An extension of recursive descent parsing
for Boolean grammars

Alexander Okhotin
okhotin@cs.queensu.ca

Technical report 2004475

School of Computing, Queen’s University,
Kingston, Ontario, Canada K7L 3N6

March 2004

Abstract

The well-known recursive descent parsing method for context-free grammars is ex-
tended for their generalization, Boolean grammars, which include explicit set-theoretic
operations in the formalism of rules. Conjunction is implemented by scanning a part
of the input multiple times, while the mechanism of exception handling is used to im-
plement negation. A subclass of Lit)(Boolean grammars, for which recursive descent
parsing is possible, is identified, the construction of a parsing table and parser code is
formally specified and illustrated by an example. Correctness of the method is proved.

Contents

(1__Introduction] 2

[2 Boolean grammars$ 3

[3 The LL(k) table and its constructior] 6

4 Recursive descent parser 9

(o Proof of the algorithm’s correctnes$ 14
nclusi 19

1 Introduction

The recursive descent method for context-free grammars is undoubtedly the most intu-
itively clear parsing technique, and the most well-known as well, being included in most
university curricula in computer science. Used since the early 1960s (the credit is attributed
to Lucas[L96]] — see Aho et al.1986 p.82]), it is also one of the first parsing techniques to
be ever used. Surprisingly, its appeal has perhaps even grown over time.

Indeed, since 1980s, there has been a tendency of preferring recursive descent over the
theoretically more powerful LR. Although LR parser generator software, such as YACC de-
veloped by JohnsorilP75, was available, the generated parsers, which basically simulate
pushdown automata, are not always easy to integrate into a program in a high-level program-
ming language. In many cases it turns out to be easier to write a recursive descent parser
manually. Hence, many new syntax specification and parser generation tools based on recur-
sive descent were developed, which, unlike YACC, kept pace with the advances in the field
of programming languages: for instance, S/SL by Holt et/A88f], LLgen by Grune and
Jacobs|198§ and ANTLR by Parr and Quond@.p9y.

In its original form, recursive descent is applicable to a proper subfamily of deterministic
context-free languages called the El.(anguages. The first theoretical treatment of L)L (
grammars and the first formal construction of parsing tables for tabular and recursive descent
LL parsers (including the familiar First and Follow sets) is due to Kndi®/fl]. Further
fundamental properties of LE} languages and grammars were developed by Kurki-Suonio
[1969, Lewis and StearnslP6q, Rozenkrantz and Stearrn$97(and Wood [L969—7().
Practical construction and use of recursive descent parsers is explained in the well-known
textbook on compiler construction by Aho, Sethi and Ullm&aagg among other common
syntax analysis techniques. Another book by Davie and Morri$88] specifically focuses
on recursive descent as a guiding principle in compiler construction.

A generalization of recursive descent method &mmjunctive grammarss known
(Okhotin 2004). These grammars, introduced by the autt@®d]], are an extension of
context-free grammars with an intersection operation added to the formalism of rules. The
generalized recursive descent relies upon scanning substrings multiple times to check all
conjuncts of a rule.

This paper further generalizes the method for the clag&ootean grammarswhich are
themselves a further generalization of conjunctive grammars (OKIZ80£]) that allows all
set-theoretic operations, including negation. The formal semantics of Boolean grammars is
defined using language equations (rather than derivation) in a way resembling the classical
characterization of context-free grammars obtained by Ginsburg and/E6¢€][In order
to handle negation, the new recursive descent has to utilize the mechanism of exception
handling found in most programming languages since Ada.

An brief introduction into Boolean grammars is given in Seci®nSection3 defines
the parsing table and gives an algorithm for constructing it. A formal construction of recur-
sive descent parser code out of a grammar and a parsing table is defined in @edtien

algorithm is proved correct in Secti@h

2 Boolean grammars

Definition 1 (Okhotin [200]). A Boolean grammar is a quadruple = (X, N, P, S), where
Y and N are disjoint finite nonempty sets of terminal and nonterminal symbols respectively;
P is afinite set of rules of the form

A— Oél&. . .&Oém&_‘ﬁl&. &ﬁﬁn (m +n = 1, Oéi,ﬁi S (2 U N)*), (1)

while S € N is the start symbol of the grammar.

For each rule), the objectsA — «; and A — —(; (for all 4, j) are called conjuncts,
positive and negative respectively, — o, and A — g, are called unsigned conjuncts.
Denote the set of all unsigned conjuncts in the rules ffdas ucon juncts(P).

A Boolean grammar is called a conjunctive grammar, if negation is never used, i.e.,
n = 0 for every rule [[)). It degrades to a familiar context-free grammar if neither negation
nor conjunction are allowed, i.en = 1 andn = 0 for all rules.

In this paper it will be further assumed that> 1 andn > 0 in every rule[l). There is
no loss of generality in this assumption, because it is always possible to add a nonterminal
that generate¥*, and use this nonterminal as a formal first positive conjunct in every rule
that lacks one.

The semantics of Boolean grammars is defined using language equations.

