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Abstract

The well-known recursive descent parsing method for context-free grammars is ex-
tended for their generalization, Boolean grammars, which include explicit set-theoretic
operations in the formalism of rules. Conjunction is implemented by scanning a part
of the input multiple times, while the mechanism of exception handling is used to im-
plement negation. A subclass of LL(k) Boolean grammars, for which recursive descent
parsing is possible, is identified, the construction of a parsing table and parser code is
formally specified and illustrated by an example. Correctness of the method is proved.
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1 Introduction

The recursive descent method for context-free grammars is undoubtedly the most intu-
itively clear parsing technique, and the most well-known as well, being included in most
university curricula in computer science. Used since the early 1960s (the credit is attributed
to Lucas [1961] – see Aho et al. [1986, p.82]), it is also one of the first parsing techniques to
be ever used. Surprisingly, its appeal has perhaps even grown over time.

Indeed, since 1980s, there has been a tendency of preferring recursive descent over the
theoretically more powerful LR. Although LR parser generator software, such as YACC de-
veloped by Johnson [1975], was available, the generated parsers, which basically simulate
pushdown automata, are not always easy to integrate into a program in a high-level program-
ming language. In many cases it turns out to be easier to write a recursive descent parser
manually. Hence, many new syntax specification and parser generation tools based on recur-
sive descent were developed, which, unlike YACC, kept pace with the advances in the field
of programming languages: for instance, S/SL by Holt et al. [1982], LLgen by Grune and
Jacobs [1988] and ANTLR by Parr and Quong [1995].

In its original form, recursive descent is applicable to a proper subfamily of deterministic
context-free languages called the LL(k) languages. The first theoretical treatment of LL(k)
grammars and the first formal construction of parsing tables for tabular and recursive descent
LL parsers (including the familiar First and Follow sets) is due to Knuth [1971]. Further
fundamental properties of LL(k) languages and grammars were developed by Kurki-Suonio
[1969], Lewis and Stearns [1968], Rozenkrantz and Stearns [1970] and Wood [1969–70].
Practical construction and use of recursive descent parsers is explained in the well-known
textbook on compiler construction by Aho, Sethi and Ullman [1986] among other common
syntax analysis techniques. Another book by Davie and Morrison [1981] specifically focuses
on recursive descent as a guiding principle in compiler construction.

A generalization of recursive descent method forconjunctive grammarsis known
(Okhotin [2002]). These grammars, introduced by the author [2001], are an extension of
context-free grammars with an intersection operation added to the formalism of rules. The
generalized recursive descent relies upon scanning substrings multiple times to check all
conjuncts of a rule.

This paper further generalizes the method for the class ofBoolean grammars, which are
themselves a further generalization of conjunctive grammars (Okhotin [2003]) that allows all
set-theoretic operations, including negation. The formal semantics of Boolean grammars is
defined using language equations (rather than derivation) in a way resembling the classical
characterization of context-free grammars obtained by Ginsburg and Rice [1962]. In order
to handle negation, the new recursive descent has to utilize the mechanism of exception
handling found in most programming languages since Ada.

An brief introduction into Boolean grammars is given in Section2. Section3 defines
the parsing table and gives an algorithm for constructing it. A formal construction of recur-
sive descent parser code out of a grammar and a parsing table is defined in Section4. The
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algorithm is proved correct in Section5.

2 Boolean grammars

Definition 1 (Okhotin [ 2003]). A Boolean grammar is a quadrupleG = (Σ, N, P, S), where
Σ andN are disjoint finite nonempty sets of terminal and nonterminal symbols respectively;
P is a finite set of rules of the form

A → α1& . . . &αm&¬β1& . . . &¬βn (m + n > 1, αi, βi ∈ (Σ ∪N)∗), (1)

whileS ∈ N is the start symbol of the grammar.
For each rule (1), the objectsA → αi andA → ¬βj (for all i, j) are called conjuncts,

positive and negative respectively;A → αi and A → βj are called unsigned conjuncts.
Denote the set of all unsigned conjuncts in the rules fromP asuconjuncts(P ).

A Boolean grammar is called a conjunctive grammar, if negation is never used, i.e.,
n = 0 for every rule (1). It degrades to a familiar context-free grammar if neither negation
nor conjunction are allowed, i.e.m = 1 andn = 0 for all rules.

In this paper it will be further assumed thatm > 1 andn > 0 in every rule (1). There is
no loss of generality in this assumption, because it is always possible to add a nonterminal
that generatesΣ∗, and use this nonterminal as a formal first positive conjunct in every rule
that lacks one.

The semantics of Boolean grammars is defined using language equations.

Definition 2. Let G = (Σ, N, P, S) be a Boolean grammar. The system of language equa-
tions associated withG is a resolved system of language equations overΣ in variablesN , in
which the equation for each variableA ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[ m⋂
i=1

αi ∩
n⋂

j=1

βj

]
(for all A ∈ N) (2)

A system (2) can have no solutions or multiple pairwise incomparable solutions. In the
former case it is clearly invalid, while if it has solutions, one of them has to be declared as
“the right one”. The problems with defining this solution have been studied by the author
[2003], and following is one of the two methods that were developed:

Definition 3. Let Xi = ϕi(X1, . . . , Xn) (1 6 i 6 n) be a system of language equations,
where the expressionsϕi contain the operations of union, intersection, complement and con-
catenation, terminal symbols and variables.

