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Abstract - The core-based approach in multipoint 
communication broadens the solution space in terms of QoS-
efficiency of solutions in inter and intra-domain routing. In an 
earlier work [KH03a], we showed that the constrained cost 
minimization solutions in core-based approach proposed to 
date are restrictive in their search to a subrange of solutions, 
and we proposed SPAN, a generic framework to process in the 
extended solution space. In this paper, we study the core 
selection component of SPAN and propose two novel 
algorithms, SPAN/COST and SPAN/ADJUST. Our algorithms 
consistently outperform their counterparts proposed to date 
and can be considered pioneering in their optimization range 
of multiple metrics and processing in the extended solution 
space.  
 

1. INTRODUCTION 
Multipoint communication is the simultaneous delivery of 
data stream from each source to a set of receivers in a group 
for an efficient transmission according to predetermined 
metrics. Multipoint communication has numerous 
applications in Internet group communications. Design 
objectives in Internet routing architectures are characterized 
under Quality-of-Service (QoS) constraints for the 
allocation of network resources particular to application 
demands. Broadband group applications are often delay-
sensitive and demanding on network resources. The 
prominent QoS problem in multipoint communication is 
constrained cost minimization – minimization of total 
network resources in one metric while meeting a given end-
to-end delay bound between source-receiver pairs as a 
second metric.  
 
The core-based approach broadens the solution space by 
efficient placement of cores in the domain especially in the 
sparse mode. In this approach, the delivery trees are not 
necessarily rooted at a source any more, but at a domain 
node that ranks high in efficiency with respect to the 
operating metrics. Cost-efficiency and reduced maintenance 
overhead of the communication path are achieved through 
simplified and separately manage tree structures. The 
approach additionally offers the placement of cores in 
distinct autonomous systems allowing tree management 
“locally” on the availability of the AS information within 
the particular domain. Core selection – selecting the 
locations of the cores preliminary to tree construction 
operations – is crucial in this respect for protocol 
performance [KH03b]. An efficient core-selection process 
is likely to improve the performance of multipoint 
communication protocols significantly.  
 

Core-based QoS-routing solutions proposed to date 
restricted the processing range to a subset of the solution 
space, which in turn restricted the efficiency of the potential 
results [KH03a]. In [KH04], we proposed a basic core 
selection algorithm, SPAN, operating for a distributed, 
constrained solutions in the extended solution space under 
the core-based architecture. SPAN processed solely on the 
connectivity information each candidate core provides the 
group members, yet consistently outperformed its 
counterparts in the literature. In this paper, we study the 
core selection algorithms in the extended solution space and 
propose two algorithms, COST and ADJUST. COST and 
ADJUST define the core-selection component of SPAN to 
account for the cost-approximation of the resulting 
multipoint communication path to achieve QoS guarantees. 
In the next section, we layout the problem and the 
terminology before we examine the existing solutions in the 
literature. In Section 3, we introduce COST and ADJUST. 
We evaluate the performance of COST and ADJUST against 
their counterparts in the literature in Section 4. We conclude 
the paper in Section 5.  
 

2. PRELIMINARIES 
We analyze a solution for a multipoint communication 
group under the core-based approach as a union of core-
based trees each spanning a subset of receivers, and the 
source-based trees each spanning the set of cores connecting 
the receivers in respective core-trees to the source and thus 
serving the source for the group application. The trees are 
maintained separately and potentially share links.  
 
