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Abstract

This paper studies the problem of computing 3D crossing-free straight-line grid drawings of graphs
such that the overall volume is small. We show that every 2-tree (and therefore every series-parallel
graph) can be drawn on an integer 3D grid consisting of 15 parallel lines and having linear volume. We
extend the study to the problem of drawing general k-trees on a set of parallel grid lines. Lower bounds
and upper bounds on the number of such grid lines are presented. The results in this paper extend and
improve similar ones already described in the literature.

1 Introduction
The increasing demand of visualization algorithms and software systems to draw and browse large networks,
makes it relevant to investigate how much benefit can be obtained from the third dimension in order to
represent the overall structure of a huge graph in a limited portion of a virtual 3D environment. This paper
is devoted to the fundamental (but still quite open) problem of computing crossing-free straight-line three
dimensional grid drawings of graphs such that the overall volume is small.

Cohen, Eades, Lin and Ruskey [4] showed that every graph admits crossing-free 3D drawing on an
integer grid of O

�
n3 � volume, and proved that this is asymptotically optimal. Calamoneri and Sterbini [2]

showed that all 2-, 3-, and 4-colourable graphs can be drawn in a 3D grid of O
�
n2 � volume with O

�
n � aspect

ratio and proved a lower bound of Ω
�
n1 � 5 � on the volume of such graphs. For r-colourable graphs where

r is a constant, Pach, Thiele and Tóth [13] showed a bound of θ
�
n2 � on the volume. Garg, Tamassia, and

Vocca [12] showed that all 4-colorable graphs (and hence all planar graphs) can be drawn in O
�
n1 � 5 � volume

and with O
�
1 � aspect ratio but by using a grid model where the coordinates of the vertices may not be

integer. Chrobak, Goodrich, and Tamassia [3] gave an algorithm for constructing 3D convex drawings of
triconnected planar graphs with O

�
n � volume and non-integer coordinates.

Recent papers [6, 8, 9, 10, 11, 14] present drawings on integer grids of size O
�
1 ��� O

�
1 ��� O

�
n � . Felsner

et al. [11] initiated the study of restricted integer grids, where all vertices are drawn on a small set of parallel
grid lines, called tracks. In particular, they focused on the box and the 3-prism. A box is a grid consisting of
four parallel lines, one grid unit apart from each other and a 3-prism uses three non-coplanar parallel lines.
It is shown that all outerplanar graphs can be drawn on a 3-prism where the length of the lines is O

�
n � . This

result gives the first algorithm to compute a crossing-free straight-line 3D grid drawing with linear volume
for a non-trivial family of planar graphs. Moreover it is shown that there exist planar graphs that cannot be
drawn on the 3-prism and that even a box does not support all planar graphs.
�
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Dujmović, Morin, and Wood [8] show that if a graph G admits a drawing Γ on a grid consisting of a
constant number of tracks, then G has a linear volume upper bound. This result suggests that the focus of the
research should be on minimizing the number of tracks in a restricted integer grid, independent of the length
of the tracks themselves. The track number of a graph is the minimum number of tracks that is required to
compute such a drawing. In the same paper, Dujmović et al. show that the track number of a graph G is at
most pw

�
G ��� 1, where pw

�
G � is the pathwidth of G. Thus graphs with bounded pathwidth and n vertices

have 3D straight-line grid drawings of O
�
n � volume.

Wood [14] shows that series-parallel graph have constant track number and presents the first algorithm
to compute 3D straight-line grid drawings of these graphs in linear volume. He further extends this results to
graphs that have bounded tree-partition width (which includes those having bounded treewidth and bounded
maximum degree). However, the hidden constants in these results are quite high. For example, the constant
for series-parallel graphs is in the order 1016.

Recently, Dujmović and Wood [9, 10] have extended and improved the above results by showing that
every graph with bounded treewidth (i.e. every partial k-tree) has constant track number and therefore it
admits a 3D straight-line grid drawing of linear volume. Motivated by the relevance of series-parallel graphs
for graph drawing applications, Dujmović and Wood further investigate the track number and volume bounds
of 2-trees (every 2-tree is a series-parallel graph and every series-parallel graph can be augmented to become
a 2-tree). They show that the track number of a series-parallel graph is at most 18 and that a series-parallel
graph has a 3D straight-line grid drawings of volume at most 36 � 37 � 37 � n

18 � . For general k-trees (i.e.
k � 3) however, the hidden constants are quite high and no lower bounds are presented. For series-parallel
graphs, a lower bound of 5 on the track number is shown in [6].

In this paper we present new results on the track number of k-trees. Our contribution can be listed as
follows.

� We present lower bounds on the track number of k-trees. For any given value of k we show a k-tree
that requires at least 2k � 1 tracks. This result generalizes the lower bound on 2-trees showed in [6].

� The upper bound on the track number of 2-trees (and therefore of series-parallel graphs) is reduced
from 18 to 15. As a consequence, the volume upper bound for series-parallel graphs is reduced by
approximately thirty percent compared to that of [9, 10].

� By applying similar ideas as in [9, 10] we extend the drawing technique for 2-trees to general k-trees
(k � 3). This gives rise to new upper bounds on the track number of k-trees. The new upper bounds
are lower than in [9, 10], but still doubly exponential.

The remainder of this paper is organized as follows. Preliminary definitions can be found in Section 2.
The lower bounds on the volume for drawing of k-trees is given in section 3. The drawing algorithm for
2-trees is presented in Section 4. The upper bounds for k-trees are given in Section 5. Some open problems
are listed in Section 6. For reasons of space some details are omitted from this extended abstract and can be
found in the Appendix.

2 Preliminaries
We assume familiarity with basic graph drawing terminology [5] and only recall those definitions about
track assignment and drawings and about k-trees [1] that will be used throughout the paper.

2.1 Track layouts and drawings

Let G � �
V � E � be a graph. A track assignment of G consists of a partition � ti 	 i 
 I ���� of V , and of a

total ordering � i of the vertices in each set ti. Each set ti is called a track. An overlap in a track assignment
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consists of three vertices u, v, and w such that they are in the same track t i, there exists the edge
�
u � w � and

u � i v � i w. An X-crossing in a track assignment consists of two edges
�
u � w � and

�
v � z � such that u and v

are in a same track ti, w and z are in another track t j (i �� j), and u � i v and z � j w. Figure 1(b) shows an
example of track assignment for the graph in Figure 1(a). Vertices v1, v5 and v2 form an overlap, as well as
vertices v3, v6 and v4. Edges

�
v5 � v4

� ,
�
v2 � v3

� form an X -crossing. Another X -crossing is formed by edges�
v6 � v8

� and
�
v4 � v7

� .
A track layout is a track assignment with no overlaps and no X -crossings. A track layout with k tracks

is also called a k-track layout. Figure 1(c) shows a 3-track layout of the graph of Figure 1(a). The track
number of a graph G, denoted by tn

�
G � , is the minimum k such that G has a k-track layout. A set of k tracks

is also called a k-prism. In [9, 10] a track assignment is called a track layout if in addition there is no edge�
u � v � such that u and v are on the same track. Since our upperbounds in Sections 4 and 5 do not use edges

that lie on a track, our upperbounds are directly comparable to those in [9, 10].
In the rest of the paper a track layout will be specified by assigning to each vertex v two numbers:

track
�
v � is an integer that denotes the track to which v is assigned; order

�
v � is an integer that denotes the

ordering of v on track
�
v � . We say that u � i v if track

�
u � � track

�
v � � i and order

�
u � � order

�
v � . We shall

sometimes simplify the notation and write u � v instead of u � i v. Also we write u � v to mean that either
u � v or u coincides with v.
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v8
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Figure 1: (a) A graph G. (b) A track assignment of G. (c) A track layout of G. (d) A track drawing of G.