A vector of languagesL = (L1, . . . , Ln) is called a naturally reachable solution of the
system if for every finite modulusM closed under substring and for every stringu /∈ M
(such that all proper substrings ofu are inM ) every sequence of vectors of the form

L(0), L(1), . . . , L(i), . . . (3)
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(whereL(0) = (L1 ∩M, . . . , Ln ∩M) and every next vectorL(i+1) 6= L(i) in the sequence is
obtained from the previous vectorL(i) by substituting somej-th component withϕj(L

(i)) ∩
(M ∪ {u})) converges to

(L1 ∩ (M ∪ {u}), . . . , Ln ∩ (M ∪ {u})) (4)

in finitely many steps regardless of the choice of components at each step.

If exists, the naturally reachable solution is unique, and can be used to define the seman-
tics of Boolean grammars.

Definition 4. Let G = (Σ, N, P, S) be a Boolean grammar, letX = ϕ(X) be the as-
sociated system of language equations, let this system have naturally reachable solution
L = (L1, . . . , Ln).

Then the languageLG(ϕ) of a formulaϕ is defined as a substitutionϕ(L), while the
language of the grammar isL(G) = LG(S).

The following transform of a Boolean grammar shall be used in the following; given a
Boolean grammarG = (Σ, N, P, S), define

positive(P ) = {A → α1& . . . &αm | A → α1& . . . &αm&¬β1& . . . &¬βn ∈ P} (5)

The grammarpositive(G) = (Σ, N, positive(P ), S) is thus a conjunctive grammar.

Lemma 1. For every Boolean grammarG = (Σ, N, P, S), such that the associated sys-
tem complies to the semantics of naturally reachable solution, it holds thatLG(A) ⊆
Lpositive(G)(A) for everyA ∈ N .

Proof. Let L = (L1, . . . , Ln) be the naturally reachable solution of the systemX = ϕ()
associated withG, let L′ = (L′1, . . . , L

′
n) be the vector of languages defined by the non-

terminals ofpositive(G), which is the least solution of the system of language equations
X = ϕ′(X) associated withpositive(G). Note that

ϕj(L
′′) ⊆ ϕ′j(L

′′) (for every vector of languagesL′′) (6)

by the construction ofpositive(G).
It has to be proved thatLj ⊆ L′j for all j (1 6 j 6 n). It suffices to prove that for every

pair (M,u) as in Definition3 and for everyi-th term of the sequence (3), if u is in L
(i)
j , then

u ∈ L′j.
By the induction hypothesis,

L(i−1) 4 L′ (7)

Thus, ifu ∈ L
(i−1)
j , thenu ∈ L′j. If u /∈ L

(i−1)
j , thenu ∈ ϕj(L

(i−1)). By (6), ϕj(L
(i−1)) ⊆

ϕ′j(L
(i−1)), and henceu ∈ ϕ′j(L

(i−1)).
Sinceϕ′j is monotone, (7) impliesϕ′j(L

(i−1)) ⊆ ϕ′j(L
′). This means thatu ∈ ϕ′j(L

′).
Finally,ϕ′j(L

′) = L′j, becauseL′ is a solution of the system associated withpositive(G).
Therefore,u ∈ L′j.
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Context-free recursive descent parsing requires the grammar to be free ofleft recursion,
which means that no nonterminalA can deriveAα (α ∈ (Σ ∪ N)∗). The reason for that is
that a parser can enter an infinite loop otherwise.

A generalization of recursive descent for a larger class of grammars still has to impose
a similar restriction. Although the semantics of Boolean grammars is defined by language
equations and not by derivation, a certain artificial derivation has to be introduced in order to
formulate the generalized restriction.

Definition 5. Let G = (Σ, N, P, S) be a Boolean grammar. Define the relation of in-depth
context-free derivability,

CF/d
=⇒, which a binary relation on the set{α · β · γ |α, β, γ ∈ Σ∗}, as

the reflexive and transitive closure of the following set of derivation rules:

α · βAγ · δ CF/d
=⇒ αβη · σ · θγδ (8)

for everyA → ησθ ∈ uconjuncts(P ).

Definition 6. A Boolean grammarG = (Σ, N, P, S) is said to be strongly non-left-recursive
if and only if for allA ∈ N andγ, δ ∈ (Σ∪N)∗, such thatε ·A · ε CF/d

=⇒ γ ·A · δ, it holds that
ε /∈ Lpositive(G)(γ).

Note that the non-left-recursivity of the context-free grammarG′ =
(Σ, N, uconjuncts(P ), S) is a sufficient condition for strong non-left-recursivity of
G.

The following Boolean grammar will serve as a running example in this paper.

Example 1. Consider the languageL = {ambncn |m 6= n}; it is non-context-free, while its
complement is an inherently ambiguous context-free language.

Following is a strongly non-left-recursive Boolean grammar tha denotesL·d·(a∗b∗c∗\L):

S → KdM
K → AD&¬EC
M → ABC&¬K
A → aA | ε
B → bB | ε
C → cC | ε
D → bDc | ε
E → aEb | ε

Formally,(L · d · (a∗b∗c∗ \ L), L, (a∗b∗c∗ \ L), a∗, b∗, c∗, {bici | i > 0}, {aibi | i > 0}) is
the naturally reachable solution of the associated system of language equations.
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3 The LL(k) table and its construction

Let k > 1. For a stringw, define

Firstk(w) =

{
w, if |w| 6 k
first k symbols ofw, if |w| > k

(9)

This definition can be extended to languages asFirstk(L) = {Firstk(w) | w ∈ L}.
Definition 7 (Nondeterministic LL( k) table). LetG = (Σ, N, P, S) be a Boolean grammar
compliant to the semantics of naturally reachable solution, letk > 0.