We say that a receiver r is dominated by a core c for a 
particular source s if there exists a path p connecting s to r 
so that p passes through c without violating the delay 
bound. Equivalently, we say that a core c serves rs. We use 
the notation D(c,s) to indicate the set of receivers that are 
dominated by the core c for source s. Similarly, we indicate 
by D(c,S’) the domination of a set of receivers that are 
dominated by the core c for each source in a subset S’ of the 
set of sources. We refer by multipoint tree the union of 
paths serving a S’⊆S for all receivers in the group where 
each core tree constituting the path is identically serving all 
sources in S’. Consequently on such a multipoint path, the 
domination sets of the cores in the cluster of cores 
describing the path partitions the receiver set. Observe that a 
multipoint tree does not necessarily have a tree structure 
although it specifies distinct trees each of which is serving a 
particular source for the delivery of its stream to the 
receivers. In Figure 1-a, we present an example for a 
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multipoint tree. The source and receiver sets in the 
multipoint communication group are S={s1,s2} and 
{r1,r2,r3,r4,r5} respectively. There are 3 cores in the group. 
Dominating sets are D(c1, S) ={r1,r2}, D(c2, S) ={r3}, D(c3, 
S) ={r4,r5}. There are three core-rooted trees, each spanning 
the receivers in the domination sets of their respective cores. 
The multipoint tree is serving both sources in the group. 
There are two source-rooted trees, one for each source, each 
spanning the entire cores in the core-cluster corresponding 
to the multipoint tree. The links on source and core trees are 
indicated by solid and double lines, respectively. All links 
except those indicated by dashed line are on the multipoint 
path. Figure 1-b presents an alternate solution to the same 
problem in which different trees with non-identical core 
trees serve the sources. The links serving sources s1 and s2 
are indicated solid and dashed lines, respectively. Double 
lines indicate the links serving both sources. The 
domination sets are D(c1, S) ={r1,r2}, D(c2, s1) ={r3, r4}, 
D(c2, s2) ={}, D(c3, s1) ={r5}, D(c3, s2) ={r3, r4,r5}. Unlike 
the case in Figure 1-a, the receiver set is partitioned 
differently by the core clusters for each source, with one 
partition and the dominating core, c1, common to both. We 
name the range of solutions that involve respectively a 
unique core cluster and multiple core clusters for a 
particular multipoint communication problem as singular 
and non-singular solutions. Note that any union of paths 
constituting a solution to a constrained multipoint 
communication problem can be formulated as a set of core 
clusters. 

 
 
 
 
 
 
 
 
 
(a) 

 
 
 
 
 
 
 
 
 
(b) 

Figure 1. An example constrained-multipoint 
communication problem. a.) a singular solution, b.) a non-
singular solution for the same problem instance.  
 
The search for solutions in the singular solution space 
examines the domination of each receiver for all sources in 
the group. An algorithm to span the solutions in the non-
singular space, on the other hand, examines the domination 
sets separately for each source rather than across all sources. 
The non-singular solution space expands the range of 
potential solutions to achieve more efficient results for 
constrained-group communication. Thus, a heuristic to 
provide a solution to constrained multipoint communication 
problem in the entire solution space is considerably 
preferable to a heuristic to provide a solution in the singular 
solution space [KH03a].  
Only few studies have been conducted on multiple shared 
trees for multi-source groups. Zappala, Fabbri and Lo 
[ZFL02], in their Senders-to-Many architecture, partition 
the receiver set among a set of cores and generate a unique 

core cluster to serve the group. Senders-to-Many is 
distributed and does not consider a given delay-bound. In its 
architecture, Senders-to-Many separates core selection and 
tree construction processes into modular units. Each core 
and the receivers in the partition corresponding to that core 
constitute a tree rooted at the core. A source willing to 
deliver its stream simply sends its data packets to the core 
from whereon they are transmitted to the receivers via the 
core-trees.  
 
Salama’s [Sa96] multi-core based architecture, GREEDY, 
operates to develop a set of core-based trees each spanning 
a receiver partition is defined, this time meeting a given 
delay bound in the solution generated if such a solution 
exists. Salama’s solution is particularly relevant since it is 
the only routing architecture for multipoint communication 
in literature providing multi-core solutions for delay-
constrained communication groups with multiple sources. A 
distinctive property of GREEDY is that, it assumes bi-
directional trees during core selection so that the data 
stream to be delivered to the multipoint group does not 
necessarily need to travel to the tree root to be transmitted 
throughout the tree. Instead, each on-tree node receiving the 
stream acts as the tree "root", and relays the packets simply 
to everyone of its links except the incoming link. The 
architecture necessarily incorporates core selection into tree 
construction in consideration of bi-directional utilization of 
the trees in the design stage. Bi-directional development of 
trees widens the solution space for delay-constrained 
problems. However, its applicability is restricted to 
symmetric networks, and it is infeasible for distributed 
implementation for it necessarily operates on distances 
between pair of domain nodes rather than node pairs in 
candidate core and multipoint group member sets. GREEDY 
restricts its search to the singular solution space.  
 
