
Track Drawings of Graphs with Constant Queue Number
�

(Technical Report 2003-474, School of Computing, Queen’s University)

Emilio Di Giacomo †

digiacomo@diei.unipg.it

Henk Meijer‡

henk@cs.queensu.ca

Abstract
A k-track drawing is a crossing-free 3D straight-line drawing of a graph G on a set of k parallel lines called

tracks. The minimum value of k for which G admits a k-track drawing is called the track number of G. In [18] it is
proved that every graph from a proper minor closed family has constant track number if and only if it has constant
queue number. In this paper we study the track number of well-known families of graphs with small queue number.
For these families we show upper bounds and lower bounds on the track number that significantly improve previous
results in the literature. Linear time algorithms that compute track drawings of these graphs are also presented and
their volume complexity is discussed.

1 Introduction and Overview
The problem of computing a drawing of a graph with small area/volume has received a lot of attention in the graph
drawing literature during the last decade. However, while research devoted to computing small-sized drawings in
the plane has flourished during the last two decades and has produced a rich body of combinatorial results, structures,
algorithmic techniques, and software systems, the research on 3D drawings can still be considered in its early stages [5,
16].

Cohen, Eades, Lin and Ruskey [3] showed that every graph admits crossing-free 3D drawing on an integer grid of
O

�
n3 � volume, and proved that this is asymptotically optimal. The volume of a drawing is measured as the number

of grid-points contained in the smallest axis-aligned box bounding the drawing. Calamoneri and Sterbini [1] showed
that all 2-, 3-, and 4-colourable graphs can be drawn in a 3D grid of O

�
n2 � volume with O

�
n � aspect ratio and proved a

lower bound of Ω
�
n1 � 5 � on the volume of such graphs. For r-colourable graphs, Pach, Thiele and Tóth [17] showed a

bound of θ
�
n2 � on the volume. Garg, Tamassia, and Vocca [12] showed that all 4-colorable graphs (and hence all planar

graphs) can be drawn in O
�
n1 � 5 � volume and with O

�
1 � aspect ratio but by using a grid model where the coordinates of

the vertices may not be integer. Chrobak, Goodrich, and Tamassia [2] gave an algorithm for constructing 3D convex
drawings of triconnected planar graphs with O

�
n � volume and non-integer coordinates.

Recent papers [6, 7, 8, 9, 10, 18] have considered the following problem: given a grid φ such that φ is a proper
subset of the integer 3D space, which graphs admit a straight line crossing-free drawing with vertices located at the
grid points of φ? If φ is chosen so that it has volume V , then a volume bound of V can be determined for any class of
graph drawable on φ. A grid φ of this type is also called restricted integer grid.

Felsner et al. [10] initiated the study of restricted integer grids consisting of parallel grid lines, called tracks. In
particular, they focus on the box and the 3-prism. A box is a grid consisting of four parallel lines, one grid unit apart
from each other and a 3-prism uses three non-coplanar parallel lines. It is shown that all outerplanar graphs can be
drawn on a 3-prism where the length of the lines is O

�
n � . This result gives the first algorithm to compute a crossing-

free straight-line 3D drawing with linear volume for a non-trivial family of planar graphs. Moreover it is shown that
there exist planar graphs that cannot be drawn on the prism and that even a box does not support all planar graphs.

Dujmovic et al. [7] show that if a graph G admits a drawing Γ on a a grid φ consisting of a constant number of
parallel lines, then G has a linear volume upper bound. This result suggests that the focus of the research should be on
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minimizing the number of tracks in a restricted integer grid, independent of the length of the tracks themselves. The
track number tn

�
G � of a graph G is the minimum number of tracks that is required to compute such a drawing.

Wood [18] shows a relationship between tn
�
G � and another well-studied graph parameter, the queue number qn

�
G �

(i.e. the minimum number of queues in a queue layout of G [15]). He proves that every graph from a proper minor
closed family has constant track number if and only if it has constant queue number. By the result of Wood all families
of graphs whose queue number is known to be constant (for example series-parallel graphs, Halin graphs, Benes
networks, arched leveled planar graphs, X-trees, unicyclic graphs), have a three dimensional straight-line grid drawing
with linear volume. A recent result by Dujmović and Wood [8, 9] shows that linear volume can also be achieved
for graphs with bounded tree width. We observe however that value of the track number (and hence of the volume)
deriving from the results in [18] are often very large. In [18] it is shown that tn

�
G ��� c

�
2

�
c � 1 � qn

�
G ��� 1 � c � 1 where

c is the star chromatic number of G ( c � 3 for any graph). Therefore, even for the (apparently innocent) family of
planar graphs whose queue number is 1 we obtain an upper bound for the track number of at least 75 and by using
the technique in [7] a drawing with a bound on the volume of 75 � 151 � 151 � n

75 	 . From the observation above it is
natural to ask whether it is possible to reduce the bounds on track number and volume for graphs with constant queue
number.

In this paper we present new lower and upper bounds on the track number (and hence on the volume) of some
families of graphs that are known to have constant queue number. Our main contributions can be listed as follows.


 The family of graphs with queue number one (i.e. arched leveled planar graphs) are proved to have track number
at least four and at most five. A drawing algorithm is presented for arched leveled planar graphs that gives a
volume bound of 3 � 3 � n.


 The track number of X-trees (that have queue number 2) is proved to be three and a volume bound of 2 � 2 �
4 � n � 1 


7 is shown.

 A lower bound of three and an upper bound of four is presented for Halin Graphs. A volume bound of 2 � 2 � n

is also shown.

The drawing algorithm described in order to prove the above results all have O
�
n � time complexity and use integer

arithmetic.
Table 1 shows the upper and lower bounds on track number of the families of graphs studied in this paper and

compare them with the existing ones. Table 2 shows the upper bounds on volume for the families of graphs studied in
this paper and compare them with the existing ones.

Family
Queue Number Track Number Previous Track Number
Ω O Ω O Ω O

Arched Leveled Planar 1 1 4 5 3 c
�
2

�
c � 1 � q � 1 � c � 1 � 75

Meshes 1 1 3 3 3 c
�
2

�
c � 1 � q � 1 � c � 1 � 75

X-trees 2 2 3 3 3 c
�
2

�
c � 1 � q � 1 � c � 1 � 243

Halin 2 3 4 5 3 c
�
2

�
c � 1 � q � 1 � c � 1 � 507

c is the star chromatic number of the graph (c � 3).

Table 1: Upper and lower bounds on queue number and track number for different classes of graphs.

Family Volume Previous Volume
Arched Leveled Planar 3 � 3 � n 2t � p2t � p2t � n

t 	 � 150 � 151 � 151 � n
75 	

Meshes 2 � 2 � � n � 2 � n 

3 2t � p2t � p2t � n

t 	 � 150 � 151 � 151 � n
75 	

X-trees 2 � 2 � 4 � n � 1 

7 2t � p2t � p2t � n

t 	 � 486 � 487 � 487 � n
243 	

Halin 2 � 2 � n 2t � p2t � p2t � n
t 	 � 1014 � 1019 � 1019 � n

507 	
t is the track number of the graph; p2t is the smallest prime greater than 2t.

