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Abstract 
Multipoint communications is the simultaneous transmission of data streams from a number of 
sources to a set of receivers in a group according to predetermined metrics. The core-based approach 
in multipoint communication enhances potential solutions in terms of QoS-efficiency and feasibility 
of the results in inter and intra-domain routing. In this paper, we first analyze the solution space for 
constrained multipoint communication problems under the core-based approach. We show that the 
range of solutions examined by the models proposed to date is restricted to a subset of the entire 
solution space, which restricts the potential efficiency of the results. We propose SPAN, a core-based 
framework processing on our identified extended solution space for constrained multi-source group 
applications. SPAN consists of core selection and tree construction as two modular components 
complimenting one another to achieve more efficient solutions in distributed processing. SPAN is also 
asymmetric, hence potentially operates in domains in which link weights are not necessarily equal in 
both directions. We analyze the computational and message complexity of our framework and show 
its feasibility for distributed deployment. Our performance results show that SPAN consistently 
outperforms its counterparts in the literature in terms of cost and QoS-efficiency.  
 
 
1. Introduction 
Multipoint-to-multipoint communication, or multipoint communication as we refer to throughout the 
text, is the simultaneous delivery of data stream from a number of sources to a set of receivers for 
more efficient transmission. A multipoint group is a collection of nodes that are receivers of the same 
sequence of messages (data streams). These messages may or may not belong to the same source 
node. Multipoint groups may be static (with no membership updates) or dynamic (where nodes can 
join/leave the group dynamically). Multipoint communication has numerous applications in Internet 
group communication. The transmission of the multimedia streams is demanding on network 
resources due to the size and potential priority of the application flow — calling for the minimization 
of the cost of transmission. As well, multimedia communications are usually characterized by Quality-
of-Service (QoS) constraints in that they are often delay-sensitive. Effective group communication 
solutions must, therefore, provide cost efficient transmission of the stream to each receiver in the 
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group within a given delay bound. The prominent QoS problem then is constrained cost-minimization 
— minimization of the total cost of the transmission while meeting the delay-bound of the application. 
 
Dominant unicast routing platforms on the Internet provide local information to domain nodes so that 
the information available to each router is only the value of the minimum-distance path from itself to 
each other router in the domain. The knowledge of the entire domain is unavailable to any particular 
router, and thus the processing environment is distributed. Our context in this research is routing for 
multipoint communication under constrained cost minimization in distributed networks for multi-
source groups.  
 
The objective of multipoint routing is to build most efficient paths for the flows to be delivered to 
receivers. This includes the construction and operation of paths in a tree structure. Multicast trees in 
early protocols were rooted at the source of the stream. Latter protocols, proposed core-based trees 
rooted at a “core” node in the domain, which is not necessarily a source any more. The main 
motivation behind the core-based approach is scalability for sparsely distributed multicast groups and 
reduced tree maintenance overhead. The core-based approach for route construction provides 
improved efficiency for constrained applications for sparsely populated groups in the distributed 
routing platform [CZD95, WE94].  
 
Core-based routing architectures in literature considered the minimization of the number of cores 
during the placement of cores in the domain [Sa96, ZFL02]. Simpler route structures in terms of the 
number of links constituting the routes lead to reduced exploitation of the paths and network 
resources, higher reliability, reduced tree maintenance cost, and flexibility of the path under 
topological instabilities and path updates due to dynamics of the group memberships. However, 
minimum number of cores does not necessarily lead to minimal path structures. Note here that, 
minimization of the number of links on a multipoint communication path accounts for each link on 
the path regardless of their exploitation by multiple sources in the group unlike cost minimization 
which accumulates cost of each link across their utilization by the sources. In this study, we consider 
the total hop-count on the group communication trees as an optimization objective in addition to cost 
minimization. In an attempt to achieve this, we consider maximal link sharing across the sources, as 
alternative to minimal cost of transmission of the stream. We collectively name the constrained 
optimization problems in multi-sources groups as delay-constrained multipoint communication 
(DCMC) throughout the text. 
 
In this paper, we investigate solutions for delay-constrained multi-source, multipoint communication 
groups applying the core-based architecture. Our analysis of the solution space for this problem 
indicates a broader range which is not explored by existing models. We identified the solution space 
as being composed of singular and non-singular spaces, with all existing schemes exploring only the 
singular solution space.  In the singular space, each core, serves all sources in the group and uniquely 
defines a shared tree. In the non-singular space, a core is not necessarily serving all the sources and 
each receiver can be served by multiple cores varying across sources in the group. We introduce 
SPAN, a distributed model processing in the non-singular space and extending the range of solutions 
searched by its precedents. Our model describes the first distributed, asymmetric framework on the 
literature to provide solutions for constrained, core-based multi-source communication groups. Our 
empirical results show the high efficiency of our model compared to its counterparts.  
 
The main contributions of this paper are: 
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1) We identify the range of solutions to a DCMC problem in the core-based approach. We 
characterize the solution space into singular and non-singular solution spaces which partition 



the entire solution space. We show that the non-singular solution space, which is not 
explored by the models in the literature to date, offers potentially more efficient results. 

2) We develop SPAN, a generic core-based framework for DCMC solutions. SPAN consists of 
core selection and tree construction as two modular components to compliment one another 
sequentially to achieve more efficient solutions in distributed processing. Our empirical 
results show that SPAN consistently outperforms its counterparts in the literature clearly 
demonstrating the significance of our theoretical findings indicating the potential 
contribution of models processing in the extended range of solutions.  

3) We analyze the computational and message complexity of our framework and show its 
feasibility for distributed deployment.  

 
Within the core-based approach, our framework separates the DCMC problem into two parts: core 
selection and tree construction. Our model, SPAN, first selects the cores to lead to a set of shared-
trees for efficient multipoint communication. The tree-construction module then takes over for 
building the ultimate multipoint communication path. Our motivation is not only reducing the 
complexity of the solution into two different processes, but also splitting the complexity of 
management of the resulting paths into core-dominated tree portions by delegating this task to the 
cores from the sources in one process rather than multiple processes across sources. Our proposed 
framework, SPAN, has the following characteristics: 

1) Spans the extended solution space for both singular and non-singular solutions for the results. 
2) Distributed: feasibly executes on local distance-vector information on the nodes with no 

reliance on an external protocol.  
3) Asymmetric: The model considers, during the route construction phase, the link directions in 

their utilization throughout the actual communication session and hence effectively optimizes 
for solutions in asymmetric domains.  

4) Supports processing on multiple, possibly QoS-based, metrics, and, to this end, is the first 
distributed QoS model in the literature to provide constrained, distributed, core-based 
solutions for group communications.  

5) Modularly incorporates the core selection and tree construction components into a routing 
framework in which each component can be further elaborated separately achieving QoS-
efficiency of the solutions.  

 
This paper is organized as follows. In the next section, we initially layout the problem description and 
potential approaches to the solutions. We then review previous work, and introduce the terminology 
used in the paper. In Section 3, we analyze the solution domain for DCMC problems. We first 
characterize the potential solutions, and identify the limitation of the solution explored by the existing 
models in the literature. We then prove that, the extended solution space offers higher efficiency for 
wide range of DCMC problems thereby provides the potential for improving the efficiency of the 
protocols operating in the extended space. Section 4 introduces the proposed SPAN framework. 
Following an architectural overview, we present algorithmic descriptions of the core selection and 
tree construction components of the model, in Sections 4.2 and 4.3, respectively. In Section 4.4, we 
discuss the distributed deployment of SPAN to complete its operational description. In Section 4.5, we 
analyze the computational complexity SPAN, as well as its message communications overhead during 
protocol operations. A performance model for our DCMC framework is described in Section 5. 
Performance Results show that SPAN highly outperforms its counterparts in the literature, as well as 
its “dual”, SINGULAR, that processes within our architectural framework, but within the restricted 
solution space used in existing modes. We conclude the paper in Section 6.  
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2. Preliminaries 
2.1 Problem Domain 
In multipoint communication data packets from some source need to visit each one of its destinations 
once throughout a group session. Loops are neither required nor allowed on their routes, and the 
communication path has the structure of a tree or multiple trees. Multicast trees in early protocols 
were rooted at the source of the stream. Latter protocols proposed core-based trees each rooted at a 
“core” node in the domain, which is not necessarily a source. In either class of architectures, the 
problem breaks into the construction of a tree rooted at a given node to span a given set of leaves to 
meet the design criteria. 
 
One way of meeting the delay-bound of applications in delay-constrained communication groups is to 
build point-to-point delay-shortest paths between source and separately each receiver. This is the 
well-known shortest path tree (SPT) problem and has polynomial solutions [D59, B57, FF62]. The 
trees constructed in all multipoint communication protocol suites [B97, B97b, DEFJ94, M94, M94b, 
WPD88] widely accepted so far are shortest path trees. Note that the problem of constrained-SPT, 
attempting to approximate the constrained-cost minimization problem to minimize the delay-bound 
cost-distances from the tree root separately to each receiver is NP-complete as well [GJ00]. 
Furthermore, route construction problems optimizing on any two separate constraints are naturally 
NP-complete [WC96].  
 
In delay-constrained cost minimization, the problem is constrained-SMT, which is the minimization 
of the sum of on-tree link costs, this time also meeting the condition that no receiver is beyond a 
given delay-distance from the tree root. Constrained-SMT is also NP-complete since SMT, a known 
NP-complete problem [K72], reduces to it through a transformation introducing an “unbinding” delay 
bound. Among the constrained-SMT heuristics proposed in the literature [CHH97, KPP93, KPP93b, 
J98, PZG98, WC95], those processing on full domain information generated results close to optimal 
solution. In particular, BSMA, a centralized algorithm proposed by [PZG98] returned the most 
efficient results [SRV97] for the minimization of total tree-cost on successfully constructed delay-
constrained trees. Wider availability of domain information results in better approximations close to 
optimal. Therefore, high-performing constrained-SMT heuristics are centralized, and are not feasible 
for distributed implementation.  
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The core-based approach enhances potential solutions by efficient placement of cores in the domain 
especially for groups sparsely distributed in the domain. In this approach, the delivery trees are not 
necessarily rooted at a source any more, but at a domain node that ranks high in efficiency with 
respect to the operating metrics. Cost-efficiency and reduced maintenance overhead of the 
communication path are achieved through simplified and separately managed tree structures. The 
approach also offers the placement of cores in distinct autonomous systems allowing tree 
management “locally” on information available within an Autonomous System (AS) within the 
domain. Each core is a known reference to the path for the potential member nodes throughout the 
domain. The more the number of references are, the more the number of alternative connection points 
to the multipoint path for new joining members who may select a path based on topological proximity 
and cost efficiency of potential connections. Furthermore, multiple cores can provide a solution for a 
multipoint communication group where no feasible solution exists in the single core scheme due to 
delay-bound violations for multi-source applications. The multi-core approach, returning a number of 
cores in the domain improves the solution range of and is strictly preferable to the single-core 
approach. Previous studies sub-optimized the number of cores and hence the shared-trees for the 



optimization of path structure [Sa96, ZFL02]. However, minimal number of cores does not 
necessarily lead to minimal number of links. We argue that the number of links is a more accurate 
measure of the path structure, which is particularly significant for groups with dynamic memberships 
[DZ96], and attempt to minimize of the total number of links on the multipoint path as an additional 
goal. The problem of constrained link minimization differs from constrained cost minimization since, 
unlike the delivery cost, link count, is not cumulative over the sources and attributes to the overall 
communication path. Link count is a measure of overall multipoint path structure irrespective of the 
utilization of the links by distinct sources. Cost, on the other hand, measures the link utilization across 
the sources in the group. Constrained link-minimization is still NP-complete since SMT on even link 
weights, which also is NP-complete [W87], reduces to it with a transformation similar to the above. 
 