A track line is a straight line of a 3D grid parallel to the x-axis. A track drawing of a graph G on k track
lines is a 3D straight-line crossing-free grid drawing of G such that each vertex of G is drawn as a point
at integer coordinates on one of the k track lines. A track drawing on k track lines is also called k-track
drawing. The drawing in Figure 1(d) is a 3-track drawing of the graph of Figure 1(a).

In [8] the relationships between track layouts, track drawings, and their volume upper bounds are stud-
ied. The following theorem holds whether edges are allowed to lie on tracks or not.
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Theorem 1 [8] Let G be a graph with n vertices such that tn
�
G � � t. Then:

� G admits a t-track drawing whose volume is t � pt
� pt � n

�
;

� G admits a 2t-track drawing whose volume is 2t � p2t
� p2t � � nt � ;

where pt is the smallest prime number greater than t, p2t is the smallest prime number greater than 2t
and n

�
is the maximum number of vertices on a single track.

We recall that the volume of a drawing Γ is measured as the number of grid points contained in or on a
bounding box of Γ, i.e. the smallest axis-aligned box enclosing Γ.

2.2 k-trees

A k-tree for some k 
 � is defined recursively as follows. The clique of size k is a k-tree, and the graph
obtained from a k-tree by adding a new vertex adjacent to each vertex of a clique of size k is also a k-tree.
The maximum size of a clique in a k-tree is k � 1. A clique of size k is also called a k-clique. A partial
k-tree is a subgraph of a k-tree. Figure 2(a) shows a 2-tree. Note that a 1-tree is a tree.

Let G � �
V
�
G � � E � G � � be a graph and let T � �

V
�
T � � E �

T � � be a rooted tree. Let � Tµ � V
�
G � 	 µ 
 V

�
T � �

be a set of subsets of V
�
G � indexed by the nodes of T . The pair

�
T � � Tµ 	 µ 
 V

�
T � � � is a tree partition of G

if [7]:
��� µ � ν 
 V

�
T � , if µ �� ν then Tµ � Tν � /0;

��� � u � v � 
 E
�
G � , either

– � a node µ 
 V
�
T � with u � v 
 Tµ

– � an edge
�
µ � ν � 
 E

�
T � such that u 
 Tµ and v 
 Tν.

Let µ be an element of V
�
T � in a tree partition of G. The pertinent graph of µ is the subgraph of G

induced by the vertices in Tµ; the pertinent graph of µ is denoted as Gµ. Figure 2 (b) shows a tree partition
of the 2-tree in Figure 2 (a). Each node of T is represented as a shaded area and contains its pertinent graph.
Let e � �

u � v � 
 E
�
G � be such that there exists an edge

�
µ � ν � 
 E

�
T � with u 
 Tµ and v 
 Tν. Edge e is called

jumping edge. For example, edge e � �
u � v � in the graph of Figure 2 (a) is a jumping edge; the corresponding

nodes µ and ν of T are highlighted in Figure 2 (b). If µ is the parent of ν in T , then u is called parent vertex
of e and v is the child vertex of e.

In [9, 10] it is shown that if G is a k-tree, then G admits a tree partition
�
T � � Tµ 	 µ 
 V

�
T � � � such that

for each node µ of T :
� the pertinent graph Gµ is a connected partial

�
k � 1 � -tree; and

� if µ is a non-root node and λ is the parent of µ, then the set of vertices in Tλ with a neighbour in Tµ

form a clique of G, that will be denoted as Cµ.

Clique Cµ is called parent clique of µ and has size k. For example, if G is a 2-tree, each parent clique is an
edge. Referring to Figure 2 (b), we have that the pertinent graph of node µ is a 1-tree. In the figure, λ is the
parent of µ and the parent clique Cµ of µ is a clique of size 2, namely edge e

�
.

In the remainder of this paper, we assume that a tree partition
�
T � � Tµ 	 µ 
 V

�
T � � � always has the

properties above. We will use T rather than
�
T � � Tµ 	 µ 
 V

�
T � � � to denote the tree partition.

Let G be a k-tree, an equipped tree partition T of G is a tree partition such that each node µ is equipped
with a track layout of its pertinent graph Gµ.
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Figure 2: (a) A 2-tree and (b) its tree partition.

3 Lower bound for the track number of k-trees
A lower bound on the track number of 2-trees is presented in [6], where it is shown that there exist series-
parallel graphs that do not admit a 4-track drawing (we recall that every series-parallel graph is a partial
2-tree [1]). In this section we show that the track number of a k-tree is at least 2k � 1.

A trivial lower bound on the track number of a k-tree is k. Indeed, a k-tree can contain a
�
k � 1 � -clique

and in any track layout of a clique at most one track can have two vertices and no track can have more than
two. We now prove a

�
2k � 1 � lower bound on the track number of k-trees.

Definition 1 Let Γ
�
G � be a track layout of a graph G and let C be a k-clique of G. We say that C covers a

subset Θ of k tracks in Γ
�
G � if C has one vertex in each track of Θ.

In other words, if a clique C covers a set of tracks Θ, for any two tracks of Θ there is a pair of vertices
of C connected by an edge.

Definition 2 Let Γ
�
G � be a track layout of a graph G and let H be a subgraph of G. H covers a subset Θ of

the tracks in Γ
�
G � , if H contains a clique C that covers Θ. We say that C is the covering clique of H.

Definition 3 Let Γ
�
G � be a track layout of a graph G and let H0 and H1 be two subgraphs of G that cover

the same tracks. H0 is said to be to the left of H1 if for each pair of vertex v 
 H0 and w 
 H1 that are in the
same track t, v � t w or v � w. If H0 is to the left of H1 we write H0 � H1. We say H0 � H1 if H0 � H1 and
H0 �� H1.

Notice that if C0 and C1 are two vertex-disjoint cliques that cover the same tracks then either C0 � C1 or
C1 � C0.

Lemma 2 Let G be a graph that contains three vertex-disjoint cliques C0, C1 and C2. Let Γ
�
G � be a track

layout of G such that C0, C1 and C2 each cover the same set of tracks Θ. Let c0 
 C0, c1 
 C1 and c2 
 C2

be three vertices that are in a same track. Let v be a vertex of G not in C0, C1 or C2 that is adjacent to c0, c1

and c2. Then v belongs to a track not in Θ.

