
Error-Correction and Finite Transductions

Christopher L. McAloney

March 2004
External Technical Report

ISSN-0836-0227-
2004-476

Department of Computing and Information Science
Queen’s University

Kingston, Ontario, Canada K7L 3N6

Document prepared March 11, 2004

Abstract

Recently, there has been a renewed interest in the detection and the correction of errors
which occur in data sent across noisy communication channels. We consider the problems of
error-detection and error-correction from the perspective of formal languages, in which the
transmitted data are strings of symbols from an arbitrary alphabet. We discuss in detail a
particular class of error channels, the SID channels, in which the channel may cause up to k
substitution, insertion or deletion errors in any l consecutive symbols of the input word.

In this thesis, we will examine the SID channels in some depth and, using tools from
metric analysis, define a measure of distance which can be used formally to measure the
number of errors between any pair of words. We then show, through a generalized finite
transducer construction for SID channels that, provided the input language for the channel
is regular, the union of the neighbourhoods of words in the language with respect to our
distance measure is also regular and thus the output language from the channel is itself a
regular language.

As motivation for our work, we discuss the Statecharts language in depth and define
a written notation which can be used to formally discuss a restricted class of statecharts.
Using this notation, we provide a statechart construction which can be used to accept the
language output by a particular type or error channel.

Acknowledgements

I would like to thank my supervisor, Dr. Kai Salomaa, without whose guidance and support
this thesis would not have been possible.

Many thanks to Amanda and my parents, Nancy and William McAloney, for their support
and encouragement, and to all others who have influenced my thoughts over the course of
the writing of this thesis, from conception to completion.

1 Introduction

Automatic error-correction techniques have been receiving a lot of attention in recent years.
With the rapid overpopulation of the internet, much research has been devoted to finding
new ways in which large amounts of information can be accurately transmitted between
two points. As more offices look into converting their enormous quantities of paper records
into a more manageable electronic format, error-correction methods have been incorporated
into diagram recognition and optical character recognition fields [24]. In addition, new
developments in networking research, most notably those in wireless communications [6],
call for substantially stronger error-correction methods than were previously needed.

The problem of error-correction arises in many areas of computer science research, partic-
ularly those attempting to facilitate the interactions between humans and computers such as
the various branches of diagram recognition or natural language recognition and generation.
Note the distinction between error-detection and error-correction: the former merely detects
that an error exists in the input1 while the latter selects a word in the language in question
to replace the word in which the error was detected.

Several error-detection and -correction methods, ranging from heuristic and probabilistic
approaches to purely language theoretic ones, exist. Many of these heuristic approaches and
probabilistic approaches carry the disadvantage that they require a priori knowledge of the
language (either formal or natural) in question, and the error-correction techniques are based
on analysis of trends which occur in the languages [24].

However, if this information isn’t available, then these methods have little use and we are
forced to rely on a more theoretical and general approach. The first and most common of
these alternative methods is that of coding. The theory of codes contains very strong error-
correction results, and has been extensively treated in the literature; see [2, 8, 26, 29] for
some textbook references on codes in general, and error-correcting codes specifically. Coding
usually takes the form of block codes, in which every word in the code is of the same length.

When dealing with errors in words transmitted across some error channel, there are three
basic types of errors which can be introduced into the transmitted word: substitutions of one
symbol in the relevant alphabet with another, insertion of new symbols into the transmitted
word, and deletion of symbols which occur in the transmitted word. However, both the

1In many applications, such as the communication protocols used for communications over the internet
today, this is sufficient, since the computer receiving the message can request that the sender re-transmit
the word.

1

1.1 Chapter Summary

insertion and the deletion error-types change the length of the word in which these errors
occur, so, if we assume that the length of the word does not change during transmission,
substitution errors are the only errors which can be considered.

Since almost all of the research concerning codes has used block codes, most of the results
in this field concern only substitution type errors with relatively few results for the deletion
and insertion error types (see [25, 9, 14, 30, 15] for examples of the latter). In the more
general case, however, when we are dealing with arbitrary data in which the words need
not all be of the same length, we must also consider the insertion and deletion cases, which
means that we can no longer rely on block codes which assume that the length of the word
does not change. Thus, for our purposes, the vast majority of coding-theoretic results are
not directly applicable, and we are forced to use a different approach.

This thesis will examine the problems of error-detection and error-correction from the
perspective of formal languages and automata theory. We will use, in this discussion, tools
from various diverse areas including coding theory [9, 25], metric analysis [7, 4, 3, 28] and a
language theoretic view of error channels [17, 23, 21, 20] to develop a new and useful distance
measure for use on words over an arbitrary alphabet and a means for which it can be applied
to a certain class of error channels.

The major contributions of this thesis are:

• a formalization of the notion of SID channels found in the work of Konstantinidis and
Jürgensen [23, 21, 20, 19, 22, 17] which results in the pseudometric definition found in
§5.3.

• a generalized finite transducer construction (Theorem 5.2) which, for a given language,
produces as output the set of all words which are within some error bound k of some
word in the original language with respect to the pseudometric defined in §5.3. Similar
results, with less complete proofs, have been independently obtained in [23].

• a written notation which can be used to formally discuss a restricted class of State-
charts, as defined by D. Harel in [13, 11, 10, 12] (§4.2 and §4.3); and

• a procedure to construct a statechart which, given a regular language used as input
to the error channel, can recognize the language received as output from the error
channel, for a certain type of error channel (Theorem 4.1).

1.1 Chapter Summary

The chapters of this thesis are organized as follows:

• in Chapter 2, we present some background and preliminary definitions which we will
require in our language theoretic discussions, and present a survey of relevant results
in the area of metric analysis as related to formal language theory.

• Chapter 3 contains a survey of definitions and results related to or required by this
thesis, mostly drawn from the work of Jürgensen and Konstantinidis [23, 21, 20, 19,

2

22, 17]. In particular, we will formalize the notion of an error channel and discuss in
detail a particular class of error channels, known as SID channels.

• in Chapter 4 we will define and discuss in some detail a subset of the Statecharts no-
tation introduced by David Harel, and we will define a formal, written notation of a
restricted class of the Statecharts language which can be used to formalize some prop-
erties of Statecharts. In addition, we will provide, as an extended example, a definition
of a particular type of error channel, and define a method whereby a statechart can
be constructed to accept the output language from the error channel, given that the
input language is regular.

• Chapter 5 gives a definition of what we call a pseudometric which can be used to mea-
sure distances between words over an arbitrary alphabet which mimics the behaviour
of the SID channels. As our main result, we provide a transducer construction which
mimics the behaviour of some SID channels.

• Chapter 6 summarizes the results of the thesis and suggests several directions for
possible future work.

2 Preliminaries

2.1 Set Theory and Formal Languages

In this thesis, we will make extensive use of notations and concepts from set theory, logic,
and formal language theory. All of these are relatively standard notations in the literature
of mathematics and computer science.

For a set A, we denote the cardinality of A by |A|. For an element a and a set A, we say
a ∈ A if a is a member of A. If A and B are sets, we write A ⊆ B and call A a subset of B
if every member of A is also a member of B. The empty set, denoted ∅, is the (unique) set
with no members, and is trivially a subset of every set. We will denote {0, 1, 2, 3, . . .}, the
set of natural numbers, by N; the set of integers, {. . . ,−2,−1, 0, 1, 2, . . .}, by Z; and the set
of real numbers (−∞,∞) by R.

We define sets, usually in terms of other sets, by the following notations:

• {x | φ(x) }, where φ is some property which is either true or false, is the set of all
elements x which satisfy φ;

• We use the standard notation for the basic set-theoretic operations of union (∪), in-
tersection (∩) and set difference (\).

• A×B, the Cartesian product of A and B, is the set of all ordered pairs (a, b) such that
a ∈ A and b ∈ B. For a set S of ordered tuples of the form (x1, . . . , xn), we define the
projections of S as πi(S) = {xi | (x1, . . . , xi, . . . , xn) ∈ S}, for 1 ≤ i ≤ n.

• P(A), called the power set of A for some set A, is the set of all subsets of A.

3

2.1 Set Theory and Formal Languages

An alphabet, Σ, is a finite non-empty set of symbols. A word over an alphabet Σ is a
mapping w : Iw −→ Σ such that Σ is the alphabet and Iw ⊆ N, Iw = {0, . . . , n − 1}, for
some n ≥ 0, is a finite index set. Intuitively, then, a word is a sequence of alphabet symbols
(which we will sometimes refer to as a string). Concatenation of words is defined in the
natural way, and a word w is usually denoted by the juxtaposition of its alphabet symbols.
If U and V are two sets of words over some alphabet Σ, we define the concatenation of U
and V by:

UV = { uv | u ∈ U , and v ∈ V }

On many occasions, we will need to refer to the length of a word w, which is equivalent to the
cardinality of its index set. We denote the length of w by |w|, where |w| = |Iw|. The empty
word (denoted λ) is roughly analogous to the empty set — λ is the (unique) word such that
Iλ = ∅. The set of all words of finite length over Σ is denoted by Σ∗ and Σ+ = Σ∗\{λ}. A
subset L of Σ∗ is called a language.

Definition 2.1 A deterministic finite automaton (often abbreviated DFA), M , is a
five-tuple M = (Q, Σ, γ, q0, F) where

Q : is the finite set of states;
Σ : is the input alphabet;
γ : is the transition function;

q0 ∈ Q : is the (unique) initial state; and
F ⊆ Q : is the set of final states.

The transition function, γ : Q × Σ −→ Q maps a tuple consisting of a state and an
alphabet symbol onto a new state. The name “transition function” indicates that the state
of the DFA changes according to the alphabet symbols read.

The word “deterministic” in the name of the DFA indicates that for any ordered pair of a
state and an alphabet symbol, the next state of the DFA is uniquely determined. This opens
the door to an obvious generalization, namely that of the nondeterministic finite automaton.

Definition 2.2 A nondeterministic finite automaton (or NFA) is a five-tuple M =
(Q, Σ, γ, q0, F) with Q, Σ, q0 and F defined as in a DFA. The transition function, γ, is defined
as γ : Q× Σ −→ P(Q). That is, instead of mapping a state and an input to one state, γ in
an NFA is a mapping from a state and an input to a set of states.

One further generalization of the NFA can now be made — that of the NFA with lambda
transitions (or more commonly, λ-NFA). The λ-NFA is defined identically to the NFA with
the exception that transitions on an empty input are now admitted; that is, γ : Q × (Σ ∪
{λ}) → P(Q). Put another way, a λ-NFA is able to make a transition to a new state without
reading an input symbol.

The advantage of using (λ−)NFAs over DFAs is primarily one of state complexity; the
number of states required in a machine that accepts the given language. We will see in
Thm 2.1 that every language which is accepted by a (λ−)NFA is also accepted by a DFA.

4

2.2 Finite Transductions

However, for a given NFA, M , with n states, the number of states required by a DFA
accepting L(M) could potentially be as many as 2n.

Although the transition function for finite automata is defined on individual alphabet
symbols, it can be extended in a natural way to be defined on words over the input alphabet,
Σ. We define this extension recursively:

Definition 2.3 The extended transition function γ∗(qi, w), for qi ∈ Q and w ∈ Σ∗, is
defined as follows:

• γ∗(qi, λ) = qi ∪ γ∗(qj, λ), for all qj ∈ γ(qi, λ)

• For w = au, where a ∈ Σ and u ∈ Σ∗, γ∗(qi, w) = γ∗(γ(qi, a), u) ∪ γ∗(qi, λ)

Finite automata are typically employed as acceptors of languages in the following sense:
if, after reading an input word w, the machine M resides in a final state, then we say that w is
in the language accepted by M, which we call L(M). More formally, for a DFA, w ∈ L(M) if,
and only if, γ∗(q0, w) ∈ F . This situation is slightly more complicated in the nondeterministic
case, since for any given symbol of the input word, the next state is not necessarily unique —
there are potentially many possible transitions. In the nondeterministic case, then, we say
that w is accepted by a machine M if there exists a valid choice of state transitions which
leaves M in a final state after reading w. More formally,

w ∈ L(M) ⇐⇒ γ∗(q0, w) ∩ F 6= ∅.

