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Abstract

A new computational paradigm is described which o�ers the possibility of super-

linear (and sometimes unbounded) speedup, when parallel computation is used. The

computations involved are subject only to given mathematical constraints and hence do

not depend on external circumstances to achieve superlinear performance. The focus

here is on geometric transformations. Given a geometric object A with some property,

it is required to transform A into another object B which enjoys the same property.

If the transformation requires several steps, each resulting in an intermediate object,

then each of these intermediate objects must also obey the same property. We show

that in transforming one triangulation of a polygon into another, a parallel algorithm

achieves a superlinear speedup. In the case where a convex decomposition of a set of

points is to be transformed, the improvement in performance is unbounded, meaning

that a parallel algorithm succeeds in solving the problem as posed, while all sequential

algorithms fail.

Keywords: Parallel computation, superlinear speedup, computational geometry, ge-

ometric transformation, edge replacement, edge ip, triangulation, convex decomposi-
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1 Introduction

Parallel computation is a form of information processing whereby n processors, n > 1, co-

operate to solve a computational problem by working on it simultaneously. The expectation

is that this approach speeds up computations that would otherwise require an inordinate

amount of time if performed sequentially (that is, using one processor). Over the last twenty

�ve years, considerable progress has been achieved to ful�ll the promise of parallel compu-

tation. Results, both in theory and in practice, were obtained to demonstrate that, in fact,

signi�cant improvements are possible, not only in the speed with which a solution is obtained,

but also in the quality of the solution itself [8].

�This research was supported by the Natural Sciences and Engineering Research Council of Canada.

1



1.1 Speedup and Quality-up

Suppose that T1 is the time required (in the worst case) by the best sequential algorithm

for solving a given computational problem P, and that Tn is the time required (to solve P,

also in the worst case) by an n-processor parallel algorithm. The speedup achieved by the

parallel algorithm over the sequential one is the ratio T1=Tn. Similarly, if V1 is the value of

the solution to P obtained sequentially and Vn is the value of the solution to P obtained in

parallel, then the improvement in quality (or quality-up) a�orded by parallel computation

is Vn=V1. Note here that the way in which the `value' of a solution is measured depends on

the problem at hand; thus, for example, the quality of a (lossless) source coding algorithm is

determined by the compression rate it delivers. Similarly, the quality of a statistical measure

depends on the size of the sample used to compute it. By the simulation principle (which says

that any parallel algorithm can be simulated on a sequential machine), it follows that both

the speedup and the quality-up o�ered by n processors are each at most a linear function

of n. The validity of this principle is demonstrated by the fact that it holds for the vast

majority of conventional computations. As it turns out, however, various computational

paradigms are being discovered where the simulation principle no longer applies. In these

unconventional yet realistic computations, parallel computation provides improvements in

speed and quality that are often superlinear in n (that is, for example, of the form nx or xn,

for x > 1). Sometimes the improvement is unbounded [5].

1.2 Computational Paradigms

Our previous work has uncovered two general computational paradigms within which parallel

algorithms lead to a superlinear improvement in performance with respect to their sequential

counterparts. These paradigms, sketched in the next section, are: computing in real time

and computing within the bounds of laws of nature. In this paper, a new computational

paradigm is described which (like its two predecessors) o�ers the possibility of superlin-

ear (and sometimes unbounded) speedup, when parallel computation is used. Unlike its

predecessors, however, it does not depend on external circumstances to achieve superlinear

performance.

The new paradigm concerns computations that are subject to given mathematical con-

straints. Speci�cally, we are interested in transformations on mathematical objects. Given

an object A with some property, it is required to transform A into another object B which

enjoys the same property. If the transformation requires several steps, each resulting in an

intermediate object, then each of these intermediate objects must also obey the same prop-

erty. Our focus in this paper is on rectilinear Euclidean geometry in the two-dimensional

plane. We are concerned with speci�c geometric objects, namely, triangulations (of polygons

and point sets), and convex decompositions of sets of points. We show that in transforming

one triangulation into another, a parallel algorithm achieves a superlinear speedup. In the

case where a convex decomposition is to be transformed, the improvement in performance

is unbounded, meaning that a parallel algorithm succeeds in solving the problem as posed,

while all sequential algorithms fail.
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1.3 Computational Models

In terms of models of computation used, we select the Random Access Machine (RAM) and

the Parallel Random Access Machine (PRAM) [3], for their simplicity and widespread use,

this choice being of no consequence as far as the results in this paper are concerned. The

RAM is the standard sequential model, consisting of a single processor capable of reading

a datum from memory, performing an elementary arithmetic or logical operation (such as

addition, for example), and writing a datum back into memory, all in one computational

step. The PRAM is equipped with N processors, N > 1, sharing a common memory from

which they can read and to which they can write simultaneously. Each PRAM processor is

identical to the RAM processor.