Sketch of Proof. Suppose as a contradiction that v belongs to a track t0 of Θ. Let t1 be the track of Θ
containing c0, c1 and c2. If t0 � t1 then two of the three edges

�
c0 � v � , � c1 � v � , and

�
c2 � v � would overlap.

Assume t0 �� t1. Since C0, C1 and C2 cover Θ there exist three edges e0 � �
c0 � w0

� , e1 � �
c1 � w1

� and
e2 � �

c2 � w2
� such that w0, w1 and w2 are in t0. Since C0, C1 and C2 are vertex-disjoint we may assume,

without loss of generality, that C0 � C1 � C2. Then c0 � c1 � c2 and w0 � w1 � w2. If v � w0 then edges
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�
v � c1

� and
�
c0 � w0

� would form an X -crossing. If w0 � v � w1 then edges
�
v� c2

� and
�
c1 � w1

� would form an
X -crossing. If w1 � v � w2 then edges

�
v� c0

� and
�
c1 � w1

� would form an X -crossing. Finally, if v � w2 then
edges

�
v� c1

� and
�
c2 � w2

� would form an X -crossing. It follows that v cannot be in one of the tracks of Θ. �

Let
�
G be a k-tree consisting of a k-clique C, and of 2k vertices each adjacent to all vertices of C. Graph�

G is called base k-tree; the vertices of clique C of
�
G are called white vertices and are denoted as c0, ����� ,

ck � 1; the other vertices of
�
G are called black vertices and are denoted as v0, ����� , v2k � 1. Figure 3 shows an

example of a base 3-tree with white and black vertices highlighted.

v3

v4

c1c2
v5

v1

v0 v2
c0

Figure 3: A base 3-tree.

Lemma 3 Let
�
G be a base k-tree. Then tn

� �
G � � k.

Proof. The graph induced by the white vertices c0, ����� , ck � 1 plus a black vertex vi forms a
�
k � 1 � -clique.

As already observed, any track layout of a
�
k � 1 � -clique requires at least k tracks. It follows that tn

� �
G � � k.

We now prove that tn
� �
G � � k. Since the white vertices form a k-clique then in any track layout of

�
G there

are at least k � 1 tracks that contain a white vertex. Let Θ be the set of tracks that contain at least one white
vertex. The following facts hold for Θ.

Fact 1 For each track t 
 Θ, t can contain at most two black vertices. If not the track assignment would
contain an overlap.

Fact 2 At most one track of Θ can contain two black vertices. Let t0 and t1 be two tracks of Θ and let c0 and
c1 be the two white vertices in t0 and t1, respectively. Assume that t0 contains two black vertices vi and
v j and t1 contains two black vertices vh and vl . In order to avoid overlaps in t0, c0 must be between vi

and v j; assume vi � c0 � v j . Analogously c1 must be between vh and vl ; assume vh � c1 � vl . Then
edges

�
c0 � vh

� and
�
c1 � vi

� and also edges
�
c0 � vl

� and
�
c1 � v j

� form X -crossings, a contradiction.

Assume for a contradiction that tn
� �
G � � k. Two cases are possible:

1. Each white vertex is in a distinct track. By Fact 1 each track in Θ contains at most two black vertices,
and since there are 2k black vertices, then we have exactly two vertices in each track-set, which
contradicts Fact 2.

2. There exists one track t0 containing two white vertices c0 and c1. Let t1 be the track that does not
contain white vertices. By Fact 1 t1 contains at least two black vertices vi and v j . Assume without
loss of generality that c0 � c1 in t0 and that vi � v j in t1 Then edges

�
c0 � v j

� and
�
c1 � vi

� form an
X -crossings.

It follows that tn
� �
G � � k �

Lemma 4 Let
�
G be a base k-tree. In any τ-track layout such that k � 1 � τ � 2k,

�
G covers k � 1 track-sets

and a covering clique of
�
G is induced by all white vertices plus one black vertex.
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Sketch of Proof. Let Γ
� �
G � be a τ-track layout of

�
G (k � 1 � τ � 2k) and let t be a track of Γ

� �
G � . Suppose

that two white vertices c0 and c1 belong to t. In this case none of the black vertices can belong to t or
else there would be a three-cycle defined by vertices in the same track and hence an overlap. It follows
that all black vertices are in tracks different from t. Since there are 2k black vertices and there are at most
2k � 1 tracks different from t, at least two black vertices, say vi and v j (0 � i � j � 2k � 1), belong to a same
track. Assume without loss of generality that c0 � c1 and that vi � v j. Edges

�
c0 � v j

� and
�
c1 � vi

� form an
X -crossing. It follows that c0 and c1 cannot both belong to t and thus the clique formed by the white vertices
covers a set Θ of k tracks.

We prove now that at least one black vertex must belong to a track not in Θ. Suppose that the k tracks
of Θ contain all black vertices. Since there are 2k black vertices, two cases are possible.

1. There exist three black vertices vi, v j and vh, in the same track t. Let c be the white vertex in track t.
Two of the three edges

�
c � vi

� ,
�
c � v j

� , and
�
c � vh

� overlap, which is impossible.

2. There exist four black vertices such that two of them are in a track and the other two are in another
track. Let vi, v j, vh, and vl be such black vertices and assume that vi and v j are in a track t0 and that
vh and vl are in a track t1 (t0 �� t1). Let c0 and c1 be the white vertices of C that are in tracks t0 and
t1, respectively. In order to avoid overlaps in t0, c0 must be between vi and v j; assume vi � c0 � v j.
Analogously c1 must be between vh and vl ; assume vh � c1 � vl . But then edges

�
c0 � vh

� and
�
c1 � vi

�
and also edges

�
c0 � vl

� and
�
c1 � v j

� form an X -crossing, which is impossible.

It follows that at least one black vertex vi is in a track not in Θ. Since each black vertex is adjacent to all
white vertices, it follows that

�
G covers k � 1 tracks and the subgraph induced by the white vertices plus vi is

a covering clique. �

�
G1

�
G2

�
G

�

� � �
�
GN

Figure 4: The graph G of Theorem 5 for k � 3.

Theorem 5 There exists a k-tree G such that tn
�
G � � 2k � 1.

Sketch of Proof. W e first construct a particular partial k-tree G and then show that tn
�
G � � 2k � 1.

Graph G is constructed as follows. Let
�
G1 �

�
G2 ������� �

�
GN be N copies of a base k-tree such that N �

2
�
k � 1 �

� 2k
k � 1 � � 1. We call these copies small graphs. Let

�
G � be another base k-tree, called the big graph.

For each small graph
�
Gi (i � 1 ������� � N) let ci be a distinguished white vertex , called pivot vertex of

�
Gi.