Definition 2. LetG = (X, N, P, S) be a Boolean grammar. The system of language equa-
tions associated witty is a resolved system of language equations aver variablesN, in
which the equation for each variabl¢ € N is

A= U {ﬁa N ﬁﬁ_]} (forall A € N) 2

A—ar1&..&am&—P&..&—pneP Li=1

A system @) can have no solutions or multiple pairwise incomparable solutions. In the
former case it is clearly invalid, while if it has solutions, one of them has to be declared as
“the right one”. The problems with defining this solution have been studied by the author
[2003, and following is one of the two methods that were developed:

Definition 3. Let X; = ¢;(X1,...,X,) (1 < i < n) be a system of language equations,
where the expressions contain the operations of union, intersection, complement and con-
catenation, terminal symbols and variables.

A vector of languaged = (L,,...,L,) is called a naturally reachable solution of the
system if for every finite modulug closed under substring and for every string¢ M
(such that all proper substrings afare in M) every sequence of vectors of the form

LO o e (3)

3

(whereL® = (L, N M, ..., L,N M) and every next vectat“*") # L in the sequence is
obtained from the previous vectéf? by substituting somg-th component withp; (L) N
(M U {u})) converges to

(Ly (M U{u}), ..., Ly 0N (M U{u})) (4)
in finitely many steps regardless of the choice of components at each step.

If exists, the naturally reachable solution is unique, and can be used to define the seman-
tics of Boolean grammars.

Definition 4. Let G = (X, N, P, S) be a Boolean grammar, lek = ¢(X) be the as-
sociated system of language equations, let this system have naturally reachable solution
L=(Ly,...,Ly,).

Then the languagé. () of a formulay is defined as a substitutiop(L), while the
language of the grammar 5(G) = Lq(S).

The following transform of a Boolean grammar shall be used in the following; given a
Boolean grammat; = (X, N, P, S), define

positive(P) = {A — a1& .. . &ap | A — & .. &an&—0i1& ... &6, € P} (5)
The grammapositive(G) = (3, N, positive(P), S) is thus a conjunctive grammar.

Lemma 1. For every Boolean grammatr = (3, N, P, S), such that the associated sys-
tem complies to the semantics of naturally reachable solution, it holds ithatl) C
Lyositive(c) (A) for everyA € N.

Proof. Let L. = (L4,..., L,) be the naturally reachable solution of the syst&m= ()
associated witl, let L' = (L},..., L) be the vector of languages defined by the non-
terminals ofpositive(G), which is the least solution of the system of language equations
X = ¢/(X) associated withositive(G). Note that

©; (L") € ¢5(L") (for every vector of languages’) (6)

by the construction ofositive(G).
It has to be proved that; C L} for all j (1 < j < n). It suffices to prove that for every

pair (M,) as in Definitiori@ and for everyi-th term of the sequencB if u is in L\”, then
u € L.

By the induction hypothesis,

L(i—l) < I (7)

Thus, ifu € LYY, thenu € L. If u ¢ LUV, thenu € o;(L6-D). By @), ¢;(L0Y) C
¢, (LU), and hence: € ¢(LUY).

Sincey); is monotone,[T) implies ¢ (L(~Y) C ¢}(L’). This means that € ¢/(L’).

Finally, (L") = L', becausd.’ is a solution of the system associated witkitive(G).
Thereforeu € L. O

Context-free recursive descent parsing requires the grammar to be fegeretursion
which means that no nontermindlcan deriveda (o € (X U N)*). The reason for that is
that a parser can enter an infinite loop otherwise.

A generalization of recursive descent for a larger class of grammars still has to impose
a similar restriction. Although the semantics of Boolean grammars is defined by language
equations and not by derivation, a certain artificial derivation has to be introduced in order to
formulate the generalized restriction.

Definition 5. LetG = (X, N, P, S) be a Boolean grammar. Define the relation of in-depth

context-free derivability==, which a binary relation on the sétv- 3 -+ | o, 3,7 € £*}, as
the reflexive and transitive closure of the following set of derivation rules:

CF/d

a-[BAY-0 = afn-o-60v (8)
for everyA — nof € uconjuncts(P).

Definition 6. A Boolean grammaé& = (X, N, P, S) is said to be strongly non-left-recursive

CF/d

ifand only if forall A € N andv,é € (XUN)*, suchthat- A-¢ = ~- A -4, it holds that
€ §é Lpositive(G) (7)

Note that the non-left-recursivity of the context-free gramma&’ =
(33, N,uconjuncts(P),S) is a sufficient condition for strong non-left-recursivity of
G.

The following Boolean grammar will serve as a running example in this paper.

Example 1. Consider the languagé = {a™b"c" | m # n}; it is non-context-free, while its
complement is an inherently ambiguous context-free language.
Following is a strongly non-left-recursive Boolean grammar tha denbtés(a*b*c*\ L):

S — KdM
K — AD&—EC
M — ABC&—-K
A—aAle
B —bB|¢e
C—cCle
D — bDc| ¢
E —aFEb|e

Formally,(L - d - (a*b*c* \ L), L, (a*b*c* \ L), a*,b*, c*, {b'c' | i > 0}, {a’b | i > 0}) is
the naturally reachable solution of the associated system of language equations.

3 The LL(k) table and its construction

Letk > 1. For a stringw, define

| o w, if |lw <k
Firsty(w) = { first k symbols ofw, if |w| > k ©

This definition can be extended to language$'asst, (L) = { Flirst,(w) | w € L}.