SPAN [KH04] is a distributed, asymmetric framework that 
operates in the non-singular solution space for constrained 
groups. SPAN initially identifies the potential cores into a 
pool as candidates by examining their domination 
characteristics. A domain node is a candidate core only if it 
connects at least one source-receiver pair within the delay-
bound of the application. Each candidate core tests itself on 
the local state information for its domination for the group, 
and reports its results to the designated coordinator node in 
the domain for the selection of cores across these results. 
The ultimate core set selected among the candidate cores 
includes the cores that lead to a multipoint path to 
approximate the optimum solution. The construction of the 
trees follows core selection and is coordinated separately by 
the root of each tree.  
 
Let T(c,s) be a core-tree rooted at core c to serve source s for 
all receivers in D(c,s). According to this definition, T(c,s) 

“totally” serves s. Consider that T(c,s) serves a source s’∈S, 
so that D(c,s)∩D(c,s’)≠∅ and D(c,s)≠D(c,s’). We say, in 
this case, that T(c,s) serves s’ partially. In an attempt to 
minimize the multipoint path structure in terms of the 
number of links on it, the approach is the maximization of 
combined partial and total utilization of multipoint paths for 
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simplification of ultimate trees in conjunction with 
efficiency of the transmission. SPAN imposes that a tree 
T(c,s) constructed to serve its defining source s for all the 
receivers in D(c,s) also serves, with no modification on the 
on-tree paths, the rest of the sources for all receivers in set 
D(c,s)∩D(c,s’) ∀s’∈S. For all s’∈S, a domination rs’∈ T(c,s)   
is served on T(c,s) along the path that serves rs. According to 
this, rs’∈ T(c,s) ⇔ r∈D(c,s)∩D(c,s’). Consider the definition 
of domination count of a potential core-tree T(c,s) as follows: 
 

domination count(c,s) =∑
∈

∩
Ss

scDscD
'

|)',(),(|  

Literally, domination count of a (c,s) tuple specifies the 
number of source-receiver pairs the core tree T(c,s)  is capable 
of serving when the receiver set being served is restricted to 
D(c,s). The extended solution space offers, during core 
selection, efficient choice of a core in consideration of each 
source separately, diverting from the shared tree approach 
for the efficiency of path construction, update and 
management during the communication session. However, 
higher utilization of T(c,s) in terms of the number of sources 
it is partially or totally serving improves the overall 
multipoint path structure through tree sharing as the case in 
core-based approach literature. Furthermore, higher 
utilization of T(c,s) in terms of the number of receivers it is 
dominating improves the efficiency of transmission as the 
case in multicast routing literature. Therefore, high 
domination count is desirable for core-selection criterion. 
SPAN iterates to select the potential core tree T(c,s) to return 
the highest domination count for the currently un-dominated 
receivers. Note that, whenever there is a delay-bound 
solution, each source in the group is a potential core to serve 
itself for all the receivers in the group. This implies that the 
number of cores selected by SPAN is at most as great as |S|, 
the size of the source set.  
 
3. CORE SELECTION ALGORITHMS   
SPAN conducts its search for cores based solely on the 
domination count of each core as the selection criterion. In 
this section, we present two core selection algorithms, 
COST and ADJUST. Both algorithms operate within the 
framework describing SPAN itself, and thus both algorithms 
are distributed, asymmetric, and execute on the non-singular 
as well as singular solution space.  SPAN/COST examines 
the cost distances between the group members and 
candidate cores as part of the core selection criterion during 
the selection process. SPAN/ADJUST, on the other hand, 
first executes SPAN and processes on the selected core trees 
to improve the efficiency of the already found solution.  
 