A nondeterministic LL(k) table forG is a functionT ′
k : N × Σ6k → 2P , such that for

everyA andw, for whichε · S · ε CF/d
=⇒ δ · A · η, andw ∈ LG(ϕη), it holds thatA → ϕ ∈

T ′
k(A,F irstk(w)).

Definition 7 might look rather loose, since it does not specify any necessary conditions
for being inT ′

k(A,F irstk(w)). However, the least (with respect to inclusion) collection of
sets satisfying this definition is uncomputable, as shown by the author [2002] for the simpler
case of conjunctive grammars, and this makes us think in terms ofsuitable tablesrather than
the optimal table.

The only tables usable with the new recursive descent algorithm aredeterministic tables
of the following form:

Definition 8 (Deterministic LL( k) table). Let |T ′
k(A, u)| 6 1 for all A, u. Then the entries

of a deterministic LL(k) table,Tk : N ×Σ6k → P ∪{−}, are defined asTk(A, u) = A → ϕ
(if T ′

k(A, u) = {A → ϕ}) or Tk(A, u) = − (if T ′
k(A, u) = ∅)

Let us describe a simple method of computing LL(k) tables. First, compute the sets
PFIRSTk andPFOLLOWk similar to those used in the case of conjunctive grammars (Okhotin
[2002]).

Algorithm 1. Let G = (Σ, N, P, S) be a Boolean grammar compliant to the semantics of
naturally reachable solution. Letk > 0. For all s ∈ Σ ∪ N , compute the setPFIRSTk(A),
such that for allu ∈ LG(s), Firstk(u) ∈ PFIRSTk(s).

let PFIRSTk(A) = ∅ for all A ∈ N ;
let PFIRSTk(a) = {a} for all a ∈ Σ;
while new strings can be added to〈PFIRSTk(A)〉A∈N

for eachA → s11 . . . s1`1& . . . &sm1 . . . sm`m&¬β1& . . . &¬βn ∈ P
PFIRSTk(A) = PFIRSTk(A)∪

∪ ⋂m
i=1 Firstk(PFIRSTk(si1) · . . . · PFIRSTk(si`i

));

Proof of correctness.Note that the algorithm completely ignores negative conjuncts, effec-
tively usingpositive(G) instead ofG. A stronger claim holds: ifu ∈ Lpositive(G)(s), then
Firstk(u) ∈ PFIRSTk(s), which has been proved by the author [2002] for the case of con-
junctive grammars.
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Definition 9. We shall say thatu ∈ Σ∗ followsσ ∈ (Σ ∪ N)∗ if ε · S · ε CF/d
=⇒ δ · σ · η and

u ∈ LG(η).

The functionPFOLLOWk : N → Σ6k is defined by the following algorithm:

Algorithm 2. For givenG compliant to the semantics of naturally reachable solution and
k > 0, compute the setsPFOLLOWk(A) for all A ∈ N , such that ifu follows A, then
Firstk(u) ∈ PFOLLOWk(A).

let PFOLLOWk(S) = {ε};
let PFOLLOWk(A) = ∅ for all A ∈ N \ {S};
while new strings can be added to〈PFOLLOWk(A)〉A∈N

for eachB → β ∈ uconjuncts(P )
for each factorizationβ = µAν, whereµ, ν ∈ V ∗ andA ∈ N

PFOLLOWk(A) = PFOLLOWk(A) ∪ Firstk(PFIRSTk(ν) · PFOLLOWk(B));

Proof of correctness.Let u follow A. Thenε · S · ε CF/d
=⇒ δ · σ · η andu ∈ LG(η).

The proof is an induction on the length of derivation ofδ · σ · η.

Basis: If the triple isε ·S ·ε, then it has to be proved thatFirstk(ε) = ε is in PFOLLOWk(S).
It is added there by the first statement of the algorithm.

Induction step. Let ε ·S · ε CF/d
=⇒ α ·B ·β CF/d

=⇒ αµ ·A ·νβ andB → µAν ∈ uconjuncts(P ).
and letu ∈ LG(νβ).

Then there exists a factorizationu = xy, such thatx ∈ LG(ν) andy ∈ LG(β). Accord-
ing to Algorithm1, Firstk(x) ∈ PFIRSTk(ν); by the induction hypothesis,Firstk(y)
is added toPFOLLOWk(B) at some point of the computation of the algorithm. Then,
at this point,

Firstk(u) = Firstk(Firstk(x) ·Firstk(y)) ∈ Firstk(PFIRSTk(ν) ·PFOLLOWk(B)),

and henceFirstk(u) is added toPFOLLOWk(A) next time the unsigned conjunctB →
µAν and the factorizationµAν = µ · A · ν are considered.