Definition 7 (Nondeterministic LL(k) table). LetG = (X, N, P, S) be a Boolean grammar
compliant to the semantics of naturally reachable solutionk et 0.
A nondeterministic LL¥) table for G is a functionT}, : N x s¥ — 27, such that for

CF/d

everyA andw, for whiche - S-e = §- A-n, andw € Lg(en), it holds thatA — ¢ €
T, (A, Firstg(w)).

Definition[7 might look rather loose, since it does not specify any necessary conditions
for being inT} (A, First,(w)). However, the least (with respect to inclusion) collection of
sets satisfying this definition is uncomputable, as shown by the ai@868[for the simpler
case of conjunctive grammars, and this makes us think in termsitaible tablesather than
the optimal table

The only tables usable with the new recursive descent algorithmedeeministic tables
of the following form:

Definition 8 (Deterministic LL(k) table). Let |7} (A, u)| < 1 for all A,u. Then the entries
of a deterministic LLK) table, T, : N x ¥ — PuU{—}, are defined ag},(4,u) = A — ¢
(if T.(Au) ={A — pPorTip(Au) = — (if T}(A,u) =)

Let us describe a simple method of computing L)L {ables. First, compute the sets
PFIRST, andPFoLLOW, similar to those used in the case of conjunctive grammars (Okhotin
[2003).

Algorithm 1. LetG = (X, N, P, S) be a Boolean grammar compliant to the semantics of
naturally reachable solution. Lét > 0. For all s € ¥ U N, compute the sS&RFIRST,(A),
such that for allu € L (s), Firstg(u) € PFIRSTL(S).

let PFIRST,(A) = o forall A € N;
let PFIRST,(a) = {a} forall a € ;
while new strings can be added {BFIRST;(A)) aen
foreachA — s11...510,& ... &St -+« Sine, &1 & ... &3, € P
PFIRST,(A) = PFIRST,(A) U
U Nie, Firsty(PFIRST,(s:1) - - .. - PRIRST(841,));

Proof of correctnessNote that the algorithm completely ignores negative conjuncts, effec-
tively usingpositive(G) instead ofG. A stronger claim holds: it € Lyositive(c)(s), then
First,(u) € PFIRST,(s), which has been proved by the auth@007 for the case of con-
junctive grammars. O

CF/d

Definition 9. We shall say that: € >* followso € (XU N)*ife-S-e = 6 -0-nand
u € Lg(n).

The functionPFoLLow;, : N — X5F is defined by the following algorithm:

Algorithm 2. For givenG compliant to the semantics of naturally reachable solution and
k > 0, compute the setBFoLLow,(A) for all A € N, such that ifu follows A, then
Firsty(u) € PFOLLOW(A).

let PFoLLOW(S) = {e};
let PFoLLOW,(A) = @ forall A e N\ {S};
while new strings can be added {BFOLLOW,(A)) 4en
for eachB — (8 € uconjuncts(P)
for each factorizatiord = pAv, wherey, v € V*andA € N
PFOLLOW(A) = PFOLLOW,(A) U First,(PFIRST,(v) - PFOLLOW(B));

Proof of correctnessLet u follow A. Thens - S - <= § - ¢ - n andu € La(n).
The proof is an induction on the length of derivatiorvofo - 7.

Basis: If the triple isc - S -, then it has to be proved thatrst,(c) = € isin PFOLLOW(S).
It is added there by the first statement of the algorithm.

CF/d CF/d

Induction step. Lete-S-¢ = «-B-f = au-A-vfandB — pAv € uconjuncts(P).
and letu € Lg(vp).

Then there exists a factorizatian= =y, such that: € Lg(v) andy € Lo (). Accord-
ing to Algorithm[ll, Fiirsty(xz) € PFIRST,(v); by the induction hypothesig;irst,(y)

is added tdPFoLLOW,(B) at some point of the computation of the algorithm. Then,
at this point,

Firsty(u) = First,(First,(z) - Firsty(y)) € First,(PFIRST,(v) - PFOLLOW,(B)),

and hencéd’irst,(u) is added tdPFOLLOW, (A) next time the unsigned conjunBt —
1 Av and the factorizatiop Av = 1 - A - v are considered. O

Now these sets can be used to construct the:) parsing table in the same way as in the
context-free case:

Algorithm 3. LetG be an LL{) Boolean grammar. Compufg (A) forall A € N.

foreachruleA — ¢ € P
for eachz € Firsty(PFIRST,(¢) - PFOLLOW,(A))
add the rule tal} (A, x);

Proof of correctnessConsider a rule

A= .. &an&—pi& ... &=B, (m=>1,n>0) (10)

that shouldbe in T} (A, z) in accordance to Definitioil. Thens - S-¢ <= 5. A -5 and
w € Lg(en), wherep = an & ... &a&—61& ... &3, andz = First,(w).

Then there exists a factorizatian = wv, such thatu € Lg(p) andv € Lg(n). By the
construction ofPFIRST,,

Firsti(u) € PFIRST, () (11)

Sincew follows A,

First,(v) € PFOLLOW(A) (12)

by the construction oPFOLLOWj(A).
ConcatenatindI(l) and [L2) yields

x = Firsty(uwv) = Firsty(Firsty(u) - First,(v)) € Firsty(PIRST,(¢) - PFOLLOW(A)),

which means that the rul&Q) will be added tdl} (A,) in the iteration(([I0)), x). O

PFIRST; | PFOLLOW;

S | {a,b,d} {e}

K | {g5a,b} {e,d}

M | {e,a,b,c} {e}

A {e,a} {e,b,c,d}

B {e,b} {e,c}

C {e,c} {e,d}

D {e,b} {e,c,d}

E {e,a} {e,b,c,d}

Table 1:PFIRST, andPFoOLLOW;.