Pictorially, DFAs or (λ-)NFAs are usually represented as labelled directed graphs with
the nodes representing the states of the finite automaton, and an edge from qi to qj labelled
with a ∈ Σ if and only if γ(qi, a) = qj.

Theorem 2.1 Let Σ be some finite alphabet, and let L ⊆ Σ∗. Then there exists a (λ−)NFA,
M , accepting L if and only if there exists a DFA, M ′, accepting L.

A proof of the above theorem may be found in any introductory textbook on formal
language theory (see, for example, [35, 32]). We will call a language L ⊆ Σ∗ regular if, and
only if, there exists a DFA M with L(M) = L.

2.2 Finite Transductions

Finite automata are very useful tools in many aspects of theoretical computer science, but
they have several restrictions. One of these is that they are only able to recognize a restricted
class of the possible languages on a given alphabet and, although many alternate models exist
to address this restriction, it is not the intent of this thesis to discuss these models. The
usefulness of finite automata is due to the fact that their properties are very well known
and are algorithmically decidable. However, another limitation of finite automata, their
inability to provide output, restricts their usefulness for our purposes. Strictly speaking, the
output of a DFA or an NFA is merely a “yes” or a “no” answer, depending on whether or

5

2.2 Finite Transductions

not the machine resides in a final state after reading the input word. In many applications,
the ability to provide more meaningful output is required. In this section, we will discuss
an extension of the finite automaton model called a finite state transducer, or merely a
transducer. Transducers, as we will see, have the important property that they preserve
regularity.

Simply put, a transducer is a finite automaton with output. In addition to a transition
function, a transducer also has an output function which maps a state and an input to a set
of possible outputs and states.

2.2.1 Rational Transductions

We now present some preliminary definitions and provide a discussion of the theoretical
importance of transductions. The following algebraic concepts are necessary for our devel-
opment of a formal definition of a transduction.

A semigroup consists of a set M and an associative binary operation on M , which is
usually denoted by multiplication. A unit or identity element is an element 1M ∈ M such
that, for any m ∈ M , 1Mm = m1M = m.

Definition 2.4 A semigroup which has an identity element is a monoid. For any set X,
the free monoid X∗, with concatenation as the semigroup operation, is defined by

X∗ =
⋃
n≥0

Xn

where X0 = {1X∗}. Thus, the elements of a free monoid X∗ are n-tuples of elements of X.

Example 2.1 Let Σ be a finite alphabet. Then, Σ∗, with concatenation as the binary oper-
ation, and λ as the identity element, is a free monoid.

Note that the identity element of a monoid is necessarily unique since, if 1 and 1′ are
both identity elements, then 1′ = 11′ = 1. Strictly speaking, the elements of a free monoid
X∗ are n-tuples of the form u = (x1, x2, . . . , xn). We will, however, write them by simply
juxtaposing the elements of the n-tuple to make clear their relation to what we have been
referring to as “words”. Thus, u above, becomes u = x1x2 . . . xn.

Theorem 2.2 [1] Let X and Y be monoids. Then X × Y is a monoid with multiplication
defined by (x, y)(x′, y′) = (xx′, yy′).

Definition 2.5 Let M be a monoid. The family Rat(M) of rational subsets of M is the
least family R of subsets of M satisfying the following conditions:

i) ∅ ∈ R; and {m} ∈ R for all m ∈ M ;

ii) A, B ∈ R ⇒ A ∪B, AB ∈ R;

iii) A ∈ R ⇒ A+ =
⋃

n≥1 An ∈ R.

6

2.2 Finite Transductions

If M is a free monoid, then the rational subsets of M correspond exactly to the regular
subsets of M [1, 39]. In other words, if M = Σ∗, for some Σ, then a language L ⊆ Σ∗ is a
rational subset of Σ∗ iff there exists a DFA accepting L. This is not true in the more general
case where M is an arbitrary monoid.

Definition 2.6 Let X and Y be alphabets. A rational relation over X and Y is a rational
subset of the monoid X∗ × Y ∗.

We are now able to describe relationships between two alphabets in terms of the notion
of a rational set. However, our purposes, which involve the incorporation of these notions
into a finite automaton, are more “dynamic” than this, so we require two further definitions
to transform the static concept of a rational set into the dynamic concept of a rational
transduction.

Definition 2.7 A transduction from X∗ into Y ∗ is a function from X∗ into P(Y ∗), the
set of subsets of Y ∗, which we will denote by τ : X∗ −→ Y ∗ for the sake of clarity.

We define the domain and the image of τ by

dom(τ) = {f ∈ X∗ | τ(f) 6= ∅};
im(τ) = {g ∈ Y ∗ | ∃f ∈ X∗ : g ∈ τ(f)}.

Definition 2.8 Let τ : X∗ −→ Y ∗ be a transduction, and let R = {(f, g) ∈ X∗ × Y ∗ | g ∈
τ(f)} be its graph. τ is a rational transduction iff R is a rational relation over X and
Y .

Using rational transductions, we now have a method to “translate” languages between
different alphabets, or merely translating words over an alphabet to different words over the
same alphabet, while preserving certain important structural features of the language being
translated. In the context of this thesis, then, the introduction of various types of errors into
an input word will be modelled by this sort of translation. We are now prepared to describe
an extension of the finite automaton model which implements these ideas.

2.2.2 Finite-State Transducer

A finite transducer is essentially a string rewriter — a finite automaton with output. In
addition to the automaton’s input alphabet, the transducer also has an output alphabet.
While some authors choose to separate the transition function and the output function in
their definition of a finite transducer (see, for example, [5]), we will follow the definition of
transducers as presented in [1], in which the state transitions and the outputs are described
by a set of edges.

7

2.2 Finite Transductions

Definition 2.9 A finite transducer is a 6-tuple (Q, Σ, ∆, σ, q0, F) where

Q : is the finite set of states;
Σ : is the input alphabet;
∆ : is the output alphabet;
σ : is a finite subset of Q× Σ∗ ×∆∗ ×Q;

q0 ∈ Q : is the distinguished start state; and
F ⊆ Q : is the set of final states.

Note the format of σ. In the case of the transducer, the transitions are no longer repre-
sented by a function but are represented by 4-tuples consisting of a source state, an input
word, an output word and a destination state. In general, finite transducers are nonde-
terministic, since there are no restrictions on the transition-and-output set, σ, which would
guarantee determinism. In fact, the transducer construction given in §5.4 relies quite heavily
on nondetermism. Finally, we note the increased generality in the definition of the trans-
ducer versus the definitions of finite automata: whereas a finite automaton may only read
the input word one symbol at a time, the transducer definition allows state transitions based
on longer substrings of the input word.

We now present several supplementary definitions for transducers. We will follow the
definitions presented in [1]. Given a transducer, T , we define a computation of T to be a
word ξ of the form

(p1, x1, y1, q1) · · · (pn, xn, yn, qn), where qi = pi+1 (1)

such that each factor (pi, xi, yi, qi) is in σ. Given a computation ξ of T as in (1), the label of
ξ is the pair of words |ξ| = (x, y) defined by x = x1 · · ·xn and y = y1 · · · yn. For states p and
q, we define Λ(p, q) to be the set of all computations from p to q and

Λ(p, Q′) =
⋃

q∈Q′

Λ(p, q), for Q′ ⊆ Q.

Finally, for p, q ∈ Q, we define T(p, q) = {|ξ| | ξ ∈ Λ(p, q)} and T(p, Q′) = {|ξ| | ξ ∈
Λ(p, Q′)}. Thus T(p, q) is the set of all labels on the paths from p to q — that is, T(p, q) is
the set of pairs of input and output words which form paths from p to q.

Definition 2.10 [1] Let T be a finite transducer. The transduction |T | : Σ∗ → ∆∗ realized
by T is defined by |T |(x) = {y ∈ ∆∗ | (x, y) ∈ T(q0, F)}. For a language L ⊆ Σ∗, where Σ
is the input alphabet, we will define |T |(L) = {y ∈ ∆∗ | y ∈ |T |(x), for some x ∈ L}.

Example 2.2 Figure 1 shows a simple example of the state transition diagram for a trans-
ducer T = ({q0, q1}, Σ, Σ, σ, q0, {q1}), where Σ = {a, b} and

σ = {(q0, a, b, q0), (q0, a, b, q1), (q1, a, a, q1)}.

The labels are written as u/v for input u and output v. For the input language L = a+ then,
|T |(L) = b+a∗.

8

2.2 Finite Transductions

a/b

a/aa/b

q0 q1

Figure 1: A simple transducer example.

b/b

a/b

b/aa

q0 q1

Figure 2: The state transition diagram for the transducer discussed in Ex. 2.3.

9

2.3 Metric Analysis and related results

Example 2.3 In Figure 2, we see a slightly more complex transducer example, for a trans-
ducer T ′. For the input language L′ = (ab+)∗, we have that |T ′|(L′) = (b+aa)∗.

Theorem 2.3 [1] A transduction τ : X∗ −→ Y ∗ is rational iff τ is realized by a transducer.

Theorem 2.4 [39] The family of regular languages is closed under finite transduction.

The significance of these results should be clear. Using a finite transducer T , we can
guarantee that, as long as the input language, L, is regular, then T ’s output language, which
we will denote by |T |(L), is also regular. As was mentioned earlier, we will, in Chapter 5,
be using transducers to model the behaviour of error-channels which allow various types of
errors to be introduced into words which are transmitted across this channel. The above
two results mean that, if an error channel can be modelled by a finite transducer, then for
any regular language L a finite automaton can accept the set of words obtained from L by
introducing all possible errors.

2.3 Metric Analysis and related results

Metric spaces and metric analysis have long been an integral part of different branches of
topology. The techniques developed there have since been applied to various other fields,
including the realm of formal language theory. These adaptations of metric analysis to formal
languages formed the foundation of certain branches of information theory — coding theory
in particular.

Intuitively, a metric, which is defined on a set, is a measure of the distance between
various elements of the set. In the field of point-set topology, we can find a very rich theory
derived in large part from the notion of a metric and from abstraction of the characteristics
of metric spaces (see, for example, [7]).

2.3.1 Introduction and Definitions

We begin this section with some important definitions. For a more detailed discussion of
metric spaces, see [7].

Definition 2.11 Let S be a set. A function δ : S × S −→ [0,∞) is called a metric if, and
only if, ∀ x, y, z ∈ S, the following conditions hold:

i) δ(x, y) = 0 ⇔ x = y

ii) δ(x, y) = δ(y, x)

iii) δ(x, z) ≤ δ(x, y) + δ(y, z)

In the event that δ : S × S → [0,∞) satisfies i) and ii) but fails to satisfy iii), we will call δ
a pseudometric.

10

2.3 Metric Analysis and related results

The first condition says that the distance between two elements of S, x and y can only
be equal to zero in the event that x = y, and in fact must equal zero if x = y. This is
exactly what we would expect, even relying only on the intuitive notion of “distance” since
a distance of zero between two objects would imply that they were, in fact, in precisely the
same location. The second condition is roughly analogous to the notion of symmetry in a
binary relation — it simply states that the distance between x and y does not depend on the
order in which we consider x and y. Finally, the third condition is more commonly known as
the triangle inequality. It is called the “triangle inequality” because, given any three points,
x, y, z, in the real plane R × R, the distance between x and z can be at most the sum of
the distances from x to y and from y to z. Since the Euclidean measures of distance (the
“common” distance measures on the real number line and the real plane) form the basis for
this definition of a metric, it is fairly obvious why the triangle inequality has been included
in the definition of a metric.