Now these sets can be used to construct the LL(k) parsing table in the same way as in the
context-free case:

Algorithm 3. LetG be an LL(k) Boolean grammar. ComputeT ′
k(A) for all A ∈ N .

for each ruleA → ϕ ∈ P
for eachx ∈ Firstk(PFIRSTk(ϕ) · PFOLLOWk(A))

add the rule toT ′
k(A, x);
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Proof of correctness.Consider a rule

A → α1& . . . &αm&¬β1& . . . &¬βn (m > 1, n > 0) (10)

that shouldbe in T ′
k(A, x) in accordance to Definition7. Thenε · S · ε CF/d

=⇒ δ · A · η and
w ∈ LG(ϕη), whereϕ = α1& . . . &αm&¬β1& . . . &¬βn andx = Firstk(w).

Then there exists a factorizationw = uv, such thatu ∈ LG(ϕ) andv ∈ LG(η). By the
construction ofPFIRSTk,

Firstk(u) ∈ PFIRSTk(ϕ) (11)

Sincev follows A,
Firstk(v) ∈ PFOLLOWk(A) (12)

by the construction ofPFOLLOWk(A).
Concatenating (11) and (12) yields

x = Firstk(uv) = Firstk(Firstk(u) · Firstk(v)) ∈ Firstk(PIRSTk(ϕ) · PFOLLOWk(A)),

which means that the rule (10) will be added toT ′
k(A, x) in the iteration((10), x).

PFIRST1 PFOLLOW1

S {a, b, d} {ε}
K {ε, a, b} {ε, d}
M {ε, a, b, c} {ε}
A {ε, a} {ε, b, c, d}
B {ε, b} {ε, c}
C {ε, c} {ε, d}
D {ε, b} {ε, c, d}
E {ε, a} {ε, b, c, d}

Table 1:PFIRST1 andPFOLLOW1.

Example 2. Consider the grammar from Example1. The setsPFIRST1 and PFOLLOW1 for
this grammar are given in Table1. A deterministic LL(1) table constructed using these sets
is shown in Table2.

Note that the stringsd ∈ PFIRST1(S) and ε ∈ PFIRST1(K) are fictional, as no actual
strings fromLG(S) andLG(K) can start from these. Consequently,T (S, d) = S → KdM ,
which is also a fictional entry of the table that could have been replaced with−. However,
such fictional entries do not prevent the algorithm from being correct.
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ε a b c d
S S → KdM S → KdM − S → KdM
K K → AD&¬EC K → AD&¬EC K → AD&¬EC − K → AD&¬EC
M M → ABC&¬K M → ABC&¬K M → ABC&¬K M → ABC&¬K −
A A → ε A → aA A → ε A → ε A → ε
B B → ε − B → bB B → ε −
C C → ε − − C → cC C → ε
D D → ε − D → bDc D → ε D → ε
E E → ε E → aEb E → ε E → ε E → ε

Table 2:LL(1) table.

4 Recursive descent parser

Having constructed a parsing table, let us now define a recursive descent parser – a col-
lection of procedures that recursively call each other and analyze the input.

There will be a procedure for each terminal and nonterminal symbol in the grammar, and
two static variables accessible to all procedures: the input stringw and a positive integer
i pointing at a position in this string. Each procedures() (corresponding to a symbols ∈
Σ∪N ) starts with some initial value of this pointer,i = i′, and, after doing some computation
and making some recursive calls,

• either returns, setting the pointer toi = i′′ (wherei′ 6 i′′ 6 |w|), thus reporting a
successul parse ofwi′ . . . wi′′−1 from s,

• or raises an exception, which means that a suitablei′′, such that the symbols could
generatewi′ . . . wi′′−1, was not found; in this casei points to the position in the string
where a syntax error was encountered.

The procedure corresponding to every terminala ∈ Σ is defined as

a()
{

if wi = a, then
i = i + 1;

else
raise exception;

}
For every nonterminalA ∈ Σ the procedure is

A()
{

switch(T (A,F irstk(wiwi+1 . . .)))
{
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caseA → α1& . . . &αm&¬β1& . . . &¬βn:
(code for conjunctA → α1)
(code for conjunctA → α2)
...
(code for conjunctA → αm)
(code for conjunctA → ¬β1)
...
(code for conjunctA → ¬βn)

caseA → . . .
...

default:
raise exception;

}
}

where the code for the first positive conjunctA → s1 . . . s` is

let start = i; /* omit if this first conjunct is the only one (m = 1, n = 0) */
s1();
...
s`();
let end = i; /* omit if this first conjunct is the only one */

the code for every consecutive positive conjunctA → s1 . . . s` is

i = start;
s1();
...
s`();
if i 6= end, then raise exception;

and the code for every negative conjunctA → ¬t1 . . . t` is

booleanfailed = false;
try
{

i = start;
s1();
...
s`();
if i 6= end, then raise exception;

}
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exception handler:
failed = true;

if ¬failed raise exception;
i = end; /* if this is the last conjunct in the rule */

The main procedure is:

try
{

int i = 1;
S();
if i 6= n + 1, then raise exception;

}
exception handler:

Reject;
Accept;

Example 3. Let us construct a recursive descent parser for the Boolean grammar from Ex-
ample1, using the LL(1) table constructed in Example2.

Following is the C++ program written using the method given above. The deviations from
the model parser are minor. A C pointerchar *p to a position in the string is used instead
of an integeri. Switch statements directly use the lookahead symbol instead of looking up a
physical LL(1) table;T is thus hardcoded into the program. A structureparse error is
used for the objects generated when exceptions are raised; this structure could have been left
empty, but in this implementation it records the name of the procedure where the exception
was raised, which is a straightforward method of error diagnostics.