2.2 Previous Work 
The multipoint routing problem has initially been studied in the multicasting domain for transmission 
from one source to a given set of receivers so that delay-distances are minimized. Latter protocols 
proposed core-based trees, this time rooted at a core node in the domain, which is not necessarily the 
source. Earlier core-based models restricted to single-core solutions [B97, B97b, DEFJ94]. Further 
research focused on multi-core trees for the improvement of tree accessibility to the multicast sources 
and new receivers, regardless of the number of sources in the group. OCBT [SG97] is the first multi-
core architecture in the literature. In its design specifications, OCBT develops a unique shared tree 
which contains multiple cores, and emphasizes on maintaining the tree structure as the tree is updated 
during protocol operations, diverting from the efficiency concerns of path construction and 
maintenance throughout the protocol operations.  The model disregards a delay bound of the 
application and is not applicable for DCMC problems. Zappala, Fabbri and Lo [ZFL02], in their 
Senders-to-Many architecture, partition the receiver set among a set of cores and generate a unique 
core cluster to serve the group. Senders-to-Many is distributed and does not consider a given delay-
bound. Each core and the receivers in the partition corresponding to that core constitute a tree rooted 
at the core. A source willing to deliver its stream simply sends its data packets to the core from 
whereon they are transmitted to the receivers via the core-trees. In [KH04], we provide a detailed 
review of these protocols.  
 
Salama’s [Sa96] architecture operates similarly to Senders-to-Many in that it develops a set of core-
based trees each spanning a receiver partition, this time meeting a given delay bound in the solution 
generated if such a solution exists. In both cases, a set of core trees are formed, which combined 
together span all the receivers in the group. These core trees are shared by all sources in the group for 
the delivery of their stream to the receiver set.  
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The scheme in [ZFL02] used hop-count as the cost metric in minimizing the number of cores. 
Salama’s multi-core based algorithm [Sa96], known as GREEDY, considers multiple sources in the 
group among its design objectives, and generates constrained solutions that meet a given delay-
bound. The model develops core trees each spanning a receiver partition for all the sources in the 
group. Salama’s solution is particularly relevant since it is the only routing architecture in literature 
providing multi-core solutions for delay-constrained multi-source communication groups. A 
distinctive property of GREEDY is that, it assumes bi-directional trees during core selection so that a 
data packet initiated from a source on the tree reaches a particular receiver via the shortest-delay path 
on the tree with no need for visiting the root of the tree on its way to the receivers. A data packet 
incoming to a tree node is forwarded to every other on-tree link regardless of whether the outgoing 
link(s) lead to receivers as further destinations. That is, the on-tree source of the stream acts as the 
tree root during the transmission of its stream. Consideration of bi-directional trees during design 
widens the solution space for delay-constrained problems. However, bi-directional tree design 



considers the delay-distances not only between the candidate cores and group members but also 
between the node pairs including any domain nodes. This restricts the feasibility of the algorithm 
strictly to centralized deployment. For the same reason, the model optimizes on transmission in both 
directions of a link, and is ineffective in asymmetric networks. GREEDY operates on delay as a single 
metric, with no consideration of cost or hop-count in tree formation. Indeed, both GREEDY and 
Senders-To-Many select cores without consideration of additional metrics.  
 
2.3 Terminology 
The dominant unicast routing platform on the Internet provides local information to domain nodes so 
that the information available to each router is only the values of the minimum-distance path from 
itself to each other router in the domain separately for each metric. We denote by path<distance>[i,j] the 
<distance>-shortest path, i.e., the sequence of nodes connecting the nodes i and j at minimum 
possible distance in unit specified in parameter <distance>. We extend this notation with the 
indication of <metric> as path<distance>[i,j].<metric> to return the “length” of the path, i.e., the sum of 
the weights of the links on this path in the unit <metric>. According to this, pathdelay[i,j].delay and 
pathcost[i,j].delay return the point-to-point delay between i and j along the shortest-delay and shortest-
cost paths connecting the nodes, respectively; whereas pathhop[i,j].cost returns the cost of the hop-
shortest path between the nodes. Similarly, we describe path<distance>[j].<metric> as the unicast table 
look-up for the value path<distance>[i,j].<metric> on the processing node i. We assume that the unicast 
routing platform makes available to any given domain router i the values path<distance>[i,j].<metric> in 
all combinations of <distance> and <metric> for each router j in the domain along with the immediate 
neighbor of i leading to this path. The knowledge of the path itself, i.e., the sequence of nodes 
constituting it is not available to router  
 
We say that a receiver r is dominated by a core c for a particular source s if there exists a path p 
connecting s to r so that p passes through c without violating the delay bound. Equivalently, we say 
that a core c serves rs. We use the notation D(c,s) to indicate the set of receivers that are dominated by 
the core c for source s. Similarly, we indicate by D(c,S’) the domination of a set of receivers that are 
dominated by the core c for each source in a subset S’ of the set of sources. We refer by multipoint 
tree the union of paths serving a S’⊆S for all receivers in the group where each core tree constituting 
the path is identically serving all sources in S’. We call the set of core trees constituting a multipoint 
tree as a core cluster. On a multipoint path, the domination sets of the cores in the core cluster 
describing the path partitions the receiver set. Observe that a multipoint tree does not necessarily have 
a tree structure although it specifies distinct trees each of which is serving a particular source stream. 
In Figure 1-a, we present an example for a multipoint tree. The source and receiver sets in the 
multipoint communication group are S={s1,s2} and {r1,r2,r3,r4,r5} respectively. There are 3 cores in 
the group. Domination sets are D(c1, S) ={r1,r2}, D(c2, S) ={r3}, D(c3, S) ={r4,r5}. There are three 
core-rooted trees, each spanning the receivers in the domination sets of their respective cores. The 
multipoint tree is serving both sources in the group. There are two source-rooted trees, one for each 
source, each spanning the entire cores in the core-cluster corresponding to the multipoint tree. The 
links on source and core trees are indicated by solid and double lines, respectively. All links except 
those indicated by dashed line are on the multipoint path. Figure 1-b presents an alternate solution to 
the same problem in which different trees with non-identical core trees serve the sources. All links 
except (s2,c2) indicated by the dotted line specify the solution paths in this case. The links serving 
sources s1 and s2 are indicated by solid and dashed lines, respectively. Double lines indicate links 
serving both sources. The potential domination sets are D(c1, S) ={r1,r2}, D(c2, s1) ={r3, r4}, D(c2, s2) 
={}, D(c3, s1) ={r5}, D(c3, s2) ={r3, r4,r5}. Unlike the case in Figure 1-a, the receiver set is partitioned 
differently by the core clusters for each source, with one partition and the dominating core, c1, 
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common to both. Note that any solution to a DCMC problem can be formulated as a set of multipoint 
trees to specify the set of cores to be spanned on each source tree, and the set of receivers to be 
spanned on each core tree. 
 
Consider a set of core-trees serving a particular multipoint communication group so that each core is 
serving a non-empty subset of source set. Alternatively, consider the class of solutions in which each 
core tree is serving the entire set of sources. In this case, a unique core-cluster – a unique set of core 
trees identically serves all sources in the group. That is, each core tree in a particular set of core trees 
is used for delivery of the stream by a source in the group as it is used by any other source. In the 
former case, the group is served by multiple core-clusters each serving a subset of sources. DCMC 
solutions in core-based architecture spanned solely the solutions involving a single core cluster across 
sources. As we show later, the efficiency of potential solutions considerably improves when the entire 
solution space is examined.  
 
3. Solution Domain 
In this section, we examine and separate the solution space of DCMC problems into two disjoint sets 
for the purpose of characterizing the solution heuristics. Before going further, we update the 
definition of a multipoint tree to exclude the case where the core cluster overlaps exactly with the 
receiver set. A multipoint tree is still defined as the union of core and source trees so that all core 
trees serve all the sources on the tree collectively for all receivers. In addition, we impose the 
condition that the set of cores in the cluster corresponding to the tree is not equal to the set of 
receivers, disallowing the domination set to characterize the tree being { D(ri,S)={ri} for all ri }. We 
call the set of solutions satisfying this property as identity solutions. Note that any set of paths to 
result into a feasible solution can be characterized as an identity solution, and any identity solution 
can also be characterized as a solution involving one or more multipoint trees. Any identity solution 
reduces the problem to a solution in source-based domain since an identity solution specifies no core-
trees. Note that source-based and identity solutions apply tree construction on the same input—each 
tree to be constructed is rooted at a source and spans the entire set of receivers. The difference 
between the two solutions is that in the source-based case, the trees are core-trees and each source is 
serving itself as the core. The identity solution still defines source trees, with the cores being the 
receivers. In the core-based approach, the source-rooted solution with sources serving as the cores is 
within the solution space. The exclusion of identity solutions does not restrict the solution space for 
the set of feasible multipoint paths. On the contrary, the classification imposed by our definition 
forces the consideration of links which are shared by multiple receivers. As an example, the 
multipoint communication path in Figure 2 is characterized to include two multipoint trees, each 
serving one source. The trees are not overlapping on any link. The domination sets are D(s1, s1) = 
D(s2, s2) ={r1, r2 }. Both sources are serving themselves as the cores.  
 
