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1 Introduction

The theory of codes is a fertile area at the intersection of formal language,theor
error detection and correction, data compression and data security [6]. Tit@lore
research into codes is often interested with combinatorial propertiesrioiaf
languages related to codes.

In particular, there has been substantial recent interest in classedax de-
fined by certain “finite subset” conditions. In general, given a afasscodes and
m > 0, we may define a clagg, as follows:

Le(C, — (I'CL,|L'|<m=L€C).

Thus, for instance, a languadeis ann-codeif every languagd.’ C L of size
at mostn is a code [5]. Also studied anre-prefix-suffix codes [3]n-infix-outfix
codes [8, 9, 7]n-intercodes [6, p. 555] and others. A general framework for
defining such “finite subset” classes of languages is given, e.g., by Jurgensen and
Konstantinidis [6, pp. 565-567].

Decidability problems for such classes of languages appear to be very difficult.
It is an open problem whether a regular language isiaode forn > 2 [6,
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Table 9.1]. This problem is one of the most easily stated open problems in all of
formal language theory, and is of fundamental interest to the entire field &s wel

In this note, we investigate the decidability of 2-infix-outfix codes, introduced
by Longet al. [8, 9, 7]. We first show that it is decidable whether a regular
language is a 2-infix-outfix code. This result is an extension of a result on 2-
prefix-suffix codes due to Itet al.[3]. To complement the positive decidability
result, we also show that it is undecidable whether an arbitrary lineanddmne
language (LCFL) is a 2-infix-outfix code.

2 Preliminary Definitions

For a background on regular languages and formal language theory, please see
Yu [10]. Let X be a finite set of symbols, calldditers ThenXx* is the set of

all finite sequences of letters from} which are calledvords The empty word

is the empty sequence of letters. Tleagthof a wordw = wyws -+ - w, € X*,
wherew; € ¥, isn, and is denote¢tv|. Note thate is the unique word of length

0. Given awordv € ¥* anda € ¥, |w|, is the number of occurrences @fn w.

A languagd. is any subset of.*.

A deterministic finite automato{DFA) is a five-tupleM = (Q, %, 0, qo, F)
where( is a finite set of stateg, is an alphabety : Q x ¥ — (@ is a transition
function,q, € @ is the start state, anfl C () is the set of final states. We extend
d to @ x ¥* in the usual way. A wordv € X* is accepted by if 6(qq, w) € F.
Thelanguage acceptdny M, denotedL (M), is the set of all words accepted by
M. A language is calledegularif it is accepted by some DFA. Given a regular
languagel, the state complexitpf L, denotedsc(L), is the minimal number of
states in any DFA accepting

Let <, be the binary relation oR* defined byu <, v iff there existz, y € ¥*
such thatuz = yu = v. Letw,, be the binary relation defined ati by u w;, v
iff there exist a factorizatiom = u,u, and wordsy,, y», x such that = u;zu, =
y1uyo. Note thatu w;, v iff v <; v andu w, v, where<; andw, are the infix
ordering and the outfix relation, respectively; seedital. [4].

Recall that a set is an antichain under a binary relationf xwy andz,y € S
impliesz = y. The following characterization relates the binary relatignsw;,
with the classes of 2-prefix-suffix and 2-infix-outfix codes:

Lemma 2.1 Let L be a language. Theh is an anti-chain undek, (resp.,w;,)
iff L is a 2-prefix-suffix code (resp., a 2-infix-outfix code).



For more information on prefix, suffix, infix and outfix codes, as welhas
prefix-suffix code, see Jiurgensen and Konstantinidis [6]. The classirdix-
outfix codes was introduced by Long and others (see, e.g., Long [7], &balg
[8, 9]). Our main result is that given a regular langudgé is decidable whether
L is a 2-infix-outfix code.

3 Decidability

We will require some preliminary results. The following is a restatetnoé a
result due to Itcet al.[3, Lemma 7.2]:

Lemma 3.1 Let L be a regular language and l&t/ = (Q, X, 6, qo, F') be a DFA
acceptingl with |Q| = n. Letu,v € ¥* be words satisfying <, v. Then there
existu’, v' € ¥* such that the following conditions hold:

@) u' <q0
(b) forallq € @, 5(q,u) = o(q,u’) (resp.,d(q,v) = d(q,v"));
(©) |v'| € "3 4 3n"*2 f ot 2,

Further, if u # v thenu' #£ v'.

It is not known if the bound given in (c) is optimal. L¢t: N — N be the
function f(n) = n"*3 + 3n"*2 4 ptt —pn — 2.
We now give an interesting relation betwe€p andw;,:

Lemma 3.2 Letu,v € ¥*. Thenu w,, v iff there exist factorizations = u;u,
andv = vyvy such thatu; <, v; fori =1, 2.

Proof. Letu w;, v. Thenv = wizus = yiuy,. Note thaty,uys = y1uiusys.
As |z| = |y1| + |ya|, letx = z129 Where|z;| = |y;| for i = 1,2. Note that
U = UL T1Tols = Y1UrUsYe. TAUS,u1x1 = yuy andxsus = usys. Therefore, let
v = uyx; andvy = usys. The implication follows.

For the reverse implication, assume that u,u; andv = v;v, such that
u; <q v; fori =1,2. Letx;,y; fori = 1,2 be such that,;z; = y;u; = v;. Then
U = V1Uy = U1 T1YolUs = Y1 U UsTo. THUS U Wi, v. W



We now extend the characterization of Lemma 3.4:t0

Lemma 3.3 Let L be a regular language and l&t/ = (Q, X, 6, qo, F') be a DFA
acceptingL with |Q| = n. Letu,v € X* be words satisfying w;, v. Then there
existsu’, v € ¥* such that the following conditions hold:

(@) u' w, v

(b) forallq € Q, 5(q, u) = é(q, u') (resp.,0(q, v) = d(q,v"));
(©) [v'| <2f(n).
Further, if u # v thenu' # v'.

Proof. Letu,v € L with u # v andu w;, v. Letu = uyus andv = vyv, such that
u; <g4 U fori = 1,2.

Letq., g, € Q be arbitrary. Let, g2, 71,72 € @ be chosen so thatg,, u;) =
¢, 0(q1, u9) = @2, 6(qy, v1) = 71, @ndd(ry,v9) = 7. Note thaté(g,, u) = ¢, and
3(qu,v) = 19.

Consideru,,v;. As u; <4 vy, by Lemma 3.1 there exist), v] such that
uy <q Vi, 6(qus uy) = a1, 6(qu, v7) = 1, andvi] < f(n).

Consider nowus, vo. As uy <, v, there existu,, v, such thatu, <, v,
3(q1, uh) = qq, 8(r1,vh) = 19, @and|vh| < f(n), again by Lemma 3.1.

Letw = wjul, andv’ = vjvh. Noted(q,, u’) = ¢ andd(g,,v') = ro. Further,
by Lemma 3.2’ w;, v'. Thus, (a) and (b) hold. Condition (c) holds [a§ =
[0 + o] < 2f (n).

If u # v, then one ofu; # v, or uy # v holds, and thus), # v} oru), # v)
holds. In particulary’ # ¢'. =

Corollary 3.4 Let L be a regular language withc(L) = n. If there exist distinct
u,v € L such thatu w,, v, then there exist distinat’, v' € L with v’ w;, v' and

'] <2f(n).

Proof. Let L = L(M) with M = (Q,X,4,q, F) and|Q| = n. Letu,v € L
be distinct words such thatw;, v. Letd(q,u) = ¢ andd(qo,v) = ¢o. Note
thatq;, ¢ € F. By Lemma 3.3, there exist distinat, v such that’ w;, v" and
|v'| < 2f(n). Furtherg(qo,u') = ¢; € F andd(qo,v') = go € F. This establishes
the corollary. m



Our main theorem is now immediate:

Theorem 3.5 Let L be a regular language. Then it is decidable whetlhes a
2-infix-outfix code.