Table 2: Upper bounds on the volume of a straight-line integer grid drawing for different classes of graphs.

The remainder of of the paper is organized as follows. In Section 2 some definitions and results about track and
queue layout are recalled. The bounds on the track number and on the volume of arched leveled planar graphs are
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proved in Section 3. Results on X-trees are presented in Section 4. The track number of Halin Graphs is studied in
Section 5. For reasons of space some detail are omitted and can be found in the Appendix.

2 Preliminaries
In this section we give some preliminary definitions that will be used throughout the paper and recall some known
results about track layout.

2.1 Preliminary Definitions
Let G � �

V � E � be a graph. A track assignment [8, 9] of G consists of a partition
�
ti � i � I ���	� of V , and of a total

ordering 
 i of the vertices in each set ti. Each set ti is called a track. An overlap in a track assignment consists of three
vertices u, v, and w such that they are in the same track ti, there exists the edge

�
u � w � and u 
 i v 
 i w. An X-crossing

in a track assignment consists of two edges
�
u0 � v0

� and
�
u1 � v1

� such that u0 and u1 are on the same track ti, v0 and v1

are on another track t j (i �� j) with u0 
 i u1 and v1 
 j v0. Figure 1(b) shows an example of track assignment for the
graph in Figure 1(a). Vertices v1, v5 and v2 form an overlap, as well as vertices v3, v6 and v4. Edges

�
v5 � v4

� ,
�
v2 � v3

�
form an X-crossing. Another X-crossing is formed by edges

�
v6 � v8

� and
�
v4 � v7

� .
A track layout [8, 9] is a track assignment with no overlaps and no X-crossings. Figure 1(c) shows an example of a

track layout of the graph of Figure 1(a). A track layout with k tracks is also called a k-track layout. The track number
of a graph G, denoted by tn

�
G � , is the minimum k such that G has a k-track layout. A set of k tracks is also called a

k-prism.
In the rest of the paper a track layout will be specified by assigning to each vertex v two numbers: track

�
v � is an

integer that denotes the track to with v is assigned; order
�
v � is an integer that denotes the ordering of v in track

�
v � .

We say that u 
 i v if track
�
u � � track

�
v � � i and order

�
u � 
 order

�
v � . We shall sometimes simplify the notation and

write u 
 v instead of u 
 i v.
A track line is a straight line of a 3D grid parallel to the x-axis. A strip σi j is the portion of a plane delimited by

track lines i and j. We denote as
�
x � yp � zp

� a track line passing through point
�
xp � yp � zp

� . A track drawing of a graph
G on k track lines is a 3D straight-line crossing-free grid drawing of G such that each vertex of G is drawn on one of
k track lines. A track drawing on k track lines is also called k-track drawing. The drawing in Figure 1(d) is a track
drawing of the graph of Figure 1(a).

In [7] a general technique is described for computing a track drawing of a graph G from a track layout of G. In this
paper we will describe ad-hoc techniques that results in a smaller upper bounds on the volume. In this case we need
to prove that there is no crossing between edges. Let e0 � �

u0 � v0
� and e1 � �

u1 � v1
� be two edges of a graph G. If two

edges e0 and e1 cross each other in a drawing of G, then the four points representing u0, v0, u1 and v1 are co-planar,
i.e. the following equation is satisfied: ��������

1 1 1 1
x

�
u0

� x
�
u1

� x
�
v0

� x
�
v1

�
y

�
u0

� y
�
u1

� y
�
v0

� y
�
v1

�
z

�
u0

� z
�
u1

� z
�
v0

� z
�
v1

�

�������� � 0

The substitution of the y- and z-coordinates of each vertex in the equation above gives a condition on the x-coordinates
of the vertices that must be satisfied in order to have a crossings between e0 and e1. Thus it is sufficient to prove that
the equation has no solution in order to prove that e0 and e1 do not cross each other. We call this equation co-planarity
equation of e0 and e1.

A queue layout [14, 15] of a graph G consists of a linear ordering λ of the vertices of G, and a partition of the
edges of G into queues, such that no two edges in the same queue are nested with respect to λ. In other words there are
no edges e0 � �

u0 � v0
� and e1 � �

u1 � v1
� such that e0 and e1 are assigned to the same queue and u0 
 u1 
 v1 
 v0 in

λ. A queue layout with q queues is also called a q-queue layout. The queue number of a graph G, denoted by qn
�
G � ,

is the minimum q such that G has a q-queue layout.

2.2 Previous Results
In this section we recall some previous results about track number and the relations between the track number and the
queue number of a graph.
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Figure 1: (a) A graph G. (b) A track assignment of G. (c) A track layout of G. (d) A track drawing of G.

In [4] the graphs having track number 2 are characterized, and it is proved that they are a subclass of the outerplanar
graphs. The following lemma is an immediate corollary of the result in [4].

Lemma 1 [4] The class of graphs that admit a 2-track layout is a subclass of the outerplanar graphs.

In [10] it is proved that every outerplanar graph admits a track drawing on 3 tracks, and hence has track number 3.
Also, it is proved that there exist trees (and hence outerplanar graphs) that do not admit a track layout on 2 tracks. The
following hold.

Theorem 2 [10] Every outerplanar graph has track number at most 3 and admits a track drawing with volume at
most 2 � 2 � n. Also, there exists an outerplanar graph G such that tn

�
G � � 3.

In [7] the relation between a track layout and a track drawing is studied. The following theorem holds.

Theorem 3 [7] Let G be a graph with n vertices such that tn
�
G � � t. Then:


 G admits a t-track drawing whose volume is t � pt � pt � n
�
;


 G admits a 2t-track drawing whose volume is 2t � p2t � p2t � � n
t 	 ;

where pt is the smallest prime number greater than t, p2t is the smallest prime number greater than 2t and n
�

is
the maximum number of vertices on a single track.

Also, in [18] the track number of a graph is related to the queue number of a graph. In particular the following
holds.

Theorem 4 [18] Let G be a graph with star chromatic number χst
�
G � � c, and queue number qn

�
G � � q. Then G has

a t-track layout, where t � c
�
2

�
c � 1 � q � 1 � c � 1 �

3 Arched Leveled Planar Graphs
In this section we will study the track number of graphs with queue number equal to 1. These graphs are characterized
in [15], where it is shown that they are planar graphs and admit a leveled planar embedding. For this reason they are
called arched leveled planar graphs. We first give a lower bound on the track number and then we present an upper
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bound that improves the result in [18]. We show that the track number of an arched leveled planar graph is at most 5.
Also, we prove that there exists an arched leveled planar graph whose track number is at least 4. We start with a basic
lemma that is used to prove the lower bound.