In Chapter 5, however, we will require a term for a measure of distance which satisfies the
first two requirements of a metric, but fails to meet the restriction of the triangle inequality.
We will see that failing to satisfy the triangle inequality doesn’t necessarily render a measure
of distance useless, and in fact, we will define a very useful measure of distance which fails
the third requirement of a metric.

Example 2.4 Two examples of very commonly used metrics are the standard Euclidean
metrics, used on the real number line R and on the real plane R× R.

The distance between two points, x, y ∈ R, is usually taken to be |x− y|, and the distance
between two points in the plane, (x1, y1), (x2, y2) ∈ R2 is

√
(x1 − x2)2 + (y1 − y2)2

Next, we discuss the applications of these concepts to formal language theory. A distance
measure satisfying the above definition would give us the ability to group related words (or
languages) on some alphabet by their relative proximity according to the distance measure.
In other words, given a distance which satisfies the above definition, and given some word
u ∈ Σ∗, we can use this distance measure to obtain a language U ⊆ Σ∗ consisting of all
words over Σ which are “close” (according to the distance measure) to u. In particular, we
have the following definition.

Definition 2.12 Let S be a set, and let δ be a (pseudo)metric on S. For K ⊆ S and ε ≥ 0,
we define E(K, δ, ε) to be the neighbourhood (or ε-neighbourhood) of K of radius ε with
respect to δ such that

E(K, δ, ε) = {s ∈ S | ∃ k ∈ K, δ(k, s) ≤ ε}

In essence, this says that the neighbourhood of a set K ⊆ S is the set of all elements
of S that are within some error-bound ε of the elements of K. For the (not necessarily
disjoint) partitioning scheme mentioned above, we can imagine setting some error-bound
ε ≥ 0 and considering the ε-neighbourhoods E({w}, δ, ε) for all w ∈ L. When considering
the neighbourhood of a singleton set (as in E({w}, δ, ε)), we will drop the braces and denote
the neighbourhood simply by E(w, δ, ε).

11

2.3 Metric Analysis and related results

2.3.2 Related Results in Metric Analysis

The adaptation of metric analysis techniques to the field of formal language theory has
formed a large part of the foundational structure to the area of algebraic coding theory. In
particular, many of the metrics used in formal language theory have been used extensively in
measuring the distance between code words in coding theory. In this section, we will discuss
in detail an extension of one of these metrics, the Hamming distance [9], and some of its
related results.

Definition 2.13 Let Σ be a finite alphabet. For a, b ∈ Σ, define

∆(a, b) =

{
1 if a 6= b
0 if a = b

In general, then, we define the Hamming distance to be

∆n(x1x2 . . . xn, y1y2 . . . yn) = Σn
i=1∆(xi, yi)

Simply put, then, the Hamming distance between two words is the number of positions
or indices at which the words differ. It is easy to see that ∆n satisfies the three conditions
in Definition 2.11 and is therefore a metric. The Hamming distance alone, however, is not
particularly useful from a formal languages point of view, as it requires that the two words
being compared be of the same length. Two variations of the Hamming distance are defined
in [4] — one of which will be defined in detail later. Another variation is known as the
prefix-Hamming distance since it operates as the Hamming distance does on the two words
for the first k letters, where the length of the shortest word is k, and then adds the length
of the remaining suffix.

The more useful variant of the Hamming distance discussed here is known as the shuffle-
Hamming distance.

Definition 2.14 Let u, v be words in Σ∗. Then the shuffle of u and v, ω(u, v) ⊆ Σ∗, is
the set of all words x1y1 . . . xmym such that u = x1x2 . . . xm, v = y1y2 . . . ym, xi, yi ∈ Σ∗ and
i = 1, . . . ,m for m > 0.

We first note that the xi and yi in the above definition are elements of Σ∗ and they can
thus be arbitrary-length or even empty substrings of x and y. Intuitively, then, the shuffle of
two words is the set of all words that can be formed by “shuffling” the two words together.
That is, for any word w ∈ ω(u, v) for some u, v ∈ Σ∗, there exist strictly increasing mappings
from Iu −→ Iw and from Iv −→ Iw.

Definition 2.15 Let u, v be words in Σ∗ and let # be a symbol not appearing in Σ. The
shuffle-Hamming distance between u and v, denoted δH(u, v), is defined by

δH(u, v) = min{∆k(x, y) | k ≥ max{|u|, |v|}, x ∈ ω(u, #k−|u|), y ∈ ω(v, #k−|v|)}

12

2.3 Metric Analysis and related results

For two words, u and v, the notion of “edit distance” is used in the literature to describe
the minimum number of edit operations or edit steps (i.e. the insertion of a new symbol, the
deletion of a symbol, or the substitution of one symbol for another) required to change u into
v (see, for example, [30]), and it can be shown that the shuffle-Hamming distance δH(u, v)
is the same as the edit distance between u and v [4, 27].

Example 2.5 For example, consider the two words abcba and bcbab. The simplest way
to convert abcba into bcbab would be to substitute each symbol in the first word with the
symbol in the corresponding position in the second word, for a total of five edit operations.
More efficiently, however, we could delete the first symbol from abcba and append b to the
resulting string, bcba, for a total of two edit steps.

So δH(abcba, bcbab) = 2, which can be obtained by constructing the intermediate words
abcba# and #bcbab and computing their ∆6 distance.

Theorem 2.5 [4] δH , as defined above, is a metric.

Our primary interest in this development is to find a measure of distance which can
be applied to words on some finite alphabet, and which is “closed” in the sense that the
metric doesn’t increase the complexity of the language in question. More precisely, we want
a measure of distance, δ, for which we can guarantee that, for any regular language L and for
any ε > 0, E(L, δ, ε) is also regular. We call such a distance measure regularity preserving.
We will see in Chapter 5 that using a metric as a measure of distance is not a necessary
condition to guarantee this preservation of regularity, and our next example demonstrates
that this alone is also not a sufficient condition.

Example 2.6 Let Σ = {a, b}. We define a distance δ as follows:

δ(u, v) =

0, if u = v;
1
2
, if u = anban and v = ambam for some n,m ≥ 0, n 6= m;

1, otherwise.

It is easy to see that δ satisfies the three conditions in Definition 2.11, so δ is a metric.
However, E

(
aba, δ, 1

2

)
= {anban | n ≥ 0}, which is not a regular language.

Clearly, then, we need to impose additional constraints in order to ensure that a given
metric is regularity preserving. We will see shortly that a distance measure which satisfies
the conditions of Definition 2.11 as well as an additional property, known as additivity, is
regularity preserving. The additivity property essentially states that the neighbourhoods
induced by an additive metric are in some sense invariant under decompositions of the input
word into smaller words. More formally, we have the following definition:

Definition 2.16 Let δ be a metric. We say that δ is additive if, for w = w1w2, wi ∈ Σ∗,
we have, for all ε ≥ 0,

E(w, δ, ε) =
⋃

β1+β2=ε

E(w1, δ, β1) E(w2, δ, β2)

13

Theorem 2.6 [4] The shuffle-Hamming distance, δH , is additive.

The notion of additivity, combined with the definition of a metric, provides us with the
ability to ensure that a given distance preserves regularity.

Theorem 2.7 Assume that δ is an additive distance on Σ∗ and let L ⊆ Σ∗ be regular. Then
E(L, δ, ε) is regular for all ε ≥ 0 [4].

The implications of the above theorem are many. There is a large body of information
concerning regular languages (see, for example, [39, 32, 35]), and the theorem states that
neighbourhoods, with respect to any additive distance, preserve regularity. Perhaps more
importantly, from the perspective of error-correction and error-detection, Theorem 2.7 en-
sures that, with a careful choice of a metric, the set of all words which are “close” to one of
the original words is, at least in the sense that both of the languages are regular, no more
complex than the original language.

3 SID Channels and Error Functions

3.1 Introduction

There has been a vast quantity of research concerning the properties of block codes —
in which every code word over the alphabet Σ has the same length — when they are sent
across some noisy error-inducing channel. However, the usage of block codes imposes a severe
restriction on what sorts of errors the channel can induce. Specifically, block codes can only
comfortably be used with channels that do not change the length of the code words, which
rules out the basic error types of insertion and deletion, leaving only substitution errors.
Unfortunately, real-world channels tend not to comply with such restrictions.

In order to model the behaviour of channels in which insertion and deletion errors may
also occur, we need to drop the constraint that all words in the language be of the same length
and consider the behaviour of channels which operate on words of unequal length. In this
chapter, we consider a class of error channels called SID channels (for substitution, insertion
and deletion), a formal model of error channel types which can add or remove symbols to or
from a transmitted word as well as substitute symbols in the word for arbitrary symbols from
the alphabet Σ. This chapter describes results and definitions concerning SID channels in
general, and the specific channel on which we will focus in particular. More formal treatments
of these error channels can be found in [21, 23, 17, 20].

3.2 Error Channels

So far, we have been using the word “channel” rather informally to refer to any communi-
cations medium through which data are transmitted. While this is essentially correct, we
need, for our subsequent discussion, a more formal definition of this notion. In this section,
we will formalize the idea of a channel, and discuss useful properties of the languages which
are most suited to transmission across error inducing channels.

14

3.2 Error Channels

Definition 3.1 Let Σ be a finite alphabet. A (domain preserving) channel, γ, is a
binary relation over Σ∗, γ ⊆ Σ∗ × Σ∗ such that (x, x) ∈ γ for all x ∈ {z | (z, y) ∈
γ for some word y}. We define the sets Input(γ) = π1(γ) and Output(γ) = π2(γ), where
πi(γ) is the ith projection of the relation.

Thus, the statement that (y, y′) ∈ γ indicates that y′ is a possible output of the channel
γ on input y. For a given channel, γ, we define 〈y〉γ to be the set of all possible outputs of
γ when y is given as input. Therefore, 〈y〉γ = {(y, x) | x ∈ Σ∗ and (y, x) ∈ γ}.

It should be clear that a channel satisfying Definition 3.1 will likely require further con-
straints before it can be useful for the purposes of error correction or detection. A channel
which is merely an arbitrary relation over Σ∗ could have pairs (y, y′) ∈ γ where y′ bears
no obvious resemblance at all to y. We will consider a restricted class of channels, the SID
channels, in which, for a given channel γ and input y, all words in 〈y〉γ can be constructed
from y by some bounded number of substitution, insertion or deletion operations on symbols
from y.

Definition 3.2 Let γ be a channel, Σ a finite alphabet, and L ⊆ Σ∗ a language over Σ. We
say that L is error-detecting for γ if, for all w1, w2 ∈ L ∪ {λ}, (w1, w2) ∈ γ implies that
w1 = w2.

Intuitively, then, a language is error-detecting for a given channel if no word in the
language can be converted by the channel into another word in the language. As the name
indicates, this allows us to determine if an error has occurred during transmission across
the channel. If we assume that only words in L ∪ {λ} are input to γ, then the receipt of
a word w ∈ L ∪ {λ} as output from γ guarantees that w is the word that was sent. If, on
the other hand, a word w′ not in L ∪ {λ} is received, then we are assured that an error has
occurred during transmission [23]. However, the property of being error-detecting makes no
guarantees that the errors which have occurred during transmission across the channel can
be corrected. Our next definition provides necessary and sufficient conditions for this case.

Definition 3.3 Let γ be a channel, Σ a finite alphabet, and let L ⊆ Σ∗ be a language over
Σ. Then L is error-correcting for γ if (w1, z), (w2, z) ∈ γ implies that w1 = w2 for any
z ∈ Σ∗ and for all w1, w2 ∈ L ∪ {λ}.