We define a feasible solution as any non-identity solution, which connects all source-receiver pairs in 
the multipoint communication group without violating the delay bound. According to this definition, 
an optimal solution is the feasible solution, which returns the optimal value with respect to the 
optimization criterion. We partition the set of feasible solutions for a given DCMC problem into the 
following: 
1) Singular solution space: the set of all feasible solutions that involve only one core cluster tree to 

serve the entire multipoint communication group.  
2) Non-singular solution space: the set of all feasible solutions that involve two or more core 

clusters.  
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According to this, the solution in Figure 1-a is in the singular solution space where the ones in Figure 
1-b and Figure 2, containing more than one set of core trees each serving a source node, qualify to be 
non-singular solutions. In the singular space, each core, serves all sources in the group and uniquely 
defines a shared tree. In the non-singular space, a core is not necessarily serving all the sources and 
each receiver can be dominated by multiple cores varying across sources in the group. Note that the 
union of source-rooted trees each spanning the entire receiver set is naturally in the non-singular 
solution space aside from the exceptional cases in which one of the sources is serving as the core for 
the entire source set including itself for the entire receiver set. 
 
Existing solutions to the multipoint communication problem, which we reviewed in Section 2 only 
span the singular and identity solution spaces. However, as we show in the following proofs, the non-
singular solution space can contain more efficient solutions. Indeed, the optimum solution can lie in 
the set of non-singular solutions for many DCMC problems. 
 
Lemma 1. If a constrained-multipoint communication problem is known to have a feasible solution, 
this does not imply the existence of a solution in the singular space.  
Proof: Any graph in which the feasible paths between the sources and receivers are not overlapping 
across multiple sources disproves the counter-argument to this lemma (see Figure 2 for a sample 
case). Aside from the connectivity of the graph, solely the link delays under the given delay constraint 
can restrict the solution exclusively to the multiple tree solution space of which a generic example is 
given in Figure 3. T1 and T2 in Figure 3 are network clusters each containing a disjoint set of sources 
in the group. Similarly, T3 contains a set of receivers. T1, T2, and T3 are only connected to one another 
through the subnetwork illustrated in the figure. Each link label I and J indicate exactly one value in 
the range [i1, i2] and [j1, j2 , j3, j4] respectively. The delay-distance between the multipoint group 
members in T1, T2 and T3, and the nodes connecting each of these clusters to the subnetwork of nodes 
n1 through n4 are restricting the maximum delay-distance for a path among nodes n1 through n4 to ∆’ 
in order to meet the delay bound of the application. A solution in the singular space requires either 
one of the nodes n1 through n4 be the core to serve the sources in both T1 and T2 for the receivers in T3. 
Whenever jn>∆’ for all n, any solution is in the non-singular solution space. In this case, when im≤∆’ 
for m=1..2 additionally, there is a feasible solution for the group connecting the sources in T1 to 
receivers in T3 through the path n1-n3, and the sources in T2 to receivers in T3 through  the path n2-n4. 
These two paths do not overlap for a single core to serve both source clusters for the same set of 
receivers and the solution is in the non-singular space, justifying the proof. � 
 
Lemma 2. If there exists a singular solution to a constrained-multipoint communication problem, 
then the optimum solution is not necessarily in the singular solution space.  
Proof: The multipoint communication group illustrated in Figure 3 provides a generalized case to 
prove Lemma 2 as well. This time the link values are link costs, and no delay-bound being set. Note 
that the path costs in the figure can equivalently be accounted as hop-count between the nodes 
defining the link, without affecting the accuracy of our proof. Under the conditions specified, the 
optimum solution is unique and in the non-singular solution space. � 
 
The search for solutions in the singular solution space examines the domination of each receiver for 
all sources in the group. An algorithm to span the solutions in the non-singular space, on the other 
hand, examines the domination sets separately for each source rather than across all sources. 
However, Lemmas 1 and 2, show the potential existence of feasible and optimum solutions outside 
the singular solution space regardless of the existence of solutions in this space for a particular 
constrained-multipoint communication problem. This supports the fact that a heuristic to provide a 
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solution to this problem in the entire solution space is considerably preferable to a heuristic to provide 
a solution in the singular space. Current solutions provided for the problem span solely the singular 
and identity solution spaces. In the next section, we describe a generic framework for DCMC 
problems in which we search for solutions in non-singular, as well as singular solution spaces. We 
call this framework SPAN, as it spans the entire solution space. 
 
4. Architectural Description 
This section describes SPAN, our framework for constrained cost minimization solutions for multi-
source groups in the core-based approach. The framework is distributed, asymmetric and processes on 
non-singular as well as the singular solution spaces. In Section 4.1, we outline the overall 
architecture. In Sections 4.2 and 4.3, we respectively present the core selection and tree construction 
components of our design. We describe the distributed implementation of SPAN in Section 4.4. 
Section 4.5 includes the complexity analysis of our model.  
 
4.1. Design Overview 
Within the core-based approach, our framework separates the DCMC problem into two parts: core 
selection and tree construction. Our model, SPAN, first selects the cores to lead to a set of shared-trees 
for efficient multipoint communication. The tree-construction module then takes over for building the 
ultimate multipoint communication path. Our motivation is not only reducing the complexity of the 
solution into two different processes, but also splitting the complexity of management of the resulting 
paths into core-dominated tree portions by delegating this task to the cores from the sources in one 
process rather than multiple processes across sources (see Figure 4): 
1) Core selection: the selection of the core set for the multipoint communication group. The intuition 

is separating the receiver set into certain groups with respect to delay distances from sources to 
meet the delay constraint of the application, and building the sub-optimized paths separately for 
each of these receiver groups. The core selection process identifies certain cores in the domain 
each dominating a particular receiver group “locally” within the delay bounds.  

2) Tree construction: the construction of core trees rooted at the cores to span the subsets of the 
receiver groups dominated by the cores, and the construction of source trees to span the core set. 
We relax the restriction for a unique delay-bound to be met across the tree and define this bound 
separately for each receiver to be spanned on a core-tree, and for each core to be spanned on a 
source-tree. In an attempt to maximize the links shared by multiple receivers on the resulting 
paths, we set the delay-bounds to be met on the source-trees to the minimum possible, and with 
this, leave maximum delay-residue for the delay-bound on the receiver trees.  

 
We define the leaf set, i.e., the set of nodes to be spanned by a core tree as the subset of receivers 
where for a source tree the domain of leaf set is restricted to the set of the cores serving the group. A 
core tree spans all the receivers it is dominating for at least one source it serves. The entire set of 
cores serving a particular source s is spanned on the source tree rooted at s. In the resulting trees, the 
delay-bound of each leaf as of its distance from the tree root is met. Core selection and tree generation 
processes operate modularly with tree generation algorithms processing on the result of core selection 
to develop delay-constrained trees on the set of nodes fed them as input.  
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Note that the higher the delay-bound between the tree-root and the nodes to be spanned, the higher the 
potential efficiency of the tree structures to be formed in terms of the paths shared by multiple 
destinations and the cost-efficiency of the paths. In our architecture, when we select a core, we assign 
to it its maximal domination set for its full exploitation in the topological region it dominates. The set 
of cores serving the distinct receiver-set partitions for that source tend to be located in distant sub-
domains from one another. So the source-to-core paths on a particular source-tree rarely intersect. By 



the same argument, there is potential improvement on the structure of a core-tree to which wider 
range of alternative paths are available to span a set of nodes relatively local to one another. As for 
the cost of the tree, the stream from a source to be delivered throughout a core-tree towards 
potentially multiple receivers travels the “longer” paths on the core-tree than on the single path 
between the source and the core. Therefore, we favor the delay-distances on core-trees to those on 
source-trees and leave the entire delay-residue for core-trees.  
 
Cost-efficient multipoint paths is a major goal of our design. In addition, we consider the path 
maintenance overhead and potentially dynamic memberships. We, therefore, look for a solution that 
minimizes the path structure in terms of the number of links on the multipoint path, and attempt to 
maximize the use of a core tree by multiple sources. Note that the problem of link minimization has 
no known polynomial-time solutions since SMT operating on unit link costs, as we noted in Section 
2.1, is NP-complete and reduces to it.   
 
4.2 Core Selection 
A domain node is a candidate core only if it connects at least one source-receiver pair within the 
delay-bound of the application. SPAN initially identifies the potential cores into a pool as candidates 
by examining their domination characteristics: each candidate core tests itself on the local state 
information for its domination for the group, and reports its results to a designated coordinator node 
in the domain which selects of cores based on these results. The resulting core set selected among the 
candidate cores includes the cores that lead to a multipoint path to approximate the optimum solution.  
 
Let Tc,s be a core-tree rooted at core c to serve source s for all receivers in D(c,s). According to this 
definition, Tc,s “totally” serves s, its defining source. Let Tc,s  serve a source s’∈S, so that 
D(c,s)∩D(c,s’)≠∅ and D(c,s)≠D(c,s’). We say, in this case, that Tc,s serves s’ partially. In an attempt 
to minimize the multipoint path structure in terms of the number of links, our approach is the 
maximization of the combined partial and total utilization of multipoint paths for simplification of 
ultimate trees in conjunction with efficiency of the transmission. Our architecture requires that a tree 
Tc,s constructed to serve its defining source s for all the receivers in D(c,s) also serves, with no 
modification on the on-tree paths, the rest of the sources for all receivers in set D(c,s)∩D(c,s’) ∀s’∈S. 
For all s’∈S, a domination rs’∈ Tc,s  is served on Tc,s along the path that serves rs. According to this, 
rs’∈ Tc,s implies rs∈ Tc,s. Furthermore, rs’∈ Tc,s ⇔ r∈D(c,s)∩D(c,s’).  
 
