

x∈L1
y∈L2

x T y.

We now give the definition of deletion along trajectories [3], which models deletion
operations controlled by a set of trajectories. Let x, y ∈ Σ∗ be words with x = ax′,
y = by′ (a, b ∈ Σ). Let t be a word over {i, d} such that t = et′ with e ∈ {i, d}. then we
define x ;t y as follows:

x ;t y =





a(x′ ;t′ by′) if e = i;
x′ ;t′ y′ if e = d and a = b;
∅ otherwise.

Also,

x ;t ε =

{
a(x′ ;t′ ε) if e = i;
∅ otherwise.

Further, ε ;t y = ε if t = y = ε. Otherwise, ε ;t y = ∅. Finally, x ;ε y = ∅ if x 6= ε.
Let T ⊆ {i, d}∗. Then

x ;T y =
⋃
t∈T

x ;t y.

We extend this to languages as expected: Let L1, L2 ⊆ Σ∗ and T ⊆ {i, d}∗. Then

L1 ;T L2 =
⋃

x∈L1
y∈L2

x ;T y.

Note that ;T is neither an associative nor a commutative operation on languages, in
general. For the closure properties of ;T , please see [3].

Given two binary word operations ¦, ? : (Σ∗)2 → 2Σ∗ , we say that ¦ is a left-inverse
of ? [7, Defn. 4.5] if, for all u, v, w ∈ Σ∗, w ∈ u ? v ⇐⇒ u ∈ w ¦ v. We say that ¦ is a
right-inverse of ? [7, Defn. 4.1] if, for all u, v, w ∈ Σ∗, w ∈ u ? v ⇐⇒ v ∈ u ¦ w.

Let τ : {0, 1}∗ → {i, d}∗ be the morphism given by τ(0) = i and τ(1) = d. The
following result will prove useful [3]:
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Theorem 2.1 Let T ⊆ {0, 1}∗ be a set of trajectories. Then T and ;τ(T ) are left-
inverses of each other.

Similarly, let π : {0, 1}∗ → {i, d}∗ be the morphism given by π(0) = d and π(1) = i.
Given an operation ¦, let ¦R be the operation defined by x ¦R y = y ¦ x for all x, y ∈ Σ∗.

Theorem 2.2 Let T ⊆ {0, 1}∗ be a set of trajectories. Then T and (;π(T ))
R are

right-inverses of each other.

The following results of Kari [7, Thms. 4.2 and 4.6] allow us to find solutions to
equations involving shuffle on trajectories.

Theorem 2.3 Let L,R be languages over Σ and ¦, ? be two binary word operations, which
are left-inverses to each other. If the equation X ¦ L = R has a solution X ⊆ Σ∗, then

the language R′ = R ? L is also a solution of the equation. Moreover, R′ is a superset of
all other solutions of the equation.

Theorem 2.4 Let L,R be languages over Σ and ¦, ? be two binary word operations, which
are right-inverses to each other. If the equation L ¦X = R has a solution X ⊆ Σ∗, then

the language R′ = L ? R is also a solution of the equation. Moreover, R′ is a superset of
all other solutions of the equation.

3 Decidability of Shuffle Decompositions

Say that a language L has a non-trivial shuffle decomposition with respect to a set of
trajectories T ⊆ {0, 1}∗ if there exist X1, X2 6= {ε} such that L = X1 T X2.

In this section, we are concerned with giving a class of sets of trajectories T ⊆ {0, 1}∗
such that it is decidable, given a regular language R, whether R has a non-trivial shuffle
decomposition with respect to T . For T = (0 + 1)∗, this is an open problem [2, 5]. While
we do not settle this open problem, we establish a non-trivial generalization of the results
of Kari and Kari and Thierrin [6, 7, 8, 9], which leads to a large class of examples of
trajectories where the shuffle problem can be proven to be decidable.

A language L ⊆ Σ∗ is bounded if there exist w1, w2, . . . , wn ∈ Σ∗ such that L ⊆
w∗

1w
∗
2 · · ·w∗

n. Say that L is letter-bounded if wi ∈ Σ for all 1 ≤ i ≤ n.
We now define a class of letter-bounded sets of trajectories, called i-regular sets of

trajectories, which will have strong closure properties. In particular, we can delete, along
an i-regular set of letter-bounded trajectories, any language from a regular language and
the resulting language will be regular. This will allow us to solve the corresponding
decidability problems related to the shuffle decomposition.

Let ∆m be the alphabet ∆m = {#1, #2, . . . , #m} for any m ≥ 1. We define a class
of regular substitutions from (d + ∆m)∗ to 2(i+d)∗ , denoted Sm, as follows: a regular
substitution ϕ : (d + ∆m)∗ → 2(i+d)∗ is in Sm if both

(a) ϕ(d) = {d}; and
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(b) ϕ(#j) ⊆ i∗ for all 1 ≤ j ≤ m.

For all m ≥ 1, we also define a class of languages over the alphabet d + ∆m, denoted Tm,
as the set of all languages T ⊆ #1d

∗#2d
∗ · · ·#m−1d

∗#m. Define the class of trajectories
I as follows:

I = {T ⊆ {i, d}∗ : ∃m ≥ 1, Tm ∈ Tm, ϕ ∈ Sm such that T = ϕ(Tm)}.
If T ∈ I, we say that T is i-regular. As we shall see, the condition that T be i-regular is
sufficient for showing that R ;T L is regular for all regular languages R and all languages
L.