For each
�
Gi , we connect its pivot vertex ci to all white vertices of the big graph

�
G � . Figure 4 shows the

construction of G for k � 3. It is not hard to see that we can ad edges to G such that it becomes a k-tree.
Since a base k-tree is a subgraph of G, by Lemma 3 tn

�
G � � k. Assume that k � 1 � tn

�
G � � 2k and

consider a τ-track layout of G (k � 1 � τ � 2k). By Lemma 4 each small graph covers k � 1 tracks. Since
there are N small graphs in G, at least 2

�
k � 1 � � 1 of them cover the same set Θ of k � 1 tracks and at least

three of them have their pivot vertex in the same track t. Let Gi, G j and Gk be such small graphs and let
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ci, c j and ck be the three pivot vertices in track t. Since ci, c j and ck are white, by Lemma 4 they are in
the covering cliques of Gi, G j, and Gk, respectively. Let Ci, C j and Ck be such covering cliques and let v

be a white vertex of the big graph
�
G � . Since v is adjacent to ci, c j and ck and since the covering cliques Ci,

C j, and Ck are vertex-disjoint, we can apply Lemma 2 and conclude that v is not in a track of Θ. Also, by
Lemma 4 no two white vertices of

�
G � are in the same track. It follows that any track layout of G requires at

least k � 1 tracks for the small graphs and k more tracks for the white vertices of the big graph and therefore
tn
�
G � � 2k � 1, contradicting the assumption that tn

�
G � � 2k. �

4 Upperbound on the track number of 2-trees
Dujmović and Wood [9, 10] prove that all 2-trees have a drawing on 18 tracks. They achieve this by drawing
the trees Gµ on 6 different sets of 3 lines each. In this section we show that by drawing the trees Gµ in a
particular order, we can draw them on 5 sets of 3 lines each, giving a drawing of 15 track lines.

Let G be a 2-tree and let T be an equipped tree partition of G. Let µ be a node of T and let Gµ be the
pertinent graph of µ. By the definition of tree partition, we have that Gµ is a tree (see for example Figure 2).
We arbitrarily root Gµ at a vertex and colour the edges with two colours as follows. All edges incident to the
root are coloured black. All remaining edges are coloured black or white in such a way that any path from
the root to a leaf of Gµ consists of alternating black and white edges.

Since T is an equipped tree partition, each node µ of T is associated with a track layout. We assume
that the track layout of Gµ is computed by using the algorithm presented in [11] that is based on the idea
of “wrapping” a tree around a 3-prism. Shortly speaking, the wrapping idea is as follows. Perform a
BFS visit of the tree starting from the root and for each visited vertex v set track

�
v � � �

d mod 3 � and set
order

�
v � � �

nv
� 1 � where d is the distance from the root and nv is the number of vertices visited before

v. Note that the computed track layout of Gµ is such that: (i) 0 � track
�
v � � 3 for each vertex v of G; (ii)

0 � order
�
v � � n � 1; and (iii) no edge has both vertices assigned to the same track. Let e0 � �

u0 � v0
� and

e1 � �
u1 � v1

� be two edges of Gµ. We say that e0 is to the left of e1 (and that e1 is to the right of e0) if
either the distance of e0 from the root is less than the distance of e1 from the root; or e0 and e1 have the same
distance from the root, and u0 � u1, v0 � v1 and e0 �� e1.

Let NT be the number of nodes of T . We now define a total ordering for the nodes of T such that
each node µ of T is given a number, denoted as visitorder

�
µ � , in the range � 0 � NT � 1 � . This is achieved by

performing a particular version of a breadth first search of T , in which the children of a node µ are grouped
according to the colour of their parent clique and within each group they are sorted according to the left-to-
right ordering of their parent cliques. A pseudo-code description of such an ordering procedure is given in
Algorithm 2TVISITORDER() that can be found in the Appendix.

We now present our algorithm to compute a track layout of a 2-tree G. Similar to the approach of
Dujmović and Wood [9, 10], the algorithm receives as input G and an equipped tree partition T of G. We
assign the 3-track layout of each Gµ in T to one of five different 3-prisms chosen according to the order
defined by Algorithm 2TVISITORDER(). It follows that the total number of tracks that are used is 15. A
detailed description of our strategy is given in Algorithm 2TTRACKLAYOUT(). In the pseudo-code, P0, P1,
P2, P3, and P4 denote five 3-prisms; the tracks of each 3-prism Pj ( j � 0 ������� � 4) are numbered 3 j, 3 j � 1 and
3 j � 2.

Since each vertex v of G is given a distinct pair
�
track

�
v � � order

�
v � � , we have that Algorithm 2TTRACK-

LAYOUT() defines a track assignment. The next lemmas prove that such an assignment is a track layout.

Lemma 6 Let G be a 2-tree and let T be an equipped tree partition of G. Algorithm 2TTRACKLAYOUT()
computes a track assignment without overlaps.

Sketch of Proof. An edge e cannot have its two vertices on the same track. Indeed, if e is a jumping edge its
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2TTRACKLAYOUT(G,T )
Input: A 2-tree G and an equipped tree partition T of G.
Output: A track layout of G on 15 tracks.

foreach vertex µ of T
compute visitorder

�
µ � ;

endfor
Let ρ be the root of T ;
∆ � 	Gρ 	
for i � 1 to NT � 1

Let µ be the node of T such that visitorder
�
µ � � i;

Let λ be the parent of µ;
Let Pj be the prism whose tracks contains the vertices of Gλ;
if the colour of Cµ is black

h � 1;
else

h � 2;
endif
p �

�
j � h � mod 5;

foreach vertex v of Gµ

track
�
v � � track

�
v � � 3p;

order
�
v � � order

�
v � � ∆;

endfor
∆ � ∆ � 	Gµ 	

Algorithm 1: Algorithm 2TTRACKLAYOUT()

vertices are on different tracks because they are on different prisms. If e is not a jumping edge it must belong
to a pertinent graph Gµ of a node µ of T and its vertices are on different tracks because the track layout of
Gµ is computed with the wrapping technique of [11]. It follows that the track assignment computed by
Algorithm 2TTRACKLAYOUT() cannot have overlaps. �

Lemma 7 Let G be a 2-tree, let Γ
�
G � be a track assignment of G computed by Algorithm 2TTRACKLAY-

OUT(). Let e0 � �
u0 � v0

� be a jumping edge such that u0 is its parent vertex. Let e1 � �
u1 � v1

� be a jumping
edge such that u1 is on the same track as u0 and v1 is on the same track as v0. Then u1 is the parent vertex
of e1.

Sketch of Proof. Let Pi be the 3-prism that contains u0 and u1. Let Pj be the 3-prism that contains v0 and
v1. Since u0 and v0 are in pertinent graphs Gµ0 and Gµ1 respectively, such that µ1 is a child of µ0 in T , it
follows that j � �

i � 1 � mod 5 or j � �
i � 2 � mod 5. Suppose as a contradiction that u1 is the child vertex

of e2. By the same argument we get that i � �
j � 1 � mod 5 or i � �

j � 2 � mod 5, either one of which is
impossible. �

Lemma 8 Let G be a 2-tree and let T be an equipped tree partition of G. Algorithm 2TTRACKLAYOUT()
computes a track assignments without X-crossings.

Sketch of Proof. Let e0 � �
u0 � v0

� and e1 � �
u1 � v1

� be two edges of G. If e0 and e1 form an X -crossing
in the track assignment, then the two vertices of e0 are on the same two tracks as the two vertices of e1.
Therefore both edges must be either jumping or non-jumping.