Lemma 5 Let G0 be the graph in Figure 2(a). Then in any 3-track layout, vertices u and v are on different tracks, and
at least one of the vertices wi (i � 0 � � � � � 3) is on the third track.

u

w3

v

w2w1w0

(a)

u w5 � 3 v0 v5v4v3v2v1w0 � 0

(b)

Figure 2: (a) Graph G0 of Lemma 5. (b) Graph G with qn
�
G � � 1 and tn

�
G � � 4.

Lemma 6 Let G be the graph in Figure 2(b). Then qn
�
G � � 1 and tn

�
G � � 4.

Sketch of Proof. The proof that G has queue number 1 follows from Figure 2(b) where a 1-queue layout of G is given.
We prove that it cannot be laid out on 3 tracks. Suppose for a contradiction that there exists a 3-track layout of G with
tracks t0, t1 and t2, and let t0 be the track containing u. By Lemma 5 vertices vi (0 � i � 5) must be on a track different
from t0. Let t1 be the track containing v5. Two cases are possible:

1. There exist three vertices vi, v j and vk (0 � i � j � k � 4) that are in t1. In this case two of the three edges
�
v5 � vi

� ,�
v5 � v j

� , and
�
v5 � vk

� form an overlap.

2. There exist three vertices vi, v j and vk, that are in t2. By Lemma 5, there exist three vertices wi � a, w j � b and wk � c
(0 � a � b � c � 3) in track t1 adjacent to u and to vi, v j and vk respectively. Assume without loss of generality
that vi 
 v j 
 vk in t2. It follows that wi � a 
 w j � b 
 wk � c in t1, because otherwise there would be an X-crossing
between edges

�
vi � wi � a � ,

�
v j � w j � b � and

�
vk � wk � c � . If v5 
 wi � a then edges

�
v5 � v j

� and
�
vi � wi � a � form an X-crossing.

If wi � a 
 v5 
 w j � b then edges
�
v5 � vk

� and
�
v j � w j � b � form an X-crossing. If w j � b 
 v5 
 wk � c then edges

�
v5 � vi

�
and

�
v j � w j � b � form an X-crossing. Finally, if v5

�
wk � c then edges

�
v5 � v j

� and
�
vk � wk � c � form an X-crossing.

It follows that tn
�
G � � 4. �

In order to prove the upper bound on the track number of arched leveled planar graphs we first describe a block
decomposition of a connected graph G with qn

�
G � � 1. Then we will describe how to assign the vertices to 5 tracks.

Suppose we have a 1-queue layout of G where the linear ordering of the vertices is λ � v0 � v1 � � � � � vn � 1. We say that
vi 
 v j if i 
 j. A vertex v is called a special cut vertex if there are no edges

�
u � w � with u 
 v 
 w. A block is a subset

of consecutive vertices in λ. The first vertex of a block Bi is called source vertex and is denoted as si. The last vertex
of a block Bi is called sink vertex and is denoted as ti. All the other vertices are called internal vertices of Bi. The
block decomposition is defined as follows


 Block B0 consists of the vertices v0 � v1 � � � � � v j, where v j is such that there exists the edge
�
v0 � v j

� and there is no
edge

�
v0 � vh

� with v j 
 vh. In other words j is the largest index such that there is an edge
�
v0 � v j

� .

 If the sink vertex ti � 1 of block Bi � 1 is not a special cut vertex then block Bi consists of the vertices vk � vk � 1 � � � � � v j

with the following properties: there is an edge
�
vk � v j

� ; vk 
 ti � 1; there is no edge
�
vg � vh

� with vg 
 ti � 1 and
v j 
 vh; there is no edge

�
vh � v j

� with vh 
 vk. In other words j is the largest index such that there is an edge
from a vertex smaller than ti � 1 to v j and k is the smallest index such that there is an edge

�
vk � v j

� .

 If the sink vertex ti � 1 of block Bi � 1 is a special cut vertex then block Bi consists of the vertices vk � vk � 1 � � � � � v j,

where vk � ti � 1, and where v j is such that there exists an edge
�
ti � 1 � v j

� and there is no edge
�
ti � 1 � vh

� with h
�

j.
In other words j is the largest index such that there is an edge from ti � 1 to v j.
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An example of a block decomposition is illustrated in Figure 3.

B1

B0 B2

B3

B4

B5

Figure 3: A block decomposition of an arched leveled planar graph.

Algorithm ALPTRACKLAYOUT() computes a 5-track layout of an arched leveled planar graph G.

ALPTRACKLAYOUT(G)
Input: 1-queue layout of connected graph G with λ � v0 � v1 ��������� vn � 1
Output: A 5-track layout of G.

Let 0,1,2,3 and 4 be five tracks;
Let B0 ��������� Bk � 1 be a block decomposition of G;
track

�
s0 ��� 0;

for i � 0 to k 	 1
t � track

�
si � ;

foreach internal vertex v of Bi not assigned to any track
track

�
v ��� �

t 
 1 � mod 5;
endfor
track

�
ti ��� �

t 
 2 � mod 5;
endfor
for i � 0 to n 	 1

order
�
vi � � i;

endfor

Algorithm 1: Algorithm ALPTRACKLAYOUT()

Lemma 7 Let G be a connected graph with qn
�
G � � 1. Let λ � v0 � v1 � � � � � vn � 1 be the linear ordering of a 1-queue

layout of G. The track assignment computed by Algorithm ALPTRACKLAYOUT() is such that for all edges
�
vg � vh

�
with g 
 h

track
�
vh

� � �
track

�
vg

��� 1 � mod 5 or

track
�
vh

� � �
track

�
vg

��� 2 � mod 5 �

Lemma 8 Let G be a graph with qn
�
G � � 1, then tn

�
G � � 5.

Sketch of Proof. We first assume that G is connected. Suppose we have a 1-queue layout of G with λ � v0 � v1 � � � � � vn � 1.
We prove that Algorithm ALPTRACKLAYOUT() computes a track layout of G. We have no overlaps since there are
no edges

�
vi � v j

� with track
�
vi

� � track
�
v j

� . Also we have no X-crossing. Consider two edges
�
vg � vh

� and
�
vi � v j

� such
that vg and vi are in track a and vh and v j are in another track b. By Lemma 7, there are two cases: (i) if b � �

a � 1 �
mod 5 or b � �

a � 2 � mod 5, then vg 
 vh and vi 
 v j; (ii) if b � �
a � 1 � mod 5 or b � �

a � 2 � mod 5, then vg
�

vh

and vi
�

v j. Consider case (i), and assume without loss of generality that vg 
 vi. If v j 
 vh then vg 
 vi 
 v j 
 vh in
λ, but this is not possible, because there would be two nested edges in the 1-queue layout. Hence vh 
 v j and therefore
there is no X-crossing. Consider case (ii), and assume again that vg 
 vi. If v j 
 vh then it would be v j 
 vh 
 vg 
 vi in
λ, but this is not possible, because there would be two nested edges in the 1-queue layout. Hence vh 
 v j and therefore
there is no X-crossing. If G is disconnected, we can apply Algorithm ALPTRACKLAYOUT() to each component of
G. �

Lemma 8 proves that every arched leveled planar graph G has track number at most 5. By Theorem 3 G admits
a track drawing whose volume is 10 � 11 � 11 � � n

5 	 . It is possible to reduce this volume by an ad-hoc drawing
technique. The following theorem summarize the results above and gives a reduced bound on the volume of the track
drawing.
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Theorem 9 Every arched leveled planar graph has track number at most 5 and admits a track drawing with volume
at most 3 � 3 � n that can be computed in O

�
n � time. Also, there exists an arched leveled planar graph G such that

tn
�
G � � 4.