There are obvious similarities between error-detecting and error-correcting languages —
in fact, Definition 3.3 is a stronger form of Definition 3.2, which we can see simply by letting
z = w1 in Definition 3.3. Any error-correcting language, then, is also error-detecting, which
is exactly what intuition would suggest, since the notion of error-correction is that of a
strengthened form of error-detection. Essentially, the previous definition states that, if a
language L is error-correcting for γ, and we assume that only words from L ∪ {λ} are used
as input to γ, then for any word z received as output from γ, there is exactly one word in
L ∪ {λ} which could have been used as input to γ [23].

We note in particular that, once a channel γ is fixed, error-detection and error-correction
are properties of languages and not of γ. An error-detecting or -correcting language is

15

3.3 Error Functions and SID Channels

“sparse” in the sense that, relative to the channel γ, the distance between the words in the
language is large enough that the changes in the input word induced by γ are not sufficient to
introduce ambiguities between words in the language. We will formalize this notion further
in Chapter 5.

3.3 Error Functions and SID Channels

In this section, we will define a specific class of channels, the SID channels. An SID channel
is a channel which can induce a finite number of substitution, insertion or deletion errors
in the input word, where “substitution” is the replacement of a symbol in the input word
with another; “insertion” is the addition of symbols between symbols of the input word; and
“deletion” is the removal of symbols from the input word.

Definition 3.4 [21] An SID error type has one of the following forms:

i) it is a symbol in {ε, σ, ι, δ}; or

ii) it is an expression (τ1 � τ2), where τ1 and τ2 are SID error types.

We will denote the set of SID error types as T0. The symbol � can be read as “or” in that
the error type τ1 � τ2 represents errors of type τ1 or τ2.

The symbols ε, σ, ι and δ correspond, respectively, to error-free, substitution, insertion
and deletion errors. We are now prepared to define the error functions [21, 23], which have
two distinct interpretations. The first, as the name would imply, is as functions which mimic
the behaviour of the error types introduced above. The second interpretation is perhaps the
more interesting for our purposes — error functions are themselves words over an alphabet
of error function symbols, G.

We first note that any n-symbol word w = a0a1 · · · an−1 over an alphabet Σ can be
equivalently written as a 2n+1-symbol word over Σ∪{λ}, w = λa0λa1 · · ·λan−1λ. Examining
the word w = a0a1 · · · an−2an−1 = λa0λa1λ · · ·λan−1λ, we see that there are n possible
symbols which could be deleted, and thus n positions of w at which a deletion could occur.
Additionally, there are also n possible positions at which a substitution of symbols could
occur and, since an insertion must occur between (or after) symbols of w, there are n + 1
positions at which an insertion of new symbols into w could occur [21].

Definition 3.5 Let Σ be a finite alphabet. Then an error function symbol is one of the
following symbols:

d: which symbolizes the deletion function d : Σ −→ {λ} such that d(a) = λ for all a ∈ Σ.

iu: which symbolizes an insertion function iu : {λ} −→ {u} for all u ∈ Σ+.

s: which symbolizes a substitution function s : Σ −→ Σ such that s(a) 6= a,∀a ∈ Σ.

16

3.3 Error Functions and SID Channels

e: which symbolizes the error-free function e : Σ∪{λ} −→ Σ∪{λ} such that e(a) = a,∀a ∈
Σ ∪ {λ}.

We recall that these error function symbols are themselves functions which are applied
to individual symbols of some word w ∈ Σ∗. The error-free function is included more as
a placeholder to indicate an absence of errors at the particular symbol(s) of w to which it
is applied. We must explicitly disallow arbitrary mappings from Σ → Σ as substitution
functions, since mappings such as the identity mapping, which is the same as the error-free
function, would be included in this set. We further note that the insertion functions allow
insertions of arbitrary words into w, so that there are infinitely many functions of this type.
We now define the sets Gε, Gσ, Gι and Gδ as follows [21]:

• Gε = {e}

• Gσ is the set of all substitution functions s from Σ into Σ.

• Gι = {iu | u ∈ Σ+}

• Gδ = {d}

Finally, then, we define G = Gε ∪ Gσ ∪ Gι ∪ Gδ.

Definition 3.6 An error function is a word h over G such that |h| is odd and, for all
i ∈ Ih,

h(i) ∈
{

Gε ∪Gι, if i is even;
Gε ∪Gσ ∪Gδ, if i is odd.

We denote the set of all error functions by H.

Note the distinction between the insertion, deletion and substitution operations. Inser-
tion of symbols can only occur between the symbols in the input word, while deletion and
substitution may only occur at the symbol that they are meant to act upon. This is the
reason for rewriting the word w in the form λa0 · · · an−1λ.

Hence, an error-function, according to the definition above, effectively behaves as a func-
tion from Σ∗ to Σ∗ (through the intermediate translation of the word into its equivalent
form as a word over Σ ∪ {λ} as mentioned above). The function is applied by individually
applying each of the functions in the error-function to the corresponding symbol of the input
word. We now define this more formally.

Definition 3.7 Let w = a0 · · · an−1 be a word over Σ∗ for some alphabet, Σ. We define w’s
extended word, w̄ = λa0λ · · ·λan−1λ. We will denote the ith symbol of w̄ as w̄[i] for all
i ∈ Iw̄. Thus, w̄ = w̄[0]w̄[1] · · · w̄[2n].

Definition 3.8 Let w̄ be the extended word for w and let h = h(0) · · ·h(2n) be an error
function. Then we define

h(w̄) = h(0)(w̄[0])h(1)(w̄[1]) · · ·h(2n)(w̄[2n])

Henceforth, we will denote h(w̄) by h(w) where there is no ambiguity.

17

Example 3.1 Let Σ = {a, b}, w = abba and let h = ibeedeseeib. Then

h(w) = h(w̄)

= h(λ a λ b λ b λ a λ)

= ib(λ) e(a) e(λ)d(b) e(λ) s(b) e(λ) e(a) ib(λ)

= b a λ λλ a λ a b

= b a a a b

In this thesis, we will restrict our discussion to one specific type of SID channel, σ � ι�
δ(k, l), which allows up to k substitution, insertion or deletion errors in any l consecutive
symbols of the input word. A full treatment of SID channels can be found in [21] or [17].

Definition 3.9 Let Σ be a finite alphabet, k and l be integers, k, l ≥ 0 and let Sσ�ι�δ = {h ∈
H | ν(h) ≤ k}, where ν(h) is the maximum number of substitutions, deletions or insertions
occurring in any 2l+1 consecutive symbols of h. The SID channel σ � ι � δ(k, l) is defined
to be

{(x, y) | x ∈ Σ∗, y = h(x), for some h ∈ Sσ�ι�δ}.

We will describe the behaviour of this channel much more formally in Chapter 5.

4 An Application to Statecharts

4.1 Introduction and Basic Notation

The Statecharts language2, first introduced by David Harel in 1984 [10] and since expanded
considerably [11, 12, 13], was designed to circumvent some of the issues encountered when
trying to model reactive or real-time systems with finite automata. The language has proven
to be very helpful in the description, design and implementation of software in general, and
has been used extensively in various areas of software engineering. Consequently, Statecharts
have been almost fully incorporated into the Unified Modeling Language (UML) and into
several software packages based on the UML (Statemate MAGNUM and Rational Rose, for
example).

The Statecharts language, with the exception of final states, which will be discussed
shortly, can be viewed as a superset of the standard notation for describing deterministic
finite automata. With this in mind, we will describe the Statecharts notation with reference
to finite automata, and in §4.2 we will define a written notation for Statecharts which is very
similar to that used for finite automata.

Statecharts differ from deterministic finite automata in two major ways. The first is
that a statechart may have a hierarchical structure — that is, states in a statechart may be
nested within other states. The other primary extension is that Statecharts explicitly allow

2In this discussion, “the Statecharts language” or “Statecharts” are used to refer to the notation itself,
while “statechart” is used to refer to a specific instance of the notation.

18

4.1 Introduction and Basic Notation

Q R

P

Figure 3: A simple example of an or-state.

orthogonality. In finite automata, the effects of orthogonality may be reproduced through
the use of alternation (universal nondeterminism; see, for example, [39]). The Statecharts
notation, however, is much more descriptive and intuitively understandable; both because
of the inclusion of orthogonality and because of the ability to group related states together
in a hierarchy of states.

Since Statecharts are intended to model real-time reactive systems, they do not contain
any features analogous to final states in finite automata. In our discussion, however, we will
be considering the Statecharts language in terms of the terminology and notation of finite
automata, and we will discuss an application of Statecharts as acceptors of languages, so we
will need to make use of the functionality of final states. We will, therefore, represent final
states in the “traditional” way; that is, as a subset of the set of states in the statechart.

A statechart consists, at the lowest level, of two basic types of states: or-states and
and-states. Or-states are analogous to the states of a finite automaton, with the exception
that states can be nested within an or-state. For this reason, we will make a distinction
between primitive or-states (or simply primitive states), those which contain no child states,
and complex or-states (or complex states), those which have one or more substates. The
name “or-state” comes from the behaviour of this type of state (in the exclusive-or sense);
a statechart residing in a complex or-state, q, must reside in precisely one of the substates
of q. An and-state is divided by dashed lines into components, each of which is itself an
or-state. A statechart residing in an and-state is, as the name would imply, simultaneously
residing in all of its components. Or-states, then, allow for a hierarchical organization of a
statechart diagram, while and-states introduce orthogonality, or concurrent processing, to
the notation.

Figure 3 shows a simple or-state example. The parent state P is a complex state, while
its substates, Q and R, are primitive states. State transitions into (or out of) P may arrive
at (or leave) any of P , Q or R. In the event that a transition ends on the outer surface of
a complex state, the default transition, denoted by the filled circle with an arcing arrow (in
the case of Fig. 3, the default transition is into Q), is followed. Similarly, a transition exiting
a complex state is followed, regardless of the substates, whenever the event indicated by the
transition occurs.

In Fig. 4, we see an example of an and-state (for the sake of simplicity, the names of
most of the substates have been omitted). The name of an and-state is contained in a box

19

4.1 Introduction and Basic Notation

X

Y

T U V

S

Figure 4: A simple and-state.

R

S T

b

c

U

a

V
b

W

b

a

X a

Y

c

Z

Figure 5: A less trivial statechart

attached to the upper-left corner of the state. As has already been mentioned, a statechart
residing in state S resides simultaneously in all of T , U , and V . Since each of T , U , and V
are themselves complex or-states, a statechart in state S simultaneously resides in exactly
one substate from each of T , U , and V .

The orthogonal functionality introduced with and-states can have a significant impact on
the state complexity of a statechart. Figures 5 and 6 show a simple orthogonal statechart and
its equivalent DFA. The DFA in this example has only nine states, but it is easy to imagine
a heavily orthogonal statechart requiring exponentially many states for an equivalent DFA
representation. Even from this small example, we can see how the graphical depiction of
orthogonal components in the Statecharts language allows for an easier and more intuitive
understanding of the behaviour of a statechart as compared to an equivalent DFA.

We will discuss one more feature of Statecharts here; a feature which is tied rather closely

20

4.2 A Written Notation

V,X V,Y V,Z
c

a
a

b

aW,X W,Y W,Z

a

b b

a

c

b

U,X U,Y U,Z

c

b

a

cb

a

c b

Figure 6: The DFA equivalent of Fig. 5

to the orthogonality discussed above. In addition to simply making transitions based on the
input to the statechart, a transition to a new state may take place with arbitrary conditions
(which allows transitions within an and-state to be followed, for example, only if another
orthogonal component currently resides in a specific state, or is currently leaving a given
state).

We have only covered here the most basic features of the Statecharts language — the
notation itself is very robust, and contains many more features which are beyond the scope of
the current discussion. The Statecharts notation contains the capability to generate outputs
(called “actions” in [13]) which can, unlike the case of finite transducers, be treated as input
to trigger transitions elsewhere in a statechart.