We will require the following result of Ginsburg and Spanier [4] on bounded regular
languages:

Theorem 3.1 Let L ⊆ w∗
1w

∗
2 · · ·w∗

k be a regular language. Then there exist constants
N, bi,j, ci,j such that 1 ≤ i ≤ N and 1 ≤ j ≤ k such that

L =
N⋃

i=1

w
bi,1

1 (w
ci,1

1 )∗ · · ·wbi,k

k (w
ci,k

k )∗. (3.1)

Theorem 3.2 Let T ∈ I. Then for all regular languages R and all languages L, R ;T L
is a regular language.

Proof. Let T ∈ I. Let m ≥ 1, T ′ ∈ Tm and ϕ ∈ Sm be such that T = ϕ(T ′). Then we
define K(T ) ⊆ Nm−1 as

K(T ) = {(j1, . . . , jm−1) : #1d
j1#2d

j2 · · ·#m−1d
jm−1#m ∈ T ′}.

As ϕ is a regular substitution, ϕ(#j) ⊆ i∗ is a bounded regular language for all 1 ≤ j ≤ m.

By Theorem 3.1, let Nj ≥ 1 and a
(j)
r , b

(j)
r for 1 ≤ j ≤ m and 1 ≤ r ≤ Nj be such that

ϕ(#j) =

Nj⋃
r=1

ia
(j)
r (ib

(j)
r )∗

for all 1 ≤ j ≤ m. We may assume that Nj = 1 for all 1 ≤ j ≤ m, since we may
establish the result for Nj > 1 by proving the result for Nj = 1 and noting the fact
that R ;T1∪T2 L1 = (R ;T1 L1) ∪ (R ;T2 L1). Thus, we let aj, bj be defined so that
ϕ(#j) = iaj(ibj)∗ for all 1 ≤ j ≤ m. Let Ij = {aj + nbj : n ≥ 0}.

Let R be regular and L be arbitrary. Let M = (Q, Σ, δ, q0, F ) be a DFA accepting
R. For all qj, qk ∈ Q, let R(qj, qk) = L((Q, Σ, δ, qj, {qk})). For I ⊆ N, let R′

I(qj, qk) =
R(qj, qk) ∩ {x : |x| ∈ I}.

We now define the set QR(T, L) ⊆ Q2m−2:

QR(T, L)

= {(qj)
2m−2
j=1 : ∃(kj)

m−1
j=1 ∈ K(T ) such that L ∩

m−1∏

`=1

R′
{k`}(q2`−1, q2`) 6= ∅}. (3.2)
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We now claim that

R ;T L =
⋃

(qj)2m−2
j=1

∈QR(T,L)

qf∈F

(
m−1∏

`=1

R′
I`
(q2(`−1), q2`−1)

)
·R′

Im
(q2m−2, qf ). (3.3)

Let x ∈ R ;T L. Then we can write x = x1x2 · · · xm such that there exists some
z = z1z2 · · · zm−1 ∈ L such that y = x1z1x2z2 · · · xm−1zm−1xm ∈ R. Further, by the

conditions on T , (|zj|)m−1
j=1 ∈ K(T ) and |xj| ∈ Ij for all 1 ≤ j ≤ m. We let q

x

` q′ denote
the fact that δ(q, x) = q′ in M . As y ∈ R, there are some q1, q2, . . . , q2m−2, qf ∈ Q such
that

q0

x1` q1

z1` q2

x2` · · ·
xm−1

` q2m−3

zm−1

` q2m−2

xm` qf

and qf ∈ F . Then zj ∈ R′
{|zj |}(q2j−1, q2j) for all 1 ≤ j ≤ m− 1, xj ∈ R′

Ij
(q2(j−1), q2j−1) for

all 1 ≤ j ≤ m− 1 and xm ∈ R′
Im

(q2m−2, qf ). Further, note that

z ∈ L ∩
m−1∏

`=1

R′
{|z`|}(q2`−1, q2`).

We conclude that (q1, q2, . . . , q2m−2) ∈ QR(T, L), as (|zj|)m−1
j=1 ∈ K(T ), and thus x is

contained in the right-hand side of (3.3).
For the reverse inclusion, let (q1, q2, . . . , q2m−2) ∈ QR(T, L) and qf ∈ F . Let (k1, . . . , km−1) ∈

K(T ) be the (m− 1)-tuple which witnesses (qi)
2m−2
i=1 ’s membership in QR(T, L). Then we

show that (
∏m−1

`=1 R′
I`
(q2(`−1), q2`))R

′
Im

(q2m−2, qf ) ⊆ R ;T L.
Let zj ∈ R′

{kj}(q2j−1, q2j) for all 1 ≤ j ≤ m− 1 be such that z = z1 · · · zm−1 ∈ L. Such

zj exist by definition of QR(T, L). Let xj ∈ R′
Ij

(q2(j−1), q2j−1) for all 1 ≤ j ≤ m− 1, and
xm ∈ R′

Im
(q2m−2, qf ). Then

q0

x1` q1

z1` q2

x2` · · ·
xm−1

` q2m−3

zm−1

` q2m−2

xm` qf .