Consider the definition of domination count of a potential core-tree Tc,s as follows: 

∑
∈

∩
Ss

scDscD
'

|)',(),(|  

Literally, domination count of a (c,s) tuple specifies the number of source-receiver pairs the core tree 
Tc,s is capable of serving when the receiver set being served is restricted to D(c,s). The extended 
solution space offers, during core selection, efficient choice of a core in consideration of each source 
separately, diverting from the shared utilization of the trees for the efficiency of path construction, 
update and management during the communication session. However, higher utilization of Tc,s in 
terms of the number of sources it is partially or totally serving improves the overall multipoint path 
structure through tree sharing as the case in core-based approach literature [B97, B97b, DEFJ94, 
CZD95]. Furthermore, higher utilization of shared trees in terms of the number of receivers each is 
dominating improves the efficiency of transmission as the case in multicast routing literature (see 
[B97b, DEFJ94, M94b, WPD88] among others). Therefore, high domination count is desirable as a 
core-selection criterion.  
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Figure 5 presents SELECT, the core selection component of SPAN. Let ∆ be the delay bound of the 
application. We denote by ∆i,j the maximum allowed delay between the nodes i and j to meet ∆ on the 
path to be constructed. L indicates the leaf set, i.e., the set of nodes to be spanned on the specified 
tree. SELECT processes at the coordinator on the candidate cores’ domination information reported to 
it. The algorithm, aiming to maximize the already constructed core-trees by sources in the group, 
iterates to search the non-singular as well as the singular solution space for the core with the highest 
domination count. Following the initialization of the ultimate core and domination sets in line E1, 
SELECT starts out with the computation of the domination counts for each source-core pair (lines E2-
6). The main loop in lines E8-35 iterates to select a core-tree Tcore,source with the highest domination 
count until the entire group is served by the selected trees. A candidate core being a source is a tie-
breaker when multiple candidates return the same domination count. Initially in this loop, the core-
source tuple satisfying this criterion is selected (lines E9-15). This selection determines a core tree in 
terms of its root, core, and its defining source. The inner loop in lines E21-34 performs the following: 
a) modification of the source trees: core is a leaf of a source s if and only if Tcore,source is serving s for 

at least one receiver in its leaf set. Upon satisfactory test of this condition in line E24, core is 
added to the set of leaves on the source tree s (lines E25-26). As we noted earlier, we set the 
delay-bound between a source and the core on a source tree to the minimum possible to allow 
maximum delay residue on the core trees. With this, the delay-bound of core on the source tree s 
is pathdelay[s,core].delay as set in lines E22 and E27.  

b) specification of Tcore,source: the computation of the delay bounds of each leaf of the core tree 
Tcore,source. The subset of receivers in Du(core,source) (line E19) is inherently the leaf set of 
Tcore,source. Let S’ the subset of sources that Tcore,source is serving totally or partially for a receiver r. 
Then, the maximum possible delay-bound of r on Tcore,source is ∆core,r = min {∆-∆

'Ss∈
s,core} as 

computed in lines E23 and 28.  
c) update of domination status: the recently dominated rs are excluded from the domination sets of 

the current candidate cores, and the domination counts are updated accordingly (lines E29-32, 
E36) within further iterations for core selection.  

 
As mentioned earlier, the construction of the core and source trees follow the core selection on the 
results of the core selection. We model the tree development processes as coordinated by the tree 
roots, namely the selected cores and the multipoint sources. Once we select the cores, we notify the 
cores instantly of their leaf sets and the delay-bound of the leaves (line E35), and the sources of the 
relevant information (lines E38-39).  

 
4.3 Tree Construction 
In this section, we present the tree construction component of SPAN. The required input to a 
constrained-tree construction algorithm is the root, leaves, i.e., the set of nodes to be spanned on the 
tree, and the delay-bounds to be met for each leaf. To achieve efficiency in the resulting tree, we relax 
the condition of a uniform delay-bound and allow the delay-bound to vary across the nodes to be 
spanned on the tree. SELECT generates as part of its processing the overall input for the tree 
construction algorithm as we specified in the previous subsection. Before we introduce our tree 
construction algorithm, we remark that a successful tree construction algorithm must satisfy the 
following conditions:  
1.) The resulting path has a tree structure: every on-tree node except the root has exactly one parent, 

and root is the ancestor of every on-tree node.  
2.) The tree meets the delay-bound: delayl ≤ ∆l for each leaf l.  
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We use a modification of the incremental SMT heuristic proposed by [TM80] for constrained-tree 
construction due to its feasibility for distributed implementation and operability on local information 
of the domain nodes, with relatively low message exchange in asymmetric networks. The generic 
intuition is iterative addition of the off-tree leaf, which currently is at minimal distance to any node on 
the tree until all leaves are spanned. Consider the function delayi returning the delay-distance of an 
on-tree node i to the tree root via the path connecting it to the tree root. Let ∆i represent the maximum 
allowed delay on a tree path connecting the node i to the root. With the modification of the distance-
to-tree function for a given on-tree node i and an off-tree node j as 
 

distance_to_tree[i,j] = path<distance>[i,j].<metric>  ; if path<distance>[i,j].delay+delayi≤∆j

∞                   ; otherwise 
(I) 
 

 
the heuristic generates a constrained-tree, which still adds the next “node-closest-to-tree”, but here 
also meeting the delay-bound of the application. In our case, we have the availability of the 
information on alternative paths connecting any pair of nodes and thus connecting a leaf to a 
particular on-tree node.  
 
In Figure 6, we present the CONSTRUCT_TREE algorithm, the tree-construction component of 
SPAN. Depending on a parameter such as hop-count or cost to be optimized, the algorithm results in 
the distributed construction of a delay-bound tree approximating the optimal solution in the form of 
tree state information on the constituent routers. The variable <distance> is a “switch” to specify hop-
count or cost as the metric being processed on for minimization. We use the modified-distance 
function (I) and choose the minimum delay-bound-distance path between the delay-minimum and 
<distance>-minimum paths connecting the nodes. The algorithm starts with the root as the tree (lines 
C3-4) and iterates to add one leaf node at-a-time to the tree until the entire leaf set is spanned (lines 
C5-23). At each iteration, CONSTRUCT_TREE processes to select the leaf currently off-tree and 
closest in <distance> to the tree. The algorithm maintains the following status information on the 
minimum delay-bound distance path connecting l to the tree separately for each un-spanned leaf l: 
i.) min_distl: minimum of all delay-bound distances between an on-tree node and l, 
ii.) on_tree_nodel: the on-tree node connecting l to the tree at cost min_distl,  
iii.) codel: <distance> or “delay” depending on the metric determining the minimum-distance path. 
 
Note that, for a given l∈L, on_tree_nodel and codel are sufficient to uniquely identify the minimum-
distance path for l since the end-points of a shortest-distance path along with the metric of the 
distance are sufficient to identify a shortest-path.  
 
The procedure ADD_PATH (Figure 7) triggers the on-tree “end-point” of the new path to be 
constructed and operates to traverse the nodes for the establishment of the path. During its operation, 
ADD_PATH traverses nodes to transmit the required information to trigger the process at the recipient 
node. We represent by the suffix “_msg” the message communicated between domain nodes. 
According to this, ADD_PATH_msg is a message generated by an instance of the ADD_PATH sent to 
the next node to execute the process. The generic notation <value>L denotes the set {<value>l : l ∈ L} 
where <value> is ∆ to denote the maximum allowed delay distance of the given node from the root, or 
one of the array variable min_dist and code to denote the corresponding values across the members of 
the set L. Each node receiving ADD_PATH_msg locates through the unicast routing-table lookup its 
neighbor on the minimal <code>-distance path to the leaf (line A2), and updates its tree state-table 
with this neighbor as its downstream node on the tree (line A3) by adding child, as its immediate 
downstream node (line A3). The block in lines A1-6 terminates with relaying ADD_PATH_msg to 
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child for the propagation of the path construction (line A5) upon updating the delay parameter (line 
A4).  
 
The procedure MIN_DIST (see Figure 8) is the module computing the minimum delay-bound path 
between the node it processes on and the given leaf based on formula (I). Depending on the 
processing metric specified in <distance>, MIN_DIST chooses a connection to leaf via the minimum-
<distance> path if it warrants the specified delay bound, ∆leaf (lines M2-5), otherwise returns the 
delay-minimum path (lines M6-9). The value code returned by MIN_COST distinguishes between 
<distance> and delay – the metric used to select the connecting path (lines M4 & M9). min_dist 
specifies the minimum distance attained between the two nodes in terms of the operating metric.  
 
PATH_INFO (Figure 9) is the process for the transmission of the state information on the added path 
to root for further processing of COSTRUCT_TREE. PATH_INFO is initiated by leaf upon successful 
arrival of ADD_PATH_msg and execution of ADD_PATH at this node. For each one of the remaining 
leaves l∈L, leaf computes the minimum delay-bound <distance> to l (lines P2-9) and relays the 
message to its parent. Each node receiving PATH_INFO_msg similarly computes its minimum 
distance to each node in L and updates the message accordingly. When PATH_INFO_msg arrives at 
on_tree_node, it is simply transmitted to root. 
 
At each main iteration for the addition of a new leaf to the tree (lines C5-23), CONSTRUCT_TREE 
first initiates ADD_PATH for the establishment of the path to connect the leaf selected at the previous 
iteration (line C6). The algorithm then waits for PATH_INFO_msg (line C7) to update its tree-state 
information for its further processing. We impose a constant time-out period between issuing 
ADD_PATH_msg and the arrival of PATH_INFO_msg for protocol operations. When 
PATH_INFO_msg is received, CONSTRUCT_TREE updates the minimum possible <distance> 
connecting each one of the remaining leaves to the current tree (lines C8-13). The algorithm later 
iterates on the current leaf set to choose the leaf closest to the tree as the one to be added next (lines 
C15-21). The selected leaf is excluded from the set of off-tree leaves by updating L (line C22). We, 
therefore claim that CONSTRUCT_TREE is a successful tree construction algorithm. 
 
Lemma 3. CONSTRUCT_TREE is a successful tree construction algorithm.  
Proof: Throughout the execution of CONSTRUCT_TREE, the tree being formed maintains exactly 
one parent for each on-tree node other than the root. The path formed at each step connects a new leaf 
to a currently on-tree node, and the formation of the path maintains this node as the ancestor of all 
nodes processed. This process iterates on the root as the initial tree, ensuring every node processed 
further is a descendant of the root.  The resulting set of paths is a unique tree on which the given root 
is the ultimate ancestor of all nodes processed. The resulting tree of CONSTRUCT_TREE satisfies 
condition (1).  
 