4.2 A Written Notation

In this section, we will develop a written notation which we will use to discuss statecharts
more rigourously than we have thus far. We will define a notation which can be used to
discuss a restricted class of statecharts containing all of the features we discussed in the
previous section with the exception of outputs and conditional transitions. Several key
issues need to be addressed in this discussion; namely the preservation of the hierarchical
structure, and a proper handling of transitions within orthogonal components of and-states.

For any pair of states in a statechart, qi and qj, if qj is a substate of qi, we will write

21

4.2 A Written Notation

Figure 7: Exiting an and-state regardless of any of the substates

qj ≺ qi. We introduce a default state mapping D : Q −→ Q defined as follows:

D(qi) =

{
qi, if qi is a primitive state; and
qj, if qj ≺ qi is the default state for qi.

Since a statechart currently residing in an and-state is necessarily in a list of states
simultaneously, we will refer to an and-state’s configuration, the list of states within the and-
state in which the statechart currently resides, and represent an and-state’s configuration
with a set of states. Additionally, we will differentiate the names of and-states from those of
or-states by using boldface for the and-state’s name (qi, for example). For a given and-state
q with orthogonal components, each of which is itself an or-state, q1, . . . , qi, we will make
no distinction between the name of the and-state and the set of names of its components;
we will consider the set of component states {q1, . . . , qi} a synonym for q. Finally, we will
incorporate the hierarchical nature of Statecharts into our notation by including for every
state, in the definition of the state set, a list of all its parent states up to the highest-level
state. Thus, if qi ≺ qj, we may refer to qi as qj · qi. In our discussion, however, we will, for
the sake of brevity, usually drop as much of the state’s name as is allowable while preventing
ambiguity.

One of the more important issues is that of entering or exiting orthogonal and-states.
For a given and-state, q, the Statecharts language allows two primary means of entering q,
and three basic means of leaving q. We could enter q either through a transition to q using
only the default transitions, or through a transition which indicates specific states in some
or all of q’s components, using default transitions for the unspecified components. Similarly,
we could exit q using transitions directly from q, transitions from a specific configuration
of states in the components of q, or transitions from states in some components of q and
regardless of the state of the other components. For the entry conditions, it will suffice to
use the default state mapping, D, but we need to introduce a variable state, x, for the third
exit condition depicted in Figure 9. Figures 7, 8 and 9 show the three exit situations.

We need only define the transition function for Statecharts. A formal and generalized
written notation for the transition function is beyond the scope of this thesis, so we will, in
the next section, define a transition function for a specific statechart example.

22

4.2 A Written Notation

Figure 8: Exiting from a specific and-state configuration

Figure 9: Exiting an and-state regardless of the state of some components

23

4.3 Error-Correction with Statecharts

4.3 Error-Correction with Statecharts

In this section, we will construct a statechart which solves a certain class of error-correction
problems. We consider an error-channel which changes the input in such a way that it is
apparent that an error has occurred during transmission. To formalize this notion, we let
Σ be the set of symbols which are sent through the error-channel, and let Σ ∪ {[} be the
set of output symbols from the error-channel, where [, a symbol not occurring in Σ, is used
to indicate that an error has occurred during transmission. We will refer to [as a “blank”
symbol. We now formalize the definition of this language.

Definition 4.1 Let Σ be a finite alphabet, L ⊆ Σ∗ be a language, and let k ≥ 0 be an integer
representing the maximum tolerable number of errors. Then we define

Lk = {w = u0[u1 . . . [ul | 0 ≤ l ≤ k; ui ∈ Σ∗ for all i ≥ 0; and

∃ w′ = u0a1u1a2 . . . alul such that ai ∈ Σ, and w′ ∈ L}.

Note in particular that L0 = L and for any language L, L ⊆ Lk for all k ≥ 0.

Essentially, Lk is the set of all words containing at most k blanks such that there is at
least one assignment of symbols from Σ to the blank symbols which will result in a word in
L. Note that this definition is not sufficiently strong to guarantee that there is at most one
such word; such a guarantee can, however, be obtained if the language, L is error-correcting
for the channel we are discussing. Using the notation introduced in Chapter 3, the error
channel of Definition 4.1 is defined by error functions

h ∈
⋃

0≤i≤k

(G+
ε Gσ)iG+

ε (2)

where the substitution functions are defined by s : Σ → {[}, for [/∈ Σ.
We now formalize the meaning we intend for any subsequent usage of the term “state-

chart”. This definition is not a general definition intended to formalize the entire Statecharts
notation, but one which will allow us to discuss a restricted class of the Statecharts language
more formally:

Definition 4.2 A restricted statechart (henceforth, merely statechart) is a 5-tuple,
S = (Q, Σ, ∆, D, F) where

Q : is the finite set of states;
Σ : is the input alphabet;

F ⊆ Q : is the set of final states.

∆ : P(Q) × Σ −→ P(Q) is the state transition mapping, mapping a subset of Q and
an input symbol into another subset of Q, and D : Q → Q, the default state mapping,
maps a complex state qi into its default state (which must be an immediate substate), and
maps every primitive state qj into itself. We will call a statechart’s computation accepting
if, after reading the input word, at least one component of the statechart resides in a final
state. That is, if a statechart resides in the state configuration C = {q1, . . . , qj}, then the
statechart will accept the input word if, and only if, F ∩ C 6= ∅.

24

4.3 Error-Correction with Statecharts

The statechart construction given in this section to accept the language Lk, for regular
languages L, relies heavily on the definition of a DFA which accepts L; in particular, we will
refer frequently to the transition function for that DFA. However, since the state transition
mapping for statecharts operates on sets of states instead of on individual states, we define
the following extension to the transition function for a DFA.

Definition 4.3 Given a DFA M = (Q, Σ, δ, s, F), L ⊆ Σ∗, and a set S ⊆ Q, S =
{s1, . . . , sn}, we define the set transition, δ(S, a), as:

δ(S, a) = {δ(s1, a), . . . , δ(sn, a)}, for all a ∈ Σ.

In a similar vein, we define the language transition, δ∗(qi, L), as:

δ∗(qi, L) = {δ∗(qi, w1), δ
∗(qi, w2), . . . , δ

∗(qi, wm)} where L = {w1, . . . , wm}.

The hierarchical nature of the Statecharts language allows for recursive statechart con-
structions — that is, using identical portions of the statechart in multiple places. Since each
state in a statechart must have a unique name, we have introduced the “dot-notation” used
in §4.2. However, it will be convenient in the current discussion to refer to states by their
lowest-level names only, with the implicit assumption that the names of all of a given state’s
superstates are prepended to the given state name. We now construct a statechart which
will accept Lk whenever the original language, L, is regular.

Theorem 4.1 Let Σ = {a1, . . . , an} be a finite alphabet and let k ∈ N be some fixed error-
bound. Then for every regular language L ⊆ Σ∗, there exists a statechart accepting Lk.

Proof:
Let M = (QM , Σ, δM , s, FM) be a DFA accepting L. We construct a statechart, S =
(QS, Σ ∪ {[}, ∆S, D, FS). We will slightly modify the state transition mapping given above,
and will define our transition mapping as ∆ : P(QM)×{0, . . . , k}×Σ −→ P(QM)×{0, . . . , k}.

The general idea for the statechart construction is that, whenever a [symbol is read by
the statechart, it transitions to an orthogonal state in which it simultaneously continues a
simulation of the DFA M with each orthogonal component interpreting the [symbol as a
different symbol from the alphabet Σ. In this way, we simulate M by following the transitions
that M would follow whenever the current input symbol is in Σ and then branching into an
orthogonal state to simulate M on all symbols in Σ if the current input symbol is a blank.

We have slightly altered the transition mapping from that given in Definition 4.2. This
change was made to emphasize the importance of the hierarchical structure in our construc-
tion. The level of the state hierarchy in which the statechart currently resides corresponds to
the number of blank symbols which have so far been read. Alternately, the level in which the
statechart currently resides corresponds precisely to the number of errors which have so far
occurred in the input. We use the error counters in the transition mapping, then, to indicate
whether the statechart is to continue computation in the current level, or to transition into
the next, deeper level.

25

4.3 Error-Correction with Statecharts

We will define our statechart S in a hierarchical way, and construct the sets QS, FS and
the transition mapping as a “modified union” (with the translation of all state names used
into their long state names in the dot-notation introduced in §4.2) of the corresponding sets
and mappings Qq, Fq and ∆q for all substates q ≺ S.

We begin with the highest level state in S, S0 = (Q0, Σ ∪ {[}, ∆0, D, F0), defined as
follows:

Q0 = QM ∪ {S1}
∆0 : P(QM)× {0} × {Σ ∪ {[}} → P(QM)× {0, 1}

D(q) =

{
s, if q = S0; and
q otherwise

F0 = FM

∆0, the highest level state transition mapping, is very similar to δM . Every transition in δM

is present, and we add transitions to the next level for blank input. Note that as long as
the input symbols are in Σ, the behaviour of S0 is identical to that of M . We define ∆0 as
follows:

∆0(q, 0, a) =

{
(δM(q, a), 0), if a ∈ Σ; and
({δM(q, a1), . . . , δM(q, an)}, 1), if a = [.

For all i ∈ {1, . . . , k}, define an and-state Si = {Si,aj
| aj ∈ Σ}. We now define the

lowest level of our recursive construction, Sk = {Sk,aj
| aj ∈ Σ}. For all aj ∈ Σ, define

Sk,aj
= (Qk,aj

, Σ ∪ {[}, ∆k,aj
, D, Fk,aj

) as follows:

Qk,aj
= QM ∪ {∅}

∆k,aj
: P(QM)× {k} × {Σ ∪ {[}} → P(QM) ∪ {∅} × {k}

D(q) = q, for all q ∈ Qk,aj
.

Fk,aj
= FM

where ∆k,aj
is defined as

∆k,aj
(R, k, a) =

{
(δM(R, a), k), if a ∈ Σ; and
(∅, k), if a = [.

In the lowest level of the statechart’s hierarchy (see Fig. 10), the DFA M is simulated in
all orthogonal components. If a [is read in this level, it signifies that there are more errors
in the input than can be introduced by the error channel — that is, the input is not in Lk.
Thus, every state in the lowest level of the statechart transitions to a “dead state”, ∅, when
a [is read.

For all i ∈ {1, . . . , k − 1} and ∀aj ∈ Σ, define Si,aj
= (Qi,aj

, Σ ∪ {[}, ∆i,aj
, D, Fi,aj

) as
follows:

Qi,aj
= QM ∪ {Si+1}
= QM ∪ {Si+1,a1 , . . . , Si+1,an}

∆i,aj
: P(QM)× {i} × {Σ ∪ {[}} → P(QM)× {i, i + 1}

D(q) =

{
s, if q = Si,aj

; and
q otherwise.

Fi,aj
= FM

26

4.3 Error-Correction with Statecharts

000

Sk

1 nk,a k,a

M M

k,a SS
2

S

M

b

b

b

bb

b

Figure 10: The bottom level, Sk, of the statechart construction.

Thus, the default state of a primitive state is, of course, itself, and the default state
for each of the Si,aj

is the start state for its nested copy of M . We note once more that,
although the names of the states in M are being used directly in this construction, in order
to uniquely refer to a given state within the statechart S, the names of all of a given state’s
parent states must be prepended to the simplified name we use.

For all states Si,aj
where i ∈ {1, . . . , k − 1}, and for all subsets R ⊆ QM , we define the

state transition function, ∆i,aj
as follows:

∆i,aj
(R, i, a) =

{ (⋃
aj∈Σ δM(R, aj), i + 1

)
, if a = [; and

(δM(R, a), i), if a ∈ Σ.

Thus, when a blank is read while the statechart is currently in Si, each component of Si

transitions into a specific set of states in the components of Si+1. Figure 11 shows an arbitrary
component of the and-state, Sj−1, where j ≤ k−1. The states qi1 , . . . , qin represent δM(qi, a1)
through δM(qi, an), respectively. If a symbol from Σ is read, the computation proceeds exactly
as in M .