3.1 SPAN/COST  
SPAN/COST defines core-selction within SPAN, taking into 
account the cost distances to be traveled between the 
source-core and core-receiver pairs on the trees to be 
constructed for a better approximation of the resultant paths 
on the cost metric. As in SPAN, it still operates in the non-
singular solution space and uses the domination count as a 
metric for core selection. We use the cost of the minimum 
delay-distance paths for our approximations. Let cost(i,j) 
denote the cost of the minimum delay-distance path 

between the nodes i and j. We extend the selection criterion 
as follows: 

Criterion(c,s) = R_factor(c,s)+ S_factor(c,s)+ D_factor(c,s) 
where  

R_factor(c,s) = 
[ ]
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The second term in the D_factor(c,s)  expression is literally 
the proportion of the domination count of the potential core 
tree T(c,s) to the currently un-dominated receivers across the 
sources. D_factor(c,s)  in return is merely a transformation of 
domination_count(c,s) to a scale in a definite range in which 
it is to be minimized for the highest value of 
domination_count(c,s). In the basic SPAN, Criterion(c,s) = 
D_factor(c,s).   
Let S(c,s),r be the set of all sources served by the tree T(c,s) to 
dominate the r.  The R_factor(c,s) accounts for the cost 
distances between a core c, and receivers dominated on its 
respective core tree. The value cost(c,r)*|S(c,s),r| accumulates 
the cost distances to be traveled between the core c and the 
receiver r separately for each source in S(c,s),r transmitting its 
stream to r via the tree T(c,s). The numerator of 
R_factor, [ ]∑

∈ ),(
),,( ||)*,(cos

scDr
rscSrct  in return is the sum of 

all core-receiver distances across the receivers dominated 
on the tree T(c,s). Note that this value is an approximation, 
since the paths leading to multiple receivers on the tree T(c,s) 
are potentially shared, and thus the cost of transmission 
from a source to multiple receivers sharing paths leading to 
them on the core tree is less than their additional cost value. 
R_factor divides by ∑

∈ ),(
),,( ||

scDr
rscS =|{rs’|rs’∈ T(c,s)}| to take 

the simple average of the approximated cost.  
 
S_factor measures the cost distances between core-source 
pairs. ∑

∈ rscSs
sct

),,('
)',(cos / rscS ),,(  represents the average of all 

transmission costs between each source served on T(c,s) for a 
given receiver r dominated on the tree. We accumulate the 
average source-to-core transmission costs for all the 
receivers dominated on the tree T(c,s). The packets 
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transmitted from a source to a core are delivered to multiple 
receivers on the core-tree. Therefore, the more receivers are 
served for a particular source s’ on T(c,s), the less the cost 
between s’ and c is accounted for. Due to this, we diminish 
each ∑

∈ rscSs
sct

),,('
)',(cos / rscS ),,(  further by the by the size of 

the set {s’|rs’∈ T(c,s), s’∈S(c,s),r }, and divide S_factor by 
∑

∈ ),(
),,( ||

scDr
rscS =|{rs’|rs’∈T(c,s)}| rather than |D(c,s)| to take the 

simple average across the receivers served on T(c,s). 
 

.C1.. for (each c∈C)   for (each s∈S)   {    // O(|S||C|)     [O(|S|2|R||C|)] 
C2..      // compute domination_counts 
C3..        domination count(c,s)  = |D(c,s)|; 
C4..        for (each s’∈S, s’≠s)                   //  O(|S|)    [O(|S||R|)] 
C5..             domination count(c,s)  += |D(c,s) ∩ D(c,s’)|;    // O(|R|) 
C6..  } 
C7..  for (each c∈C)   for (each s∈S)    
             for (each r∈ D(c,s))   for (each s’∈S)    // O(|S|2|R||C|). 
             //    compute S(c,s),r values  
C8.. if (r∈ D(c,s’))  { 
C9..      S(c,s),r = S(c,s),r ∪ {s’} 
C10..      S(c,s),r .cost += cost(s’,c); 
C11..      |S(c,s),r|++; 
C12.. }; 
C13.. compute ave_dist =                                                                // O(|S||R||C|) 

[ ]∑
∈

∈
CxSsc

scDr
rscSrct

),(
),,(

),,( ||)*,(cos / ∑
∈

∈
CxSsc

scDr
rscS

),(
),,(

),,( || +m;     