#include <iostream>
#include <string.h>

struct parse_error
{

char *s;
parse_error(char *s1="") : s(s1) {}

};

char *p;

void S();
void K();
void M();
void A();
void B();
void C();
void D();
void E();

void a()

{
if(*p==’a’)

p++;
else

throw parse_error("a");
}
void b()
{

if(*p==’b’)
p++;

else
throw parse_error("b");

}
void c()
{

if(*p==’c’)
p++;

else
throw parse_error("c");

}
void d()
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{
if(*p==’d’)

p++;
else

throw parse_error("d");
}
void S()
{

switch(*p)
{
case ’a’:
case ’b’:
case ’d’:

K();
d();
M();
break;

default:
throw parse_error("S");

}
}
void K()
{

switch(*p)
{
case 0:
case ’a’:
case ’b’:
case ’d’: {

char *start=p;
A();
D();
char *end=p;

bool failed=false;
try
{

p=start;
E();
C();
if(p!=end) throw parse_error();

}
catch(parse_error) { failed=true; }
if(!failed) throw parse_error("K:˜EC");

p=end;
}
break;

default:
throw parse_error("K");

}
}
void M()
{

switch(*p)
{
case 0:
case ’a’:
case ’b’:
case ’c’: {

char *start=p;
A();

B();
C();
char *end=p;

bool failed=false;
try
{

p=start;
K();
if(p!=end) throw parse_error();

}
catch(parse_error) { failed=true; }
if(!failed) throw parse_error("M:˜K");

p=end;
}
break;

default:
throw parse_error("M");

}
}
void A()
{

if(*p==’a’)
{

a();
A();

}
}
void B()
{

if(*p==’b’)
{

b();
B();

}
}
void C()
{

if(*p==’c’)
{

c();
C();

}
}
void D()
{

switch(*p)
{
case ’b’:

b();
D();
c();
break;

case 0:
case ’c’:
case ’d’:

break;
default:

throw parse_error("D");
}

}
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void E()
{

switch(*p)
{
case ’a’:

a();
E();
b();
break;

case 0:
case ’b’:
case ’c’:
case ’d’:

break;
default:

throw parse_error("E");
}

}

int main()

{
char *w="aabcdabbc";
try
{

p=w;
S();
if(p!=w+strlen(w))

throw parse_error("$");
}
catch(parse_error &err)
{

std::cout << "Error in position " << (p-w)
<< " (" << err.s << ").\n";

return false;
}

std::cout << "Accept.\n";
return true;

}

This program invokes the parser on the stringw = aabcdabbc, which is in the language,
and the computation leads to acceptance. If verbose prints are added to the program, the
following computation history is revealed:

S() on .aabcdabbc: S->KdM
K() on .aabcdabbc: K->AD&˜EC

A() on .aabcdabbc: A->aA
a() on .aabcdabbc: Ok.
A() on a.abcdabbc: A->aA

a() on a.abcdabbc: Ok.
A() on aa.bcdabbc: A->e

Done (aa.bcdabbc).
Done (aa.bcdabbc).

Done (aa.bcdabbc).
D() on aa.bcdabbc: D->bDc

b() on aa.bcdabbc: Ok.
D() on aab.cdabbc: D->e

Done (aab.cdabbc).
c() on aab.cdabbc: Ok.
Done (aabc.dabbc).

Done (aabc.dabbc).
E() on .aabcdabbc: E->aEb

a() on .aabcdabbc: Ok.
E() on a.abcdabbc: E->aEb

a() on a.abcdabbc: Ok.
E() on aa.bcdabbc: E->e

Done (aa.bcdabbc).
b() on aa.bcdabbc: Ok.
Done (aab.cdabbc).

b() on aab.cdabbc: Error.
Caught an exception.

d() on aabc.dabbc: Ok.
M() on aabcd.abbc: M->ABC&˜K

A() on aabcd.abbc: A->aA
a() on aabcd.abbc: Ok.
A() on aabcda.bbc: A->e

Done (aabcda.bbc).

Done (aabcda.bbc).
B() on aabcda.bbc: B->bB

b() on aabcda.bbc: Ok.
B() on aabcdab.bc: B->bB

b() on aabcdab.bc: Ok.
B() on aabcdabb.c: B->e

Done (aabcdabb.c).
Done (aabcdabb.c).

Done (aabcdabb.c).
C() on aabcdabb.c: C->cC

c() on aabcdabb.c: Ok.
C() on aabcdabbc.: C->e

Done (aabcdabbc.).
Done (aabcdabbc.).

Done (aabcdabbc.).
K() on aabcd.abbc: K->AD&˜EC

A() on aabcd.abbc: A->aA
a() on aabcd.abbc: Ok.
A() on aabcda.bbc: A->e

Done (aabcda.bbc).
Done (aabcda.bbc).

D() on aabcda.bbc: D->bDc
b() on aabcda.bbc: Ok.
D() on aabcdab.bc: D->bDc

b() on aabcdab.bc: Ok.
D() on aabcdabb.c: D->e

Done (aabcdabb.c).
c() on aabcdabb.c: Ok.
Done (aabcdabbc.).

c() on aabcdabbc.: Error.
Caught an exception.

Done (aabcdabbc.).
Accept.