Thus, y = x1z1 · · · xm−1zm−1xm ∈ R. Further, the length considerations are met by
definition of Ij and (kj)

m−1
j=1 ∈ K(T ). Thus x ∈ y ;T z ⊆ R ;T L.

Thus, since QR(T, L) is finite, R ;T L is a finite union of regular languages, and thus
is regular.

We note that if T is not letter-bounded, it may define an operation which does not
preserve regularity in the sense of Theorem 3.2. In particular, we note that for T = (di)∗,

(a2)∗(b2)∗ ;T {anbn : n ≥ 0} = {anbn : n ≥ 0},

a non-regular context-free language (CFL). For T = (i + d)∗, we have that

((ab)∗#(ab)∗ ;T {an#bn : n ≥ 0}) ∩ b∗a∗ = {bnan : n ≥ 0}.

Further, if T is letter-bounded but not i-regular, then T may not preserve regularity. For
example, let T = {indin : n ≥ 0}. Then a∗bc∗ ;T {b} = {ancn : n ≥ 0}.
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As an example of Theorem 3.2, consider T = {dnimdn : n,m ≥ 0}. It is easily verified
that T ∈ I. Thus, the language R ;T L is regular for all regular languages R and all
languages L. For any language L ⊆ Σ∗, define sq(L) = {x2 : x ∈ L}. Consider then that

R ;T sq(L) = {w : vwv ∈ R, v ∈ L}.
This precisely defines the middle-quotient operation, which has been investigated by
Meduna [12] for linear CFLs. Let R | L denote the middle quotient of R by L, i.e.,
R |L = R ;T sq(L). Thus, we can immediately conclude the following result, which was
not considered by Meduna:

Theorem 3.3 Given a regular language R and arbitrary language L, the language R | L
is regular.

We now return to letter-bounded sets of trajectories. Clearly, every letter-bounded
set of trajectories which is regular is also i-regular (consider Theorem 3.1). Thus, we have
the following corollary of Theorem 3.2.

Corollary 3.4 Let T ⊆ {i, d}∗ be a letter-bounded regular set of trajectories. Then for
all regular languages R, there are only finitely many regular languages L′ such that L′ =
R ;T L for some language L. Furthermore, this finite set of regular languages can be
effectively constructed, given an effective construction for T and R.

Proof. Let R be a regular language accepted by a DFA M = (Q, Σ, δ, q0, F ). Let
T ⊆ (i∗d∗)mi∗ for some m ≥ 0. By (3.3), we know that if QR(T, L) = QR(T, L′), then
R ;T L = R ;T L′.

Note that, for all L ⊆ Σ∗, QR(T, L) ⊆ Q2m−2. As Q2m−2 is a finite set, there are
only finitely many languages of the form R ;T L. This set can be effectively obtained
by considering all possible choices of sets Q′ ⊆ Q2m−2, and constructing the (effective)
regular language from (3.3) with Q′ = QR(T, L) (duplicates may also then be removed,
as we can effectively compare the resulting (effectively) regular languages).

Theorem 3.5 Let T ⊆ {0, 1}∗ be a letter-bounded regular set of trajectories. Let R be a
regular language over an alphabet Σ. Then there exists a natural number n ≥ 1 such that
there are n distinct regular languages Yi with 1 ≤ i ≤ n such that for any L ⊆ Σ∗ the
following are equivalent:

(a) there exists a solution Y ⊆ Σ∗ to the equation L T Y = R;

(b) there exists an index i with 1 ≤ i ≤ n such that L T Yi = R.

The languages Yi can be effectively constructed, given effective constructions for T and R.
Further, if Y is a solution to L T Y = R, then there is some 1 ≤ i ≤ n such that Y ⊆ Yi.

Proof. Let T,R be given. Then consider the finite set SL(T, R) = {(R ;π(T ) L) : L ⊆
Σ∗}. This set is finite by Corollary 3.4. Let L be arbitrary. Thus, if L T Y = R, then
Y ⊆ X for some X ∈ SL(T, R) by Theorems 2.2 and 2.4. Thus, (a) implies (b). The
implication (b) implies (a) is trivial.
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The symmetric result also holds:

Theorem 3.6 Let T ⊆ {0, 1}∗ be a letter-bounded regular set of trajectories. Let R be a
regular language over an alphabet Σ. Then there exists a natural number n ≥ 1 such that
there are n distinct regular languages Zi with 1 ≤ i ≤ n such that for any L ⊆ Σ∗ the
following are equivalent:

(a) there exists a solution Z ⊆ Σ∗ to the equation Z T L = R;

(b) there exists an index i with 1 ≤ i ≤ n such that Zi T L = R.

The languages Zi can be effectively constructed, given effective constructions for T and
R. Further, if Z is a solution to Z T L = R, then there is some 1 ≤ i ≤ n such that
Z ⊆ Zi.

Theorem 3.7 Let T ⊆ {0, 1}∗ be a letter-bounded regular set of trajectories. Then given
a regular language R, it is decidable whether there exist X1, X2 such that X1 T X2 = R.

Proof. Let SL(T, R) = {Yi}n1
i=1 be the set of languages described by Theorem 3.5 and,

analogously, let TL(T, R) = {Zi}n2
i=1 be the set of languages described by Theorem 3.6.