C14..  total_count = 0;   
C15..  repeat   // O(|Cu|) = O(|S|)     [O(|S|3|R||C|)] 
C16..     if (|C| =|S|) exit; 
C17..     min_value = ∞; 
C18..     for (each c∈C)   for (each s∈S)  {  // O(|S||C|)     [O(|S||R||C|)] 
             // compute criterion for each candidate core and select the best scoring one 
C19..          NR = 0;   NS = 0;   D = 0;  
C20..          for (each r∈ D(c,s))   {   //   O(|R|) 
C21..                 NS += S(c,s),r.cost/|S(c,s),r|;   // numerator of S_factor(c,s);   
C22..                 NR += cost(c,r)*|S(c,s),r|;    // numerator of R_factor(c,s);   
C23..                 D += S(c,s),r|;    // denominator of both factors  
C24..           }; 
C25..           R_factor(c,s) =  NR / (D*ave_cost_dist) 
C26..           S_factor(c,s) =  NS / (D*ave_cost_dist) 
C27..          D_factor(c,s)=1- domination count(c,s) /(|R|*|S|-total_count) 
C28..           criterion(c,s)  = R_factor(c,s) + S_factor(c,s) + D_factor(c,s); 
C29..           if (criterion(c,s) <min_value)  { 
C30..                min_value = criterion(c,s); 
C31..             core = c; 
C32..             source = s; 
C33..           }; 
C34..      }; 
C35..      total_count += domination count(core,source); 
C36..      domination count(core,source) = 0; 
C37..      Du(core,source) = D(core,source); 
C38..      Cu = Cu ∪{(core, source)} 
C39..      C = C \ {core}; 
C40..      for (each s∈S)  for (each r∈ D(core,source))   // O(|S||R|)     [O(|S|2|R||C|)] 
C41..           if (r∈ D(core,s))    { 
C42..               Du(core,s) = Du(core,s) ∪{r}; 
C43..               for (each c∈C, c ≠ core)   {   // O(|C|)     [O(|S||C|)] 
C44..                      S(c,s),r = ∅; 
C45..                      for (each s’∈S)      S(c,s’),r = S(c,s’),r \ {s};      // O(|S|)   
C46..                      if (r∈ D(c,s))    domination count(c,s) --; 
C47..                      D(c,s) = D(c,s) \{r}; 
C48..                }; 
C49..       }; 
C50..  until (total_count = |R|*|S|) 

Figure 2. Pseudo-code of SPAN/COST. 
 
In an attempt to normalize R_factor and S_factor, we 
further divide both factors by ave_dist, which is the value to 
approximate the average of all cost-distances to be traveled 
between the potential cores and the receivers to be 

dominated on their respective trees.   We shift the cost 
values by m, the minimum of the link costs in the domain to 
allow equal consideration of cost(c,r) in R_factor for the 
case c=r when it multiplies. The value m appears in 
S_factor and ave_dist in the simplified form of the 
formulae.  
 
In Figure 2 we present the SPAN/COST algorithm. Du and 
Cu respectively denote the ultimate domination and core sets 
for the selected core trees. Note that Du(core,s) ∀s∈S for 
specify a selected core tree T(core,source) . The algorithm starts 
out with the initialization of the sources set attributes (lines 
C7-12) and domination counts (lines C1-6) for all possible 
core trees.  The domination counts and the attributes of each 
S(c,s),r for the remaining cores are updated whenever a new 
core is selected throughout the algorithm (lines C40-49). 
Line 13 indicates the one-time computation of ave_dist. 
SPAN/COST does not have an inherent bound on the 
number of cores selected. We force the upper bound on the 
ultimate core set for SPAN for SPAN/COST as well, and 
terminate the algorithm whenever the core set size exceeds 
the number of sources and assume SPAN to be invoked for 
the core selection for the particular problem instance (line 
C16). The block in lines C18-35 computes Criterion(c,s) for 
each candidate-core and source tuple (lines C18-28) and 
compares the value to the current minimum value, 
min_value (lines C29-33). total_count keeps track of the 
number of current dominations, i.e., the number of distinct 
rs dominated by an already selected core tree. The main 
loop (lines C15-50) iterates to select exactly one core tree 
each time, and terminates when all the receivers are 
dominated for all sources.  
 
The computational complexity of each computation step is 
depicted on the line as comments. The lines of which the 
computation time is bound by a constant are not specified. 
The values indicated in square brackets denote the overall 
complexity of the loop-statements when the nested blocks 
are accounted. It can be shown that SPAN/COST executes in 
time O(|S|3|R||C|).  
 
3.2 SPAN/ADJUST   
SPAN selects the cores based on their domination counts. 
The resulting cores combine all the currently un-dominated 
receivers on their respective trees with no regard to the cost-
proximity of the receivers to the cores. In this section, we 
introduce an alternative non-singular algorithm, which we 
call ADJUST. ADJUST first runs SPAN to select the cores 
using domination count as the sole criterion, then adjusts the 
existing trees by moving the receiver between the trees for 
their less-costly dominations. The cost function relevant for 
this case to measure the cost distances between the core-
receiver pairs needs also to account, ∆, the delay-bound of 
the application, in order to determine whether the path being 
examined meets the delay bound: 
 

cost’(c,rs) = { cost(c,r)        ; if delay(c,r)+delay(s,c)<∆ 
 ∞         ; otherwise  
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Consider main domination and ordinary domination to 
define rs∈ T(c,s) and rs’≠s∈ T(c,s) respectively. Observe that an 
ordinary domination for a particular receiver can be on a 
given tree only if the main domination for that receiver is on 
that tree. ADJUST distinctively considers the following 
cases for the movement of dominations between the trees:  
 
a) from ordinary to main domination: Let rs’ be an ordinary 

domination on a core tree T(c,s) so that s’≠s. The necessary 
condition for the movement of rs’ to a core tree T(c”,s”)  for 
main domination requires that s’=s” and  cost’ (c”,rs’)<∞.  

b)  from main to any domination: Let rs be a main 
domination on a core tree T(c,s). The necessary condition 
for the movement of rs to a core tree T(c’,s’)  for any 
domination requires that s=s’ (which is the sole necessary 
condition if rs’ ∈T(c,s) ⇒ s’=s) or rs’∈ T(c’,s’) , and 
cost’(c’,rs”)<∞ for all rs” where rs”∈ T(c,s). 

c) from ordinary to ordinary domination: Let rs’ be an 
ordinary domination on a core tree T(c,s)  so that s’≠s. The 
necessary condition for the movement of rs’ to a core tree 
T(c”,s”)  for ordinary domination requires that rs”∈ T(c”,s”)  

and cost’ (c”,rs’)<∞. 
 
 

//  from ordinary to main     
A1.. for (each core tree T(c,s))      // O(|Cu|) = O(|S|)   [O(|S|2|R|)] 
A2..     for (each r∈R)               // O(|R|)   [O(|S||R|)] 
A3..        if (rs∉ T(c,s))   { 
A4..              locate T(c’,s’)  where rs∈ T(c’,s’);     // O(|Cu|) = O(|S|) 
A5..              if ( (cost’(c, rs)< cost’(c’, rs) ) & (s’≠s) )  
A6..                             { move rs from T(c’,s’)  to T(c,s)  } 
A7..        } 

// from main to any   
A8.. for (each core tree T(c,s))   for (each r∈R)  // O(|Cu||R|)=O(|S||R|)     [O(|S|2|R|2)] 
A9..      if ( (rs∈ T(c,s)) & (rs is not marked) ) {    
A10..         min_value = cost’(c, rs); 
A11..         for (each core tree T(c’,s’))       // O(|Cu|) = O(|S|)     [O(|S||R|)] 
A12..              if ( (rs’∈ T(c’,s’)   ||  s’=s) && (cost’(c’, rs) < min_value) )   { 
A13..                   dependants = true; 
A14..                    for (each rs”∈ T(c,s))   //   O(|R|)    
A15..                          if (cost’(c’, rs”) = ∞)   dependants = false; 
A16..                    if (dependants)     { min_value = cost’(c’, rs);  toTree = T(c’,s’);  } 
A17..             } 
A18..             mark and move rs’ ∀s’∈S from T(c,s)  to toTree;  // O(|S|)      
A19..     } 

// from ordinary to ordinary 
A20.. for (each s∈S)  for (each r∈R)   if (rs is not marked) { //O(|S||R|)   [O(|S|2|R|)] 
A21..     locate T(c’,s’)  where rs∈ T(c’,s’);      // O(|Cu|) = O(|S|)   
A22..     if (s’≠s)  {    // if not a main domination  
A23.. min_value = cost’(c’, rs); 
A24..     for (each core tree T(c”,s”))       // O(|Cu|) = O(|S|)    
A25..      if ( (rs” ∈ T(c”,s”)) & (cost’(c”, rs) < min_value) )   
A26..                     {  min_value = cost’(c”, rs);  toTree = T(c”,s”); } 
A27..            mark and move rs from T(c’,s’)  to toTree; 
A28..     } 
A29.. } 

Figure 3. Pseudo-code of SPAN/ADJUST. 
 