Example 2. Consider the grammar from Examile The setFIRST; and PFoLLow; for
this grammar are given in Tab[@ A deterministic LL(1) table constructed using these sets
is shown in Tabl&

Note that the stringg € PFIRST;(S) ande € PFIRST,(K) are fictional, as no actual
strings fromL¢(S) and Lo (K) can start from these. Consequently,S,d) = S — KdM,
which is also a fictional entry of the table that could have been replaced-witHowever,
such fictional entries do not prevent the algorithm from being correct.

€ a b c d
S S — KdM S — KdM - S — KdM
K || K — AD&EC | K — AD&-EC | K — AD&-EC - K — AD&—EC
M| M— ABC&—K | M — ABC&—-K | M — ABC&—K | M — ABC&—-K —
A A—e A—dA A— e A—e A—e
B B —e — B — bB B —e —
C C—e¢ — — C —cC C—e¢
D D —e¢ — D — bDc D —e¢ D —e
FE E—e¢ E — aFEb E—e E—e¢ E—e

Table 2:LL(2) table.

4 Recursive descent parser

Having constructed a parsing table, let us now define a recursive descent parser — a col-
lection of procedures that recursively call each other and analyze the input.

There will be a procedure for each terminal and nonterminal symbol in the grammar, and
two static variables accessible to all procedures: the input strimgd a positive integer
i pointing at a position in this string. Each procedufe (corresponding to a symbel €
YU N) starts with some initial value of this pointér= i/, and, after doing some computation
and making some recursive calls,

e either returns, setting the pointer to= " (wherei’ < " < |w|), thus reporting a
successul parse af; . .. w;»_1 from s,

e Or raises an exception, which means that a suitdhlsuch that the symbal could
generatev; ... w; _1, was not found; in this casepoints to the position in the string
where a syntax error was encountered.

The procedure corresponding to every terminal X is defined as

a()

{
if w; = a, then
1=1-+1;
else
raise exception;
}

For every nonterminall € > the procedure is

1{40
switch(T'(A, Firsty(wjw;.1 . ..)))

{

cased — o & ... &a&—01& ... &—0,:
(code for conjuncd — ay)
(code for conjuncd — a»)

(code for conjunctd — «,)
(code for conjunctd — —3;)

(code for conjunctd — —3,)

cased — ...
default:
raise exception;

ki

¥
where the code for the first positive conjuntt— s; ...s, IS

let start = 1; [* omit if this first conjunct is the only one® = 1, n = 0) */
s1();
se();
letend = 1, [* omit if this first conjunct is the only one */

the code for every consecutive positive CONjuAct s; ... s IS
1 = start,
s51();
se();
if 7 # end, then raise exception;

and the code for every negative conjudct> —t; ...t,is

booleanfailed = false;

try
{

1 = start,

s1();

se();

if 7 # end, then raise exception;
¥

10

exception handler:
failed = true;
if = failed raise exception;
i = end, [* if this is the last conjunct in the rule */

The main procedure is:

try
{

inti=1;

S0;

if © # n + 1, then raise exception;
¥
exception handler:

Reject;
Accept;

Example 3. Let us construct a recursive descent parser for the Boolean grammar from Ex-
amplell, using the LL(1) table constructed in Examigle

Following is the C++ program written using the method given above. The deviations from
the model parser are minor. A C pointehar *p to a position in the string is used instead
of an integeri. Switch statements directly use the lookahead symbol instead of looking up a
physical LL(1) table;T" is thus hardcoded into the program. A structp@rse _error is
used for the objects generated when exceptions are raised; this structure could have been left
empty, but in this implementation it records the name of the procedure where the exception
was raised, which is a straightforward method of error diagnostics.

#include <iostream>

#include <string.h> ifp=="a’)
p++;
struct parse_error else
{ throw parse_error("a");
char *s; }
parse_error(char *s1="") : s(sl) {} void b()
h
if(*p=="b)
char *p; p++;
else
void S(); throw parse_error("b");
void K(); }
void M(); void ¢()
void A(); {
void B(); if(*p=="c’)
void C(); p++;
void D(); else
void E(); throw parse_error("c");
}
void a() void d()

11

{ B();

if(p=="d") CcO;
p++; char *end=p;
else
throw parse_error("d"); bool failed=false;
} try
void S() {
{ p=start;
switch(*p) K(Q);
if(p'=end) throw parse_error();
case 'a’
case b’ catch(parse_error) { failed=true; }
case 'd" if('failed) throw parse_error("M:"K");
KO:
d(); p=end,;
MO; }
break; break;
default: default:
throw parse_error("S"); throw parse_error("M");
} }
} }
void K() void A()
{ {
switch(*p) if(*p=="a’)
case 0: a();
case 'a AQ);
case b’ }
case 'd: {
char *start=p; void B()
AQ);
DO); if(*p=="b’)
char *end=p; {
b();
bool failed=false; B();
try }
{
p=start; void C()
EQ;
CO; if(*p=="c’)
if(p'=end) throw parse_error(); {
} c();
catch(parse_error) { failed=true; } C();
if(!failed) throw parse_error("K:"EC"); }
}
p=end,; void D()
} {
break; switch(*p)
default:
throw parse_error("K"); case 'b’:
} b();
} DO);
void M() c();
{ break;
switch(*p) case 0:
case 'c"
case O: case 'd:
case 'a break;
case b’ default:
case 'c: { throw parse_error("D");
char *start=p; }
AQ); }