We construct the statechart, then, by nesting nearly identical copies of S0 (the Si,aj
states)

inside orthogonal components of the and-state Si. The nested states are not completely
identical to their parent, since they differ in the number of nested substates before the
construction bottoms out in the Sk states. Every component in every and-state contains a
copy of the DFA M with added transitions leaving every state in this copy which specify

27

4.3 Error-Correction with Statecharts

M
S

M

M
Sj+1

Sj+1

j+1

M

S

iq

j

n

qi2

qi

j,a

Sj-1,a

S

q

1

1

n

i

j,aS

2
Sb j,a

Figure 11: An arbitrary component of Sj−1 for j ≤ k − 1.

the transition to be taken if a blank symbol is read. With the exception of the bottom level
states, every component in each and-state also contains a nearly identical copy of itself with
the error counter incremented — hence, for example, Si,aj

contains a copy of Si+1,aj
.

Finally, define S = (QS, Σ ∪ {[}, ∆S, D, FS) as follows:

QS =
⋃

i∈{0,...,k},aj∈Σ Si,aj
∪ S0

∆S =
⋃

i∈{0,...,k},aj∈Σ ∆i,aj
∪∆0

FS =
⋃

i∈{0,...,k},aj∈Σ Fi,aj
∪ F0

We must now prove that S accepts the language Lk. For this, we will need the following
lemma.

Lemma 4.2 For any w = u0[u1[. . . [ul where l ≤ k and ui ∈ Σ∗ for all 0 ≤ i ≤ k,
the statechart S simulates the operation of the DFA M on all possible words in H =
{u0a1u1 . . . alul | ai ∈ Σ, for all i}. That is, ∆S(D(S0), 0, w) = (δM(s, H), l).

Proof:
Fix w = u0[u1[. . . [ul with l ≤ k and ui ∈ Σ∗, for all 0 ≤ i ≤ k. If l = 0, then w = u0 so,
since the transitions in S0 mimic those of M for input symbols from Σ, and since u0 ∈ Σ∗,
S simulates M on u0.

Next, suppose that, for some 0 ≤ i ≤ l, S simulates M simultaneously on all input
words {u0a1u1 . . . aiui | aj ∈ Σ for all j.}. We describe the behaviour of S on the input

28

u0[. . . [ui[ui+1, which is a prefix of w. By our assumption, after reading u0[. . . [ui, the
configuration of S is such that it is simulating M simultaneously on all possible words in
Ti = {u0a1 . . . aiui | aj ∈ Σ} — that is, the configuration of S is (δM(s, Ti), i). Since S has
read i blank symbols at this point, S currently resides on the ith level in some configuration,
call it C, of states C = {qi1 , . . . qim}, with each state qij in this configuration representing
the state in which M would reside after reading at least one of the words in the set Ti.

However, upon reading the [which follows ui in w, S follows the following transition:

∆S(C, i, [) =

 ⋃
aj∈Σ

δM(C, aj), i + 1

= (δM(C, a1) ∪ . . . ∪ δM(C, an), i + 1)

= ({δM(qi1 , a1), . . . , δM(qim , a1), . . . , δM(qi1 , an) . . . , δM(qim , an)}, i + 1)

= ({δM(qi1 , a1), . . . , δM(qi1 , an), . . . , δM(qim , a1) . . . , δM(qim , an)}, i + 1)

= (C ′, i + 1)

Since each state qij ∈ C represents the state in which M would reside after reading some
word in Ti and since the state δM(qij , ar) is in the new configuration, C ′ for every ar ∈ Σ,
the statechart S simulates M on all possible words in Ti+1 = {u0a1u1 . . . ai+1ui+1 | aj ∈ Σ}.

2

We now show that L(S) = Sk. Since by Lemma 4.2, for any given word w = u0[u1[. . . [ul,
S simulates M on all possible words made by replacing the blank symbols with symbols from
Σ, and since no word with more than k blanks in it will be accepted, we have that L(S) ⊆ Sk.

Conversely, we let w ∈ Lk. Then w = u0[u1[. . . [ul for some l ≤ k. Since w ∈ Lk, there
exists a word w′ = u0a1u1 . . . alul such that ai ∈ Σ and w′ ∈ L, the original language. Then,
also by Lemma 4.2, since S simulates M on all words in Tl = {u0a1u1 . . . alul | ai ∈ Σ}, then
w′ ∈ Tl. Since w′ ∈ L, then, the simulation of M on w′ will terminate in an accepting state,
and therefore, w′ ∈ L(S). So Lk ⊆ L(S), and therefore, since L(S) ⊆ Lk, L(S) = Lk.

2

5 Transductions on SID Channels

5.1 Introduction

The shuffle-Hamming distance is a very useful metric for comparing words over some alphabet
Σ. However, it is somewhat limited by the fact that the size of the words, or the relative
frequency of errors in the words, is not taken into account. In order to build a language
recognizer, such as a DFA, based on the shuffle-Hamming distance, we would need to fix
an upper-bound for the maximum number of errors which can be recognized by our DFA,
regardless of the relative sizes of the words. That is, for an input word w in some regular
language L and a DFA constructed to accept the neighbourhood of L with respect to δH

to within some error-bound k, at most k errors are tolerated in w, regardless of the length

29

5.2 The importance of regularity-preservation

of w. Real-world error channels, however, are typically very dependent on the length of the
input word; they will typically cause more errors in longer words than shorter words, thus
crippling the effectiveness of our model.

Following this line of reasoning, then, we are led to consider other seemingly natural
metrics in which the distance between two words varies according to the length of those
words. In this chapter we consider, from a language- and automata-theoretic perspective, a
seemingly natural variant of the shuffle-Hamming distance which is modified to work around
this problem, and a pseudometric derived from the σ � ι� δ(k, l) SID channel discussed in
Chapter 3.

5.2 The importance of regularity-preservation

It was shown in Chapter 2 that the shuffle-Hamming distance preserves regularity — a very
important property for our purposes since we would like to find a measure of distance for
which the neighbourhood of a language L can be accepted by the same type of machine
as L itself. However, as we discussed above, the number of errors tolerated by the shuffle-
Hamming distance is independent of the lengths of the words. We are thus led to consider
other measures of distance between words and their properties.

The obvious candidate for such a distance measure would be one in which the number
of errors between two words is divided by the average length of the two words. For w1 and
w2 ∈ Σ∗, let

δ(w1, w2) =
δH(w1, w2)(
|w1|+|w2|

2

)
Unfortunately, we have the following result.

Proposition 5.1 δ, as defined above, does not preserve regularity.

Proof:
Let Σ = {a, b} and let L = a∗. We show that E(a∗, δ, 1

2
), the set of all words w′ ∈ Σ∗ such

that δ(w, w′) ≤ 1
2

for some w ∈ a∗, is not regular. Let L′ = E(a∗, δ, 1
2
). Thus, any word

in L′ will either also be in L or will have some finite number of b’s in it, say m. Since the
positioning of the errors within the word is irrelevant, we consider words in which there is a
string of m b’s in the middle of the word, w′ = akbman−k. The word in a∗ which is closest to
w′, with respect to δ, is an, for n ≥ 0. Therefore,

δ(an, akbman−k) =
m(

n+n+m
2

) ≤ 1

2

since we’re considering only values of m for which the distance is at most 1
2
.

So we have, then

δ(an, akbman−k) ≤ 1

2

30

5.3 A pseudometric definition for SID channels

⇔ m(
2n+m

2

) ≤ 1

2

⇔ 3m ≤ 2n

which means that E(a∗, δ, 1
2
) = {w ∈ Σ∗ | 3|w|b ≤ 2|w|a}, which is not regular.

2

We have, then, a very natural-seeming distance measure which, despite the fact that it
is derived from the shuffle-Hamming distance, doesn’t even preserve regularity.

The problem with δ seems to be the opposite of the problem that we saw with the shuffle-
Hamming distance. The shuffle-Hamming distance imposed too harsh a restriction on the
number of errors which can occur in a word, while δ imposes no restriction at all on either
the number or the distribution of errors in a word. In a way, this problem can be summarized
by the fact that δ allows all of the errors in a word to be clustered together — it imposes no
restrictions on how many errors can occur within some fixed number of symbols.

5.3 A pseudometric definition for SID channels

We now describe a measure of distance taking these ideas into account. The distance mea-
sure, or pseudometric, is derived from the SID channel σ � ι� δ(k, l) defined in Chapter 3.
The pseudometric, which we will call δl, measures the number of substitution, insertion or
deletion errors in any l consecutive symbols of the input word, for l ∈ N.

As we saw in the last section, then, we need a method of measuring the distance be-
tween two words of variable length which allows some amount of freedom in the number of
errors that can occur in a word while simultaneously not allowing “too much” freedom — a
restriction that was justified by the example of δ in §5.2. The SID channels offer just such
allowances and restrictions.

We now formalize this notion with a pseudometric definition. The definition is based on
the error functions defined in §3.3. The idea behind this definition is that, given a pair of
words u, v ∈ Σ∗ for some alphabet Σ, there is some set of error functions,H = {h | v = h(u)},
which describe the differences between u and v. Given some h ∈ H, then, we can determine
the number of errors between u and v by examining the symbols of h.

Definition 5.1 below, then, simply quantifies the number of errors represented by each
error function symbol in h.

Definition 5.1 For a ∈ G, a basic error function symbol, define

d(a) =

0, if a = e;
1, if a = d or a = s;
j, if a = iu, where j = |u|.

Definition 5.2 For w ∈ G+, define

Dl(w) = max

{
2l∑

i=0

d(w(i)),
2l+2∑
i=2

d(w(i)), . . . ,
n−1∑

i=n−2l−1

d(w(i))

}

31

5.4 A transducer construction for δl

where |w| = n.

Dl(w), then, is the maximum number of errors which occur in any l consecutive symbols
of the error function w ∈ G+. However, since for any words u and v ∈ Σ∗ there could be
many error functions h such that h(u) = v, and since these error functions will typically
contain very different numbers of errors in any l consecutive symbols, we need to ensure that
we use the optimal error function to determine the value of the pseudometric, δl. Hence, we
define δl as follows:

Definition 5.3 For two words, w1 and w2, over an alphabet Σ, define

δl(w1, w2) = min { Dl(h(x)) | h(x) is an error-function and h(w1) = w2 }

We have been referring to δl as a pseudometric, and it is clear that it satisfies the first
two conditions of Definition 2.11. Unfortunately, δl does not satisfy the triangle-inequality
and therefore does not fulfill the definition of a metric. For instance, consider the following
words, for l = 2: let x = aa, y = baab, and z = cbacabc. Now, x = aa = λaλaλ, so the
error-function hxy = ibeeeib satisfies y = hxy(x) with δl(x, y) = 2. Also, hyz = iceeeiceeeic
is the smallest error-function satisfying hyz(y) = z, and δl(y, z) = 2. But hxz = icbeiceibc is
the smallest error-function satisfying hxz(x) = z, and δl(x, z) = 5 > δl(x, y) + δl(y, z).

Restrictions on the definition of δl fare no better for satisfaction of the requirements for a
metric. We may, observing that the problem exhibited above seems to be related to insertion
errors, disallow insertions, but then we would have a problem in which the error-channel is
able to shorten a word, but is unable to lengthen it again. This would make the relation
antisymmetric (since if |v| < |w| for two words v and w, then δl(w, v) = n for some n, but
δl(v, w) would be undefined). If we then add the restriction that an error-channel cannot
delete or insert symbols, then we no longer have any particular reason to choose δl over more
conventional metrics such as the Hamming distance.