We now note the result follows since if X1 T X2 = R has a solution, it also has a
solution in SL(T, R)×TL(T, R), since T is monotone. Thus, we simply test all the finite
(non-trivial) pairs in SL(T, R)× TL(T, R) for the desired equality.

This result was known for catenation, T = 0∗1∗ (see, e.g., Kari and Thierrin [9]).
However, it also holds for, e.g., the following operations: insertion (0∗1∗0∗), k-insertion
(0∗1∗0≤k for fixed k ≥ 0), and bi-catenation (1∗0∗ + 0∗1∗).

3.1 1-thin sets of trajectories

Recall that a language L is 1-thin if |L ∩ Σn| ≤ 1 for all n ≥ 0. We now prove that if
T ⊆ {0, 1}∗ is a fixed 1-thin set of trajectories, given R regular, it is decidable whether R
has a non-trivial shuffle decomposition with respect to T .

Define the right-useful solutions to L T X = R as

use
(r)
T (X; L) = {x ∈ X : L T x 6= ∅}. (3.4)

The left-useful solutions, denoted use
(`)
T (X; L), are defined similarly for the equation

X T L = R.

Theorem 3.8 Let T ⊆ {0, 1}∗ be a 1-thin set of trajectories. Given a regular language
R, the existence of X1, X2 such that R = X1 T X2 is decidable.

Proof. Let

L1 = R ;τ(T ) Σ∗

L2 = R ;π(T ) Σ∗.
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Then we claim that

∃X1, X2 such that R = X1 T X2 ⇐⇒ L1 T L2 = R. (3.5)

The right-to-left implication is trivial. To prove the reverse implication, we first show
that if X1 T X2 = R, then use

(`)
T (X1; X2) ⊆ L1 and use

(r)
T (X2; X1) ⊆ L2.

We show only that use
(`)
T (X1; X2) ⊆ L1. The other inclusion is proven similarly. Let

x ∈ use
(`)
T (X1; X2). Then there is some y ∈ X2 such that x T y 6= ∅. As X1 T X2 = R,

we must have that for all z ∈ x T y, z ∈ R. Thus, by Theorem 2.1, x ∈ z ;τ(T ) y ⊆ L1.
The inclusion is proven. Thus,

R = X1 T X2 = use
(`)
T (X1; X2) T use

(r)
T (X2; X1) ⊆ L1 T L2.

To conclude the proof, we need only establish the inclusion L1 T L2 ⊆ R.
Let x ∈ L1. Thus, there exists α ∈ R, β ∈ Σ∗ and t ∈ T such that x ∈ α ;t β. Thus,

{α} = x t β. Now, as α ∈ R = X1 T X2, there is some x1 ∈ X1, x2 ∈ X2 and t′ ∈ T
such that {α} = x1 t′ x2.

Consider now that |t| = |α| = |t′|. As T is 1-thin, this implies that t = t′. Thus,

x t β = x1 t x2,

or, x ∈ (x1 t x2) ;τ(t) β, from which it is clear that x = x1 and x2 = β. Thus, x ∈ X1. A
similar argument establishes that L2 ⊆ X2. Thus, we have established that R = L1 T L2

and (3.5) holds.

We note that Theorem 3.7 and Theorem 3.8 do not apply to the following sets of
trajectories. Thus, to our knowledge, the question of the decidability of the existence of
solutions to R = X1 T X2 for regular R is still open in the following cases (for details on
literal and initial literal shuffle, see Berard [1]):

(a) arbitrary shuffle: T = (0 + 1)∗;

(b) literal shuffle: T = (0∗ + 1∗)(01)∗(0∗ + 1∗);

(c) initial literal shuffle: T = (01)∗(0∗ + 1∗).

3.2 Solving Quadratic Equations

Let T ⊆ {0, 1}∗ be a letter-bounded regular set of trajectories. We can also consider
solutions X to the equation X T X = R, for regular languages R. This is a generalization
of a result due to Kari and Thierrin [8].

Theorem 3.9 Fix a letter-bounded regular set of trajectories T . Then it is decidable
whether there exists a solution X to the equation X T X = R for a given regular language
R.
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Proof. Let SL(T, R) be the set of languages described by Theorem 3.5, and, analogously,
let TL(T, R) be the set of languages described by Theorem 3.6.

Assume the equation X T X = R has a solution. Then we claim that it also has a
regular solution. Let X be a language such that X T X = R. Then, in particular, X
is a solution to the equation X T Y = R, where X is fixed and Y is a variable. Thus,
by Theorem 3.5, there is some regular language Yi ∈ SX(T, R) such that X T Yi = R.
Further, X ⊆ Yi. Analogously, considering the equation X T Yi = R, X ⊆ Zj for some
regular language Zj ∈ TYi

(T,R). Thus, X ⊆ Yi ∩ Zj, and Zj T Yi = R.
Let X0 = Yi ∩ Zj. Then note that R = X T X ⊆ X0 T X0 ⊆ Zj T Yi = R. The

inclusion follows by the monotonicity of T . Thus, X0 T X0 = R. By construction, X0

is regular.
Thus, to decide whether there exists X such that X T X = R, we construct the set

UX(T,R) = {Yi ∩ Zj : Yi ∈ SX(T, R), Zj ∈ TYi
(T, R)},

and test each language for equality. If a solution exists, we answer yes. Otherwise, we
answer no.