Sketch of Proof. The bounds on the track number follow from Lemma 6 and 8. We describe now how to compute
a track drawing with volume 3 � 3 � n. Consider a restricted integer grid φ consisting of the five track lines

�
x � 2 � 1 � ,�

x � 0 � 1 � ,
�
x � 0 � 0 � ,

�
x � 2 � 0 � and

�
x � 1 � 2 � and number these track lines 0,1,2,3, and 4, respectively. Compute a track layout

with five tracks using Algorithm ALPTRACKLAYOUT(). Let n0, n1, n2, n3 and n4 be the number of vertices in track
0, 1, 2, 3 and 4, respectively. Draw the vertices assigned to track i on track line i according to the total order defined
in the track, so that they occupy x-coordinates from ∑i � 1

j � 0 n j to ∑i
j � 0 n j (i � 0 � 1 � 2 � 3 � 4). We prove that the drawing

has no crossing. Overlaps and X-crossings are not possible, because there is no overlap and no X-crossing in the track
layout.

A crossing is possible only between edges that are on two different strips crossing each other along a straight-line
which is not one of the five track line 0,1,2,3, and 4. There are five pairs of such strips: (1) σ02 and σ13; (2) σ01 and
σ24;(3) σ01 and σ34; (4) σ02 and σ34;(5) σ13 and σ24. Let σi j and σhk be the two crossing strips of one of the five cases
above and let e1 and e2 be two edges on σi j and σhk, respectively. Denote as xi, x j, xh and xk the x-coordinates of the
vertices on track lines i, j, h and k. The co-planarity equations for each of the five cases are:

�
1 � x0

� x2 � x1
� x3�

2 � x0
� 3x1 � 2x2

� 2x4�
3 � 3x0

� x1 � 2x3
� 2x4�

4 � 4x0
� x2 � 3x3

� 2x4�
5 � 4x1

� x3 � 3x2
� 2x4

Since x0 
 x1 
 x2 
 x3 
 x4, none of the above equations has a solution, and therefore no crossing is possible.
The drawing algorithm consider a vertex per time and executes a constant number of operations for each vertex.

The time complexity is then O
�
n � . �

Theorem 9 shows that every arched leveled planar graph admits a track layout on 5 tracks. However, there are
specific classes of graphs that have queue number 1 and that admit a track layout on less than 5 tracks. Trees and
unicyclic graphs are known to have queue number 1 [15]. A unicyclic graph is a graph such that each connected
component contains at most one cycle. The family of unicyclic graphs includes trees. Since both trees and unicyclic
graphs are outerplanar, by [10] they admit a track layout on 3 tracks with volume 2 � 2 � n. In [10], it is also shown
that there exist trees (and hence unicyclic graphs) that cannot be laid out on two tracks.

Another class of graphs having queue number 1 are the square meshes [15]. An a � b square mesh is a graph with
vertex set V � � vi j � 0 � i 
 a � 0 � j 
 b � and edge set E � � �

vi j � vi � j � 1
� � 0 � j 
 b � 1 � � � �

vi j � vi � 1 � j
� � 0 � i 
 a � 1 � .

A lower bound on the track number of the square meshes is 3. Since there exist square meshes that are not
outerplanar and by Lemma 1 they cannot be laid out on two tracks.

On the other side square meshes can be easily laid out on three tracks as follows. Let G be an a � b square mesh
(a � b). Set track

�
vi j

� � i mod 3 and order
�
vi j

� � �
ia � j � (0 � i 
 a � 0 � j 
 b). The track assignment is clearly

without X-crossings and overlaps and hence it is a 3-track layout. By Theorem 3, a square meshe admits a track
drawing with volume 3 � 5 � 5n

�
, where n

�
is the maximum number of vertices on a single track. We will show in the

proof of next Theorem that n
� � n � 2 � n

3 and therefore the volume is 3 � 5 � 5 � n � 2 � n
3 . This volume can be reduced by

an ad-hoc drawing technique. The following Theorem holds.

Theorem 10 Every square mesh has track number at most 3 and admits a track drawing with volume at most 2 � 2 �
n � 2 � n

3 that can be computed in O
�
n � time. Also, there exists a square mesh G such that tn

�
G � � 2.

Sketch of Proof. A track drawing with volume less than the one given by Theorem 3, can be computed as follows.
Consider a restricted integer grid consisting of the three track lines

�
x � 0 � 0 � ,

�
x � 1 � 0 � and

�
x � 0 � 1 � and compute a track

layout with three tracks as described above. Let n0, n1 and n2 be the number of vertices on track 0, 1 and 2, respectively.
Draw the vertices assigned to track i on track line i according to the total order defined on the track, so that they occupy
x-coordinates from 0 to ni � 1 (i � 0 � 1 � 2). Overlaps and an X-crossings are not possible because there is no overlap and
no X-crossing in the track layout. No other crossings is possible because there are no two strips whose intersection
is different from one of the three track lines. The volume of the obtained drawing is 2 � 2 � max

�
n0 � n1 � n2 � . The
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maximum among n0, n1 and n2 is given by � a
3 	 � b. We have�

a
3 � b � a � 2

3
b � ab � 2b

3
� n � 2 � n

3
�

Therefore the volume is bounded by 2 � 2 � n � 2 � n
3 . The drawing algorithm described above consider a vertex per time

and for each vertex v computes the two values of track
�
v � and order

�
v � . The time complexity is clearly O

�
n � . �

4 X-trees
An X-tree is a complete ordered binary tree with some extra edges connecting vertices at the same level. More
precisely, for each level of the tree, if v0 � v1 � � � � � vk � 1 are the vertices of that level in the left-to-right order, the extra
edges are

�
vi � vi � 1

� (0 � i � k � 2). The X-trees have queue number 2 [15]. A lower bound on the track number of
X-trees is trivially 3, since there exist X-trees that are not outerplanar and therefore, by Lemma 1 cannot be laid out on
2 tracks. Three is, in fact, also an upper bound for the track number of X-trees. A 3-track layout of an X-tree G can be
easily computed by laying out the complete binary tree underlying G according to the algorithm in [10]. The algorithm
consists of a BFS visit of the tree. For each visited vertex v we set track