If the string w = aabcdabbc ∈ L(G) used in Example3 is replaced with the string
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w = aabcdaabc /∈ L(G), then the program terminates, issuing the error message

Error in position 9 (M:˜K).

which gives out the position in the string where the syntax error was encountered (the end of
the string) and the reason of error: the negative conjunctM → ¬K failed, because something
was derived fromK.

5 Proof of the algorithm’s correctness

It should be proved that the algorithm (a) always terminates, and (b) accepts a string if
and only if it is in the language.

The termination of the algorithm can be proved under quite weak assumptions on the
grammar: strong non-left-recursivity alone is sufficient, and no claims on the mechanism of
choosing the rulesT are made, while the grammar itself is not even required to comply to
Definition 3. This allows us to abstract from the semantics of the grammar and the goal of
parsing, concentrating on the general structure of the computation.

Lemma 2. Let G = (Σ, N, P, S) be an arbitrary Boolean grammar, and consider the
conjunctive grammarG′ = positive(G) = (Σ, N, positive(P ), S). Let k > 1; let
T : N × Σ6k → P be an arbitrary function, let the set of procedures be constructed with
respect toG andT . Then

I. For everys ∈ Σ∪N andu, v ∈ Σ∗, if A() invoked on the inputuv returns, consuming
u, thenA derivesu in G′.

II. For everyA,B ∈ N andu, v ∈ Σ∗, if A() is invoked onuv, and the resulting compu-
tation eventually leads to a call toB() on the inputv, thenε ·A · ε CF/d

=⇒ γ ·B · δ, where
γ derivesu in G′.

Proof. The first part of the lemma is proved inductively on the height of the tree of recursive
calls made byA() on the inputuv. SinceA() terminates by the assumption, this tree is finite
and its height is well-defined.

Basis: s() makes no recursive calls and returnsIf s = a ∈ Σ anda() returns onuv, con-

sumingu, thenu = a and obviouslya
G′

=⇒∗ a.

If s = A ∈ N andA() returns without making any recursive calls, then the rule chosen
upon enteringA() may contain one positive conjunct,A → ε, and possibly a negative

conjunctA → ¬ε. Thenu = ε andA
G′

=⇒∗ ε.
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Induction step Let A() return onuv, consumingu, and let the height of the tree of recursive
calls made byA() beh. The first thingA() does is looking upT (A,F irstk(uv)), to
find a rule

A → α1& . . . &αm&¬β1& . . . &¬βn (m > 1, n > 0, αi, βi ∈ (Σ ∪N)∗), (13)

there. Then the code fragments for all conjuncts of the rule are executed.

Consider every positive conjunctA → αi, and letαi = s1 . . . s`. Then the code
s1(); . . . ; s`() is executed onuv, and it returns, consumingu. Consider a factorization
u = u1 . . . u` defined by the positions of the pointer to the input after eachsi() returns
and before the nextsi+1() is called. Thus eachsi() returns onuiui+1 . . . u`v, consum-
ing ui, and the height of recursive calls made bysi() does not exceedh − 1. By the

induction hypothesis,si
G′

=⇒∗ ui. These derivations according toG′ can be combined
into the following derivation:

αi = s1 . . . s`
G′

=⇒ . . .
G′

=⇒ u1 . . . u` = u (14)

Now use (14) for all i to produce the following derivation in the conjunctive grammar
G′:

A
G′

=⇒ (α1& . . . &αm)
G′

=⇒ . . .
G′

=⇒ (u& . . . &u)
G′

=⇒ u, (15)

thus proving the induction step.

Turning to the second part of the lemma, ifA() starts with inputuv, andB() is called on
v at some point of the computation, then consider the partial tree of recursive calls made up
to this point. Leth be the length of the path from the root to this last instance ofB(). The
proof is an induction onh.

Basish = 0. If A() coincides withB(), and thusB() is called on the same stringuv = v,
thenu = ε, ε · A · ε CF/d

=⇒ ε · A · ε andu = ε ∈ LG′(ε).

Induction step. A(), called on uv, begins with determining a rule (13) using
Tk(A,F irstk(uv)) and then proceeds with calling the subroutines corresponding to
the symbols in the right hand side of (13). Some of these calls terminate (return or, in
the case of negative conjuncts, raise exceptions that are handled insideA()), while the
last one recorded in our partial computation history leads down toB(). Let A → γCδ
(γCδ ∈ {αi, βj}) be the unsigned conjunct in which this happens, andC() be this call
leading down. Consider a factorizationu = xy, such thatC() is called onyv.

Let γ = s1 . . . s`. The call toC() is preceded by the calls tos1(); . . . ; s`(), where each
st() is called onxt . . . x`yv and returns, consumingxt (x = x1 . . . x`). By part I of this

lemma, this impliesst
G′

=⇒∗ xt, and henceγ
G′

=⇒∗ x.
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By the existence of the unsigned conjunctA → γCδ, ε · A · ε CF/d
=⇒ γ · C · δ. For

the partial computation ofC() on yv (up to the call toB()), the distance betweenC()
andB() is h − 1, which allows to apply the induction hypothesis to conclude that

ε · C · ε CF/d
=⇒ µ ·B · η, such thatµ

G′
=⇒∗ y.

Combining these two derivations according to Definition6, we getε·A·ε CF/d
=⇒ γµ·B·ηδ,

while the two conjunctive derivations inG′ can be merged to obtainγµ
G′

=⇒∗ u.

Lemma 3. Let G = (Σ, N, P, S) be a strongly non-left-recursive Boolean grammar. Let
k > 1; let T : N×Σ6k → P be an arbitrary function, let the set of procedures be constructed
with respect toG andT .

Then, for anys ∈ Σ∪N andw ∈ Σ∗, the procedures() terminates on the inputw, either
by consuming a prefix ofw and returning, or by raising an exception.

Proof. Suppose there existss ∈ Σ ∪ N andw, such thats() does not halt on the inputw.
Consider the (infinite) tree of recursive calls, the nodes of which are labeled with pairs(t, u),
wheret ∈ Σ ∪N andu is some suffix ofw.

By König’s lemma, this tree should contain an infinite path

(A1, u1), (A2, u2), . . . , (Ap, up), . . . (16)

where(A1, u1) = (s, w), Ap ∈ N and each procedureAp() is invoked onup and, after calling
some procedures that terminate, eventually callsAp+1 on the stringup+1, which is a suffix of
up. This means that|u1| 6 |u2| 6 . . . 6 |up| 6 . . ..

Sincew is of finite length, it has finitely many different suffices, and the decreasing
second component in (16) should converge to some shortest reached suffix ofw. Denote
this suffix asu, and consider any node(A, u) that appears multiple times on the path (16).
Consider any two instances of(A, u); then, by Lemma2, ε · A · ε CF/d

=⇒ γ · A · δ, such that

γ
G′

=⇒∗ ε. This contradicts the assumption thatG is strongly non-left-recursive.

Lemma 4. Let G = (Σ, N, P, S) be a strongly non-left-recursive Boolean grammar that
complies to the semantics of naturally reachable solution. Letk > 1. LetT : N ×Σ6k → P
be a deterministic LL(k) table forG, let the set of procedures be constructed with respect to
G andT .

For anyy, z ∈ Σ∗ ands1 . . . s` ∈ Σ ∪ N (l > 0), such thatz followss1 . . . s`, the code
s1(); . . . ; s`() returns on the inputyz, consumingy, if and only ify ∈ LG(s1 . . . s`).

Proof. Generally, although the codes1(); . . . ; s`() does not necessarilyreturn, it always ter-
minates in this or that way (by returning or by raising an exception) according to Lemma3.
Consider the tree of recursive calls of the codes1(); . . . ; s`() executed on the inputyz, as in
Lemma3. This tree is finite; leth be its height.

The proof is an induction on the pair(h, `). The natural basis case would beh = 0, ` = 1;
to improve the presentation of the proof, the case ofA() is handled together with induction
step (without referring to the induction hypothesis), whilea() is formulated as the basis.
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Basis: (0, 1) and s ∈ Σ. The procedurea() is constructed so that it returns on the inputyz,
consumingy, if and only if y = a. This is equivalent toy ∈ LG(a) = {a}.

Induction step: (h− 1, . . .) → (h, 1), or (0, 1) and s ∈ N . Let ` = 1 ands1 = A ∈ N , let
z follow A, and leth be the height of the tree of recursive calls made byA() executed
onyz.

⇒© If A() returns onyz, consumingy, thenT (A,F irstk(yz)) gives some rule

A → α1& . . . &αm&¬β1& . . . &¬βn (m > 1, n > 0), (17)

and then the following computations take place:

1. For every positive conjunctA → αi (αi = s1 . . . s`), the codes1(); . . . ; s`() is
called onyz. It returns, consumingy.
Since the computation ofs1(); . . . ; s`() onyz is a subcomputation of the compu-
tation ofA() on yz, the height of the tree of recursive calls corresponding to this
subcomputation does not exceedh− 1. z follows s1 . . . s` just becausez follows
A andA → s1 . . . s` ∈ uconjuncts(P ). Hence, by the induction hypothesis,
y ∈ LG(αi).

2. For every negative conjunctA → ¬βj (βj = t1 . . . t`), the codet1(); . . . ; t`() is
invoked onyz. It either raises an exception, or returns, consuming a prefix other
thany: putting together, it is not the case that this code returns consumingy.
Similarly to the previous case, this computation has to be a part of the computa-
tion ofA(), hence the depth of recursion is at mosth−1; again,z follows t1 . . . t`.
This allows to invoke the induction hypothesis to obtain thaty /∈ LG(βi).

Combining the results for individual conjuncts, y ∈
LG(α1& . . . &αm&¬β1& . . . &¬βn) and thusy ∈ LG(A).

⇐© If y ∈ LG(A), then there exists a rule (17), such that

y ∈ LG(α1& . . . &αm&¬β1& . . . &¬βn) (18)

Sincez follows A, ε · S · ε CF/d
=⇒ δ ·A · η, wherez ∈ LG(η). Combining (18) with this,

we obtain thatyz ∈ LG(ϕη), whereϕ = α1& . . . &αm&¬β1& . . . &¬βn. Then, by the
definition of a deterministic LL(k) table,T (A,F irstk(yz)) equals (17).

Hence the computation ofA() onyz starts from choosing the alternative (17). Consider
all the conjuncts of the rule (17) in the order of the corresponding code fragments, and
let us prove that each of these fragments is successively passed:

1. For every positive conjunctA → αi (αi = s1 . . . s`), y ∈ LG(s1 . . . s`) by (18)
andz follows s1 . . . s` (sincez follows A andA → s1 . . . s` ∈ uconjuncts(P )).
Therefore, by the induction hypothesis, the codes1(); . . . ; s`() returns onyz,
consumingz.
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2. For every negative conjunctA → ¬βj (βj = t1 . . . t`), sincey /∈ LG(t1 . . . t`)
and z follows t1 . . . t`, by the induction hypothesis, it is not the case that the
codet1(); . . . ; t`() returns onyz, consumingz. On the other hand, by Lemma3,
the codet1(); . . . ; t`() terminates onyz, either by returning or by raising an ex-
ception. This implies thatt1(); . . . ; t`(), invoked on the inputyz, either returns,
consuming a prefix other thany, or raises an exception. In the former case an
exception is manually triggered in the code fragment corresponding toβj. Thus
an exception is effectively raised in both cases. The exception handler included
in the code fragment sets a local variablefailed to true, and in this way the whole
code fragment terminates without raising unhandled exceptions.

In this way all the conjuncts are successfully handled; the final assignment in the code
for the alternative (17) restores the pointer to the location where it was put by the code
for the first conjunct. ThenA() returns, having thus consumed exactlyy.

Induction step: (h, `− 1) → (h, `). Let ` > 2, let s1 . . . s` ∈ (Σ ∪ N)∗ and letFirstk(z)
follow s1 . . . s`.

⇒© Let the codes1(); . . . ; s`−1(); s`() return on inputyz, consumingy. Consider the
value of the pointer to the input string afters`−1() returns and befores`() is called;
this value defines a factorizationy = uv, such that the codes1(); . . . ; s`−1() returns on
uvz, consumingu, while the procedures`() returns onvz, consumingv. The height
of the recursive calls in these subcomputations obviously does not exceed that of the
whole computation.

Sincez follows s`, the induction hypothesis is directly applicable to the computation
of s`() onvz, yielding

v ∈ LG(s`) (19)

In order to use the induction hypothesis for the former` − 1 calls, first it has to be
established thatvz follows s1 . . . s`. We know thatz follows s1 . . . s`, which means
thatε ·S ·ε CF/d

=⇒ δ ·s1 . . . s` ·η, wherez ∈ LG(η). Hence,ε ·S ·ε CF/d
=⇒ δ ·s1 . . . s`−1 ·s`η,

while concatenating (19) with z ∈ LG(η) yieldsvz ∈ LG(s`η).

Now the induction hypothesis can be used for the computation ofs1(); . . . ; s`() onuvz
(which returns, consumingu), giving

u ∈ LG(s1 . . . s`−1) (20)

By (20) and (19), y = uv ∈ LG(s1 . . . s`−1s`).

⇐© Conversely, ify ∈ LG(s1 . . . s`−1s`), then there exists a factorizationy = uv, such
thatu ∈ LG(s1 . . . s`−1) andv ∈ LG(s`).

The computation ofs1(); . . . ; s`−1() onuvz is obviously a subcomputation of the com-
putation ofs1(); . . . ; s`−1(); s`(). Hence, the recursion depth for the subcomputation
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does not exceed that for the whole computation. On the other hand, sincev ∈ LG(s`)
andz follows s1 . . . s`−1s`, vz follows s1 . . . s`−1 (as proved in the previous part of
the proof). This allows to apply the induction hypothesis to this subcomputation and
obtain thats1(); . . . ; s`−1() returns onuvz, consumingu.

Once the subcomputations1(); . . . ; s`−1() returns on uvz, the computation of
s1(); . . . ; s`−1(); s`() proceeds with invokings`() onvz. Hence,s`() onz is also a sub-
computation, which has height no greater than that of the whole computation. Since
z follows s`, the induction hypothesis is now applicable, andv ∈ LG(s`) implies that
s`() returns onvz, consumingv.

Therefore, the sequential composition of these two computations,
s1(); . . . ; s`−1(); s`(), returns onyz, consuminguv = y.

Now let y = w, z = ε, ` = 1, s1 = S, η = ε. Then the conditions of Lemma4 are
satisfied, and the following result is obtained:

Corollary 1. Let G = (Σ, N, P, S) be a strongly non-left-recursive Boolean grammar that
complies to the semantics of naturally reachable solution. Letk > 1. LetT : N ×Σ6k → P
be a deterministic LL(k) table forG, let the set of procedures be constructed with respect to
G andT .

Then, for every stringw ∈ Σ∗, the procedureS() executed onw

• Returns, consuming the whole input, ifw ∈ L(G);

• Returns, consuming less than the whole input, or raises an exception, ifw /∈ L(G).

Out of this there follows the statement on the correctness of the algorithm:

Theorem 1. Let G = (Σ, N, P, S) be a strongly non-left-recursive Boolean grammar that
complies to the semantics of naturally reachable solution. Letk > 1. LetT : N ×Σ6k → P
be a deterministic LL(k) table for G, let a recursive descent parser be constructed with
respect toG andT .

Then, for every stringw ∈ Σ∗, the parser, executed onw, accepts ifw ∈ L(G), rejects
otherwise.

6 Conclusion

A generalization of the familiar context-free recursive descent method has been devel-
oped, which becomes the first truly practical parsing algorithm for Boolean grammars.

The notions behind the algorithm and the proof of its correctness are admittedly not very
easy; however, the algorithm itself is intuitively clear and can easily be used in applications
instead of the standard context-free recursive descent. This makes it possible to integrate
support for Boolean grammars into practical parser generators that currently use context-free
recursive descent.
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