ADJUST (Figure 3) applies the intuition to initially establish 
the main dominations based on their ultimate locations on 
the core trees for which the distance of the receiver in the 
domination is closest in cost to the core of the tree. The 
algorithm first examines the ordinary dominations for their 
main dominations on the selected core trees (Case (a), lines 
A1-7). When there is a core tree rooted at a core, say c, 
satisfying the necessary condition for this case, the cost 
distance of the receiver to its currently dominating core and 
the core c are compared, and the domination is moved if the 

cost distance on the newly found tree turns out to be less. In 
case (a), the fist tree found to provide a better cost is 
selected to move the domination. Case (b) (lines A8-19) is 
examined after, and complements case (a) in that this case 
examines the main dominations for their least costly 
dominations across all satisfactory core-trees. In this case, 
all the core trees satisfying the necessary condition are 
examined for the least-costly core tree. At the end of this 
stage, all main dominations are set at their ultimate trees to 
provide potential ordinary dominations. At the final stage 
(lines A20-29), the algorithm adjusts the ordinary 
dominations for their least-costly locations on the set of 
core-trees. 
 
Lines A8-19 of ADJUST, examining the movement of the 
main dominations, additionally iterate on the receivers set to 
see whether there exists a “dependant” ordinary domination 
on the main domination to be moved to violate the 
necessary condition in this case. Due to this, the 
computational complexity of the block executing Case (b) is 
higher by a factor of |R| than the rest of the algorithm and is 
O(|S|2|R|2), which then also is the overall complexity of the 
algorithm. 
 

4. PERFORMANCE EVALUATION 
As we noted in Section 2, the prominent model for design 
specifications for a comparison to a multipoint 
communication problem is GREEDY [Sa96]. GREEDY 
operates in singular solution space and is centralized. For a 
direct comparison of our model to their distributed 
counterparts in the singular solution space, we generated a 
model, SINGULAR, which applies the entire architecture of 
SPAN and its extensions this time to process in the singular 
solution space. SINGULAR differs from SPAN in its 
domination count which now is an attribute of a core rather 
than a core-source pair as the attribute uniquely describing a 
core-tree, i.e., rs ∈ T(c,s)  ⇔ r∈Du(c,S)  ∀r∈R, s∈S, c∈Cu. 
According to this, the domination count is described for a 
core rather than core-source tuple, and specifies the number 
of receivers dominated by the core for all sources in the 
group. The candidate core c returning the highest value for 
|D(c,S)| as the primary criterion and c being closest in 
average cost-distance to source set as the secondary 
criterion is selected to be the next member of the core set.  
 
We tested the performance of all heuristics in terms of the 
cost metric, which is the sum of the costs of all the links 
traversed by exactly one data packet from each source to 
each receiver in the group. We used sample domains of size 
60, and tested groups sparsely distributed throughout the 
domain.  We used Waxman’s model [W88] for sampling the 
domains. Our domains have the average node degree in 
range (3.5,5). In all cases, the source and receivers in the 
group are randomly distributed in the domain. We 
maintained 10% confidence intervals with a 90% 
confidence level in our measurements.  
 
We conducted all measurements on normalized delay-bound 
values for each case. Consider the source and receivers sets, 
respectively S and R in a group. We define critical-delta, 
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∆critical, for the group in a given domain as 

RrSs ∈∈ ,
max {delay(s,r)}. In other words, ∆critical is the minimum 

delay-bound that leads to a successful solution for the 
group, and the domain provides no solution for the given 
multipoint communication group sample if the delay-bound 
is any smaller than ∆critical. Consider also the definition of 
maximum-delta, ∆max, which is 