12

void E() {

{ char *w="aabcdabbc";
switch(*p) try
{
case 'a’: p=w;
a(); S(O;
E(); if(p!=w+strlen(w))
b(); throw parse_error("$");
break; }
case 0: catch(parse_error &err)
case b’
case 'c" std::cout << "Error in position " << (p-w)
case 'd" << " (" << errs << ").\n"
break; return false;
default: }
throw parse_error("E");
} std::cout << "Accept.\n";
} return true;
}
int main()

This program invokes the parser on the string= aabcdabbe, which is in the language,
and the computation leads to acceptance. If verbose prints are added to the program, the
following computation history is revealed:

S() on .aabcdabbc: S->KdM Done (aabcda.bbc).
K() on .aabcdabbc: K->AD&EC B() on aabcda.bbc: B->bB
A() on .aabcdabbc: A->aA b() on aabcda.bbc: Ok.
a() on .aabcdabbc: Ok. B() on aabcdab.bc: B->bB
A() on a.abcdabbc: A->aA b() on aabcdab.bc: Ok.
a() on a.abcdabbc: Ok. B() on aabcdabb.c: B->e
A() on aa.bcdabbc: A->e Done (aabcdabb.c).
Done (aa.bcdabbc). Done (aabcdabb.c).
Done (aa.bcdabbc). Done (aabcdabb.c).

Done (aa.bcdabbc). C() on aabcdabb.c: C->cC
D() on aa.bcdabbc: D->bDc ¢() on aabcdabb.c: Ok.

b() on aa.bcdabbc: Ok. C() on aabcdabbc.: C->e

D() on aab.cdabbc: D->e Done (aabcdabbc.).

Done (aab.cdabbc). Done (aabcdabbc.).

c() on aab.cdabbc: Ok. Done (aabcdabbc.).

Done (aabc.dabbc). K() on aabcd.abbc: K->AD&EC
Done (aabc.dabbc). A() on aabcd.abbc: A->aA
E() on .aabcdabbc: E->aEb a() on aabcd.abbc: Ok.

a() on .aabcdabbc: Ok. A() on aabcda.bbc: A->e

E() on a.abcdabbc: E->aEb Done (aabcda.bbc).

a() on a.abcdabbc: Ok. Done (aabcda.bbc).

E() on aa.bcdabbc: E->e D() on aabcda.bbc: D->bDc
Done (aa.bcdabbc). b() on aabcda.bbc: Ok.

b() on aa.bcdabbc: Ok. D() on aabcdab.bc: D->bDc

Done (aab.cdabbc). b() on aabcdab.bc: Ok.

b() on aab.cdabbc: Error. D() on aabcdabb.c: D->e

Caught an exception. Done (aabcdabb.c).
d() on aabc.dabbc: Ok. c() on aabcdabb.c: Ok.
M() on aabcd.abbc: M->ABC&K Done (aabcdabbc.).

A() on aabcd.abbc: A->aA c() on aabcdabbc.: Error.

a() on aabcd.abbc: Ok. Caught an exception.

A() on aabcda.bbc: A->e Done (aabcdabbc.).

Done (aabcda.bbc). Accept.

If the stringw = aabedabbe € L(G) used in Exampl@ is replaced with the string

13

w = aabedaabe ¢ L(G), then the program terminates, issuing the error message

Error in position 9 (M:"K).

which gives out the position in the string where the syntax error was encountered (the end of
the string) and the reason of error: the negative conjthet> — K failed, because something
was derived fromi.

5 Proof of the algorithm’s correctness

It should be proved that the algorithm (a) always terminates, and (b) accepts a string if
and only if it is in the language.

The termination of the algorithm can be proved under quite weak assumptions on the
grammar: strong non-left-recursivity alone is sufficient, and no claims on the mechanism of
choosing the rule§” are made, while the grammar itself is not even required to comply to
Definition[3 This allows us to abstract from the semantics of the grammar and the goal of
parsing, concentrating on the general structure of the computation.

Lemma 2. Let G = (X, N, P,S) be an arbitrary Boolean grammar, and consider the
conjunctive grammai’ = positive(G) = (X, N,positive(P),S). Letk > 1; let

T : N x ¥ — P be an arbitrary function, let the set of procedures be constructed with
respect taz and7’. Then

|. Foreverys € XU N andu,v € ¥*, if A() invoked on the inputv returns, consuming
u, thenA derivesu in G'.

Il. ForeveryA, B € N andu,v € ¥*, if A() is invoked onuv, and the resulting compu-

tation eventually leads to a call t8() on the input, thens - A- ¢ <= ~. B . §, where
~ derivesu in G'.

Proof. The first part of the lemma is proved inductively on the height of the tree of recursive
calls made byA() on the inputuv. SinceA() terminates by the assumption, this tree is finite
and its height is well-defined.

Basis: s() makes no recursive calls and returndf s = a € ¥ anda() returns onuv, con-
. . G’
sumingu, thenu = a and obviouslys =-* a.