4 Existence of Trajectories

In this section, we consider the following problem: given languages L1, L2 and R, does
there exist a set of trajectories T such that L1 T L2 = R? We prove this to be decidable
when L1, L2, R are regular languages.

Theorem 4.1 Let L1, L2, R ⊆ Σ∗ be regular languages. Then it is decidable whether there
exists a set T ⊆ {0, 1}∗ of trajectories such that L1 T L2 = R.

Proof. Let
T0 = {t ∈ {0, 1}∗ : ∀x ∈ L1, y ∈ L2, x t y ⊆ R}. (4.6)

Note that the following are equivalent definitions of T0:

T0 = {t ∈ {0, 1}∗ : ∀x ∈ L1, y ∈ L2, (x t y 6= ∅ ⇒ x t y ⊆ R)}; (4.7)

T0 = {t ∈ {0, 1}∗ : ∀x ∈ L1 ∩ Σ|t|0 , y ∈ L2 ∩ Σ|t|1 , (x t y ⊆ R)}. (4.8)

Then we claim that

∃T ⊆ {0, 1}∗ such that (L1 T L2 = R) ⇐⇒ L1 T0 L2 = R.

The right-to-left implication is trivial. Assume that there is some T ⊆ {0, 1}∗ such
that L1 T L2 = R. Let t ∈ T . Then for all x ∈ L1 and y ∈ L2, x t y ⊆ L1 T L2 = R.
Thus, t ∈ T0 by definition, and T0 ⊇ T .

Thus, note that R = L1 T L2 ⊆ L1 T0 L2. It remains to establish that L1 T0 L2 ⊆
R. But this is clear from the definition of T0. Thus L1 T0 L2 = R and the claim is
established.
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We now establish that T0 is regular and effectively constructible; to do this, we estab-
lish instead that T0 = {0, 1}∗ − T0 is regular.

Let Mj = (Qj, Σ, δj, qj, Fj) be a complete DFA accepting Lj for j = 1, 2. Let Mr =
(Qr, Σ, δr, qr, Fr) be a complete DFA accepting R. Define an NFA M = (Q, {0, 1}, δ, q0, F )
where Q = Q1 × Q2 × Qr, q0 = [q1, q2, qr], F = F1 × F2 × (Qr − Fr), and δ is defined as
follows:

δ([qj, qk, q`], 0) = {[δ1(qj, a), qk, δr(q`, a)] : a ∈ Σ} ∀[qj, qk, q`] ∈ Q1 ×Q2 ×Qr,

δ([qj, qk, q`], 1) = {[qj, δ2(qk, a), δr(q`, a)] : a ∈ Σ} ∀[qj, qk, q`] ∈ Q1 ×Q2 ×Qr.

Then we note that δ has the following property: for all t ∈ {0, 1}∗,
δ([q1, q2, qr], t) = {[δ(q1, x), δ(q2, y), δ(qr, x t y)] : x, y ∈ Σ∗, |x| = |t|0, |y| = |t|1}.

By (4.8), if t ∈ T0 there is some x, y ∈ Σ∗ such that x ∈ L1, y ∈ L2, |x| = |t|0, |y| = |t|1
but x t y∩R 6= ∅. This is exactly what is reflected by the choice of F . Thus, L(M) = T0.

Thus, as T0 is effectively regular, to determine whether there exists T such that
L1 T L2 = R, we construct T0 and test L1 T0 L2 = R.

Note that the proof of Theorem 4.1 is similar in theme to the proofs of, e.g., Kari
[7, Thm. 4.2, Thm. 4.6]: they each construct a maximal solution to an equation, and
that solution is regular. The maximal solution is then tested as a possible solution to
the equation to determine if any solutions exist. However, unlike the results of Kari,
Theorem 4.1 does not use the concept of an inverse operation.

We can also repeat Theorem 4.1 for the case of deletion along trajectories. The results
are identical, with the proof following by the substitution of T0 = {t ∈ {i, d}∗ : ∀x ∈
L1, y ∈ L2, x ;t y ⊆ R}. The proof that T0 is regular differs slightly from that above; we
leave the construction to the reader. Thus, we have the following result:

Theorem 4.2 Let L1, L2, R ⊆ Σ∗ be regular languages. Then it is decidable whether there
exists a set T ⊆ {i, d}∗ of trajectories such that L1 ;T L2 = R.

5 Undecidability Results

We now demonstrate some undecidability results relating to equations involving shuffle
on trajectories.

5.1 Undecidability of One-Variable Equations

Recall that a set T ⊆ {0, 1}∗ is said to be complete if α T β 6= ∅ for all α, β ∈ Σ∗. Say
that a set T ⊆ {0, 1}∗ of trajectories if left-preserving (resp., right-preserving) if T ⊇ 0∗

(resp., T ⊇ 1∗). Note that if T is complete, then it is both left- and right-preserving.
Let Π0, Π1 : {0, 1}∗ → {0, 1}∗ be the projections given by Π0(0) = 0, Π0(1) = ε and

Π1(1) = 1, Π1(0) = ε. We say that T ⊆ {0, 1}∗ is left-enabling (resp., right-enabling) if
Π0(T ) = 0∗ (resp., Π1(T ) = 1∗).