�
v � � d mod 3 and order

�
v � � nv

� 1, where
d is the distance of v from the root of the tree and nv is the number of vertices visited before v. The track assignment
obtained for the underlying tree is without overlaps and X-crossings as proved in [10]. If the BFS visit is performed
so that the children of each vertex are visited according to their left-to-right order then the vertices of each extra
edge are consecutive in the same track. It follows that the extra edges do not introduce any overlap or X-crossing.
By Theorem 3, an X-tree admits a track drawing with volume 3 � 5 � 5n

�
, where n

�
is the maximum number of

vertices on a single track. We will show in the proof of next Theorem that n
� � 4

7

�
n � 1 � and therefore the volume is

3 � 5 � 5 � 4
7

�
n � 1 � . This volume can be reduced by an ad-hoc drawing technique. The following Theorem holds.

Theorem 11 Every X-tree has track number at most 3 and admits a track drawing with volume at most 2 � 2 � 4
7

�
n � 1 �

that can be computed in O
�
n � time. Also, there exists an X-tree G such that tn

�
G � � 2.

Sketch of Proof. We describe how to compute a track drawing with volume 2 � 2 � 4
7

�
n � 1 � . Consider a restricted

integer grid φ consisting of the three track lines
�
x � 0 � 0 � ,

�
x � 1 � 0 � and

�
x � 0 � 1 � and number these track lines 0,1, and 2,

respectively. Compute a track layout on three tracks as described above. Let n0, n1 and n2 be the number of vertices on
track 0, 1 and 2, respectively. Draw the vertices assigned to track i on track line i according to the total order defined
on the track, so that they occupy x-coordinates from 0 to ni � 1 (i � 0 � 1 � 2). Overlaps and X-crossings are not possible
because there is no overlap and no X-crossing in the track layout. No other crossings is possible because there are no
two strips whose intersection is different from one of the three track lines. The volume of the obtained drawing of the
X-tree G is 2 � 2 � max

�
n0 � n1 � n2 � . We have:

n0 � 20 � 23 � 26 � � � �

n1 � 21 � 24 � 27 � � � �

n2 � 22 � 25 � 28 � � � �

Let d be the maximum depth of G. The number of leaves of the complete binary tree underlying G is 2d . We have
d � log2

�
n � 1 � � 1 and hence 2d � �

n � 1 ��� 2. It follows that the track line with the maximum number of vertices is
the one where the leafs lie. Therefore the maximum among n0, n1 and n2 is:

nmax � 2d � 2d � 3 � 2d � 6 �
� � �
� 2b with b � 0 or 1 or 2

We have:

nmax
� 2d �

1 � 2 � 3 � 2 � 6 � 2 � 9 � � � � � � 2d
∞

∑
i � 0

2 � 3i � 2d 1
1 � 2 � 3 � 2d 8

7
� �

n � 1 � 4
7

�

Therefore the volume is bounded by 2 � 2 � 4
7

�
n � 1 � . The drawing algorithm consists of a BFS visit and therefore the

time complexity is O
�
n � . �
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5 Halin Graphs
In this section we study the track number of a well-investigated family of graphs called Halin Graphs [13]. A Halin
graph is a graph such that:


 every vertex of G has degree greater or equal to 3;

 G can be decomposed into a spanning tree T of G and a cycle C through the leaves of T ;

 G has a planar embedding in which C is the boundary of the external face.

T is called the characteristic tree of G and C is called the adjoint cycle of G. Figure 4 shows a Halin graph.
It is known from the existing literature [11] that 3 queues are always sufficient for a queue layout of a Halin graph

and that 2 queues are sometimes necessary. A lower bound on the track number of Halin graphs is 3, since Halin

v17
v16

v15

v18 v19 v20

v7

v8

v9v10v11v12v13

v14

v1 v2 v3 v4 v5 v6

v0

Figure 4: A Halin graph.

graphs are not outerplanar (every outerplanar graph has at least on vertex of degree two) and therefore, by Lemma 1
cannot be laid out on 2 tracks.

We now describe an algorithm to compute a 4-track layout of a Halin graph. An external path of an embedded
rooted ordered tree T is the path π � πl

� πr, where πl is the path from the leftmost leaf of T to the root of T and πr is
the path from the rightmost leaf of T to the root of T . Let v be a vertex in an external path π. If v has children that are
not in π then every subtree rooted at a child of v not in π is called a dangling subtree of π.

Let G be a Halin graph. Assume that G is embedded in the plane such that it is planar and its adjoint cycle C is
the exterior face. Let T be the characteristic tree of G. T inherits its embedding from G. Arbitrarily choose one of the
non-leaf vertices of T as the root. A level decomposition of T is an assignment of a level to each vertex v of T that is
defined as follows (see Figure 5): (i) all the vertices on the external path of T are given level 0; (ii) Let π be an external
path of level i. For any dangling subtree T

�
of π, the vertices on the external path of T

�
are given level i � 1. Let π be

v16

v11

v18

v10 v4

v1

v3 v2

v17

v9

v20 v6v7v8

v14 v0
lev 0

lev 1

lev 2

lev 3

v12

v13

v15

v19

v5

Figure 5: A level decomposition of the characteristic tree of the Halin graph in Figure 4.

an external path of any level. Let T0 � T1 � � � � � Th � 1 be the dangling subtrees of π. We define a natural ordering of the
dangling subtrees as follows: (i) T0 � T1 � � � � � Th � 1 are ordered from left to right according to their parents order in π; (ii)
dangling subtrees that have the same parent are ordered from left to right.

A consequence of the level decomposition is the following.

Property 12 Let G be a Halin graph and let π be an external path of any level with at least one dangling subtree. Let
T0 � T1 � � � � � Th � 1 be the natural order of the dangling subtrees of π. Then in the adjoint cycle C of G:

1. the leftmost leaf of π is adjacent to the leftmost leaf of T0;

2. the rightmost leaf of π is adjacent to the rightmost leaf of Th � 1;
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3. the rightmost leaf of Tj is adjacent to the leftmost leaf of Tj � 1 ( j � 0 � � � � � h � 2).

Since the embedding of G is not changed when T is rooted, and since the boundary of the external face of G is
C, then there exist an edge of C that connects the leftmost leaf of T to the rightmost leaf of T . The edge connecting
the leftmost leaf of T and the rightmost leaf of T is called the long edge. Let π be an external path without dangling
subtrees; if π consists of three vertices u, v and w in this order and u and w are leafs of T , then u and w are connected
by an edge of C and this edge is called an overlapping edge.