Consider first the case that they are both non-jumping edges; e0 and e1 can either belong to the same
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pertinent graph Gµ or they are edges of two different pertinent graphs Gµ and Gν. If they formed an X -
crossing in the first case then there would be an X -crossing in the track layout of Gµ equipping T , which
is impossible. If there were an X -crossing in the second case, then either u0 � u1 and v1 � v0 or u1 � u0

and v0 � v1. But if visitorder
�
µ � � visitorder

�
ν � then e0 is to the left of e1 or e1 is to the left of e0 by

construction. Again a contradiction.
It remains to consider the case that e0 and e1 are two jumping edges. We assume without loss of

generality that u0 is the parent vertex of e0 and that u0 and u1 are on the same track. By Lemma 7, u1 is
a parent vertex of e1. Let µ0, µ1, ν0 and ν1 be the nodes whose pertinent graphs contain u0, u1, v0 and v1,
respectively. It follows that u0 is a vertex in the parent clique Cν0 of ν0 and that u1 is a vertex in the parent
clique Cν1 of ν1.

If µ0 � µ1 and Cν0 � Cν1 then u0 � u1 because each clique has only one vertex on a single track. In
this case a crossing is not possible because e0 and e1 have a vertex in common. If µ0 � µ1 and Cν0 is
to the left of Cν1 then u0 � u1 and v0 � v1. Therefore an X -crossing is not possible. If µ0 �� µ1, assume
without loss of generality that visitorder

�
µ0
� � visitorder

�
µ1
� . The ordering of the nodes of T is such that

visitorder
�
ν0
� � visitorder

�
ν1
� . This implies that u0 � u1 and v0 � v1. Hence an X -crossing is impossible.

�

Lemmas 6 and 8 imply that Algorithm 2TTRACKLAYOUT() computes a track layout of a 2-tree. Since
the algorithm uses five 3-prisms, the total number of tracks used is 15. The following theorem summarizes
this discussion and uses Theorem 1 for the volume upper bound.

Theorem 9 Let G be a 2-tree. Then tn
�
G � � 15. Also, G admits a track drawing with volume at most

30 � 31 � 31 � n
15 � .

Theorem 9 immediately extends to partial 2-trees.

Corollary 10 Let G be a series-parallel graph. There exists an algorithms that computes a 3D straight-line
grid drawing of G with volume at most 30 � 31 � 31 � n

15 � .
We observe that the multiplicative constant factor in the volume upper bound of Theorem 9 and of

Corollary 10 improves that in [9, 10] by approximately thirty percent.

5 Upperbound on the track number of k-trees
The algorithm for drawing k-trees in [9, 10] is recursive. Since we can now draw 2-trees on 15 lines, we can
apply the same ideas to find new upper bounds on the track number of k-trees.

Theorem 11 [9, 10] Every k-tree has track number at most tk given by the following recursive equation:

tk � 3ck � 1 � ktk � 1
�
k 
 � �

ck � i � c
�
k � i
� c
� �
k � i

�
k 
 � � 1 � i � k � 1 �

c
�
k � i � 3ck � 1 � kck � 1 � i

�
k 
 ��� 1 � i � k �

c
� �
k � i � 3c2

k � 1 � k ∑i � 1
j � 1 ck � 1 � jck � 1 � i � j

�
k 
 � � 1 � i � k � 1 �

(1)

where t0 � 1, c0 � 1 � 1, and c
�
k � k � 1 � 0.

By using the same technique as we used in Section 4 we can find a new recursive equation that improves
the upper bounds of the above theorem. For reasons of space, we only sketch our approach. A detailed
description can be found in the Appendix. We start by introducing some definitions.

Definition 4 Let C0 and C1 be two cliques of G and let Γ
�
G � be a track-layout of G. C0 and C1 are of the

same type if they cover the same subset of tracks in Γ
�
G � .
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Definition 5 Let G be a k-tree, let T be an equipped tree partition of G and let µ be a node of T .
� The t-number of µ is the number of tracks used in the track layout of Gµ and is denoted as tµ.
� The c-number of µ is the number of types of cliques of size k in the track layout of Gµ, and is denoted

as cµ.
� The t-number of T is equal to maxµ � V

�
T � tµ, and is denoted as tT .

� The c-number of T is equal to maxµ � V
�
T � cµ, and is denoted as cT .

Similar to [9, 10], we use a recursive technique based on an equipped tree partition of a k-tree G. The
pertinent graph Gµ of any node µ of the tree-partition T is a partial

�
k � 1 � -tree. Gµ is augmented to a k-tree

and a track layout of Gµ with at most tT tracks is recursively computed. The maximum number of types of
cliques in the track layout of the pertinent graph Gµ of any node µ is cT . For each type of clique τ in Gµ the
children of µ whose parent clique is of type τ have a track layout that uses a different tT -prism.

The difference between our technique and the one in [9, 10] is on how these different tT -prisms are
chosen. In [9, 10] three groups of cT different tT -prisms are considered and the track layouts of the pertinent
graphs of the nodes that have the same depth in T use the same group of tT -prisms. The track layouts of the
pertinent graphs of two nodes of T having different depth use the same group if their depths are congruent
modulo 3. The total number of tT -prisms that is needed is 3cT and the total number of tracks is 3cT tT .

We generalize the approach of Section 4 and use only 2cT
� 1 different tT -prisms. Firstly, the nodes of

T are ordered by performing a particular version of a breadth first search, in which the children of a node µ
are grouped according to the type of their parent clique and within each group they are sorted according to
the left-to-right ordering of their parent cliques. The algorithm that computes a track layout of G visits the
nodes of T according to their order. Let µ be the currently visited node of T and let Gµ be its pertinent graph.
Let Pi be the tT -prism used for the track layout of Gµ. The algorithm maintains the following invariants. The
track layout of the pertinent graph of the parent of µ uses one of the cT tT -prisms Pj such that j � �

i � k �
mod

�
2cT

� 1 � , (1 � k � ck � 1). The track layouts of the pertinent graphs of the children of µ use one of the
cT tT -prisms Pj such that j � �

i � k � mod
�
2cT

� 1 � , (1 � k � ck � 1); for each child ν of µ, the choice of the
tT -prism to use for the track layout of Gν depends on the type of its parent clique in Gµ.

Since 2cT
� 1 is less than 3cT for any value of cT greater than 1, the number of tracks used in our

technique is smaller than the one given by Theorem 11. The following result can be proved by extending
the techniques presented in Section 4 (see Appendix for details).

Theorem 12 Every k-tree G has track number at most tk, where tk is given by the following recursive
equation:

tk � �
2ck � 1 � k

� 1 � tk � 1

ck � i � c
�
k � i
� c
� �
k � i

�
1 � i � k � 1 �

c
�
k � i �

�
2ck � 1 � k

� 1 � ck � 1 � i
�
1 � i � k �

c
� �
k � i �

�
2ck � 1 � k

� 1 � ck � 1 � k ∑i � 1
j � 1 ck � 1 � jck � 1 � i � j

�
1 � i � k � 1 �

(2)

with t2 � 15, c2 � 1 � 15, c2 � 2 � 105, c2 � 3 � 180 and c
�
k � k � 1 � 0.