Proof. It suffices to check all distinat, v € L with |u| < |v]| < 2nforuw;,v. ®

4 Undecidability

We complement the decidability result of the previous section with the follow-
ing undecidability result. Our reduction is from Post’'s Correspondence Problem
(PCP); an introduction to PCP is given by Harju and Karhumaki [2]. For the
formal definitions of LCFLs, see Autebest al.[1].

Theorem 4.1 Given an LCFLL, it is undecidable whethek is a 2-infix-outfix
code.

Proof. LetP = (uy,...,uy,;vy,...,v,) beaPCP instance ovEr Let0,1,$ ¢ &
and define the languagés, L, C (X U {0,1,$})* as follows:

Li = {$u; - u;, $$0™1---0"1$ - m > 1,1 <4, <n,1<p<m},
L2 = {$Uj1 Ce ijT$u1.1 Ce uzm$$02m1 A Oil 1$0JT1 Ce 0.71 1$
cmyr > 1,1 <4y, 5, <n,1<p<m,1<s<r}

Let L = L, U L,. Note thatL,, L, and L are LCFLs. We claim thaL is a
2-infix-outfix code iff P has no solutions. This will establish the result.
Assume that” has a solution. Letn > 1 andl < i; < nforl <j <m
be such thaﬂil U, = Uiyttt Vi Leta = Uiy = * U, = Vgt Vi Let
B = 01---0"1. Then note that = $a$$5$ andy = $azs$ satisfyz,y € L
andz # y. Furtherx w;, y. Thus,L is not a 2-infix-outfix code.
Now assume that is not a 2-infix-outfix code. Then there existy € L such

thatz # y andz w;, y. There are four cases:

(@) z,y € L;. Thenz = $a1$$a,$ andy = $3,$33,$ for someq,, §; €
(XU {0,1})*,i =1,2. Thus, we must have that= y, a contradiction.

(b) z,y € Ly. In this case, there exist;, 5; € (X U {0,1})* with 1 < i < 4
such thatr = $a;$a,$$a3$04$ andy = $5,$5.$$5:$5,$. Again, we have
thatr = y.



(c) x € Ly andy € L. In this case|x|s = 6 and|y|s = 4, which is impossible
if x wioy.

(d) z € Ly andy € L,. Then we can write
T = $ui1ui2 e u1m$$02m1 e Oi11$;
= $vj, v, Suk, U, - - - ug, $$0% 1 0F1$070 1 - - 07118,
wherem,s, ¢ > 1,1 < i, jg,ky < nforl <p <m,1 < ¢ < sand
1 <r </t Aszxuw, y, there existvy, as such thaty = ayzas. Therefore,
we must have that the occurrences of the subwénchatch between and
y, thatay = $vj, - - vj,, ap = 01 - - - 011§ and, furtherym = ¢ andi, = k,
for1 < p < m. Thus,
Yy = $va .. 'Ujs$ui1 .. 'Uz‘m$$0im1 c 01180751 4407118,

Now, there also exist;, z», 8 such thatr = x,2, andy = x,8z,. AS
$,0,1 ¢ X, we must have that

Ty = $vj,---v,8,
Ty = $0%1...07118,
$0% = =

We must necessarily have that = $u;, - - -u;,$ andzy, = $0' - - - 04§,
Thus,s =m, j, =i, foralll < ¢ <s, and

Ujy = Ujs = Ujy * - U

Therefore,P has a solution.

This establishes the resulm

We note that a similar construction can establish the undecidability of de-
termining whether an LCFL is a 2-prefix-suffix code, which was apparently not
considered by Itet al. [3].

5 Conclusion

In this note, we have considered decidability problems related to 2-infix-outfix
codes. The problem for more general classes, suehiamfix-outfix codes and
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n-k-prefix-suffix codes introduced by Lomg al. [8, 7], as well as, more crucially,
n-codes, appear to still be open.

Further, the proof techniques used here are yet another example of ad-hoc
methods for proving decidability. Unfortunately, the general methods discussed
in Jurgensen and Konstantinidis [6, Sect. 9] do not appear to be applicable to these
situations. It remains a substantial challenge to find general classes ofdgasgua
defined by such conditions to which uniform decidability results apply.
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