If s = A € N andA() returns without making any recursive calls, then the rule chosen
upon enteringd() may contain one positive conjunct, — ¢, and possibly a negative

conjunctA — —e. Thenu = ¢ and A Loxe,

14

Induction step Let A() return onuv, consuming:, and let the height of the tree of recursive

calls made byA() be k. The first thingA() does is looking uf’(A, Firstg(uv)), to
find a rule

A—- a&. . &an&—0i&.. &6, (m=>21,n>20, a;, 0, € (XUN)"), (13)

there. Then the code fragments for all conjuncts of the rule are executed.

Consider every positive conjunegt — «;, and leto; = s;...s,. Then the code
s1();- -5 s¢() is executed omw, and it returns, consuming Consider a factorization
u =y ...uy defined by the positions of the pointer to the input after eathreturns
and before the nex; () is called. Thus each;() returns onu;u; 1 . . . upv, cCONSUM-
ing u;, and the height of recursive calls made &) does not exceetl — 1. By the

induction hypothesiss; G u;. These derivations according € can be combined
into the following derivation:

G’ G
O =81...8— ... = U...Up = U (14)

Now use [[4) for all i to produce the following derivation in the conjunctive grammar
G"

U

A%(al&...&am)é...%(u&...&u)%u, (15)
thus proving the induction step.

Turning to the second part of the lemmadif) starts with input.v, andB() is called on
v at some point of the computation, then consider the partial tree of recursive calls made up

to this point. Leth be the length of the path from the root to this last instanc8@f The
proof is an induction orh.

Basish = 0. If A() coincides withB(), and thusB() is called on the same string) = v,
thenu =¢,e- A-c = c- A-candu = ¢ € Le(e).

Induction step. A(), called on uv, begins with determining a rule[I8) using
Ty (A, Firsty(uv)) and then proceeds with calling the subroutines corresponding to
the symbols in the right hand side @J). Some of these calls terminate (return or, in
the case of negative conjuncts, raise exceptions that are handled.ri$jderhile the
last one recorded in our partial computation history leads dows(joLet A — ~C¢
(vCé € {«y, B;}) be the unsigned conjunct in which this happens, @gpbe this call
leading down. Consider a factorization= xy, such that’() is called onyv.

Lety = s;...s.. The calltoC() is preceded by the calls tq(); . . . ; s¢(), where each
s¢() is called onz; . . . xyyv and returns, consuming (z = x; ... x,). By part | of this

.. . [ed G’
lemma, this implies; =—* z;, and hencey =" z.

15

CF/d

By the existence of the unsigned conjuntt— ~C§,e-A-¢c = ~v-C -J. For
the partial computation af'() onyv (up to the call toB()), the distance betweefi()
and B() is h — 1, which allows to apply the induction hypothesis to conclude that

e-C-e= - -B-n, suchthatu%*y.
Combining these two derivations according to Definilifhwe get:- A-¢ % yu-B-nd,
while the two conjunctive derivations i’ can be merged to obtaiy Sor O

Lemma 3. LetG = (X, N, P, S) be a strongly non-left-recursive Boolean grammar. Let
k> 1;letT : NxXsF — P be an arbitrary function, let the set of procedures be constructed
with respect ta& andT'.

Then, forany € YU N andw € ¥*, the procedure() terminates on the input, either
by consuming a prefix af and returning, or by raising an exception.

Proof. Suppose there existse ¥ U N andw, such thats() does not halt on the input.
Consider the (infinite) tree of recursive calls, the nodes of which are labeled withpaifys
wheret € ¥ U N andu is some suffix ofw.

By Konig’'s lemma, this tree should contain an infinite path

(A1,), (A, ug), . ooy (Ap,uy), . . (16)

where(A;, u) = (s,w), A, € N and each procedurg,() is invoked o, and, after calling
some procedures that terminate, eventually célls, on the stringy,;,, which is a suffix of
u,. This means that, | < uq| < ... < u,| <.

Sincew is of finite length, it has finitely many different suffices, and the decreasing
second component ifil§) should converge to some shortest reached suffiw.ofDenote

this suffix asu, and consider any nodel, «) that appears multiple times on the pdilt)
CF/d

Consider any two instances Qfi, v); then, by Lemm&, ¢ - A- ¢ = ~- A - 4, such that
0 &« ¢, This contradicts the assumption tliais strongly non-left-recursive. O

Lemma 4. LetG = (X, N, P, S) be a strongly non-left-recursive Boolean grammar that
complies to the semantics of naturally reachable solutionkLetl. LetT : N x ¥sk — P
be a deterministic LLX) table for G, let the set of procedures be constructed with respect to
G andT.

Foranyy,z € ¥* ands;...s, € Y UN (I > 0), such that: followss; ... s;, the code
s1(); - ..; s¢() returns on the inpugz, consumingy, if and only ify € Lg(sy ... Sp).

Proof. Generally, although the codg(); .. .; s/() does not necessariteturn, it always ter-
minates in this or that way (by returning or by raising an exception) according to L&nma
Consider the tree of recursive calls of the cagd@; . . . ; s¢() executed on the inputz, as in
Lemmd3. This tree is finite; let be its height.

The proof is an induction on the pdit, /). The natural basis case wouldbe= 0, ¢ = 1;
to improve the presentation of the proof, the casel ofis handled together with induction
step (without referring to the induction hypothesis), whil¢ is formulated as the basis.