5.4 A transducer construction for δl

Finite transducers can, as we mentioned, be viewed as string rewriters. However, it can also
be useful to consider channels in the same way — as rewriters of strings. In the case of a
general channel, it behaves very much like a “black box” in that the input to the channel is
modified in unknown ways to produce the word which is received as output from the channel.
For some types of channels, however, it is possible to model them with finite transducers. In
[23] we see that the SID channels are such channels. In this section, we present a transducer
construction for the δl pseudometric defined in the previous section.

Theorem 5.2 Let Σ be some finite alphabet, let δl be the pseudometric defined in Defini-
tion 5.3, and fix l, k ∈ N. There exists a finite transducer, Tk, such that, for any L ⊆ Σ∗,
Tk(L) = E(L, δl, k).

Proof:
We define a finite transducer T = (Q, Σ, Σ, σk, s, Fk) as follows:

32

5.4 A transducer construction for δl

• Q ⊆ {0, 1} × {0, . . . , k}2l+1 ∪ {∅} is the set of states of the transducer. We specifically
include a “dead state”, which we denote by ∅. Each other state is a tuple consisting of
a 0 or a 1, the purpose of which will be described later, and a (2l + 1)-tuple, which we
call the error-vector, representing the number of variations between the input and the
output which have occurred in the last 2l +1 transitions. This tuple is of length 2l +1
in order for the transducer to mimic the operation of the δl distance described earlier.
We denote the i’th element of the error-vector by ei, where ei ∈ {0, . . . , k}. Q is defined
as follows: A tuple (j, [e1, . . . , e2l+1]), j ∈ {0, 1} is in Q whenever

∑2l+1
i=1 ei ≤ k.

Note that every state in Q, with the exception of the dead state, has an error-vector
sum less than or equal to k. We use this fact in the construction of the edge set to
indicate that the transducer has introduced more than k errors in the most recent 2l+1
symbols of the input word and hence the δl distance between the input word and the
transducer’s output would be greater than k.

• s = (0, [0, . . . , 0])

• σk ⊆ Q×{Σ∪{λ}}×Σ∗×Q is the transition-and-output function (or, more precisely,
σk is a set of directed edges), consisting of a state, an input symbol (possibly λ), an
output word, and another state. σk is defined by the following edge schemata:

i) ((0, [e1, . . . , e2l+1]), λ, λ, (1, [e2, . . . , e2l+1, 0])) ∈ σk;

ii) ((1, [e1, . . . , e2l+1]), a, a, (0, [e2, . . . , e2l+1, 0])) ∈ σk, ∀a ∈ Σ;

iii) ((1, [e1, . . . , e2l+1]), a, b, (0, [e2, . . . , e2l+1, 1])) ∈ σk, ∀a 6= b ∈ Σ;

iv) ((1, [e1, . . . , e2l+1]), a, λ, (0, [e2, . . . , e2l+1, 1])) ∈ σk, ∀a ∈ Σ;

v) ((0, [e1, . . . , e2l+1]), λ, u, (1, [e2, . . . , e2l+1, j])) ∈ σk, ∀u ∈ Σ+ where j = |u| ≤ k;

Note that these schemata will produce invalid transitions in the event that the desti-
nation state signified by a particular schema is not in the state set Q. This will happen
precisely when the sum of the error-vector elements in the indicated destination state
is greater than k, and in these cases, we add transitions into the dead state instead.

• Fk = Q \ {∅}

The structure represented by these edge schemata is important for our subsequent dis-
cussion. Each edge schema represents a particular type of error between the input and the
output that is introduced by the transducer. The first two schemata correspond to the
error-free condition, and the next three correspond to substitution, deletion and insertion,
respectively.

The first symbol in the name of the states in Q is a sort of “parity” indicator. Recall
that the various types of errors have specific locations in an extended word at which they
can occur. More specifically, insertion can only occur between input symbols (i.e. on empty
input), and substitution and deletion cannot occur between symbols. The error-free condition
can occur either between symbols or on symbols, so there are two edge schemata (types i) and

33

5.4 A transducer construction for δl

ii)) corresponding to error-free transitions. The parity indicator is required because, in order
to model the behaviour of the δl distance accurately, we must allow for error-free transitions
between input symbols (which indicate that nothing is inserted), which means that we must
allow error-free transitions with empty input and empty output. But since the transition is
error-free, we must add a 0 to the end of the error-vector, and if no constraints were placed
on the number of such transitions (i.e. with empty input and empty output), then it would
be possible to erase the error-vector by following 2l + 1 of these empty transitions. The
parity indicator is then added to the construction to ensure that two consecutive transitions
on empty input cannot occur, which prevents the problem described above.

We now claim that Tk(L), the language produced by Tk on input L, is equal to Lk.
Since Lk = E(L, δl, k) =

⋃
w∈L E(w, δl, k), it will be sufficient to show that, for any w ∈ L,

Tk(w) = E(w, δl, k).
We first show that E(w, δl, k) ⊆ Tk(w). Let u ∈ E(w, δl, k), for some w ∈ L. Then

there exists an error-function h of length 2|w| + 1 such that h(w) = u and Dl(h) ≤ k. We
follow transitions in Tk which correspond to the symbols in h in order to convert w into u.
We start from the initial state s = (0, [0, . . . , 0]) and we consider the error function h on a
symbol-by-symbol basis, with each symbol in h corresponding to exactly one transition in
the computation of Tk on w. Let h = h1, h2, . . . , h2l+1. Then for each hi, we follow transitions
according to what symbol is in position i of h as indicated below:

e : ((0, [e1, . . . , e2l+1], λ, λ, (1, [e2, . . . , e2l+1, 0])) if i is odd;

((1, [e1, . . . , e2l+1], a, a, (0, [e2, . . . , e2l, 0])) otherwise

iu : ((0, [e1, . . . , e2l+1], λ, u, (1, [e2, . . . , e2l+1, j])), where j = |u|;
d : ((1, [e1, . . . , e2l+1], a, λ, (0, [e2, . . . , e2l+1, 1])), where w(i

2
) = a;

sb : ((1, [e1, . . . , e2l+1], a, b, (0, [e2, . . . , e2l+1, 1])), where w(i
2
) = a.

In this way, then, we derive a sequence of computation steps through which Tk can
produce u on input w. Since Dl(h) ≤ k, we are assured that, for any state in this computation
sequence,

∑2l+1
i=1 ei ≤ k so all of the transitions described above are valid. We note, however,

that the transducer Tk is highly nondeterministic and thus on input w there are many
computations which output u (or some prefix of u) and which may terminate in the dead state
of Tk after the error-vector exceeds the bound k. However, for our purposes, it is sufficient
that h with Dl(h) ≤ k guarantees the existence of at least one successful computation of Tk

as described above. Thus, u ∈ Tk(w), and E(w, δl, k) ⊆ Tk(w).
Conversely, suppose that u ∈ Tk(w), for some w ∈ L. Then, when w is input to Tk,

there is an accepting sequence of transitions followed by Tk to produce the output word u.
We can, then, apply the transformation described above in reverse to convert this sequence
of transitions into an error function h such that h(w) = u since every edge schema in
the construction of Tk corresponds to a basic error-function symbol (and at the same time
enforces the restriction that the error function symbol iu can only occur at odd-numbered
indices of h while d and s can only occur at even-numbered indices). However, since u ∈
Tk(w), every state appearing in this sequence of transitions must have an error-vector sum
of at most k, which means that, in the conversion from w to u, there are never more than k

34

5.4 A transducer construction for δl

errors introduced in any 2l + 1 consecutive transitions. This, then, implies that Dl(h) ≤ k,
and so δl(w, u) ≤ k. Therefore, u ∈ E(w, δl, k) and Tk(w) ⊆ E(w, δl, k).

Finally, since E(w, δl, k) ⊆ Tk(w) and Tk(w) ⊆ E(w, δl, k), E(w, γl, k) = Tk(w), for any
w ∈ L. Therefore, Tk(L) = Lk. 2

Corollary 5.3 The language induced by the pseudometric δl preserves regularity.

Proof:
This follows immediately from the existence of the transducer Tk and from Theorem 2.4. 2

We have shown that, in the case of the SID channel σ � ι� δ(k, l), for any l and k ∈ N,
there exists a transducer realizing the channel. This, when combined with earlier results
concerning transducers, proves that the pseudometric δl preserves regularity, meaning that if
the input language for the transducer Tk is regular, then the output language must be regular
as well. This implies that, for any σ � ι � δ(k, l) channel and a regular language L, there
exists a deterministic finite automaton accepting the k-neighbourhood of L with respect to
δl. If, in addition, we add the constraint that L be error-correcting for σ� ι� δ(k, l) then we
are guaranteed that, for every channel output word that the DFA accepts, there is exactly
one possible input which could have become the output word.

5.4.1 An equivalent NFA construction

Although the above construction, coupled with the closure results concerning regular lan-
guages presented, for example, in [39], guarantees the existence of an NFA accepting the
error-bound around the language L, the construction in Theorem 5.2 doesn’t immediately
provide that NFA. The proof of Theorem 2.4 is effective, so we know that an NFA can be
algorithmically constructed. A close examination of the transducer construction, however,
will suggest a method whereby the NFA can be constructed. For the sake of completeness,
then, we provide that NFA construction as well.

Theorem 5.4 Given a DFA M = (Q, Σ, γ, q0, F) accepting L and natural numbers k, l such
that k ≤ l, we can construct a λ-NFA Mk = (Qk, Σ, γk, s, Fk) accepting E(L, δl, k).

Proof:
The construction of the λ-NFA Mk = (Qk, Σ, γk, s, Fk) will mimic quite closely the construc-
tion of the finite transducer given earlier in this section. We construct the λ-NFA accepting
E(L, δl, k) as follows:

• The set of states is similar to the state set of the transducer Tk, with the exception
that, for each state in which the error-vector sum is at most k, we must also include
the state in which the original DFA M would reside. We define the set of states, Qk,
as follows:

Qk ⊆ Q× {0, 1} × {0, . . . , k}2l+1 ∪ {∅}.

35

5.4 A transducer construction for δl

Then, as in the transducer construction, we explicitly include the state ∅, to which Mk

will transition whenever too many errors have occurred, and we define the rest of the
states in Qk to be the following set:

Qk =

{
(q, i, [e1, . . . , e2l+1])

∣∣∣∣∣ q ∈ Q, i ∈ {0, 1}, and
2l+1∑
j=1

ej ≤ k

}

• s = (q0, 0, [0, . . . , 0])

• The set of final states, Fk is defined to be the set of all states in Qk such that the DFA
state it represents is also final:

Fk =

{
(q, i, [e1, . . . , e2l+1])

∣∣∣∣∣ i ∈ {0, 1},
2l+1∑
j=1

ej ≤ k and q ∈ F

}

• The transition function for Mk is essentially a direct translation of the transition-and-
output mapping for the transducer — we add transitions fitting any of the following
transition schemata, for all (qi, j, [e1, . . . , e2l+1]) ∈ Qk:

(qi, 1, [e2, . . . , e2l+1, 0]) ∈ γk((qi, 0, [e1, . . . , e2l+1]), λ);

(γM(qi, a), 0, [e2, . . . , e2l+1, 0]) ∈ γk((qi, 1, [e1, . . . , e2l+1]), a), ∀a ∈ Σ;

(γM(qi, a), 0, [e2, . . . , e2l+1, 1]) ∈ γk((qi, 1, [e1, . . . , e2l+1]), b), ∀a 6= b ∈ Σ;

(γM(qi, a), 0, [e2, . . . , e2l+1, 1]) ∈ γk((qi, 1, [e1, . . . , e2l+1]), λ), ∀a ∈ Σ; and

(qi, 1, [e2, . . . , e2l+1, j]) ∈ γ∗k((qi, 0, [e1, . . . , e2l+1]), u),∀u ∈ Σ+ where

j = |u| ≤ k.