Furthermore, G admits a track drawing with volume at most 2tk
� p � p � n

tk � , where p is the smallest
prime number greater than 2tk.

Table 1 compares Equation 2 of Theorem 12 with Equation 1 of Theorem 11, for values of k such that
2 � k � 6. For example, when k � 4 the value of Equation 2 is about 4 times smaller than the one of
Equation 1; for k � 5, the ratio becomes order of 103; for k � 6 the ratio becomes order of 1011.
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k Eq.2 Eq.1
2 15 18
3 5415 7776
4 1.16e+13 5.15e+13
5 3.17e+47 1.96e+50
6 4.68e+175 7.73e+186

Table 1: A comparison between the track number given by Theorem 12 and Theorem 11.

6 Open Problems
Several interesting problems about 3D straight-line drawings of graphs and in particular about track draw-
ings of k-trees remain open. We mention here three of them that naturally raise from the results in this paper
and that can stimulate future research.

� Reduce the gap between lower bound of five and upper bound of fifteen on the track number of 2-trees.
� Improve the volume bounds for 3D straight-lines drawings of k-trees, especially for k � 3.
� Investigate the track number of other families of graphs.
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Appendix
Pseudo-Code of Algorithm 2TVISITORDER()

2TVISITORDER(G,T )
Input: A 2-tree G, and an equipped tree partition T of G.
Output: A total ordering of the nodes of T .

Q � new queue();
Let ρ be the root of T ;
Q � enqueue

�
ρ � ;

i � 0;
while i � NT

µ � Q � dequeue
� � ;

visitorder
�
µ � � i;

Let e0 � e1 ������� � eh � 1 be the sequence of black edges of Gµ sorted according to the left-
to-right ordering, i.e. eg is to the left of eg � 1 (0 � g � �

h � 2 � ).
for g � 0 to h � 1

Let ν0 � ν1 ������� � νh � 1 be the children of µ whose parent clique is eg;
for j � 0 to h � 1

Q � enqueue
�
ν j
�

endfor
endfor
Let e0 � e1 ������� � eh � 1 be the sequence of white edges of Gµ sorted according to the
left-to-right ordering, i.e. eg is to the left of eg � 1 (0 � g � �

h � 2 � ).
for g � 0 to h � 1

Let ν0 � ν1 ������� � νh � 1 be the children of µ whose parent clique is eg;
for j � 0 to h � 1

Q � enqueue
�
ν j
�

endfor
endfor
i � i � 1;

endwhile

Algorithm 2: Algorithm 2TVISITORDER()

Detailed proof of Theorem 12

Let G be a k-tree and let T be an equipped tree partition of G. We assume that in the track layout of the
pertinent graph of each node of T , no edge has its two vertices on the same track. We will show later that
this is not a restrictive assumption.

Let NT be the number of nodes of T . We now define a total ordering for the nodes of T such that
each node µ of T is given a number, denoted as visitorder

�
µ � , in the range � 0 � NT � 1 � . This is achieved

by performing a particular version of a breadth first search of T , in which the children of a node µ are
grouped according to the type of their parent clique and within each group they are sorted according to the
left-to-right ordering of their parent cliques. A precise description of such an ordering procedure is given in
Algorithm KTVISITORDER(). For each node µ of T , we associate each type of k-clique of the track layout
of Gµ with an integer in the range � 0 � cµ � 1 � .

13



KTVISITORDER(G,T )
Input: A k-tree G, and an equipped tree partition T of G.
Output: A total ordering of the nodes of T .

Q � new queue();
Let ρ be the root of T ;
Q � enqueue

�
ρ � ;

i � 0;
while i � NT

µ � Q � dequeue
� � ;

visitorder
�
µ � � i;

for j � 0 to cµ � 1
Let � C0 � C1 ������� � Ch � 1 � be the set of the k-cliques of the track layout of Gµ of type
j such that Cg � Cg � 1 (0 � g � h � 2);
for g � 0 to h � 1

Let � ν0 � ν1 ������� � νm � 1 � be the children of µ such that their parent clique is Cg;
for l � 1 to m

Q � enqueue
�
νl
� ;

endfor
endfor

endfor
i � i � 1;

endwhile

Algorithm 3: Algorithm KTVISITORDER()

We are now ready to present our algorithm to compute a track layout of a k-tree G. Similar to the ap-
proach of Section 4, the algorithm receives as input G and an equipped tree partition T of G. We assign
the tT -track layout of each Gµ in T to one of

�
2cT

� 1 � different tT -prisms chosen according to the order
defined by Algorithm KTVISITORDER(). A detailed description of our strategy is given in Algorithm KT-
TRACKLAYOUT(). In the pseudo-code P0, ����� , P2cT denote 2cT

� 1 tT -prisms and the tracks of each prism
Pj ( j � 0 ������� � 2cT ) are numbered tT j, tT j � 1 and tT j � 2.

Since each vertex v of G is given a distinct pair
�
track

�
v � � order

�
v � � , we have that Algorithm KTTRACK-

LAYOUT() defines a track assignment. The next lemmas prove that such an assignment is a track layout.

Lemma 13 Let G be a k-tree and let T be an equipped tree partition of G. Algorithm KTTRACKLAYOUT()
computes a track assignment without overlaps.

Sketch of Proof. An edge e cannot have its two vertices on the same track. Indeed, if e is a jumping edge
its vertices are on different tracks because they are on different prisms. If e is not a jumping edge it must
belong to a pertinent graph Gµ of a node µ of T and its vertices are on different tracks because in the track
layout of Gµ no edge has both endvertices in a same track. It follows that the track assignment computed by
Algorithm 2TTRACKLAYOUT() cannot have overlaps. �

Lemma 14 Let G be a k-tree, let Γ
�
G � be a track-layout of G computed by Algorithm KTTRACKLAYOUT().

Let e0 � �
u0 � v0

� be a jumping edge such that u0 is its parent vertex. Let e1 � �
u1 � v1

� be a jumping edge
such that u1 is on the same track as u0 and v1 is on the same track as v0. Then u1 is the parent vertex of e1.

Sketch of Proof. Let Gµ0 be the pertinent graph containing u0 and let Pi be the tT -prism whose tracks
contains the vertices of Gµ0 . Vertex v0 is in the pertinent graph of one of the children of µ0, thus it is on
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KTTRACKLAYOUT(G,T )
Input: A k-tree G and an equipped tree partition T of G.
Output: A track layout of G on

�
2cT

� 1 � tT tracks.
KTVISITORDER(G,T );
Let ρ be the root of T ;
∆ � 	Gρ 	 ;
for i � 1 to NT � 1

Let µ be the node of T such that visitorder
�
µ � � i;

Let λ be the parent of µ;
Let Pj be the prism whose tracks contains the vertices of Gλ;
Let h be the type of Cµ;
p �

�
j � h � mod

�
2cT

� 1 � ;
foreach vertex v of Gµ

track
�
v � � track

�
v � � tT p;

order
�
v � � order

�
v � � ∆;

endfor
∆ � ∆ � 	Gµ 	 ;

endfor

Algorithm 4: Algorithm KTTRACKLAYOUT()

a track of one of the prisms in the set P � � � Pj 	 j � �
i � k � mod

�
2cT

� 1 � 1 � k � cT � . Suppose as a
contradiction that u1 is the child vertex of e1. Let Gµ1 be the pertinent graph containing u1. Since u1 is on
the same track as u0 then the vertices of Gµ1 are in the tracks of Pi. Vertex v1 must be in one of the prisms
of the set P � � � Pj 	 j � �

i � k � mod
�
2cT

� 1 � 1 � k � cT � . Since P � � P � � /0 then v0 and v1 are in
different prisms and hence in different tracks. This contradicts the hypothesis. �

Lemma 15 Let G be a k-tree and let T be an equipped tree partition of G. Algorithm KTTRACKLAYOUT()
computes a track assignments without X-crossings.

Sketch of Proof. Let e0 � �
u0 � v0

� and e1 � �
u1 � v1

� be two edges of G. If e0 and e1 form an X -crossing
in the track assignment, then the two vertices of e0 are on the same two tracks as the two vertices of e1.
Therefore both edges must be either jumping or non-jumping.

Consider first the case that they are both non-jumping edges; e0 and e1 can either belong to the same
pertinent graph Gµ or they are edges of two different pertinent graphs Gµ and Gν. If they formed an X -
crossing in the first case then there would be an X -crossing in the track layout of Gµ equipping T , which
is impossible. If there were an X -crossing in the second case, then either u0 � u1 and v1 � v0 or u1 � u0

and v0 � v1. But if visitorder
�
µ � � visitorder

�
ν � then Gµ is to the left of Gν or Gν is to the left of Gµ by

construction. This implies that e0 is to the left of e1 or e1 is to the left of e0. Again a contradiction.
It remains to consider the case that e0 and e1 are two jumping edges. We assume without loss of

generality that u0 is the parent vertex of e0 and that u0 and u1 are on the same track. By Lemma 7, u1 is
a parent vertex of e1. Let µ0, µ1, ν0 and ν1 be the nodes whose pertinent graphs contain u0, u1, v0 and v1,
respectively. It follows that u0 is a vertex in the parent clique Cν0 of ν0 and that u1 is a vertex in the parent
clique Cν1 of ν1.

If µ0 � µ1 and Cν0 � Cν1 then u0 � u1 because each clique has only one vertex on a single track. In
this case a crossing is not possible because e0 and e1 have a vertex in common. If µ0 � µ1 and Cν0 is to the
left of Cν1 then u0 is to the left of u1 and v0 is to the left of v1. Therefore an X -crossing is not possible.
If µ0 �� µ1, assume without loss of generality that visitorder

�
µ0
� � visitorder

�
µ1
� . The ordering given by
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Algorithm KTVISITORDER() is such that visitorder
�
ν0
� � visitorder

�
ν1
� . This implies that u0 is to the left

of u1 and v0 is to the left of v1. It follows that an X -crossing is impossible also in this case. �

Lemma 16 Let G be a 3-tree. There is an equipped tree partition T of G such that tT � 15 and cT � 180.

Sketch of Proof. Let T be any tree partition of G. Since G is a 3-tree the pertinent graph Gµ of each node
µ of T is a 2-tree and then by Theorem 9 it admits a 15-track layout. Therefore T can be equipped so that
tT � 15. The value of cT is the maximum number of types of cliques of size 3 in the track layouts equipping
T .

Consider a 2-tree G
�

and an equipped tree partition T
�

of G
�
. A 3-clique C cannot have all its vertices

in the pertinent graphs Gµ � of a single node µ
�

of T
�

since Gµ � is a tree. Also, C cannot have vertices in the
pertinent graphs of three different nodes, because the three different nodes would be mutually adjacent in
T
�

and then there would be a cycle in T
�
. Thus the vertices of C are in the pertinent graphs of exactly two

adjacent nodes.
In the track layout of G

�
computed as described in Section 4 the track layouts of the nodes of T

�
uses five

different 3-prisms. Suppose the prisms are numbered from 0 to 4 and consider a prism Pi (0 � i � 4). All
jumping edges whose parent vertices are in Pi have their child vertex either in P�

i � 1 � mod 5 or in P�
i � 2 � mod 5.

Consider prisms Pi and P�
i � 1 � mod 5. A 3-clique whose vertices are in Pi and P�

i � 1 � mod 5 has one vertex in
Pi and the other two in P�

i � 1 � mod 5, or vice versa. The vertex that is in Pi can be in 3 possible different
track. The two vertices in P�

i � 1 � mod 5 can be in 3 possible different pair of track. It follows that there are
9 possible types of cliques having a vertex in Pi and the other two in P�

i � 1 � mod 5. Symmetrically, there are
9 possible types of cliques having two vertices in Pi and the other one in P�

i � 1 � mod 5. Therefore we have
18 possible types of 3-cliques with vertices in Pi and P�

i � 1 � mod 5. By an analogous reasoning we have 18
possible types of 3-cliques with vertices in Pi and P�

i � 2 � mod 5. For each Pi we have 36 possible types of
3-cliques containing jumping edges whose parent vertices are in Pi. Since the number of prisms is 5, we
have that cT � 5 � 36 � 180. �

The following lemma present a simple proof that every k-tree has a track layout on a constant number
of tracks. This number is bigger than what needed and is bigger, as k grows, than the values given in [9, 10].
A better bound will be computed in a following lemma by using a more refined analysis similar to the one
presented in [9, 10].

In the following tk denotes the track number of a k-tree, i.e. the maximum number of tracks such that
every k-tree admits a track layout on them. Also, ck denotes the maximum number of types of cliques of
size k � 1 in any track layout of a k-tree.

Lemma 17 Let G be a k-tree with k � 3. G has track number tk that is given by the following recursive
equation:

tk � �
2ck � 1

� 1 � tk � 1

ck �
�

tk
k � 1 �

with t2 � 15 and c2 � 180.

Sketch of Proof. We prove the statement by induction on k. The base case is k � 3. Let G be a 3-tree and let
T be an equipped tree partition of G. By executing Algorithm KTTRACKLAYOUT() on G we obtain a track
layout of G with t3 � �

2c2
� 1 � t2, by Lemma 15. By Lemma 16 t2 � 15 and c2 � 180. Suppose the statement

is true for k � 1, and let G be a k-tree. Let T be a tree partition of G. By induction we can equip T with the
track layout of the pertinent graph of each node µ of T . Notice that in Algorithm KTVISITORDER() and
Algorithm KTTRACKLAYOUT(), the input is assumed to be a non-partial k-tree, while the pertinent graph
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of each node µ is a partial k-tree. Thus in order to recursively apply algorithm to the pertinent graph of each
node µ, it has to be augmented to a non-partial k-tree.