In this section, we examine undecidability of the existence of solutions of equations
involving context-free languages. Namely, we show that:
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Theorem 5.1 Fix T ⊆ {0, 1}∗ to be a regular set of left-enabling (resp., right-enabling)
trajectories. For a given CFL L and regular language R, it is undecidable whether or not
L T X = R (resp., X T L = R) has a solution X.

Proof. Let T be left-enabling. Let Σ be an alphabet of size at least two and let #, $ /∈ Σ.
Let R = (Σ++#+) T $∗. By the closure properties of T , and the fact that T is regular,
R is a regular language. Let L ⊆ Σ+ be an arbitrary CFL and L# = L + #+. We claim
that

L# T X = R has a solution ⇐⇒ L = Σ+. (5.9)

This will establish the result, since it is undecidable whether an arbitrary CFL L ⊆ Σ+

satisfies L = Σ+.
First, if L = Σ+, then note that X = $∗ is a solution for (5.9). Second, assume that

X is a solution for (5.9). It is clear that for all X,

L T X = R ⇐⇒ L T use
(r)
T (X; L) = R, (5.10)

where use
(r)
T (X, L) is defined by (3.4). Thus, we will focus on useful solutions to the

equations L T X = R.
Now, we note that, assuming that use

(r)
T (X,L#) is a solution to (5.9), words in

use
(r)
T (X, L#) cannot contain words with symbols from Σ, because words in R do not

contain words with both Σ and #.
In particular, let x ∈ use

(r)
T (X,L#). Then there exists a y ∈ L# (in particular, y 6= ε)

such that y T x 6= ∅. Consider the word #|y|. As y and #|y| have the same length, we
must have that #|y|

T x 6= ∅.
Consider any z ∈ #|y|

T x. As |y| 6= 0, |z|# > 0. As L# T X = R, we must have
that z ∈ (Σ+ + #+) T $∗. Thus, z ∈ (# + $)+, and consequently, x ∈ (# + $)∗. Thus,

use
(r)
T (X, L#) ⊆ (# + $)∗.
Let ΠΣ : (Σ + {#, $})∗ → Σ∗ be the projection onto Σ. Now as T is left-enabling,

note that ΠΣ(R) = Σ+, by definition of R = (Σ+ + #+) T $∗. Thus,

Σ+ = ΠΣ(R) = ΠΣ(L# T X)

= ΠΣ(L# T use
(r)
T (X,L#)) ⊆ ΠΣ(L# T (# + $)∗)

= ΠΣ((L + #+) T (# + $)∗) = ΠΣ((L T (# + $)∗) + (#+
T (# + $)∗))

= ΠΣ(L T (# + $)∗)

= L ⊆ Σ+.

The last equality is valid since T is left-enabling. Thus, for all x ∈ L, there is some j ≥ 0
such that x T #j 6= ∅. We conclude that L = Σ+, and thus, by (5.9), the result follows.

The proof in the case that T is right-enabling is similar.

We can give an incomparable result which removes the condition that T must be
regular, but must strengthen the conditions on words in T . Namely, T must be left-
preserving rather than left-enabling:
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Theorem 5.2 Fix T ⊆ {0, 1}∗ to be a set of left-preserving (resp., right-preserving)
trajectories. Given a CFL L and a regular language R, it is undecidable whether there
exists a language X such that L T X = R (resp., X T L = R).

Proof. Let T be left-preserving (the proof when T is right-preserving is similar). Again,
if X is a solution, let

use
(r)
T (X; L) = {x ∈ X : L T x 6= ∅}.

It is clear that for all X,

L T X = R ⇐⇒ L T use
(r)
T (X; L) = R.

Thus, we will focus on useful solutions to our equation.
Let Σ be our alphabet and # /∈ Σ. Let L# = L + #+. Note that ε 6∈ L#. We claim

that (L#) T X = Σ+ + #+ iff L = Σ+ and use
(r)
T (X; L#) = {ε}.

First, assume that L = Σ+ and use
(r)
T (X,L#) = {ε}. Then L# = Σ+ + #+ and

L# T X = L# T use
(r)
T (X; L#)

= (Σ+ + #+) T {ε}
= (Σ+ + #+),

since T ⊇ 0∗.
Now, assume that L# T X = Σ+ + #+.

Let x ∈ use
(r)
T (X; L#). Then there exists y ∈ L# (y 6= ε) such that y T x 6= ∅.

Consider #|y|. As |y| = |#|y||, we must have that #|y|
T x 6= ∅.

For all z ∈ #|y|
T x, as |y| 6= 0, |z|# > 0. Further, z ∈ Σ+ +#+. Thus, we must have

that x ∈ #+ or x = ε; i.e., x ∈ #∗. Thus, use
(r)
T (X; L#) ⊆ #∗.

We now show that ε ∈ use
(r)
T (X; L#). As L# T use

(r)
T (X; L#) = Σ+ + #+, for all

y ∈ Σ+, there exists α ∈ L# and β ∈ use
(r)
T (X; L#) such that y ∈ α T β. If β 6= ε, then

|y|# > 0. Thus α = y, and β = ε ∈ use
(r)
T (X; L#). This also demonstrates that Σ+ ⊆ L#,

which implies that L = Σ+.
It remains to show that use

(r)
T (X; L#) = {ε}. Let #i ∈ use

(r)
T (X; L#) for some i > 0.