CcRrSs ∈∈∈ ,,
max {delay(s,c)+delay(c,r)}. Maximum-delta specifies 

the “boundary” where the results to be returned by anyone 
of the algorithms are no longer affected by the delay-bound 
parameter. In other words, maximum-delta is the upper-

bound for the delay-bound range, beyond which any 
algorithm would be feasible. The range [∆critical, ∆max] 
specifies, for a problem instance on a given model the 
minimal delay-bound range of all possible solutions. We 
also normalized the cost results of each algorithm for the 
results of the “reference” model, which we chose as SPAN. 
According to this, the cost results of each one of the other 
models are divided by the corresponding outcome obtained 
from the reference under the same measurement setup, and 
the indicated results on cost are relative performances to 
that of the reference. In our figures, the performance of the 
reference model is unity and is not explicitly depicted.  
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Figures 4-6 show the results of our evaluations of the 
models tested on the group size, sources-to-receivers ratio, 
and the delay-bound of the application respectively. A 
prominent finding of our measurements is the poor 
performance of GREEDY compared to the models tested. 
From our analysis perspective, GREEDY does not consider 
core-trees and source-trees separately and constructs, for 
each receiver partition, a tree rooted at the core spanning all 
the sources in the group. The resulting tree combines the 
core trees and source trees and the data stream from a 
particular source is redundantly delivered to the other 
sources as well as to the receivers, adding on the delivery 
cost. Our figures depict GREEDY at its extreme end of the 
scale, leaving the relatively close performance of the 
remaining models in their “magnified” range for a 
sophisticated comparison. The difference in the 
performances of SPAN and SINGULAR attributes solely to 
their respective core selection algorithms since both models 
use the exact same tree construction module. Thus, SPAN’s 
higher cost-performance is a direct verification of our claim 
that non-singular solution space offers potential 
improvement on the efficiency of the solutions. 
 
ADJUST outperforms COST for different group sizes and 
ratios of group members whenever the delay-bound is tight. 
At tight delay-bounds, ADJUST picks up the high 
performance of SPAN and further improves the results for 
cost efficiency. Domination count is a measure of the 
structure of the resulting multipoint paths – optimization on 
the domination count of the selected cores leads to less 
complicated trees. ADJUST’s performance advantage over 
COST at critical values of the application delay bound 
shows the significance of the path structure on the cost-
efficiency of the path. However, SPAN tends to reduce the 
number of core selected when the delay-bound of the 
application is relaxed, leaving no room for ADJUST to find 
further improvements among the core trees. COST’s 
relatively steady performance over SPAN further reflects the 
effectiveness of the domination count as a criterion for 
measuring the transmission cost of the resulting solution.  
 
ADJUST’s performance improves when the source and 
receiver sets overlap under the same experimental setup 
(Case (b) compared to (a) in all figures). This result is 
expected, since SPAN places the group members on the first 
selected core tree qualifying to serve/dominate each 
member. ADJUST further moves the members among the 
trees for their placement for cost efficiency, and the 
potential gain on the accurate placement of a member which 
is both a source and a receiver in the group is higher.  
 

5. CONCLUSIONS 
In this paper, we presented two core selection algorithms, 
COST and ADJUST. our algorithms, are the first core 
selection algorithms in the literature [KH03b] processing on 

multiple metrics, cost and delay, for the optimization of the 
results for QoS orientation. Both algorithms consistently 
outperformed their counterparts in the literature. ADJUST 
further improved the cost efficiency up to 20% compared to 
the algorithms proposed to date. ADJUST is particularly 
preferable for any group application demanding tight delay 
bounds while COST is at its best performance at relatively 
relaxed bounds compared to the model proposed. Both 
algorithms operate in a distributed, asymmetric framework 
for constrained solutions, and are applicable to Internet 
routing domains operational today.  
 
Broadband group communication over the Internet is 
becoming ubiquitous over a wide range of services. These 
applications are usually delay-sensitive and demanding on 
network resources. The core-based architecture offers the 
significant advantage of partitioning the inter-domain route 
construction on QoS-demands of the applications into intra-
domain problems by the placement of core nodes within the 
autonomous routing domains to coordinate transmission to 
receivers and/or to border routers for further transmission 
across ASs. SPAN and its extensions presented in this paper 
operate on local distance-vector information available at the 
routers, with no modification on their functionality. Our 
models can further enhance the support of inter-domain 
groups for participants across ASs through the construction 
and management of the intra-domain routes coordinated by 
the efficient placement of cores in each of the domains.  
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