We note that, as was the case in Theorem 5.2, these transition schemata correspond
to the error types which can be caused by the SID channel. That is, schemata i)
and ii) correspond to the error-free condition occurring “between” input symbols and
at input symbols, respectively. Schemata iii), iv) and v) correspond to substitution,
deletion and insertion type errors, respectively, with the “parity” indicator enforcing
the restriction that each error-type can only occur at particular points of the input
word. Note that, although the definition of insertion allows insertion of arbitrary
words, we can (and, in the case of a nondeterministic finite automaton, we must)
restrict the length of the inserted words. Thus insertions of strings of length greater
than k are explicitly disallowed in schema v) since their insertion would exceed the
error bound, and since the inclusion of such insertions into our specification of the
λ-NFA would make our specification infinite.

It now remains to demonstrate that the language accepted by this λ-NFA is actually
E(L, δl, k). Since the λ-NFA is constructed directly from the transducer construction given
in Theorem 5.2, we refer the reader to that theorem for a complete proof of correctness and
completeness. We will only discuss the basic behaviour of the construction here.

36

We note that, as was the case with Thm. 5.2, the transitions given above may produce
invalid states as their destination state in the case where some number of errors was added
to the current error-vector which resulted in an error-vector sum greater than k. In these
cases, we add transitions to the dead state, ∅, instead.

Essentially, the nondeterminism in this construction is in guessing the “intended” input
and counting the number of these guesses. From any given state with parity indicator 1,
(q, 1, [e1, . . . , e2l+1]) ∈ Qk, there are error-free transitions from this state for all symbols in Σ
representing the actual behaviour of the DFA M . In addition to these transitions, there are
also transitions representing substitutions of the actual input symbol (transition type iii))
and transitions representing deletion of the input symbol (transition type iv)).

Also, for any given state with parity indicator 0, (q, 0, [e1, . . . , e2l+1]) ∈ Qk, we again have
a transition for the error-free condition which, in this case, takes the form of a λ-transition to
a state with parity indicator 1, a 0 pushed into the end of the error-vector and the same DFA
state q. Finally, we also include the transitions for insertion which can potentially insert any
word of length at most k, for our upper-bound k. We then add λ-transitions for every word
u in Σ+ with length at most k with the destination state indicated by the behaviour of the
DFA on u and by the size of u. 2

We saw earlier in this section that the SID channel σ � ι � δ(k, l) can be realized by a
transducer which, if the input language is regular, guarantees the existence of a DFA which
accepts the set of all possible outputs of this channel when the input is a word in the original
regular language. We have given, in this subsection, a λ-NFA construction derived from the
transducer construction which can accept the output language of σ � ι � δ(k, l). By using
an error-correcting regular language for this channel, then, we are assured that the output
language can be accepted with perfect error-correction by a DFA.

6 Discussion

In this thesis, we have discussed several types of error channels, and their properties, from
the viewpoint of formal language theory and automata theory. In Chapter 2, for example, we
saw that, while a distance measure on words δ having the property of being a metric did not
guarantee that its neighbourhoods preserved the regularity of the language to which it was
applied, the additional property of δ being additive guaranteed a preservation of regularity.
Further, in Chapter 5 we showed, by presenting a distance measure on words that was not
even a metric but still preserved regularity, that being a metric is not even a necessary
condition for the preservation of regularity.

From an automata-theoretic perspective, the preservation of regularity is a very desirable
property for distance measures. Deterministic and nondeterministic finite automata have
been very exhaustively studied, and their closure properties and state-complexity results are
well known. Deterministic finite automata have the additional advantage that, when used
as acceptors of languages, they can determine if a given word is in the language in precisely
as many computation steps as there are alphabet symbols in the word. The SID channels
are well studied and they provide a theoretical foundation for a very natural type of real-

37

6.1 Future Work

world error channel. With this in mind, the knowledge that these error channels preserve
the regularity of the input language is a very powerful tool when attempting to correct the
errors induced by the channels.

6.1 Future Work

• We have seen that the use of additive metrics on words over an arbitrary alphabet is
sufficient to guarantee the preservation of regularity. However, we have also shown that
a metric alone is neither sufficient (as exemplified in Chapter 2) nor necessary (which
we saw in Chapter 5 in the fact that the pseudometric δl preserves regularity). We
obtained one characterization of regularity preservation using finite transductions in
Chapter 5. However, it would be useful to find regularity preserving distance measures
that are as general as possible, if not to find a measure of distance which is both
necessary and sufficient to guarantee that its neighbourhoods are regular.

• In Chapter 4, we defined a partial written notation, similar to that used for finite
automata, to be used with the Statecharts language, but the notation defined was not
complete or robust enough to be used to describe arbitrary statecharts. This notation
could be extended to cover the rest of the Statecharts language, permitting formal
arguments similar to those used with finite automata to be used with Statecharts as
well.

• We defined a statechart construction, relying heavily on the features of orthogonality
incorporated into the Statecharts language, which would accept the language output
by a particular error channel in Chapter 4. However, the construction of statecharts
for more general cases, such as the class of SID channels, has yet to be explored.
The benefits of Statecharts, both in their ease of comprehension as compared to the
standard finite automaton formalism and in the benefits that their orthogonal structure
bring, make the behaviour of Statecharts in error correction situations worthy of further
research.

References

[1] J. Berstel, Transductions and context-free languages, Teubner Stuttgart, 1979.

[2] J. Berstel and D. Perrin, Theory of codes, Academic Press, Orlando, 1985.

[3] C. S. Calude and E. Calude, On some discrete metrics, Bull. Math. Soc. Sci. Math. R.
S. Roumanie (N.S.) 75 (1983), no. 27, 213–216.

[4] C. S. Calude, K. Salomaa, and S. Yu, Metric lexical analysis, Lecture Notes in Computer
Science 2214 (2001), 48–59.

38

References

[5] J. Carroll and D. Long, Theory of finite automata with an introduction to formal lan-
guages, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.

[6] D. A. Eckhardt and P. Steenkiste, A trace-based evaluation of adaptive error correction
for a wireless local area network, Mobile Networks and Applications 4 (1999), 273–287.

[7] M. C. Gemignani, Elementary topology, 2 ed., Addison-Wesley, Reading, MA, 1972.

[8] S. Guiaşu, Information theory with applications, McGraw-Hill, London, 1977.

[9] R. W. Hamming, Error detecting and error correcting codes, Bell Systems Technical
Journal 29 (1950), 147–160.

[10] D. Harel, Statecharts: A visual approach to complex systems, Tech. Report CS84-05,
Department of Applied Mathematics, The Weizmann Institute of Science, 1984.

[11] , Statecharts: A visual formalism for complex systems, Science of Computer
Programming 8 (1987), 231–274.

[12] D. Harel and E. Gery, Executable object modeling with statecharts, Proceedings of
the 18th International Conference on Software Engineering, IEEE Computer Society
Press, 1996, pp. 246–257.

[13] D. Harel and M. Politi, Modeling reactive systems with statecharts, McGraw-Hill, 1998.

[14] M. Ito, L. Kari, and G. Thierrin, Insertion and deletion closure of languages, Theoretical
Computer Science 183 (1997), 3–19.

[15] , Shuffle and scattered deletion closure of languages, Theoretical Computer Sci-
ence 245 (2000), 115–133.

[16] J. Jȩdrzejowicz and A. Szepietowski, Shuffle languages are in P , Theoretical Computer
Science 250 (2001), 31–53.

[17] H. Jürgensen and S. Konstantinidis, Codes, in Rozenberg and Salomaa [31], pp. 511–607.

[18] S. C. Kleene, Representation of events in nerve nets and finite automata, in Shannon
and McCarthy [34], pp. 3–40.

[19] S. Konstantinidis, Structural analysis of error-correcting codes for discrete channels
that involve combinations of three basic error types, IEEE Transactions on Information
Theory 45 (1999), no. 1, 60–77.

[20] , Error-detecting properties of language, Tech. Report 004, Saint Mary’s Univer-
sity, Halifax, Nova Scotia, Canada, 2000.

[21] , An algebra of discrete channels that involve combinations of three basic error
types, Information and Computation 167 (2001), 120–131.

39

References

[22] , On the decidability of the error-detection property, Tech. Report 003, Saint
Mary’s University, Halifax, Nova Scotia, Canada, 2001.

[23] , Transducers and the properties of error-detection, error-correction, and finite-
delay decodability, Journal of Universal Computer Science 8 (2002), no. 2, 278–291.

[24] K. Kukich, Techniques for automatically correcting words in text, ACM Computing
Surveys 24 (1992), no. 4, 379–439.

[25] V. I. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals,
Soviet Physics-Doklady 10 (1966), 707–710.

[26] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-
Holland, Amsterdam, 1977.

[27] U. Manber, Introduction to algorithms — a creative approach, Addison-Wesley, Reading,
MA, 1989.

[28] A. Mateescu, A. Salomaa, K. Salomaa, and S. Yu, Lexical analysis with a simple finite-
fuzzy-automaton model, Journal of Universal Computer Science 1 (1995), no. 5, 292–311.

[29] W. W. Peterson and Jr. E. J. Weldon, Error-correcting codes, 2 ed., MIT Press, Cam-
bridge, MA, 1972.

[30] G. Pighizzini, How hard is computing the edit distance?, Information and Computation
165 (2001), 1–13.

[31] G. Rozenberg and A. Salomaa (eds.), Handbook of formal languages, vol. 1, Springer-
Verlag, Berlin, 1997.

[32] A. Salomaa, Formal languages, Academic Press, Orlando, Florida, 1973.

[33] K. Salomaa, S. Yu, and Q. Zhuang, The state complexities of some basic operations on
regular languages, Theoretical Computer Science 125 (1994), 315–328.

[34] C. E. Shannon and J. McCarthy (eds.), Automata studies, Princeton University Press,
Princeton, NJ, 1956.

[35] T. A. Sudkamp, Languages and machines, 2 ed., Addison-Wesley, Reading, Mas-
sachusetts, 1997.

[36] J. D. Ullman, The role of theory today, ACM Computing Surveys 27 (1995), no. 1,
43–44.

[37] A. Weber, Transforming a single-valued transducer into a Mealy machine, Journal of
Computer and System Sciences 56 (1998), 46–59.

40

References

[38] A. Weber and R. Klemm, Economy of description for single-valued transducers, Infor-
mation and Computation 118 (1995), 327–340.

[39] S. Yu, Regular languages, in Rozenberg and Salomaa [31], pp. 41–110.

[40] , State complexity of regular languages, Proceedings of Descriptional Complexity
of Automata, Grammars and Related Structures, 1999, pp. 77–88.

Vita

Name Christopher Lee McAloney

Place and Year of birth Bridgewater, NS, 1975

Education Mount Allison University, 1993-2000
B.Sc. (Honours, Computer Science) 2000

Queen’s University, 2000-02

Experience Research Assistant, Environment Canada,
Summer 2000

Research Assistant, Department of Computing
and Information Science, Queen’s University,
2001-02

Teaching Assistant, Department of Computing
and Information Science, Queen’s University,
2001-02

Awards Queen’s Graduate Award, 2000

Queen’s Graduate Fellowship, 2000

41

	Introduction
	Chapter Summary

	Preliminaries
	Set Theory and Formal Languages
	Finite Transductions
	Rational Transductions
	Finite-State Transducer

	Metric Analysis and related results
	Introduction and Definitions
	Related Results in Metric Analysis

	SID Channels and Error Functions
	Introduction
	Error Channels
	Error Functions and SID Channels

	An Application to Statecharts
	Introduction and Basic Notation
	A Written Notation
	Error-Correction with Statecharts

	Transductions on SID Channels
	Introduction
	The importance of regularity-preservation
	A pseudometric definition for SID channels
	A transducer construction for l
	An equivalent NFA construction

	Discussion
	Future Work