At each iteration of its main loop, CONSTRUCT_TREE adds the leaf closest to the tree and the loop 
iterates as long as there still are leaves to be spanned. In any iteration CONSTRUCT_TREE does not 
add more than one leaf to the tree. This situation, i.e., the addition of multiple members of the leaf set 
to the tree within a single iteration of the algorithm, would occur if there is an un-spanned leaf as an 
intermediary node on the path being added. However, this would be a contradiction since, in this case, 
the intermediary leaf would be closer to the tree than the leaf at the end-point of the path being added. 
Therefore, at each one of its executions, the main loop in CONSTRUCT_TREE (lines C5-23) adds 
exactly one leaf to the tree. Observe that, whenever there is a solution meeting the delay bound, the 
root is always a potential connecting node for all leaves, and thus there always exists an on-tree 
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connecting node. Also observe that, the formation of the new path between the connecting on-tree 
node and the leaf currently being added to the tree is the only process updating the tree structure. 
CONSTRUCT_TREE is designed to choose between two alternatives – delay-shortest and <distance>-
shortest paths between the given pair of nodes. The new path formed to add a leaf l inherently 
considers and obeys ∆l. The delay bounds for all leaves are met when they are initially added to the 
tree. The only possibility that a delay-bound can be violated is when an existing tree path is updated 
during the formation of a new one. This situation is specified in line A3 of ADD_PATH, which 
potentially updates the parent of an on-tree node, which is on another tree path. If this change occurs 
during the formation of a delay-shortest path, then all changes on the on-tree paths are for only the 
shorter-delay paths and the resulting tree of this step does not violate the delay-constraint of any one 
of its existing leaves. This leaves the only possibility for delay-violation be due to an on-tree node, 
say n, switching from its delay-shortest connection to <distance>-shortest connection to the root. For 
part of its upstream connection to be updated, node n has to be an intermediary on the path being 
formed. However, this occurs only when n is closer in its distance to the leaf being added than the on-
tree end-point of the path newly being formed, which is a contradiction. Thus, the updates on existing 
tree paths are only for shorter-delay paths, and the ultimately formed tree meets the delay-bounds of 
each leaf it spans, satisfies condition (2). Therefore, CONSTRUCT_TREE is successful and meets its 
design specifications. � 
 
4.4 Distributed Deployment 
As we stated earlier in Section 4.1, our framework partitions the multipoint routing problem into core 
selection and tree construction processing sequentially as two modular components. The core 
selection component of our model compares the candidate cores against a selection criterion and 
chooses the highest-ranking candidate as the next core. We design the distributed deployment of our 
core selection as coordinated by some node in the domain. A coordinator node known throughout the 
domain acts as a “hub” for the accumulation of the relevant information, and the execution of the 
cross-comparison process on the candidates for the ultimate selection. The coordination of the entire 
process by a domain node is necessary for feasible deployment in distributed platforms especially in 
terms of the message exchange overhead. Such coordination has been even proposed for the single-
core selection schemes based on cross-comparison (see [KH03] for a comparison of core-selection 
algorithms). In the generic sense, each candidate core tests itself against the selection criterion using 
the local information available to it and reports its result to the coordinator. The coordinator is also 
the node running the process to select the cores based on the information reported to it.  
 
In our case, the core selection criterion is the domination set size of which the computation for an 
asymmetric deployment requires as input minimum delay-distances from each source to a particular 
candidate and the minimum delay-distances from the candidate separately to each receiver. A domain 
node c dominates a receiver r for a source s, and hence r∈D(c,s) if and only if pathdelay[s,c].delay + 
pathdelay [c,r].delay ≤ ∆. Assuming the availability of the information on full source and receiver sets 
only to the coordinator, our model relies on a source-initiated message broadcast throughout the 
network  for the discovery of nodes that serve the particular source for a non-empty subset of 
receivers within the delay bound. The coordinator initiates the entire process by notifying each source 
of the receiver set and the delay bound of the application. This message triggers on its recipient 
source, say s, the generation of message SUBDOMAINs separately for each outgoing link of s. Along 
with the receiver-set and the delay-bound information, the message SUBDOMAINs carries a time-
stamp to keep track of the delay-distance it travels. Source s sets the value on the time-stamp to the 
delay distance between itself and an immediate neighbor before sending the packet on the outgoing 
link to that neighbor. Figure 10 shows the process carried out by a recipient of the message 
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SUBDOMAINs. Observe that SUBDOMAINs, which is flooded throughout the domain, reaches a 
particular domain node firstly through the delay-shortest path connecting s to it. Thus, the first 
SUBDOMAINs message reaching a domain node c communicates to c all required information 
particular to s, including pathdelay[s,c].delay. Further copies of this message received from the same 
source are redundant and hence are simply discarded (see line S1 in Figure 10). If SUBDOMAINs is 
the first to be processed on its recipient node, then the delay-distances are examined. If the delay-
distance the packet traveled is already beyond the delay-bound, the packet is discarded (line S2) since 
it violates the delay-bound of the application on its delay-shortest path. If the time-stamp on the 
packet is still less than the delay bound, the domination set of candidate core c for source s is 
computed for potential receivers in the set (lines S3-4). If the domination set is empty, SUBDOMAINs 
is still discarded (line S5) since any further path traveled by this packet can not lead to a candidate 
core serving source s for a receiver in the group. The domination set, D(c,s) being non-empty (line 
S6) indicates node c as a candidate core. In this case, c reports D(c,s), pathdelay[s,c].delay, and 
pathdelay[c,r].delay ∀r∈D(c,s) to the coordinator (line S7), and relays the message SUBDOMAINs on 
each of its outgoing links except the one it received the packet after incrementing the time-stamp of 
the packet with the delay-distance of the destination neighbor from itself (line S8-11). This process 
transmits the domination sets of all potential cores to the coordinator, which is necessary and 
sufficient for the entire execution of the core selection algorithm on the coordinator. The directed 
delay-distances between the source-core and core-receiver pairs are also transmitted for the 
computation of the delay-bounds of the leaves on each core and source tree. 
 
The coordinator then makes the core selection resulting in the optimal domination sets, which specify 
the source and core trees as well as the leaves to be spanned by each tree and the delay-bound of each 
leaf. Afterwards, each tree root is notified of the corresponding leaf-set. Our architecture models the 
trees developed and maintained independently from each other, and the entire process is coordinated 
at the tree root where it is initiated. Distributed tree deployment requires that every root maintains the 
state information CONSTRUCT_TREE (Figure 6), which describes and delayn at node n to each on-
tree node n. The CONSTRUCT_TREE algorithm runs at the tree root for i.) the selection of the un-
spanned leaf closest to the tree in the current state (lines C14-21), ii.) the coordination of the tree 
update to add the newly selected leaf to the tree (line 6), and iii.) the update of its state information 
with the current form of the tree (lines C7-13). The selection of a new leaf is the comparison of the 
distances of each leaf to the tree and relies on the state information maintained at the root.  
 
When a new leaf and its connecting path are determined, the root notifies the appropriate 
on_tree_node using ADD_PATH_msg, which specifies the leaf being added, the code that specifies 
the metric of the minimum-distance path, the path delay information and the current set of off-tree 
leaves. ADD_PATH_msg travels along pathcode[on_tree_node, leaf] carrying a time-stamp initiated to 
delayon_tree_node. As it traverses each next-hop neighbor on the path, the processing node n increments 
the value on this stamp with delay[n,m].delay where m is the next recipient of ADD_PATH_msg. 
When ADD_PATH_msg reaches a leaf and thus the path formation is complete, PATH_ACK, an 
acknowledgement, is initiated and travels on the reverse path, examining the minimum tree-distances 
computed for each leaf on the nodes it traverses and selecting the minimum of these values separately 
for each leaf to transmit the minimum distance of each remaining leaf to the newly updated tree 
portion. Once PATH_ACK reaches the on_tree_node, the results are forwarded to the root where the 
state information regarding the tree-to-leaf distances are updated with the incoming information. 
Throughout its operations, SPAN considers the link utilizations in both directions during the group 
communication session, and thus SPAN is an asymmetric framework.  
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4.5 Complexity Analysis 
In this section, we analyze the complexity of SPAN. We first revisit its architectural structure for the 
organization of the components. Then we examine the computational-time complexities of the 
processes along with the amount of message transmission. We assume O(1) time for unicast and tree 
multipoint table state look-up, table update, and the search and update operations on the sets. 
Utilization of direct addressing on array structures justifies this assumption feasibly considering the 
size of potential value domains of the variables to be represented.   
 
Considering SPAN as a protocol unit, its operation is triggered by a multipoint group information 
transmitted to coordinator, and terminated upon the construction of the source and core trees. SPAN 
follows the following sequence of steps in the given order: 
1) Coordinator triggers sources in the group: the coordinator communicates to sources the group 

information, S and R, and application delay bound, ∆.  
2) Sources initiate SUBDOMAIN: each source s in S initiates SUBDOMAINs as described in Section 

4.4. 
3) Reports from candidate cores transmitted to coordinator: upon receiving SUBDOMAINs each 

qualifying candidate c reports to coordinator its domination set D(c,s) and relating delay 
information as specified in line S7.  

4) SELECT executes at coordinator to generate the core set, determine the leaf sets and leaf delay-
bounds of each core and source tree, and communicate this information to the sources and the 
cores for tree construction. 

5) Coordinator triggers sources and cores for tree construction: for each tree to be constructed, the 
root is communicated as part of the processing of SELECT (lines E35, E38-39) the set of leaves 
and delay-bounds of each leaf. Note here that, since cores are notified during the execution 
lifetime of SELECT, the execution lifetime of CONSTRUCT_TREE processing on cores to 
generate the core trees overlap with that of SELECT.  

6) CONSTRUCT_TREE iterates at each source and core for the following additional to its local 
execution:  

a. Triggers the connecting on_tree_node 
b. ADD_PATH propagates for the construction of the path to add the selected leaf to the tree 
c. PATH_INFO propagates back to the root for the transmission of the information on the 