We now describe an algorithm to compute a 3-track layout of a Halin graph without its long edge and overlapping
edges. Later we will describe how the long edge and the overlapping edges can be added back to the track layout using
a fourth track. A Halin graph after the deletion of the long edge and the overlapping edges is called a reduced Halin
graph.

RHTRACKLAYOUT(G)
Input: An embedded reduced Halin graph G
Output: A track layout of G on the 3 tracks 0,1,2

Let T be the characteristic tree of G;
Root T at any vertex r;
Q � new queue();
Q � enqueue

�
r � ;

ord � 0;
while Q is not empty

v � Q � dequeue
� � ;

if v � r
t � 0;

else
t � �

track
�
parent

�
v ��� 
 1 � mod 3;

endif
Let T � be the subtree rooted at v;
Let π � v0 � v1 ��������� vh � 1 be the external path of T � ;
for i � 0 to h 	 1

track
�
vi � � t;

order
�
vi ��� ord;

ord � ord 
 1;
Let w0 � w1 ��������� wk � 1 be the children of vi not in π ordered from left to right;
for j � 0 to k 	 1

Q � enqueue
�
w j � ;

endfor
endfor

endwhile

Algorithm 2: Algorithm RHTRACKLAYOUT()

Lemma 13 Let G be a reduced Halin graph. Algorithm RHTRACKLAYOUT() computes a 3-track layout of G.

Sketch of Proof. We prove that the track assignment computed by Algorithm RHTRACKLAYOUT() has no overlaps
nor X-crossing. The edges having both vertices in a track are either edges of an external path or edges of the adjoint
cycle connecting leafs of the same level. The edges of the external paths do not overlap since the two vertices of
each edge are consecutive in a track. Let π be an external path of level i and let T0 � T1 � � � � � Th � 1 be the natural or-
dering of the dangling subtrees of π. By Property 12 the edges of the adjoint cycle connecting two leafs of the same
level i � 1 connect the rightmost leaf of Tj to the leftmost leaf of Tj � 1. Since Algorithm RHTRACKLAYOUT() lays
out T0 � T1 � � � � � Th � 1 according to their natural order, then the rightmost leaf of T j and the leftmost leaf of Tj � 1 are
consecutive in a track and therefore they do not overlap.

Let e0 � �
u0 � v0

� and e1 � �
u1 � v1

� be two edges having the two vertices in two different tracks and assume that u0

and u1 are in the same track with u0 
 u1. Edges e0 and e1 are either edges connecting the roots of dangling trees to
their parents or edges of the adjoint cycle connecting leafs at consecutive levels. If u0 and u1 are in different external
path π0 and π1, then u0 is adjacent to a vertex (a leaf or the root) of a dangling subtree of π0 and u1 is adjacent to a
vertex (a leaf or the root) of a dangling subtree of π1. The vertices of the dangling subtrees of π0 precede the vertices
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of the dangling subtree of π1 in each track. Therefore v0 
 v1 and an X-crossing is not possible. Assume u0 and u1 be
in the same external path π. If u0 is the leftmost vertex of π then v0 is the leftmost leaf of the first dangling subtree
T0 of π (Property 12). It follows that v0 
 v1 and an X-crossing is not possible also in this case. If u1 is the rightmost
vertex of π then v1 is the is the rightmost leaf of the last dangling subtree Th � 1 of π (Property 12). It follows that
v0 
 v1 and an X-crossing is not possible. If u0 is not the leftmost vertex of π and u1 is not the rightmost vertex of π,
then they are adjacent to the roots of two dangling subtrees of π. Since u0 
 u1 and since the dangling subtree are laid
out according to their natural order, then v0 
 v1 and an X-crossing is not possible. �

Notice that the track layout of the Reduced Halin Graph is such that the vertices of each removed edge (long edge
or overlapping edge) are both in the same track. The track layout of the reduced Halin graph of the graph in Figure 4
is shown in Figure 6. The long edge

�
v0 � v14

� and the overlapping edges
�
v2 � v3

� and
�
v7 � v8

� would create an overlap if
considered in the track layout.

v14 v16 v0 v8 v20 v7 v6

v13 v11 v10 v18 v4 v3 v17 v2 v1

v12 v9 v19 v5

v15

Figure 6: A track layout of the reduced Halin graph of the graph in Figure 4.

Lemma 14 Let G be a Halin graph and let G
�
the corresponding reduced Halin graph. Let Γ

�
G

� � be a 3-track layout
of G

�
computed by Algorithm RHTRACKLAYOUT() and let e0 � �

u0 � v0
� and e1 � �

u1 � v1
� be any pair of edges in

G � G
�
. The two edges e0 and e1 do not have any vertex in common, and if their vertices are in the same track then

either u0 
 u1 and v0 
 v1 or u1 
 u0 and v1 
 v0.

By Lemma 14 it is easy to see that a track layout of a Halin graph can be computed from a 3-track layout of a
reduced Halin graph by adding a new track and moving the left vertex of each overlapping edge and the left vertex of
the long edge to the new track.

Lemma 15 Let G be a Halin graph, then tn
�
G � � 4.

Sketch of Proof. Let Γ
�
G � the 3-track layout of the reduced Halin graph G

�
of G computed by Algorithm RHTRACK-

LAYOUT(). Denote as 0,1, and 2 the three track used and consider a new track denoted as 4. For each edge e � �
u � v �

in G � G
�

assume that u 
 v and set track
�
v � � 4, i.e. for each edge in G � G

�
one of the vertices is assigned to the

new track. This change of track do not introduce an overlap since no edge has both vertices on track 4. Also, no
X-crossing is introduced. Namely, consider the the pair of tracks consisting of track 4 and of any of the other three
tracks (denote this track as i). The edges whose vertices are in this pair are the overlapping edge (and/or the long edge)
whose vertices were originally in i. Let e0 � �

u0 � v0
� and e1 � �

u1 � v1
� be two of these edges and assume that v0 and v1

are in track 4 with u0 
 u1. By Lemma 14 we have u0 
 v0 
 u1 
 v1 on track i in Γ
�
G

� � . Since order
�
u0

� , order
�
v0

� ,
order

�
u1

� , and order
�
v1

� are not changed, we have u0 
 u1 in track 4 and v0 
 v1 in track i. So there is no X-crossing.
�

By Lemma 15 the track number of a Halin graph is at most 4. By the results in [7] this is sufficient to say that G
admits a track drawing with volume O

�
n � . In particular, by Theorem 3 an upper bound on the volume is 4 � 5 � 5n

�
.

We describe now how this volume can be reduced to 2 � 2 � n.

Theorem 16 Every Halin graph has track number at most 4 and admits a track drawing with volume at most 2 � 2 � n
that can be computed in O

�
n � time. Also, for every Halin graph tn

�
G � � 3.