16

Basis: (0,1) and s € 3. The procedure() is constructed so that it returns on the input
consumingy, if and only ify = a. This is equivalenttg € Ls(a) = {a}.

Induction step: (h—1,...) — (h,1),0r (0,1)ands € N. Let/ =1ands; = A € N, let
z follow A, and leth be the height of the tree of recursive calls maded§y executed

onyz.
& If A() returns oryz, consumingy, thenT' (A, Firsty(yz)) gives some rule
A—- a&. . &ap&—0i&...&F, (m>=1n=>0), (17)
and then the following computations take place:
1. For every positive conjunct — «; (a; = s1...50), the codes;();...;s.() is
called onyz. It returns, consuming.
Since the computation af (); . . . ; s,() onyz is a subcomputation of the compu-

tation of A() onyz, the height of the tree of recursive calls corresponding to this
subcomputation does not exceed- 1. z follows s; . . . s, just because follows
AandA — s;...s, € uconjuncts(P). Hence, by the induction hypothesis,
y e Lg(Oéi).

2. For every negative conjunet — —3; (5; = t1...t,), the codet;();...;t() is
invoked onyz. It either raises an exception, or returns, consuming a prefix other
thany: putting together, it is not the case that this code returns consuming
Similarly to the previous case, this computation has to be a part of the computa-
tion of A(), hence the depth of recursion is at mbst1; again,z follows ¢ . . . t,.

This allows to invoke the induction hypothesis to obtain that L (5;).

Combining the results for individual conjuncts, y €
Lo(ar& .. &an&—01& ... &—6,) and thugy € Ls(A).

@ If y € Ls(A), then there exists a rul&f), such that
y € La(am& .. . &an&—6& ... &f,) (18)

CF/d

Sincez follows A, - S -¢ = 0 - A-n, wherez € Lg(n). Combining [(8) with this,
we obtain thayz € L (¢n), wherep = a1 & ... &a,,&—6,1& ... &—5,. Then, by the
definition of a deterministic LLY) table,T'(A, Firsty(yz)) equals[ly).

Hence the computation of() onyz starts from choosing the alternatiVEl. Consider
all the conjuncts of the rulé€ld) in the order of the corresponding code fragments, and
let us prove that each of these fragments is successively passed:

1. For every positive conjunct — «; (a; = s1...80), y € Lg(s1...s0) by (18
andz follows s; ... s, (sincez follows A andA — s; ... s, € uconjuncts(P)).
Therefore, by the induction hypothesis, the codg);. . .;s/() returns onyz,
consuming:.

17

2. For every negative conjunet — —3; (6; = t1...ts), sincey ¢ Lq(ty...1)
and z follows ¢, ...t,, by the induction hypothesis, it is not the case that the
codety();. .. ;ty() returns onyz, consuming:. On the other hand, by Lemrig
the codel;();. .. ;t,() terminates onyz, either by returning or by raising an ex-
ception. This implies that; ();. . .;t.(), invoked on the inpuyz, either returns,
consuming a prefix other than or raises an exception. In the former case an
exception is manually triggered in the code fragment correspondifig tohus
an exception is effectively raised in both cases. The exception handler included
in the code fragment sets a local varialfté/ed to true, and in this way the whole
code fragment terminates without raising unhandled exceptions.

In this way all the conjuncts are successfully handled; the final assignment in the code
for the alternativell7) restores the pointer to the location where it was put by the code
for the first conjunct. Thenl() returns, having thus consumed exagtly

Induction step: (h,¢ — 1) — (h,0). Letl¢ > 2, lets;...s, € (XU N)* and letFirst,(z)
follow s ... sp.

© Let the codes();...;s.-1();s¢() return on inputyz, consumingy. Consider the
value of the pointer to the input string after () returns and beforg,() is called;

this value defines a factorizatign= uv, such that the code (); .. .; s,—1() returns on

uvz, consumingu, while the procedure,() returns onvz, consumingv. The height

of the recursive calls in these subcomputations obviously does not exceed that of the
whole computation.

Sincez follows s, the induction hypothesis is directly applicable to the computation
of s,() onwz, yielding
v e Lg(Sg) (19)

In order to use the induction hypothesis for the former 1 calls, first it has to be
established thatz follows s; ...s,. We know thatz follows s, ... s,, which means

CF/d

thate- S e == 0-s1...5,-1, wherez € La(n). Henceg-S-e == §-s1...5p_1- S¢1,
while concatenatindI@) with z € L(n) yieldsvz € Lg(sim).

Now the induction hypothesis can be used for the computatien(®f. . . ; s,() onuwvz
(which returns, consuming), giving

(IS Lg(Sl ... 5271) (20)

By m and @), Y =uv e Lg(sl R Sg_lsg).
@ Conversely, ify € Lg(s; ... si—15¢), then there exists a factorizatign= uv, such
thatu € Lg(Sl .. Sg_l) andv € Lg(Sg).

The computation of;(); . .. ; s,_1() onuwz is obviously a subcomputation of the com-
putation ofs;();...;s,—1(); s¢(). Hence, the recursion depth for the subcomputation

18

does not exceed that for the whole computation. On the other handsinde;(s,)

and z follows s; ... s, 15, vz follows s ...s,_1 (as proved in the previous part of
the proof). This allows to apply the induction hypothesis to this subcomputation and
obtain thats; (); .. .; s,_1() returns onuvz, consumingu.