recently added path 
 
The group information from the coordinator to sources transmits on Θ(|S|) messages in step (1). 
SUBDOMAINs is processed to iterate on the receivers set (lines S3 and S7) and the degree of the 
processing node (line S8), and executes in time O(|R|+e) where e is the maximum node degree in the 
domain. In the worst case, the delay bound of the application is large enough not to be binding, so that 
any domain node is a candidate core to serve all sources in the group. In this case, each recipient of a 
SUBDOMAINs is relaying it to each one of its outgoing links if and only if it is the first copy from 
source s within the delay bound. Then, for a given source s, O(e|N|) links are traversed by 
SUBDOMAINs in steps (2) and (3), and the total number of links exploited by these messages across 
all sources is O(e|N||S|) where N is the domain size. A recipient n of SUBDOMAINs reports to the 
coordinator its delay-distance from source s and the delay-distances separately to each receiver it is 
dominating for source s if and only if D(n,s) is non-empty (line S7). The number of candidate core 
reports as a results of this stage of operations is proportional to the number of domain nodes and the 
size of the source set. Thus, the transmission of candidate core results on core-selection criteria to the 
coordinator for this stage amounts to O(|N||S|).  
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Since line E5 of SELECT compares the members of two sets of both of which the domain set for the 
elements is R, it can be implemented in time O(|R|). The loop executing this statement in line E4 
iterates on set S, thus executes in time O(|S||R|). The main loop nesting this statement in line E2 
iterates on the elements of C and S. The overall complexity of SELECT in lines E2-6 is O(|S|2|R||C|). 
The core selection criterion used by SELECT is the domination count of each candidate core. In each 
iteration, the core dominating the maximum number of receivers across all sources is chosen from the 
pool of the candidates. Observe that, whenever there is a delay-bound solution, the minimal set of 
candidates contains each source serving itself for all receivers in the group. Therefore, the size of the 
ultimate core set is bound by the number of sources in the group, i.e., |Cu| ≤ |S|. The repeat loop in 
lines E8-37 processes to select exactly one core-tree at each one of its iterations, and terminates when 
all rs ∀ r∈R, s∈S are served by the selected core trees. With this, the repeat loop iterates as many 
times as Θ(|Cu|) = O(|S|). The inner loop in lines E10-15 iterates on sets C and S, and the body of his 
loop executes in time bound by a constant. The execution time of this loop is Θ(|S||C|). The maximum 
number of ultimate domination sets produced for one core is at most as many as |S|. The size of a 
domination set, on the other hand, is bound by |R|. With this, line E35 executes in time O(|S|+|R|) = 
O(|R|). The inner loop of repeat in lines E21-34 is nesting another loop in lines E29-32 which 
executes in time O(1) for each member of C. The outer loop itself processes on sets S and 
Du(core,source)⊆R, with the rest of its body executing in time O(1). The overall complexity of the 
block in lines E21-34 is O(|S||R||C|), and has a higher bound than that of the  rest of the block nested 
by the repeat loop, making the repeat loop execute in time O(|S|2|R||C|). The rest of the algorithm that 
involves the notification of the roots of the source trees to be constructed in lines E38-39 has the 
complexity O(|S|2) and not binding (steps 4 and 5). The overall complexity of SELECT is O(|S|2|R||C|), 
which is the minimum attainable complexity of a core selection algorithm processing in the singular 
and non-singular solution spaces [KH03].  
 
The coordinator notifies the sources and the cores for the construction of corresponding trees in 
|S|+|Cu| ≤ 2|S| messages (lines E35, E38-39). At its initialization step in lines C1-4, 
CONSTRUCT_TREE executes in time Θ(|L|) due to the loop in line C1. The main loop of the 
algorithm in lines C5-23 iterates as many times as the size of the leaf set. Line C6 executes in time 
O(1). On assumption of a time-out period for the arrival of PATH_INFO_msg in protocol operations, 
the delay between the transmission of the messages in line C6 and the arrival of reports from these 
nodes in line C7 is bound by a constant. Upon receiving PATH_INFO_msg, the loop in lines C8-13 
executes in time O(1) and thus its computational complexity is O(|L|). The for loop in lines C15-21, 
having a similar structure, also takes O(|L|) time. Therefore, the while loop executes in time O(|L|2) 
which is the complexity of CONSTRUCT_TREE. The leaf set is a subset of R and Cu⊆S in the 
formation of respectively the core and source trees. Thus, the computational complexity of 
CONSTRUCT_TREE is respectively O(|R|2) and O(|C|2) for the construction of core and source trees 
(step 6). 
 
The execution of ADD_PATH in step 6-a, mainly for the state look-up and update of the unicast and 
multicast routing tables is bound by a constant. ADD_PATH runs on O(a) nodes for each leaf being 
added where a is the node-diameter of the domain, and the total number of its executions in different 
processes during the lifetime of CONSTRUCT_TREE is O(a|L|).  
 
MIN_DIST invoked by PATH_INFO is mainly a table look-up function and with the implementation 
on direct addressing as we mentioned, executes in time O(1). PATH_INFO iterates solely on the leaf 
set (line P2) for comparison and update of the minimum distance-to-tree information for each element 
of this set. The complexity of PATH_INFO is O(|L|). PATH_INFO, being processed exactly by those 
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nodes which processed ADD_PATH in reverse order, is executed as many times as ADD_PATH. The 
time complexity of the SELECT, processing for the core selection is highest among the processes in 
SPAN and thus makes the time complexity of the overall system as O(|S|2|R||C|). The SUBDOMAIN 
messages used to transmit the required domain information to the coordinator dominate the amount of 
message transmission for SPAN. This amount warrants feasible deployment in distributed platform, 
and SPAN carries out its execution on local unicast routing states with no reliance on an external data 
gathering protocol.  
 
 
5. Performance Evaluation 
The optimum solution to minimize the cost of the resulting multipoint path to serve the group within 
the delay bound of the application is the set of constrained-SMTs, each rooted at one source, and 
spanning the entire set of receivers in the group. As we pointed out in Section 2.1, this solution is NP-
complete.  
 
Existing solutions for group communications are mostly restricted to single source and/or 
unconstrained cases and the problem is considered separately for core selection and tree construction 
rather than within the context of a comprehensive model. As we stated in Section 2.2, the prominent 
solution in literature to the DCMC problem is GREEDY [Sa96]. In its architectural description, 
GREEDY operates on bi-directional trees so that every on-tree node on a given tree forwards every 
incoming data packet to everyone of its on-tree links except the one where it received the packet from 
regardless of whether the outgoing link(s) lead to receivers as further destinations. We modify 
GREEDY, into m-GREEDY, which, in account of the bi-directional utilization of the generated trees, 
traverses the tree for the source of the current data stream assumed as the root, and forwards the 
stream only to those links leading to downstream receivers in the traversed version. Observe that our 
modification performs at least as good as GREEDY itself at the cost of tree maintenance overhead 
additional to that of GREEDY. We also consider m-GREEDY as a potential alternative to SPAN for its 
cost-efficiency compared to its original version.  
 
For a direct comparison of our model to its distributed counterparts in the singular solution space, we 
generated a model, SINGULAR, which applies the entire architecture of SPAN this time to process in 
the singular solution space. SINGULAR differs from SPAN in its domination count which now is an 
attribute of a core rather than a core-source pair as the attribute uniquely describing a core-tree, i.e., rs 
∈ Tc,s ⇔ r∈Du(c,S)  ∀r∈R, s∈S, c∈Cu. According to this, the domination specifies the number of 
receivers dominated by the core for all sources in the group. The candidate core c returning the 
highest value for |D(c,S)| as the primary criterion and c being a source or closest in average 
<distance> to source set as the secondary criterion is selected to be the next member of the core set.  
 
We identify two performance measures for the models tested: 
a) Cost: total transmission cost. The transmission cost for a particular source is the sum of the cost of 

the links traversed during the transmission of one packet from that source to the entire receiver 
set. Overall transmission cost is the sum of the transmission costs of all trees.  

b) Tree structure: the total number of links on the resulting multipoint path. Each of the scenarios we 
examine describes the core-trees and source-trees as administered for their modification and 
maintenance independently from one another. We count the number of links as distinct in 
utilization and maintenance. The overall link-count of the entire multipoint path in turn is the sum 
of the link-counts of the individual trees with no regard of overlapping links across distinct trees.  
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Note that the measure tree structure differs from cost in that it does not consider the links on a 
particular core tree shared by multiple sources served on that core tree, whereas cost considers the 
cost of each such link is cumulated across the sources using them for the delivery of the stream. The 
computations of cost and tree structures are equivalent only if |S|=1.  
 
In order to maintain the same “scale” for the symmetric (GREEDY and m-GREEDY) and asymmetric 
(SPAN and SINGULAR) models being evaluated, we avoided asymmetric domains and tested our 
samples on symmetric networks in which the link costs and delays are equal in both directions of the 
link. As mentioned earlier, SPAN and SINGULAR process on asymmetric domains, whereas GREEDY 
is necessarily symmetric. Our results compare GREEDY and m-GREEDY to their asymmetric 
alternatives within their intended design setup with no restriction on the functionality of the 
asymmetric models.  
 
A primary consideration in our performance of delay-constrained problems is what we call the critical 
delta, ∆critical values. These represent the delay bound of the application for each domain where 
critical delta is {path

RrSs ∈∈ ,
max

Cc∈,

delay[s,r].delay}, namely the minimum delay bound that leads to a 

successful solution on the problem instance. Consider also the definition of maximum delta, ∆max, 
which is { path

RrSs ∈∈ ,
max delay[s,c].delay+pathdelay[c,r].delay }. Maximum delta specifies the 

“boundary” where the results to be returned by any of the algorithms are no longer affected by the 
delay-bound parameter. In other words, maximum-delta is the upper-bound for the delay-bound 
range, beyond which any algorithm would be feasible. The range [∆critical, ∆max] specifies, for a 
problem instance on a given model the minimal delay-bound range of all possible solutions.  
 
We also normalized the cost and link-count results of each algorithm against the results of the 
“reference” model. According to this, the cost and link-count results of each of the other models are 
divided by the corresponding outcome obtained from the reference under the same measurement 
setup, and the indicated results on cost and link-count are relative performances to those of the 
reference. The reference model is SPAN in all cases except in the comparison to the optimal solution 
(Figure 11), in which case it is the optimal solution itself that is used as reference. The performances 
of the reference models are considered unity and not explicitly depicted in our figures.   
 
The core selection components of SPAN and SINGULAR within our framework process on the 
domination count of the candidates and thus only rely on the delay-distances between the node pairs, 
leaving the consideration of <distance> as the optimization metric to the tree development phase. 
Regarding the alternate design goals we set on transmission cost and link-count, we obtained for each 
case on sparsely distributed groups two versions of results. We first run the core selection component 
of SPAN and SINGULAR, this produces the domination sets, on which we run CONSTRUCT_TREE 
independently on cost and hop-count. By also using the transmission cost or hop-count as the 
performance metric, we measured the multipoint paths generated by both on a particular sample for 
each one of these performance metrics. Our figures combine the two parameters on the same metric 
on two different outcomes over the same set of samples. In each one of the graphs, the legends with 
solid lines indicate the results where the path generation metric and the performance metric are the 
same. The “dual” of a given evaluation is the one in which the path generation metric is different than 
the one being measured, and is indicated by the same legend with suffix (D) and represented by a 
dashed line. We remark that none of the models outperformed their duals compared to SPAN. This 
indicates SPAN’s effectiveness in achieving a target optimization goal. In both metrics, the models 
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followed the same pattern as their dual measurements, which is expected, and demonstrates the 
consistency in the tree development component of our model.  
 
Except for the performance comparison with the optimum solution, we used sample domains of size 
60, and tested groups sparsely distributed throughout the domain. Our domains have the average node 
degree in range (3.5, 5), and the average of average of node degrees of our sample domains is 4.46. 
We used Waxman’s model [W88] for sampling the domains. In all cases, the sources and receivers in 
the group are randomly distributed in the domain. We maintained a 90% confidence level with 10% 
confidence intervals in our measurements. 
 