The remainder of this paper is organized as follows. In section 2, we review briey the two

existing paradigms for superlinear performance. The new paradigm is described in section

3. Some concluding thoughts are presented in section 4.

2 Two Existing Paradigms for Superlinear Performance

Over the last few years, two paradigms have emerged that allow for superlinear perfor-

mance in parallel computation, namely, computing in a real-time environment with dead-

lines, and computing under the inuence of laws of nature. The growing presence of these

new paradigms within the �eld of computing, and their increasing applications in society

(with ubiquitous and mobile computing, for example, becoming more prevalent), lent time-

liness and importance to their theoretical study. Such study uncovered the fact that each

improvement in performance obtained through these paradigms is consistent and provable, in

the sense that it occurs in every instance of the computational problem under consideration.

In addition, this improvement is independent of any discrepancies between the sequential

and parallel computers used. These characteristics distinguish the results summarized in this

section from previous ones, (see [18, 36, 37, 43, 48, 52, 58], for example), where a superlinear

speedup occurs only occasionally, or is achieved either because the sequential algorithm used

is ine�cient, or because the size of the memory on the sequential computer is restricted.

An additional distinguishing feature of these paradigms is that, in some circumstances, they

lead to a superlinear improvement in the quality of the computed solution.

2.1 Computing in the Presence of Real-Time Deadlines

The notion of real time is an intuitive one. The term evokes simultaneity, liveness, and

immediacy; it even conveys a sense of urgency and the need for an instantaneous action.

Yet, real-time computation is di�cult to capture. The numerous de�nitions in the literature

[19, 50, 63] are witness to this fact (for an in-depth survey and analysis see [20]). One reason

for this situation is that, in today's fast-paced society where computers can perform billions

of operations per second, every computation seems to be performed in real time. Whether we

are dealing with a bank machine or running a ight simulator, we have become accustomed

to expect the result of our computations now. In a major textbook on the subject [47], the
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authors acknowledge the di�culty in delineating what computations to characterize as real-

time ones. They proceed to de�ne real-time computations as those computations in which

failure to produce the answers after a certain time would be catastrophic, involving loss of

human life. This state of a�airs provided the initial motivation for our work on a unifying

de�nition of real-time computation that avoids the extremes just discussed. A model was

sought that can be adapted to apply at any point on the above spectrum, depending on the

circumstances and requirements of a particular application. One such model was recently

derived that uses a complexity-theoretic approach based on formal languages [22, 23, 27, 25].

For any real-time computation, this model allows for the construction of a language such that

the computational resources required in order to accept this language are of the same order

as the resources that are required to carry out the given real-time computation. A second

approach is proposed in [4], where a general framework is described for the study of real-time

algorithms. In it, state space traversal is used as a model for computational problems in a

real-time environment, and algorithms are designed to solve these problems using a method

known as discrete steepest descent. Both approaches were used to obtain parallel algorithms

for real-time computation. They include algorithms for data accumulation [21, 26] and

data correction [24]. Most important for our theme here, however, were the algorithms that

demonstrated superlinear performance improvement in several applications [7, 12, 11, 10, 54,

55, 56, 57]. For example, we show that for a computation involving a one-way function of n

variables, an n-processor parallel algorithm leads to a speedup exponential in n. Similarly,

a quality-up exponential in n is obtained when using n processors to �nd the zero of a

continuous function numerically. In fact, in a cryptographic problem, the improvement in

quality due to parallelism is unbounded. A number of papers by other authors followed,

reporting similar results [35, 64].