Then, there is some y ∈ L# = Σ+ + #+ such that y T #i 6= ∅.
If y ∈ Σ+, then for all z ∈ y T #i, |z|Σ, |z|# > 0, which contradicts that z ∈ Σ++#+,

since L# T X = Σ+ + #+.
Thus, y ∈ #+. But then there exists some y′ ∈ Σ+ such that |y| = |y′|, and y′ ∈ L#

as well. We are reduced to the first case with y′ and #i, and our assumption that
#i ∈ use

(r)
T (X; L#) is therefore false.

We have established that a (useful) solution to the equation

(L + #+) T X = (Σ+ + #+)

exists iff L = Σ+. Therefore, the existence of such solutions must be undecidable.
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Note that as use
(r)
T (X; L#) = {ε}, Theorem 5.2 remains undecidable even if the re-

quired (useful) language is required to be a singleton.
We also note that if R and L are interchanged in the equations of the statements

of Theorem 5.2 or Theorem 5.1, the corresponding problems are still undecidable. The
proofs are trivial, and are left to the reader.

5.2 Undecidability of Shuffle Decompositions

It has been shown [2] that it is undecidable whether a context-free language has a non-
trivial shuffle decomposition with respect to the trajectory {0, 1}∗. Here we extend this
result for arbitrary complete regular sets trajectories.

If T is a complete set of trajectories, then any language L has decompositions L T{ε}
and {ε} T L. Below we exclude these trivial decompositions; all other decompositions of
L are said to be nontrivial.

Theorem 5.3 Let T be any fixed complete regular set of trajectories. For a given context-
free language L it is undecidable whether or not there exist languages X1, X2 6= {ε} such
that L = X1 T X2.

Proof. Let I = (u1, . . . , uk; v1, . . . , vk), k ≥ 1, ui, vi ∈ Σ∗, i = 1, . . . , k, be an arbitrary
instance of the Post Correspondence Problem (PCP). We construct a context-free lan-
guage L(I) such that L(I) has a nontrivial decomposition along the set of trajectories T
if and only if the instance I does not have a solution.

Choose
Ω = Σ ∪ {a, b, #, [1, [2, \1, \2, $1, $2},

where {a, b, #, [1, [2, \1, \2, $1, $2} ∩ Σ = ∅. Let

L0 = [[+
1 (Σ ∪ {a, b, #})∗\+

1 ∪ [+
2 (Σ ∪ {a, b, #})∗\+

2 ] T ($+
1 ∪ $+

2 ). (5.11)

Define

L′1 = {abi1 · · · abim#uim · · · ui1#rev(vj1) · · · rev(vjn)#bjna · · · bj1a |
i1, . . . , im, j1, . . . , jn ∈ {1, . . . , k}, m, n ≥ 1}

and let
L1 = L0 − [[+

1 L′1\
+
1 T $+

2 ].

Using the fact that T is regular, it is easy to see that a nondeterministic pushdown
automaton M can verify that a given word is not in [+

1 L′1\
+
1 T $+

2 . On input w, using
the finite state control M keeps track of the unique trajectory t (if it exists) such that
w ;τ(t) $∗2 ∈ [+

1 (Σ ∪ {a, b, #})∗\+
1 and w ;π(t) [+

1 (Σ ∪ {a, b, #})∗\+
1 ∈ $∗2. If t 6∈ T ,

M accepts. Also if t does not exist, M accepts. Using the stack M can verify that
w ;τ(t) $∗2 6∈ [+

1 L′1\
+
1 by guessing where the word violates the definition of L′1. Note that

this verification can be interleaved with the computation checking whether t is in T . Since
L0 is regular, it follows that L1 is context-free.
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Define

L′2 = {abi1 · · · abim#w#rev(w)#bima · · · bi1a |
w ∈ Σ∗, i1, . . . , im ∈ {1, . . . , k}, m ≥ 1}

and let
L2 = L0 − [[+

1 L′2\
+
1 T $+

2 ].

As above it is seen that L2 is context-free. It follows that also the language

L(I) = L1 ∪ L2 = L0 − [[+
1 (L′1 ∩ L′2)\

+
1 T $+

2 ] (5.12)

is context-free.
First consider the case where the PCP instance I does not have a solution. Now

L′1 ∩ L′2 = ∅ and (5.11) gives a nontrivial decomposition for L(I) = L0 along the set of
trajectories T .

Secondly, consider the case where the PCP instance I has a solution. This means that
there exists a word

w0 ∈ L′1 ∩ L′2. (5.13)

For the sake of contradiction we assume that we can write

L(I) = X1 T X2, (5.14)

where X1, X2 6= {ε}.
We establish a number of properties that the languages X1 and X2 must necessarily

satisfy. We claim that it is not possible that

alph(X1) ∩ {[i, \i} 6= ∅ and alph(X2) ∩ {[j, \j} 6= ∅ (5.15)

where {i, j} = {1, 2}. If the above relations would hold, then the completeness of T
would imply that X1 T X2 has some word containing a symbol of {[1, \1} and a symbol
of {[2, \2}. This is impossible since X1 T X2 ⊆ L0.