Sketch of Proof. The results about the bounds on track number follows from the fact that Halin graphs are not
outerplanar and by Lemma 15. We prove the result about volume. Consider a restricted integer grid φ consisting of the
four track lines

�
x � 0 � 0 � ,

�
x � 1 � 0 � ,

�
x � 0 � 1 � and

�
x � 1 � 1 � , and number this track lines 0,1,2, and 3, respectively. Compute

a track layout on four tracks as described above . Let n0 � n1 � n2 and n3 be the number of vertices on track 0, 1, 2 and 3,
respectively. Draw the vertices assigned to track i on track line i according to the total order defined on the track, so
that they occupy x-coordinates from ∑i � 1

j � 0 n j to ∑i
j � 0 n j (i � 0 � 1 � 2 � 3 � 4). We prove that the drawing has no crossing.

Overlap and X-crossings are not possible, because there is no overlap and no X-crossing in the track layout.
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A crossing is then possible only between edges on two different strips that cross each other along a straight line
that is not one of the four track lines 0,1,2 and 3. There are only two such strips σ02 and σ13. The co-planarity equation
of an edge on σ02 and an edge on σ13 is:

x1
� x3 � x0

� x2

Since x0 
 x1 
 x2 
 x3 then the equation has no solution, i.e. a crossing is not possible. It follows that the drawing
is a track drawing with volume 2 � 2 � n. The drawing algorithm consider a vertex per time and executes a constant
number of operations for each vertex. The time complexity is therefore O

�
n � . �

6 Open Problems
The general question of computing 3D straight line grid drawing of minimum volume still remains largely unexplored.
Some questions that might help to better understand this problem naturally raise from the work in this paper.


 To reduce the gap between the lower bound of four and the upper bound of five for the track number of Arched
Leveled Planar graphs and of Halin Graphs.


 To find upper and lower bounds on the track number of other families of graphs.

 To find new algorithms that compute drawings with linear volume and better aspect ratio. Namely, the volume

of the drawings computed by the algorithms presented in this paper is O
�
n � . This is obtained at expense of an

aspect ratio that is also O
�
n � . It would be interesting to find new drawing technique that could obtain a linear

volume and a good aspect ratio at the same time.
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[9] V. Dujmovi ć and D. Wood. Tree-partitions of k-trees with application in graph layout. In Workshop on Graph Theoretic Concepts in Computer
Science, Lecture Notes Comput. Sci. Springer-Verlag, to appear.

[10] S. Felsner, G.Liotta, and S. Wismath. Straight line drawings on restricted integer grids in two and three dimensions. In P. Mutzel, M. Junger,
and S. Leipert, editors, Graph Drawing (Proc. GD ’01), volume 2265 of Lecture Notes Comput. Sci. Springer-Verlag, 2001.

[11] J. L. Ganley. Stack and queue layouts of halin graphs. 1995, manuscript.

[12] A. Garg, R. Tamassia, and P. Vocca. Drawing with colors. In Proc. 4th Annu. European Sympos. Algorithms, volume 1136 of Lecture Notes
Comput. Sci., pages 12–26. Springer-Verlag, 1996.

[13] R. Halin. Studies in minimally connected graphs. In D. J. A. Welsh, editor, Combinatorial Mathematics and its Applications, pages 129–136.
New York, Academic Press, 1971.

[14] L. S. Heath, F. T. Leighton, and A. L. Rosenberg. Comparing queues and stacks as mechanisms for laying out graphs. SIAM J. Disc. Math.,
5(3):398–412, 1992.

[15] L. S. Heath and A. L. Rosenberg. Laying out graphs using queues. SIAM J. Computing, 21:927–958, 1992.

[16] M. Kaufmann and D. Wagner, editors. Drawing Graphs, volume 2025 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

12
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Appendix
Proof of Lemma 5
Lemma 5 Let G0 be the graph in Figure 2(a). Then in any 3-track layout, vertices u and v are on different tracks, and
at least one of the vertices wi (i � 0 � � � � � 3) is on the third track.

Sketch of Proof. First we prove that u and v must be on different tracks. Suppose that they are both on track t. In
this case at most one of the vertices wi (i � 0 � � � � � 3) can be on t because otherwise there would be a 4-cycle on a track
and hence an overlap. Therefore at least three of the vertices wi are on tracks different from t and since there are only
2 tracks different from t, at least two vertices wi and w j (0 � i � j � 3) are on a same track. Assume without loss of
generality that u 
 v and that wi 
 w j . Edges

�
u � w j

� and
�
v � wi

� form an X-crossing. It follows that u and v must be
on two different tracks. Assume that u and v lie on tracks t0 and t1 respectively.

We now prove by contradiction that at least one of the vertices wi (i � 0 � � � � � 3) must be on the third track, t2 say.
Suppose that all the wi (i � 0 � � � � � 3) vertices are either on t0 or on t1. There are two possible cases:

1. There are three vertices wi, w j and wk on the same track, t0 say. So two of the three edges
�
u � wi

� ,
�
u � w j

� , and�
u � wk

� overlap.

2. There exist four vertices wi, w j, wk, and wh such that two of them (wi and w j say) are on t0 and the other two (wk

and wh) are on t1. In order to avoid overlaps on t0, u must be between wi and w j, i.e. wi 
 u 
 w j. Analogously
wk 
 v 
 wh. Edges

�
u � wk

� and
�
v � wi

� and also edges
�
u � wh

� and
�
v � w j

� form an X-crossing.

�

Proof of Lemma 7
From the definition of block decomposition it follows that for any two consecutive blocks Bi and Bi � 1 we have ti 
 ti � 1.
It is also easy to see that si 
 si � 1: if si � 1 
 si, then the two edges

�
si � ti � and

�
si � 1 � ti � 1

� are nested and if si � si � 1 then
ti is not the vertex with the largest index connected to si.

Lemma 17 Let G be a connected graph with qn
�
G � � 1. Let λ � v0 � v1 � � � � � vn � 1 be the linear ordering of a 1-queue

layout of G and let B0 � � � � � Bk � 1 be the block decomposition of G. We have si � ti � 1 if and only if si is a special cut
vertex. Moreover ti � 2

� si
� ti � 1 (2 � i 
 k).

Sketch of Proof. By the definition of the block decomposition si
� ti � 1. If si � ti � 1, if follows from the definition

of the block decomposition that ti � 1 and therefore si is a special cut vertex. If si is a special cut vertex, we have
si � 1 
 si

� ti � 1, so from the definition of a special cut vertex it follows that si � ti � 1.
We now prove that ti � 2

� si. Suppose that si 
 ti � 2. Then si � 2 
 si 
 ti � 2, i.e. si is an internal vertex of Bi � 2. This
contradicts the definition of Bi � 1 that there is no edge e � �

u � v � such that u 
 ti � 2 and ti � 1 
 v. Therefore we have
ti � 2

� si. �

Lemma 18 Let G be a connected graph with qn
�
G � � 1 and let B0 � � � � � Bk � 1 be the block decomposition of G. The

track assignment computed by Algorithm ALPTRACKLAYOUT() computes track numbers for vertices in Bi (0 � i 
 k)
with the following properties:


 track
�
ti � � �

track
�
si

��� 2 � mod 5

 if si is a special cut vertex or i � 0 then for each vertex v with si 
 v 
 ti we have track

�
v � � �

track
�
si

� � 1 �
mod 5


 if si is not a special cut vertex then for each vertex v with si
� v 
 ti � 1 we have track

�
v � � track

�
si

� and for each
vertex v with ti � 1

� v 
 ti we have track
�
v � � �

track
�
si

��� 1 � mod 5.

Sketch of Proof. The fact that track
�
ti � � �

track
�
si

� � 2 � mod 5 follows from Algorithm ALPTRACKLAYOUT().
We prove the other properties by induction on the block number i. Clearly the properties hold for B0. Assume they
hold for Bi � 1.

If si is a special cut vertex then si � ti � 1 and the result follows directly from Algorithm ALPTRACKLAYOUT(). So
assume that si is not a special cut vertex. From Lemma 17 we know that ti � 2

� si 
 ti � 1. If si � 1 is a special cut vertex
then ti � 2 � si � 1 
 si 
 ti � 1 and from the induction assumption we know that all vertices v with ti � 2 
 v 
 ti � 1 have
the same track number, i.e. they have track number track

�
si

� . If si � 1 is not a special cut vertex, si � 1 
 ti � 2
� si 
 ti � 1,
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and from the inductive assumption we again conclude that all vertices v with ti � 2
� si

� v 
 ti � 1 have track number
track

�
si

� .
From the induction assumption we also derive that ti � 1 has a track number that is one larger than the track number

of its predecessor, so track
�
ti � 1

� � �
track

�
si

��� 1 � mod 5. When block Bi is considered by Algorithm ALPTRACK-
LAYOUT() all the internal vertices of Bi not yet assigned to a track are assigned to track

�
track

�
si

� � 1 � mod 5. So all
vertices v with ti � 1 
 v 
 ti have track

�
v � � �

track
�
si

��� 1 � mod 5. �

Lemma 7 Let G be a connected graph with qn
�
G � � 1. Let λ � v0 � v1 � � � � � vn � 1 be the linear ordering of a 1-queue

layout of G. The track assignment computed by Algorithm ALPTRACKLAYOUT() is such that for all edges
�
vg � vh

�
with g 
 h

track
�
vh

� � �
track

�
vg

��� 1 � mod 5 or

track
�
vh

� � �
track

�
vg

��� 2 � mod 5 �

Sketch of Proof. Let B0 � � � � � Bk � 1 be the block decomposition of G. We prove by induction that for each block Bi the
following two invariants hold:

I1 All edges
�
vg � vh

� with s0
� vg 
 vh

� ti are such that either track
�
vh

� � �
track

�
vg

� � 1 � mod 5 or track
�
vh

� ��
track

�
vg

��� 2 � mod 5.

I2 For all edges
�
vg � vh

� with s0
� vg 
 ti 
 vh we have track

�
vg

� � �
track

�
ti � � 1 � mod 5.

The invariant I1 holds immediately for block B0. Also invariant I2 hold for B0. Namely, for every edge
�
vg � vh

� with
s0
� vg 
 t0 
 vh we have s0 
 vg, because by definition there is no edge

�
s0 � vh

� with t0 
 vh. The track of t0 is 2, and
the track of every edge between s0 and t0 is 1, thus I2 holds for B0.

Assume the two invariants hold for Bi � 1. We first show that I1 holds for Bi. Let
�
vg � vh

� be an edge with s0
�

vg 
 vh
� ti. If vh

� ti � 1 then I1 holds by induction. Se we may assume ti � 1 
 vh. If si is a special cut vertex
then si

� vg 
 vh
� ti; also, since λ is a 1-queue layout of G, either si � vg or vh � ti. In both cases invariant I1

holds by Lemma 18. Consider the case that si is not a special cut vertex. Then we have si 
 ti � 1. If si
� vg then

we have si
� vg 
 vh

� ti and also in this case either si � vg or vh � ti. It follows that invariant I1 holds by Lemma
18. If vg 
 si 
 ti � 1, then from invariant I2 we derive that track

�
vg

� � �
track

�
ti � 1

� � 1 � mod 5. From Lemma 18
we know that track

�
ti � 1

� � �
track

�
si

� � 1 � mod 5 so track
�
vg

� � track
�
si

� . From Lemma 18 we also derive that
track

�
vh

� � �
track

�
si

��� 1 � mod 5 or track
�
vh

� � �
track

�
si

��� 2 � mod 5 so invariant I1 holds.
We prove now that invariant I2 holds for Bi. Let

�
vg � vh

� be an edge with s0
� vg 
 ti 
 vh. By definition there

is no edge from a vertex before ti � 1 to a vertex after ti, therefore ti � 1
� vg. Also, if si is a special cut vertex then

si � ti � 1 
 vg. From Lemma 18 we have track
�
vg

� � �
track

�
si

� � 1 � mod 5 and track
�
ti � � �

track
�
si

� � 2 � mod 5,
i.e. track

�
vg

� � �
track

�
ti � � 1 � mod 5. �

Proof of Lemma 14
Lemma 14 Let G be a Halin graph and let G

�
the corresponding reduced Halin graph. Let Γ

�
G

� � be a 3-track layout
of G

�
computed by Algorithm RHTRACKLAYOUT() and let e0 � �

u0 � v0
� and e1 � �

u1 � v1
� be any pair of edges in

G � G
�
. The two edges e0 and e1 do not have any vertex in common, and if their vertices are in the same track then

either u0 
 v0 
 u1 
 v1 or v0 
 v1 
 u0 
 u1.

Sketch of Proof. The edges in G � G
�

are the long edge and the overlapping edges. The two edges e0 and e1 do not
have a vertex in common otherwise the characteristic tree of G would have a leaf with degree two.

Also, the two vertices of e0 are in a same track t0 and the two vertices of e1 are in a same track t1, because the two
vertices of each edge in G � G

�
are the leftmost vertex and the rightmost vertex of the external path of some subtree.

If t0 � t1 then either u0 
 v0 
 u1 
 v1 or v0 
 v1 
 u0 
 u1. Suppose as a contradiction that this is not true. At least
one vertex of one edge, say e1, must be between the two vertices of the other edge e0. By definition, the two vertices
of each overlapping edge are connected by an external path of two edges in G

�
, and the vertices of the long edge are

connected by the external path of level 0 in G
�
. If a vertex of e1 is between the vertices of e0 then the edges of the

external path connecting the vertices of e0 and the edges of the external path connecting the vertices of e1 would form
overlap. Since there is no overlap in Γ

�
G

� � (Lemma 13) then no vertex of e1 can be between the vertices of e0 and vice
versa. �
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