2.2 Computing Under the Inuence of Natural Laws

We now turn to a second paradigm in which a parallel algorithm using n processors leads to

a performance that is far beyond an improvement in speed or quality linear in n. Here we are

concerned with computations whose characteristics are akin to certain unique phenomena

that are observed in di�erent domains of science. The focus is on systems whose computa-

tions are subject to natural law|typically, systems whose variables are altered unpredictably

whenever one of these variables is measured or modi�ed. Examples of such computational

environments include those in which Heisenberg's uncertainty principle of quantum physics

is witnessed, or those in which Le Châtelier's principle of chemical systems under stress

manifests itself. Our recent investigations have uncovered practical computations that are

inherently parallel in the strong sense, meaning that they are e�ciently executed in par-

allel, but impossible to carry out sequentially [13, 14, 15]. Speci�cally, we showed that

a resistance-inductance-capacitance circuit (a linear dynamical system) undergoes signi�-

cant perturbations that a�ect its dynamical behavior when some of its parameters (such

as current, voltage, and so on) are measured sequentially. By contrast, these perturbations

could be eliminated when the measurements are performed in parallel. Similarly, for the

Belousov-Zhabotinskii chemical reaction (a nonlinear dynamical system), we showed that

measurement disturbs the equilibrium of the system and causes it to go from a stable into
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an unstable state. If, however, several measurements are performed in parallel, the resulting

perturbations cancel each other out and the system remains in a stable state. These results

con�rm an earlier existence proof provided in [9] regarding such computations. There we

showed that, given a system in equilibrium, the task of measuring the system's parameters,

computing new values for them, and setting them to their new values before the system set-

tles on its own into a new but undesirable state of equilibrium, can be performed in parallel

but not sequentially. A further study of the properties of such computations is needed and

may have profound consequences on the theory and practice of computing.

3 Computing Subject to Mathematical Constraints

The two computational paradigms described in the previous section rely on external factors

in order to achieve superlinear performance when parallel computation is used. Thus, in

real-time computation the conditions governing the computational environment are, in a

fashion, fully determined by the human in charge and by the model of computation used.

For example, if it is deemed that the arrival rate of the data is too high, it is possible for

the people responsible for the computation to slow down the arrival rate, or to extend the

deadline by which a solution is to be delivered, or to use a faster computer, and so on.

Similarly, for the paradigm of computing under the inuence of natural law, it is the laws

of nature that prevail: the outcome of a computation is governed by those natural laws that

are in vigor within the computational environment. In this section we propose a paradigm

that does not depend on any outside conditions to attain superlinear performance in parallel.

Rather, the conditions on the computation are fully dictated by the mathematical properties

of the objects being operated upon.

Let A be a given physical object with a certain property p, and let B be another object

also satisfying p but for which only a mathematical de�nition is available. Such mathematical

de�nition may take, for example, the form of a graph, a set of equations, and so on. It is

required to construct B by applying a sequence of simple transformations to A such that

each intermediate object (on the path leading from A to B) also satis�es p. We will be

asking whether the transformation from A to B can be performed as de�ned, and if so, what

is the number of steps required in the worst case.

It is interesting to note here that this question is reminiscent of the edit distance problem

for strings (see, for example, [29]). A simple version of this problem is sated as follows. Two

strings u1 and u2, made up of symbols from a �nite alphabet, are given. Also provided is a

set of allowed operations on such strings, such as replacing a symbol by another, deleting a

symbol, inserting a symbol, reversing the order of two adjacent symbols, and so on. What

is the minimum number of consecutive operations needed to transform u1 into u2?

One reason for studying these transformations is that they serve as a mathematical model

for the following general problem. A large data (or state) space is to be searched. In this

space, it is possible to go from one datum (or state) to a nearby datum (or state), called its

neighbor, by a simple transformation. It so happens that a single computer can only `see'

a small subset of this space at any given time. Thus, such a computer can only perform a

search of the local neighborhood at its disposal, going from one datum (or state) to another

using simple transformations. This explains why we insist that each intermediate object
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must satisfy the same property (or be of the same type) as A and B. Another motivation for

this condition is that in some cases one may wish to interrupt the sequence of transformations

at any given time, and ask for the object reached thus far by the algorithm to be returned.

This circumstance would be an example of what is sometimes referred to in the literature as

an \anytime" algorithm [65].

In what follows, we examine transformations on two types of geometrical objects in the

plane, namely, triangulations and convex decompositions (also known as convex subdivi-

sions).

3.1 Triangulations

Recall that a triangulation is a planar graph all of whose faces are triangles. A set of points

in the plane can be triangulated by connecting pairs of points with (straight-line) edges until

no edge can be added without creating an intersection with an existing edge. Similarly,

the interior of a polygon can be triangulated by connecting its vertices with diagonals, such

that each diagonal lies entirely inside the polygon, until no diagonal can be added without

intersecting an existing diagonal.

Suppose that A and B are two grids, each in the shape of a triangulation of a polygon

with 2n vertices, as shown in Fig. 1 for n = 4.

B

A

Figure 1: It is required to transform A into B.

It is required to obtain B from A by applying a sequence of transformations such that each

intermediate grid is also a triangulation. A transformation is de�ned as the removal of at

least one edge and the replacement of every removed edge by exactly one other, as shown in

Fig. 2.
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BA

Figure 2: Transforming triangulation A into triangulation B.

3.1.1 Sequential Approach

A sequential algorithm can only replace one edge of a triangulation by another edge (such

that the resulting �gure is still a triangulation of the given polygon). It is shown in [41] that

for triangulations with 2n vertices of the form A and B, respectively, (n�1)2 transformations

(each replacing one edge by another) are required by a sequential algorithm. For n = 4, a

sequence of 9 transformations is illustrated in Fig. 3.

In order to see why the bound holds, note that the 2n-vertex polygon to be triangulated

consists of two chains, an n-vertex upper (convex) chain and an n-vertex lower (concave)

chain (as shown in Fig. 1 for n = 4). When the polygon is triangulated, each triangle has

two vertices either on the upper chain or on the lower chain. Let us associate each triangle

having two vertices on the lower chain with a 0 and each triangle having two vertices on the

upper chain with a 1, as shown in Fig. 4. Triangulation A may now be thought of as the

string

000 : : :000111 : : :111

while triangulation B may be thought of as the string

111 : : :111000 : : :000:

There are n � 1 0s and n � 1 1s in each string. In order to get from the �rst string to the

second, each 1 has to move n � 1 positions to the left (and each 0 n � 1 positions to the

right). This requires (n� 1)2 steps.

Clearly, this 
(n2) lower bound also applies to the more general case in which a triangu-

lation of a set of n planar points needs to be transformed into another such triangulation.

Furthermore, it is a tight bound since any triangulation (of a polygon or point set) with

O(n) edges can be transformed into another in O(n2) steps [41].

3.1.2 Parallel Approach

Suppose that we add (temporarily) the following condition to the problem of transforming

triangulationA into triangulationB using a parallel algorithm: Every time an edge (common

to two adjacent triangles ta and tb in a triangulation) is to be replaced, the edge replacing

it must be the other diagonal of the (convex) quadrilateral formed by ta and tb. It should

be clear that this condition holds implicitly in the sequential case since, once the outgoing

edge has been selected, the choice for the incoming edge is unique. Also, it should be clear

that two edges can be replaced simultaneously (by two other edges) provided that they are
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A

B

Figure 3: Transforming A into B sequentially.

not the sides of the same triangle; in this case the two edge replacements are said to be

independent.

In this special case, a parallel algorithm solves the problem in O(n) steps, each involving

possibly several independent edge replacements [33]. To show why this is true, we once again

use the mapping from triangulations of polygons to strings of length 2(n� 1), consisting of

n� 1 0s and n� 1 1s. Consider the string representing triangulation A.

000 : : :000111 : : :111

It contains a single 01 pair that can be ipped. Once this is done, we obtain the string

000 : : :001011 : : :111

containing two 01 pairs, which can be ipped simultaneously, leading to the string

000 : : :010101 : : :111
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B

0

1 11

00

111

000

A

Figure 4: Mapping a triangulation into a binary string.

which now contains three pairs 01 that can be ipped simultaneously. This continues until

we reach the string

010101 : : :010101

made up of n� 1 pairs 01. After ipping these, the number of 01 pairs drops to n� 2, n� 3,

. . . , 1, until

111 : : :111000 : : :000

is reached, representing triangulation B. The number of strings generated from the initial

one is 2n�3. Therefore, with exactly n�1 processors, this requires 2n�3 steps, since at most

this many processors are needed to perform simultaneously all ips required to transform one

string into another. It is shown in [33] that this bound holds for all triangulations of polygons

as well as all triangulations of point sets. Given that the sequential solution requires (n�1)2

steps, the speedup a�orded by the parallel solution here is on the order of n, that is, linear

in the number of processors. (Note that triangulations of convex n-gons can be transformed

in parallel in a number of steps on the order of logn. Given that the sequential number of
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steps in this case is linear in n, the speedup is on the order of n= logn, which is sublinear in

the number of processors.) Similar results appear in [45, 46].

Suppose now that we lift the restriction added at the beginning of this section. Thus the

edges removed in going from one triangulation into another must only satisfy the requirement

that the resulting �gure remains a triangulation (no intersections and every face is a triangle).

This change makes no di�erence in the sequential case as pointed out at the beginning of

this section. It is clear, however, that 2n� 3 processors operating in parallel can now solve

the problem of transforming triangulation A to triangulation B (see Fig. 1) in one step:

Each processor replaces one edge of A by an edge of B. The speedup in this case is on the

order of n2, that is, quadratic in the number of processors. This result holds for all types of

triangulations.

3.2 Convex Decompositions

The parallel algorithm at the end of the previous section is reminiscent of the furniture-

moving paradigm [6]:

\[A] large piece of furniture [..] needs to be moved from one place to another.

One mover working alone is unable to lift, push, or drag the item and, in order

to move it, must take it apart, transport each of the parts individually, and then

put them back together at the indicated spot. The job requires one hour. On the

other hand, four movers working together can simply lift the piece of furniture

and put it in its new location in 15 seconds."

This observation motivated us to search for other instances of this phenomenon. A result

beyond superlinear speedup is provided by convex decompositions of point sets, that is,

planar graphs each of whose faces is a convex polygon. Consider the convex decompositions

A and B in Fig. 5. Given A, it is required to transform it to B. A transformation involves

replacing at least one edge by another. Every intermediate �gure (on the path leading from

A to B) must be a convex decomposition.

It can be veri�ed that no sequential algorithm can transform A into B by a sequence

of transformations, each involving a single edge replacement, such that every intermediate

graph is a convex decomposition [53]. As shown in Fig.6, the removal of one edge and

its replacement by another inevitably leads to a concavity, thus violating the requirement.

In fact, a stronger result is obtained in [53] for the decompositions A and B in Fig. 5,

consisting of 3n vertices: the smallest number of edges that can be removed and replaced

without creating a concavity is exactly n. Clearly, no sequential algorithm can replace n

edges simultaneously. Therefore, since the problem cannot be solved sequentially, we say

that the sequential number of steps is in�nite.

A parallel algorithm, on the other hand, easily performs the transformation in one step,

using the furniture moving approach: All edges in A to be replaced are lifted simultaneously

and the edges replacing them deposited to create B. Therefore, in this case the speedup is

unbounded.

It is interesting to note here that one sequential operation su�ces to destroy an existing

mathematical property of the object under consideration. Indeed, the decomposition is no
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A

B

Figure 5: Transforming convex decomposition A into convex decomposition B.

longer convex after a single edge replacement. This situation is surprisingly similar to that in

the paradigm described in section 2.2, namely, computing under the inuence of natural laws.

There, a physical system loses its state of equilibrium if one of its parameters is measured

or modi�ed.

4 Conclusion

Mathematically constrained computing is a new paradigm conducive to superlinear perfor-

mance in parallel computation. Problems belonging to this paradigm are inherently parallel

in the sense that they are quickly solvable in parallel, but very slow to solve sequentially.

Typically, for a problem of size n, the speedup a�orded by a parallel algorithm using n

processors over a sequential one is a superlinear function of n. Some problems cannot be

solved at all sequentially, in which case it is fair to say that the speedup is unbounded.
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A

Figure 6: A sequential approach creates a concavity.
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In this paper the focus has been on one family of such computations, namely, inherently

parallel geometric transformations. Two examples were presented. Both are concerned with

transforming one geometric �gure into another of the same class using edge replacements. An

edge replacement operation was de�ned as the removal of (at least) one edge and the insertion

of a new edge (for each edge removed), such that, when the substitution is completed, the

�gure thus created is of the same class as the original �gure. It is shown here that, in the

worst case, when transforming one triangulation into another, the speedup is quadratic in the

size of the triangulation. By contrast, for transforming a convex decomposition into another,

we prove (by counterexample) that the problem is not solvable in all cases sequentially, but

always solvable in parallel.

It is interesting to note here that transforming geometric �gures through edge replace-

ment (sometimes called ips) has several applications. Flips in triangulations, in particular,

have received considerable attention. They have been used in computational geometry to

construct various types of triangulations in two and higher dimensions [31, 32, 33, 41, 44,

45, 46, 49] and to compute the visibility graph of a set of objects in the plane [59]. In

combinatorics, their applications include the enumeration of rooted triangulations [16] and

performing rotations on binary trees (taking advantage of the bijection between triangula-

tions of a convex n-gon and binary trees with n-2 internal nodes) [40, 51, 61]. Flips are

also used in graphics in a variety of ways: from compression techniques for visualization and

transmission [38, 39, 60] to adapting to a new topology [28, 30, 62]. Last but not least, they

arise quite naturally in the �nite elements method of numerical analysis, one of the most

important applications of triangulations [34]. In all of these domains, one typically begins

with a triangulation (often arbitrary), which is gradually transformed into another `better'

(or simply di�erent) triangulation through a sequence of edge replacements (ips).

Several avenues o�er themselves for future research. For example, we are currently in-

vestigating the problems of transforming a number of rectilinear planar graphs (such as, for

example, Hamilton paths, perfect matchings, sets of cycles, and so on [42]). Recall that, a

cycle in a graph is a sequence of consecutive edges that starts at a node of the graph and

ends at the same node. By this de�nition, each node is incident on exactly two edges. Also,

for a set P of n points in the plane,

1. a rectilinear planar Hamilton path H on P is a connected graph whose nodes are the

points in P and whose edges are a sequence of non-intersecting straight-line segments,

such that each point is connected to exactly two other points, except for the �rst and

last points, each of which has only one neighbor,

2. a rectilinear planar perfect matching M on P consists of a set of non-intersecting

straight line segments each connecting a pair of points of P such that each point is

incident on exactly one segment (assuming n is even), and

3. a rectilinear set of cycles C on P consists of a set of non-intersecting cycles made up

of straight-line segments connecting the points of P such that each cycle has length i,

where 1 � i � n. When i = 1, the cycle is a loop connecting a point to itself, and

when i = n, there is only one cycle, called a Hamilton cycle.
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We are interested in �nding out whether any of these geometric objects can be trans-

formed into another of the same type using edge replacements such that each intermediate

object is of the same type. Put di�erently, given P, let GH be the (meta)graph each of whose

nodes represents a rectilinear planar Hamilton cycle de�ned on P, such that two nodes of GH
are connected if and only if the two Hamilton cycles they represent can be obtained from one

another through a single edge replacement. (Meta)graphs GM and GC are de�ned similarly.

The question now is whether GH (or GM, or GC) is connected. Both possible answers to this

question lead potentially to interesting considerations:

1. Suppose that GH (or GM, or GC) is shown to be connected. In this case, two new

questions suggests themselves:

(a) What is the diameter of the (meta)graph, that is, the length of the shortest path

separating its furthest two nodes? If the diameter is superlinear, then a sequential

algorithm requires a number of steps superlinear in n to transform one geometric

object into another. By contrast, a parallel algorithm performs the transformation

in constant time. This would it provide another example of superlinear speedup.

(b) Does the (meta)graph contain a Hamilton cycle (that is, a cycle that goes through

every node exactly once)? This property would signify that from any one geo-

metric object { for instance a rectilinear planar Hamilton path, or a rectilinear

planar perfect matching, and so on { all other objects of the same type de�ned

on P can be generated using single-edge replacements.

2. On the other hand, suppose that GH (or GM, or GC) is not connected. This means

that there are at least two geometric objects such that neither can be transformed

into the other through single-edge replacements. In this case, the transformation is

impossible sequentially, while eminently computable in parallel. This would imply

another instance of unbounded speedup.

A rectilinear planar spanning tree T on P is a connected graph with no cycles whose

nodes are the points in P and whose edges are non-intersecting straight-line segments. It

has been shown that GT is connected for three di�erent de�nitions of the edge replacement

operation:

1. In [17] an edge is removed and replaced by another with no additional restrictions (save

for the usual requirement that the resulting �gure be a rectilinear planar spanning tree).

2. In [1] an edge is replaced by another provided that the replacement reduces the total

length of the tree.

3. In [2] an edge is replaced by moving one of its endpoints along an adjacent edge.

However, the question of whether GT is Hamiltonian remains open. To our knowledge, it is

also open for the (meta)graph of triangulations of a set of points and for that of triangulations

of a polygon.
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The next logical step would be to investigate more general geometric objects, such as

rectilinear outerplanar graphs. These are graphs that have a crossing-free straight-line em-

bedding in the plane, such that all vertices are on the same face.

Finally, it is an open question whether other branches of mathematics, besides geometry,

o�er the possibility of superlinear speedup within the context of the (computing-subject-

to-mathematical-constraints) paradigm introduced in this paper. If other examples of such

computations are found, will mathematical transformations, analogous to the geometric

transformations described here, play a major role in achieving the improved performance

through parallelism?
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