We have tT � tk � 1 and cT � ck � 1. By executing Algorithm KTTRACKLAYOUT() on G we obtain a track
layout of G on tk � �

2ck � 1
� 1 � tk � 1, by Lemma 15. Concerning the value of ck, recall that ck is the number

of types of cliques of size k � 1 in the track layout of G. This number is at most the number of possible
choices of k � 1 tracks among tk and hence

ck �
�

tk
k � 1 � �

�

At the beginning of this Section we made the assumption that the track layouts that equip the nodes of
the tree partition of G are such that no edges has its vertices in the same track. We observe that this is not
a restrictive assumption. Namely, as shown in the proof of Lemma 13 if the track layouts that equip T have
the property that no edge has both vertices in a track, then also the track layout of G has the same property.
As described in the proof of Lemma 17 the track layout of G is computed recursively. The base step of the
recursion is k � 2. By Lemma 13 the property above holds for the track layout of 2-trees. Therefore we may
assume that the same property holds for tha track layout of any k-tree.

The bound given in Lemma 17 for ck is largely overestimated. This lead to an upper bound for the
track number of a k-tree that is not the best possible. By using a more refined analysis, similar to the one
presented in [9, 10], it is possible to further reduce the bound on ck . In the following Lemma ck � i denotes the
maximum number of types of cliques of size i in any track layout of a k-tree. A clique of size i can have all
the vertices in the pertinent graph of a single node of T or in the pertinent graph of two adjacent vertices of
T . The clique having all vertices in the pertinent graph of a single node of T are called intra-node cliques,
while those having the vertices in the pertinent graph of two adjacent vertices of T are called inter-node
cliques. The number of intra-node cliques of size i is denoted as c

�
k � i while the number of inter-node cliques

is denoted as c
� �
k � i. According to these definition ck is equal, by definition, to ck � k � 1.

Lemma 18 Let G be a k-tree with k � 3. G has track number at most tk where tk is given by the following
recursive equation:

tk � �
2ck � 1 � k

� 1 � tk � 1

ck � i � c
�
k � i
� c
� �
k � i

�
1 � i � k � 1 �

c
�
k � i �

�
2ck � 1 � k

� 1 � ck � 1 � i
�
1 � i � k �

c
� �
k � i �

�
2ck � 1 � k

� 1 � ck � 1 � k ∑i � 1
j � 1 ck � 1 � jck � 1 � i � j

�
1 � i � k � 1 �

with t2 � 15, c2 � 1 � 15, c2 � 2 � 105, c2 � 3 � 180 and c
�
k � k � 1 � 0.

Sketch of Proof. A clique cannot have vertices in the pertinent graphs of more than two different nodes,
because these nodes would be mutually adjacent in T and then there would be a cycle in T . Thus ck � i is
given by the sum of the intra-node cliques and the inter-node cliques, i.e. ck � i � c

�
k � i
� c
� �
k � i.

Computation of c
�
k � i An intra-node clique can have size at most k because the pertinent graph of each node

is a partial k � 1-tree. Therefore c
�
k � k � 1 � 0. For any i � k, an intra-node clique C of size i in G is also

a clique of size i in Gµ, for some node µ of T . For any node µ of T , the number of types of cliques of
size i in Gµ is ck � 1 � i by definition. Since the nodes of T are distributed on

�
2ck � 1 � k

� 1 � prisms then
each type of cliques is repeated

�
2ck � 1 � k

� 1 � times and therefore c
�
k � i �

�
2ck � 1 � k

� 1 � ck � 1 � i.

Computation of c
� �
k � i For any i � k, an inter-node clique C of size i has a set of j (1 � j � i � 1) vertices in

the pertinent graph Gµ of a node µ of T and a set of i � j vertices in the pertinent graph Gν of a node
ν of T adjacent to µ. The vertices in the two sets are connected by jumping edges. Consider a prism
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Pi (0 � i � �
2ck � 1 � k

� 1 � ). All jumping edges whose parent vertices are in Pi have their child vertex
in one of the prisms P�

i � 1 � mod
�
2ck � 1 � k � 1 � , P�

i � 2 � mod
�
2ck � 1 � k � 1 � , ����� , P�

i � ck � 1 � k � mod
�
2ck � 1 � k � 1 � . Consider

prisms Pi and P�
i � 1 � mod

�
2ck � 1 � k � 1 � . There are ck � 1 � j types of cliques of size j in Pi and ck � 1 � i � j types

of cliques of size i � j in P�
i � 1 � mod

�
2ck � 1 � k � 1 � . Thus the number of types of inter-node i-cliques with

vertices on prisms Pi and P�
i � 1 � mod

�
2ck � 1 � k � 1 � is

i � 1

∑
j � 1

ck � 1 � jck � 1 � i � j �

There is the same number of types of inter-node i-cliques with vertices in Pi and in each of the
P�

i � 2 � mod
�
2ck � 1 � k � 1 � , ����� , P�

i � ck � 1 � k � mod
�
2ck � 1 � k � 1 � . Therefore, for each Pi we have

ck � 1 � k

i � 1

∑
j � 1

ck � 1 � jck � 1 � i � j

possible types of inter-node i-clique containing jumping edges whose parent vertices are in Pi. Since
the number of prisms is

�
2ck � 1 � k

� 1 � , we have that

c
� �
k � i � �

2ck � 1 � k
� 1 � ck � 1 � k

i � 1

∑
j � 1

ck � 1 � jck � 1 � i � j �

The values of t2 and c2 � 3 follow immediately from Lemma 16. The value of c2 � 1 is clearly 15 while the
value of c2 � 2 can be computed as follows. A clique of size two, i.e. an edge, in a 2-tree is either an intra-node
clique or an inter-node clique. The types of intra-node cliques are 3 for each node, because there is no edge
having two vertices in a same track, and since the track layout of each node is in the tracks of one among five
3-prisms then each type is replicated 5 times and hence the number of possible types of intra-node cliques is
15. The inter-node cliques have their vertices in two different 3-prisms. For any pair of prisms the number
of possible types of such cliques is 9. The jumping edges with the parent vertex in a specific prism, say Pi,
has the child vertex either in P�

i � 1 � mod 5 or in P�
i � 2 � mod 5, hence we have 18 possible types of cliques with

the parent vertex in Pi. Since the prisms are five, we have 5 � 18 � 90 possible types of inter-node cliques,
and therefore c2 � 2 � 90 � 15 � 105. �

The results of this section are summarized by the following theorem.

Theorem 12 Every k-tree G has track number at most tk, where tk is given by the following recursive
equation:

tk � �
2ck � 1 � k

� 1 � tk � 1

ck � i � c
�
k � i
� c
� �
k � i

�
1 � i � k � 1 �

c
�
k � i �

�
2ck � 1 � k

� 1 � ck � 1 � i
�
1 � i � k �

c
� �
k � i �

�
2ck � 1 � k

� 1 � ck � 1 � k ∑i � 1
j � 1 ck � 1 � jck � 1 � i � j

�
1 � i � k � 1 �

(2)

with t2 � 15, c2 � 1 � 15, c2 � 2 � 105, c2 � 3 � 180 and c
�
k � k � 1 � 0.

Furthermore, G admits a track drawing with volume at most 2tk
� p � p � n

tk � , where p is the smallest
prime number greater than 2tk.
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