In the first scenario, we compare the cost performance of all algorithms to optimum solution in 
domains of size 10. The control variable is the group size which varies in range 5..9. Each of the 
sample groups contains exactly 3 sources one of which is also a receiver. The delay-bound is ∆critical 
in each case. Note that the results on performance comparison to the optimal solution indicate solely 
the relative behavior of the models compared. It is not intended to reflect the characterization on the 
operational setting of the core-based models, which is sparse mode. This group of results is obtained 
on necessarily small domains due to the computation-time limitations of the optimum algorithm, and 
on samples densely populated in the domain to reflect the multi-source multipoint group 
communication characteristics.  
 
Figure 11 shows our comparative results to the optimum solution. SPAN performed within the range 
of 120-140% of the optimum solution and outperformed the other models. GREEDY’s performance 
improved as the group size increased and thus the resulting trees are “saturated”, i.e., spanned a 
greater portion of the domain so that the on-tree links used by the “source-tree” and “core-tree” 
components of the paths overlapped in dense mode. SPAN’s relatively consistent performance in this 
scale indicates its efficient path construction to serve its design purpose.  
 
The remaining figures depict the results of our evaluation on domains of sizes 60 for an accurate 
approximation of the performances of the models in their operational environments. Figures 12-14 
test groups in which some of the sources are also receivers and thus the source and receiver sets are 
not exclusive. In Figure 12, we tested each model on varying source-to-receiver ratios. The receiver 
set size is fixed at 16, the varying ratio is achieved by |S| ranging in [6, 8, 10, 12, 14, 16]. The x-axis 
in each figure indicates the source-set size. Figures 12(a) and 12(b) present the cases in which 
respectively half and all of the sources are also receivers. Figure 13 presents the performance of the 
models on overall group size as the control parameter. The group ratio, |S|/|R| is fixed to 1/2. |S| and 
|R| each vary in fixed range of corresponding values of [2, 4, 6, 8, 10, 12] and [4, 8, 12, 16, 20, 24], 
respectively. The source and receiver sets overlap: half and all of the sources are also receivers in the 
samples of figures 13(a) and 13(b). Figure 14 demonstrates the effect of group overlap |S∩R| on 
performance of the different models, where all sources are also receivers. In Figures 14(a) and 14(b) 
the group size is respectively 12 and 24. The size of the source set and thus |S∩R| is varying as 
indicated in x-axis in each figure.  
 
In Figure 15, we tested the models for their performance on varying group sizes when S∩R=∅. The 
group ratio is fixed at ½. |S| and |R| vary in respective ranges [2, 3, 4, 5, 6, 7] and [4, 6, 8, 10, 12, 14]. 
In Figure 15(a), the delay bound is set to ∆critical whereas in Figure 15(b) it is set at the midpoint of the 
delay-bound range, i.e., ∆ = (∆max+∆critical)/2. Figure 16 compares the effect of the delay-bound on the 
performance of the models. ∆ varies in range ∆critical+kV where V is the “length” of the minimal delay-
bound range, i.e., V= ∆max-∆critical, and k∈[0, 0.2, 0.4, 0.6, 0.8, 1.0]. In Figure 16(a), |S|=4, |R|=16 and 
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S∩R=∅, whereas in Figure 16(b), |S|=8, |R|=16 and S⊂R=∅, the group size, |S∪R|, being 20 in both 
cases.  
 
A prominent observation is that SPAN, processing on a broader solution space, consistently 
outperformed its counterparts in its cost performance, indicating that SPAN is the most efficient 
model for multipoint routing for constrained group applications. SPAN is outperformed in this metric 
only by SINGULAR—its counterpart in our framework executing in the singular solution space, and 
only when the models processed for link-count optimization rather than cost. SPAN maintained its 
high cost-performance across all models at the critical delay bound values, justifying its primary 
design objective to serve group applications bearing delay constraints. m-GREEDY’s higher 
performance over SPAN on groups of extremely small sizes (Figure 13.1) is exceptional and 
insignificant since the groups of this characteristics fall beyond the targeted effectiveness of core-
based architectures. A relatively consistent result of our evaluation is the diminishing cost 
performance of the models tested against SPAN for larger group sizes at critical delay-bound values, 
reflecting the comparative efficiency of our architecture in path exploitation in constrained cases. 
 
Another significant finding of our study is the considerably poor performance of GREEDY in 
comparison to its counterparts. Our figures on cost performances depict GREEDY at its extreme end 
of the scale, leaving the relatively close performance of the remaining models in their “magnified” 
range for a sophisticated comparison. GREEDY does not consider core-trees and source-trees 
separately and constructs, for each receiver partition, a tree rooted at the core spanning also all the 
sources in the group, explaining its higher performance for the resulting tree structure compared to its 
alternatives. The resulting tree combines the core trees and source trees from our analysis perspective 
of the solution space, and the data stream from a particular source is redundantly delivered to the 
other sources as well as to the receivers, adding on the delivery cost. However, the transmission-time 
pruning of GREEDY’s composite trees in its modified version results in the efficient use of the trees 
for the “short-cuts” they provide between the on-tree source-receiver pairs, and m-GREEDY highly 
outperforms its original version.  
 
SPAN’s cost performance advantage becomes more aparent as the source and receiver sets 
overlapped. The model performed even better at larger group sizes under this setup. This implies that 
SPAN is particularly preferable for groups that contain sources of data streams which are also 
receivers of other streams. A typical example for such a case is video conferencing.  
 
Our empirical results point to a correlation between the cost and hop-count performances of m-
GREEDY and SINGULAR. That is, GREEDY outperformed SINGULAR in one of these metrics 
whenever it outperformed SINGULAR in the other metric. Furthermore, their performances followed 
a similar pattern of one another. This result is not surprising since the total the total link count on the 
collective set of trees, although is not a direct measure of the number of times the links are exploited 
during the transmission, is indicative on the cost of exploitation of the links. Note here that the cost 
underperformance of GREEDY does not violate this observation due to its very high amount of 
redundant transmission. This result is suggestive of a generalized correlation between the cost and 
tree structure performances of the models operating on the same solution domain, which in turn 
potentially broadens the range of heuristics to solve the problem of constrained cost minimization.  
 
SINGULAR’s performance is close to SPAN’s on groups with smaller number of source participants, 
and closest when the group ratio is low. Such a result is justified, since the non-singular solution 
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space provides alternatives across multiple sources in the group, and the provisions of this space for 
efficient solutions compared to singular space diminishes for reduced number of sources.  
 
The difference in the performances of SPAN and SINGULAR attributes solely to their respective core 
selection algorithms since both models use the exact same tree construction module. Thus, SPAN’s 
higher cost-performance is a direct verification of our findings in Section 3 that non-singular solution 
space offers potential improvement on the efficiency of the solutions. Note that SINGULAR’s 
performance converged to SPAN’s as the delay-bound is increased. The core selection algorithms of 
both models operate on domination counts, which is an attribute of the candidate cores’ domination 
sets restricted by the delay-bound of the application. The difference in the two algorithms is eminent 
at tight delay-bounds. As the delay bound of the application gets larger and less binding on the range 
of solutions, both SPAN and SINGULAR tend to select cores among the candidates with large 
domination sets. At the extreme end when ∆=∆max thus the delay constraint does not apply, every 
node in the domain is a candidate core with full domination for all sources, and SPAN and 
SINGULAR have exactly the same set of candidate pool to select from. The difference in their 
performance at ∆=∆max (Figure 16) is therefore solely due to the random ordering of the candidates in 
the pool and the secondary criterion that followed the domination count each applied during the 
selection process.  
 
SPAN’s cost performance over m-GREEDY despite its low performance on hop-count compared to 
the well-structured trees of the GREEDY architecture further indicates the high potential gain in cost 
efficiency provided by the range of non-singular solutions. Pure GREEDY, on the other hand, exhibits 
very low cost-performance characteristics, which was the main reason we introduced its modified 
version m-GREEDY. Furthermore, neither GREEDY nor m-GREEDY operate on asymmetric 
networks. Both models require full domain information and are infeasible in distributed networks. 
SPAN’s feasibility in distributed deployment providing delegated tree management warrants the 
comparatively more complicated tree structure of this model especially for groups with dynamic 
membership characteristics thereby demanding on tree maintenance. 
 
6. Conclusions  
In this paper, we investigated the solutions for delay-constrained multi-source, multipoint 
communication groups applying the core-based architecture in sparse mode. Our analysis of the 
solution space for this range of problems indicated a broader range which is not explored by existing 
models. We identified the solution space as being composed of singular and non-singular spaces, with 
all existing schemes exploring only the singular solution space.  In the singular space, each core, 
serves all sources in the group and uniquely defines a shared tree. In the non-singular space, a core is 
not necessarily serving all the sources and each receiver can be served by multiple cores varying 
across sources in the group. We presented SPAN, a distributed model processing in the non-singular 
space and extending the range of solutions searched by its precedents. Our model describes the first 
distributed, asymmetric framework on the literature to provide solutions for constrained, core-based 
multi-source communication groups. Our empirical results showed the high efficiency of our model 
compared to its counterparts, clearly demonstrating the significance of our theoretical findings 
indicating the potential contribution of models processing in the extended range of solutions.  
 
SPAN is a basic model designed for processing in the non-singular and singular solution spaces at 
moderate computational complexity and communication among the nodes throughout its execution. 
During core selection, SPAN only uses the domination information of the candidate cores, and 
operates on local distance-vector information available at the routers. Our results are promising for 
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more elaborate designs that are also based on the relative cost and hop-count distances between the 
candidate core and group member pairs in core selection phase in this class of models, which is an 
approach proved to be effective for cost efficiency [TR97].  
 
While the placement of cores in the domain is crucial for the protocol operations, the candidate core 
pool to be considered for the selection process can alternatively be restricted to a certain subset of 
domain nodes with respect to their coverage of the topology and domination of the potential group 
members local to them. SPAN considers the candidate core set as an external input across its relevant 
message transmission and core selection component, and processes with no restrictions on its 
functionality on reduced sizes of potential cores.  
 
Broadband group communication over the Internet is becoming ubiquitous over a wide range of 
services. These applications are usually delay-sensitive and demanding on network resources. The 
core-based architecture offers the significant advantage of partitioning the inter-domain route 
construction on QoS-demands of the applications into intra-domain problems by the placement of 
core nodes within the autonomous routing domains to coordinate transmission to receivers and/or to 
border routers for further transmission across ASs. SPAN presented in this paper operates on local 
distance-vector information available at the routers, with no modification on their functionality. Our 
models can further enhance the support of inter-domain groups for participants across ASs through 
the construction and management of the intra-domain routes coordinated by the efficient placement of 
cores in each of the domains.  
 