Denote
Φ = {[1, [2, \1, \2}.

Since L(I) has both words that contain symbols [1, \1 and words that contain symbols
[2, \2, by (5.15) the only possibility is that all the symbols of Φ “come from” one of the
components X1 and X2. We assume in the following that

alph(X2) ∩ Φ = ∅. (5.16)

This can be done without loss of generality since the other case is completely symmetric.
(We can just interchange the symbols 0 and 1 in T .)

Next we show that
alph(X2) ∩ (Σ ∪ {a, b, #}) = ∅. (5.17)

Let ΠΦ : Ω∗ → Φ∗ be the projection onto Φ. Since ΠΦ(L(I)) = [+
1 \+

1 ∪ [+
2 \+

2 and X2

does not contain any symbols of Φ, it follows that ΠΦ(X1) = [+
1 \+

1 ∪ [+
2 \+

2 . Thus if (5.17)
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would not hold, the completeness of T would imply that X1 T X2 contains words where
a symbol of Σ ∪ {a, b, #} occurs before a symbol of {[1, [2} or after a symbol of {\1, \2}.
Hence (5.17) holds.

Since X2 6= {ε}, the equations (5.16) and (5.17) imply that

alph(X2) ∩ {$1, $2} 6= ∅.

Since L(I) has words with symbols $1, other words with symbols $2, and no words con-
taining both symbols $1, $2, using again the completeness of T it follows that

alph(X1) ∩ {$1, $2} = ∅. (5.18)

Now consider the word w0 ∈ L′1 ∩ L′2 given by (5.13). We have [iw0\i T $i ⊆ Li,
i = 1, 2, and let ui ∈ [iw0\i T $i, i = 1, 2, be arbitrary. We can write

ui = xi,1 tixi,2, such that xi,j ∈ Xj, ti ∈ T, i = 1, 2, j = 1, 2.

By (5.16), (5.17) and (5.18) we have

X1 ⊆ (Φ ∪ Σ ∪ {a, b, #})∗ and X2 ⊆ {$1, $2}∗

and hence
xi,1 = [iw0\i, xi,2 = $i, i = 1, 2.

Now x1,1 t1x2,2 ⊆ X1 T X2 is equal to the word [1w0\1 t1$2, and it is not in L(I) by the
choice of w0 and (5.12). This contradicts (5.14).

In the proof of Theorem5.3, whenever the CFL has a nontrivial decomposition along
the set of trajectories T , it has a decomposition where the component languages are, in
fact, regular. This gives the following:

Corollary 5.4 Let T be any fixed complete regular set of trajectories. For a given context-
free language L it is undecidable whether or not

(a) there exist regular languages X1, X2 6= {ε} such that L = X1 T X2.

(b) there exist context-free languages X1, X2 6= {ε} such that L = X1 T X2.
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[2] Câmpeanu, C., Salomaa, K., and Vágvölgyi, S. Shuffle decompositions of
regular languages. Int. J. Found. Comp. Sci. 13, 6 (2002), 799–816.

[3] Domaratzki, M. Deletion along trajectories. Tech. Rep. 2003–464, School of
Computing, Queen’s University at Kingston, 2003. Available electronically at
http://www.cs.queensu.ca/TechReports/.

16



[4] Ginsburg, S., and Spanier, E. H. Bounded regular sets. Proc. Amer. Math. Soc.
17 (1966), 1043–1049.

[5] Ito, M. Shuffle decomposition of regular languages. J. Univ. Comp. Sci. 8, 2 (2002),
257–259.

[6] Kari, L. Deletion operations: Closure properties. Intl. J. Comp. Math. 52 (1994),
23–42.

[7] Kari, L. On language equations with invertible operations. Theor. Comp. Sci. 132
(1994), 129–150.

[8] Kari, L., and Thierrin, G. k-catenation and applications: k-prefix codes. J. Inf.
Opt. Sci. 16, 2 (1995), 263–276.

[9] Kari, L., and Thierrin, G. Maximal and minimal solutions to language equa-
tions. J. Comp. Sys. Sci. 53 (1996), 487–496.

[10] Leiss, E. Language Equations. Springer Monographs in Computer Science, 1999.

[11] Mateescu, A., Rozenberg, G., and Salomaa, A. Shuffle on trajectories:
Syntactic constraints. Theor. Comp. Sci. 197 (1998), 1–56.

[12] Meduna, A. Middle quotients of linear languages. Intl. J. Comp. Math. 71 (1999),
319–335.

[13] Salomaa, A., and Yu, S. On the decomposition of finite languages. In Develop-
ments in Language Theory (1999), G. Rozenberg and W. Thomas, Eds., pp. 22–31.

[14] Yu, S. Regular languages. In Handbook of Formal Languages, Vol. I, G. Rozenberg
and A. Salomaa, Eds. Springer-Verlag, 1997, pp. 41–110.

17


	Introduction
	Definitions and Preliminary Results
	Decidability of Shuffle Decompositions
	1-thin sets of trajectories
	Solving Quadratic Equations

	Existence of Trajectories
	Undecidability Results
	Undecidability of One-Variable Equations
	Undecidability of Shuffle Decompositions