Once the subcomputation; ();...;s,—1() returns onuwvz, the computation of
51();- -5 80-1(); s¢() proceeds with invoking,() onvz. Hence,s,() onz is also a sub-
computation, which has height no greater than that of the whole computation. Since
z follows s,, the induction hypothesis is now applicable, and Lq(s,) implies that

s¢() returns orvz, consuming.

Therefore, the sequential composition of these two computations,
510); -5 80-10); s¢(), returns onyz, consuminguv = y. O

Now lety = w, z = ¢, ¢ = 1, sy = S, n = . Then the conditions of Lemnidiare
satisfied, and the following result is obtained:

Corollary 1. LetG = (3, N, P, S) be a strongly non-left-recursive Boolean grammar that
complies to the semantics of naturally reachable solutionkLetl. LetT : N x ¥k — P
be a deterministic LLX) table forG, let the set of procedures be constructed with respect to
G andT.

Then, for every string € ¥*, the procedures () executed o

e Returns, consuming the whole inputwife L(G);

¢ Returns, consuming less than the whole input, or raises an exceptiow, if.(G).
Out of this there follows the statement on the correctness of the algorithm:

Theorem 1. LetG = (X, N, P, S) be a strongly non-left-recursive Boolean grammar that
complies to the semantics of naturally reachable solutionkLetl. LetT : N x ©sk — P
be a deterministic LLX) table for G, let a recursive descent parser be constructed with
respect taz and 7.

Then, for every stringw € >*, the parser, executed an, accepts ifw € L(G), rejects
otherwise.

6 Conclusion

A generalization of the familiar context-free recursive descent method has been devel-
oped, which becomes the first truly practical parsing algorithm for Boolean grammars.

The notions behind the algorithm and the proof of its correctness are admittedly not very
easy; however, the algorithm itself is intuitively clear and can easily be used in applications
instead of the standard context-free recursive descent. This makes it possible to integrate
support for Boolean grammars into practical parser generators that currently use context-free
recursive descent.

19

References

[1986] A. V. Aho, R. Sethi, J. D. UllmanCompilers: principles, techniques and tools
Addison-Wesley, Reading, Mass., 1986.

[1981] A. J. T. Davie, R. Morrison,Recursive descent compilinghichester, Ellis-
Horwood, 1981.

[1962] S. Ginsburg, H. G. Ric&Two families of languages related to ALGCLJournal of
the ACM 9 (1962), 350-371.

[1988] D. Grune, C. J. H. Jacobs, “A programmer-friendly LL(1) parser generator”,
Software—Practice and Experiendes:1 (1988), 29-38.

[1982] R. C. Holt, J. R. Cordy, D. B. WortmafAn introduction to S/SL: Syntax/Semantic
Language’ ACM TOPLAS4:2 (1982), 149-178.

[2003] Q. T. Jackson;‘Efficient formalism-only parsing of XML/HTML using the;-
calculus’ ACM SIGPLAN Notices38:2 (2003), 29-35.

[1975] S. Johnson, “Yacc: yet another compiler-compil&@gmputing Science Technical
Report 32 AT&T Bell Laboratories, Murray Hill, NJ, 1975.

[1967] D. E. Knuth, “On the translation of languages from left to rightiformation and
Control, 11 (1967), 269-289.

[1971] D. E. Knuth, “Top-down syntax analysisActa Informatical (1971), 79-110.
[1969] R. Kurki-Suonio, “Notes on top-down languageBIT, 9 (1969), 225-238.

[1968] P. M. Lewis, R. E. Stearn$Syntax-directed transductionJournal of the ACM15:3
(1968), 465—488.

[1961] P. Lucas, “Die Strukturanalyse von Formelbersetzeftéktronische Rechenanla-
gen 3:4 (1961), 159-167.

[2001] A. Okhotin, “Conjunctive grammarsJpurnal of Automata, Languages and Combi-
natorics 6:4 (2001), 519-535.

[2002] A. Okhotin,[*Top-down parsing of conjunctive languagg§&rammars 5:1 (2002),
21-40.

[2003] A. Okhotin, “Boolean grammarsDevelopments in Language ThedBroceedings
of DLT 2003, Szeged, Hungary, July 7-11, 2003), LNCS 2710, 398-410; journal ver-
sion submitted.

20

http://dx.doi.org/10.1145/321127.321132
http://dx.doi.org/10.1145/357162.357164
http://dx.doi.org/10.1145/357162.357164
http://doi.acm.org/10.1145/772970.772974
http://doi.acm.org/10.1145/772970.772974
http://dx.doi.org/10.1145/321466.321477
http://dx.doi.org/10.1023/A:1014219530875

[1995] T. J. Parr, R. W. Quong, “ANTLR: a predicated-I&) (parser generatorSoftware—
Practice and Experien¢&5:7 (1995), 789-810.

[1970] D. J. Rozenkrantz, R. E. Stearns, “Properties of deterministic top-down grammars”,
Information and Contrql17 (1970), 226—256.

[1969-70] D. Wood, “The theory of left factored languages” (I, @gmputer Journall2:4
(1969), 349-356; 13:1 (1970) 55-62.

21

	Introduction
	Boolean grammars
	The LL(k) table and its construction
	Recursive descent parser
	Proof of the algorithm's correctness
	Conclusion