The participants in a multipoint communication group often tend to join and leave at will during the 
communication session solely with notification. A promising future direction for QoS-support under 
membership dynamics is the investigation of the performance of multipoint path construction models 
in terms of path deterioration from the original structure, and path reformation through core migration 
[DZ96] on certain deterioration levels based on the devised metrics.  
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Figure 1. An example DCMC problem. a) solution involving a single multipoint tree serving the 
entire source set for all receivers, b.) an alternate solution involving two different multipoint trees to 
serve the group.  
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Figure 2. A multipoint communication group with 2 sources. Each source is also a core serving itself.  
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Input: tree root, leaf set, delay bound of each leaf 
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Input: S, R, C // source, receiver and candidate core sets 

D(c,s) for all c∈C, s∈S  
pathdelay[i,j].delay ∀ (i,j): i∈S, j∈C and i∈C, j∈R 

Output: Cu  // the set of cores ultimately selected 
              tree construction information 
E1.. initialize the output parameters to null; 
E2.. for (each c∈C)   for (each s∈S)   {     // compute domination counts 
E3..        domination_countc,s = |D(c,s)|; 
E4..        for (each s’∈S, s’≠s)  
E5..             domination_countc,s += |D(c,s) ∩ D(c,s’)|; 
E6..  } 
 
E7..  total_count = 0;    
 
E8..  repeat  
E9..      max_count = 0; 
E10..    for (each c∈C)   for (each s∈S)   // select a core 
E11..        if ( (domination_countc,s > max_count) or ((domination_countc,s = max_count) and (c=s)) ) { 
E12..                max_count = domination_countc,s; 
E13..                core = c; 
E14..                source = s; 
E15..       } 
 
E16..   total_count += max_count; 
E17..   Cu = Cu ∪{core} 
E18..   domination_countcore,source = 0; 
E19..   Du(core,source) = D(core,source); 
E20..   C = C \ {core}; 
 
E21..  for (each s∈S)  for (each r∈ D(core,source))    
              // update the delay-bound of the leaves of the trees and the domination status for the selected core tree 
E22..     ∆source,core = pathdelay[source,core].delay;   
E23..     ∆core,r = ∆ - ∆source,core; 
E24..     if (r∈ D(core,s))    { 
E25..             Du(core,s) = Du(core,s) ∪{r}; 
E26..             Ls = Ls ∪{core}; 
E27..             ∆s,core= path delay[s,core].delay;  
E28..             ∆core,r = min {∆core,r , ∆ - ∆s,core}; 
E29..             for (each c∈C, c ≠ core)   { 
E30..                 D(c,s) = D(c,s) \{r}; 
E31..                 if (r∈ D(c,s))    domination_countc,s--; 
E32..             }; 
E33..     }; 
E34..   }; 
E35..   send Du(core,s) ∀s: Du(core,s) ≠∉; ∆core,r  ∀r∈ Du(core,source) to core; 
                      // trigger core for construction of the specified core tree   
E36..   for (each s∈S)  Du(core,s) = ∅; 
E37.. until (total_count = |R|*|S|)    // all the receivers are dominated for all sources  
 
E38.. for (each s∈S)  // trigger the sources for the construction of source trees 
E39..      send Ls, ∆s,c  ∀c∈Ls to s; 
 
Figure 5. SELECT, the core selection algorithm of SPAN, processing on the singular and non-singular 

solution spaces.  
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CONSTRUCT_TREE 
Input: root: root of the tree  
           L: the set of leaves to be spanned 
           ∆l : delay-bound on the path between root and l ∀l∈L 
Output: the delay-bound tree 
// initialization 
C1.. for (each leaf l∈L)  { min_distl = ∞;   delayl = ∞ } 
C2.. delayroot = 0;  
C3.. on_tree_node = leaf = root; 
C4.. code = ”*”;   // value of code doesn’t matter at first iteration 
 
C5.. while (L≠∅) {  // iterate until all leaves are on-tree 
C6..      send ADD_PATH_msg (L, ∆L, code, leaf, delayon_tree_node) to on_tree_node;    
C7..      delay time-out for incoming PATH_INFO 
C8..           for (each leaf l∈L) 
C9..             if (min_distl > PATH_INFO_msg.min_distl) { 
C10..                   min_distl = PATH_INFO_msg.min_distl; 
C11..                   codel = PATH_INFO_msg.codel; 
C12..                   on_tree_nodel = PATH_INFO_msg.on_tree_node; 
C13..             } 
C14..     min_dist = ∞; 
C15..     for (each leaf l∈L) 
C16..          if (min_distl < min_dist)  { 
C17..               min_dist = min_distl ; 
C18..               code = codel ; 
C19..               on_tree_node= on_tree_nodel ; 
C20..               leaf = l; 
C21..          } 
C22..     L = L \ {leaf}; 
C23.. } 

Figure 6. CONSTRUCT_TREE algorithm 
 
 
 
 

ADD_PATH (leaf, code, delayself, L, ∆L) 
Input:  
        L, ∆L: current leaf set information 
        leaf: the leaf to be added to the tree 
        code : the distance-metric of the path to be constructed leading to leaf 
        delayn: the delay distance  
Output: The tree link establishment between self and next<code>(self, leaf) 
A1..   if ( self ≠ leaf )   {   // self is the node running ADD_PATH 
A2..       child = next<code>(self, leaf);   // unicast state-table look-up 
A3..       add child as a downstream tree node;   // tree state update 
A4..       delaychild = delayself + path<code>[child].delay; 
A5..       relay ADD_PATH_msg (L, ∆L, code, leaf, delaychild) to child  
A6..    } 
  

Figure 7. The process ADD_PATH initiated by CONSTRUCT_TREE. next<code>(parent, leaf) returns 
the neighbor of the parent on the shortest-path to leaf in metric specified in <code>. Returns leaf if 
parent = leaf. 
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MIN_DIST (n, leaf, delayn, ∆l) 
Input: n: on-tree node 
        leaf: an un-spanned leaf 
       ∆leaf : delay-constraint between root and leaf 
       delayn : the on-tree delay-distance of n from the tree root 
Output: the path information connecting n and leaf at minimum-attainable distance.  
M1..  min_dist = ∞; 
 
M2..  if (path<distance>[leaf].delay ≤ ∆leaf - delayn)  { 
M3..       min_dist = path<distance>[leaf].<distance>; 
M4..       code = <distance>; 
M5..  } 
 
M6..  if (pathdelay[leaf].delay ≤ ∆leaf- delayn & pathdelay[leaf].<distance> < min_dist ) { 
M7..      min_dist = pathdelay[leaf].<distance>; 
M8..      code = “delay”; 
M9..   } 
M10..   return (min_dist, code) 

Figure  8. The procedure MIN_DIST invoked by PATH_INFO. 
 
 

PATH_INFO (delayself, min_distL, codeL, on_tree_nodeL) 
Input:       L, ∆L: current leaf set information 
Output:    tree information to be reported to the root 
 
P1..   if ( self is not the on-tree end-point node communicated by the root)    
P2..        for (each leaf l∈L)   { 
P3..             min_distl = MIN_DIST(self, l, delayself, ∆l).min_dist; 
P4..                if ( (self = leaf) XOR (min_distl < PATH_INFO_msg.min_distl) )  { 
P5..                    PATH_INFO_msg.min_distl = min_distl;  
P6..                    PATH_INFO_msg.codel = MIN_DIST(self, l, delayself, ∆l).code; 
P7..                    PATH_INFO_msg.on_tree_nodel = self;  
P8               } 
P9..        } 
P10..     relay PATH_INFO_msg (delayself, min_distL, codeL, on_tree_nodeL) to upstream node; 
P11..  }  
P12..  else send PATH_INFO_msg (delayself, min_distL, codeL, on_tree_nodeL) to root; 
 

Figure 9. The process PATH_INFO initiated at leaf. 
 
 

S1.. If SUBDOMAINs is processed already then discard it and exit. 
S2.. Read the time-stamp. If it is beyond ∆ then discard and exit. 
S3.. for ( each r∈R )  
S4..        if (∆s,n+ pathdelay[r].delay ≤ ∆) D(n,s) = D(n,s) ∪ {r} 
S5.. if (D(n,s) = ∅) discard SUBDOMAINs. 
S6.. if (D(n,s) ≠ ∅) { 
S7..     send pathdelay[s,n].delay and  
                   pathdelay[r].delay ∀ r∈D(n,s) to coordinator 
S8..     for (each link h except the one SUBDOMAINs is received)  { 
S9..              duplicate SUBDOMAINs  
S10..             increment time-stamp on SUBDOMAINs by delay on h 
S11..             relay SUBDOMAINs on h  
S12..     } 
S13..} 
Figure 10. Local processing of SUBDOMAINs on a recipient node n. 
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Figure 11. Comparison with optimal solution on group size. ∆=∆critical. 
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Figure 12.1. Evaluation for cost performance on group ratio. |R| = 16, |S| ∈ [6, 8, 10, 12, 14, 16], 
∆=∆critical. a.) Exactly half of the sources are also receivers. b.) all sources are also receivers.  
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Figure 12.2. Evaluation for hop-count performance on group ratio. |R| = 16, |S| ∈ [6, 8, 10, 12, 14, 
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Figure 14.2. Evaluation for hop-count performance on group overlap. ∆=∆critical. All sources are 
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Figure 15.2. Evaluation for hop-count performance on group size. |R| ∈[4, 6, 8, 10, 12, 14], |S| ∈ [2, 
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Figure 16.1. Evaluation for cost performance on delay-bound of the application. ∆=∆critical+kV 
where V= ∆max-∆critical, k∈[0, 0.2, 0.4, 0.6, 0.8, 1.0]. |S∪R|=20. a.) |S|=4, |R|=16 and S∩R=∅.b.) 
|S|=8, |R|=16 and S⊂R.  
 
 

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1k

GREEDY SINGULAR
GREEDY (D) SINGULAR (D)

 
0.5

1

1.5

0 0.2 0.4 0.6 0.8 1k

GREEDY SINGULAR
GREEDY (D) SINGULAR (D)

 
(a) (b) 

#Links #Links 

Figure 16.2. Evaluation for hop-count performance on delay-bound of the application. 
∆=∆critical+kV where V= ∆max-∆critical, k∈[0, 0.2, 0.4, 0.6, 0.8, 1.0]. |S∪R|=20. a.) |S|=4, |R|=16 and 
S∩R=∅.b.) |S|=8, |R|=16 and S⊂R.  
 
 

 34


	Ayse Karaman and Hossam Hassanein
	Tree construction Algorithm:

