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Abstract 
 
The Core-based approach is inevitable in multicast routing protocols as it provides efficient 
management of multicast path in changing group memberships, and scalability and performance. 
In this paper, we present a comprehensive analysis of this approach with the emphasis on core 
selection for the first time in literature. We first examine the evolution of multicast routing 
protocols into the core-based architecture and the motivation for the approach. Then we review 
the core-selection algorithms in the literature for their algorithmic structure and performance. 
Our study involves an extensive computational and message complexity analysis of each 
algorithm, and a classification for their deployment characteristics and algorithmic complexities.  
To the best of our knowledge ours is the first paper providing such extensive comparative 
analysis of core-based multicast routing protocols. 
 
 
1. Introduction 
 
Multicasting is the simultaneous delivery of data stream to multiple receivers in the domain. Its 
applications are numerous in group communications including numerous forms of audiovisual 
conferencing (discussion forums, live auctions, negotiation systems, white-board applications, 
online games, chat-rooms) and broadcasting (online radios, e-learning systems), mass delivery in 
digital marketing (software upgrade distribution, news delivery, stock quotes), replicated 
database applications in various forms of cross-query systems (airline systems, banking 
applications, cross-catalog search), offline virtual communities (newsgroups, mailing lists), as 
well as the trivial resource discovery feature of Internet routers. Group communications on 
Internet are increasingly more pervasive, and are inevitable parallel to wider acceptance of 
ecommerce applications.  
 
The objective of multicast routing, in broad terms, is the efficient delivery of the stream to the 
recipients. Multicast routing, as opposed to unicast routing, attempts to duplicate copies of the 
packets only at branching nodes, nodes where there are more than one outgoing paths to multiple 
destinations. Group communications have varying demands on network resources and 
transmission capacities. Some applications require reliability (B2B transactions, mailing lists) 
while others demand for speed (B2C services, online broadcasting) or cost efficiency of 
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transmission (delivery systems in digital marketing). The typical application in QoS concern is 
delay sensitive and requires high bandwidth for these encompass the general requirements of 
multicast applications. The prominent problem of QoS in today’s applications, therefore, is 
delay-constrained cost optimization, i.e., delivering the stream to the receivers at minimum cost 
while meeting a given upper bound for end-to-end delay.  
 
Multicast routing protocols evolved parallel to the growth in Internet size and coverage from 
broadcast routing that transmits to all but not just a subset of domain nodes. Earlier protocols 
constructed shortest paths from sources to each receiver in multicast group and hence source-
based shortest path trees. Shortest path tree (SPT) still is the design problem in tree construction. 
In today’s protocols, design concern is on core selection into optimization of metrics additional 
to delay for the improvement of scalability of the protocol especially in today’s QoS-sensitive 
applications.  
 
Multicast routing protocols evolved into core-based approach for improved performance during 
its operations in distributed networks. Location and structure of routing tree in a group 
application clearly is the dominant determinant on the protocol performance in multicast 
applications. Core based scheme offered alternative in multicast tree root and thus location to 
source-rooted tree approach for improved scalability and performance of the protocol. Multi-core 
trees with multiple cores to serve the group ultimately provided more efficient use of the 
multicast trees by the group. For group applications especially those involving instant interaction 
among the participants like audiovisual conferencing, the protocol is particularly sensitive to the 
degree of approximation of the multipoint communication path to optimal under multiple metrics 
for serving QoS demands. Selecting the location(s) of the core(s)—the process preliminary to 
tree construction operations is crucial in this respect for protocol operations, and the lack of en 
effective core-selection process is likely to degrade the efficiency of the multicast routing 
protocol to a significant extend.  
 
This paper is a study on core-based approach and the core selection algorithms presented in 
literature. In the next section, we examine the multicast routing protocols and the motivation for 
the core-based architecture. Section 3 is devoted to our review and analysis of core selection 
algorithms. We first present the terminology and preliminaries to this line of research in Section 
3.1. In Section 3.2, we describe a classification of core-selection algorithms for their 
implementational characteristics. We provide the review of these algorithms in Section 3.3. In 
Section 3.4, we analyze each algorithm for its computational and message complexity. Section 
3.5 includes comparative discussion on the core selection algorithms studied. The final section 
includes our concluding remarks. To the best of our knowledge, our study is unprecedented for 
its analysis and coverage of core-selection algorithms in literature to date.  
  
 
2. Multicast Routing Protocols  
 
In this section, we overview multicast routing protocols with emphasizing core-based 
architecture and the current state of these protocols. We distinguish a “multicast routing 
protocol” from “multicast routing algorithm” in that a multicast routing algorithm refers to 
merely the tree building algorithm, parallel to the terminology in the literature. A multicast 
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routing protocol, on the other hand, is the entire architecture that includes the multicast tree 
building algorithm as well as the maintenance of the tree structure in the dynamisms of the 
multicast environment, packet forwarding, failure discovery and recovery, and other features 
depending on the protocol specifics. The main architectural component of a multicast routing 
protocol is the development of the multicast tree not only because it is the structure that directly 
affects the performance of the protocol, but also is the most demanding one for the development 
and maintenance. Another major concern in multicast protocol design is the feasibility of the 
deployment  while maintaining high performance in the presence of cost of control overhead to 
operate and maintain the construct to support that performance. These two are often 
contradictory goals since a better approximation of the multicast tree for improved performance 
demands for larger amount of information as compared to that available on the nodes, which in 
turn results in more overhead to adjust and maintain the tree with respect to changes in the 
network conditions and group membership dynamics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. A classification of multicast routing protocols.  
 
 
 
In Figure 1, we present a classification of multicast routing protocols with respect to their path 
construction and maintenance characteristics. The figure to a great extent also indicates the time-
sequence of the emergence of the protocols with the exception of PIM/DM which is the dense-
mode component of PIM protocol suite appearing in literature along with CBT. Earlier protocols, 
namely DVMRP and MOSPF assumed source-based multicast trees, i.e., the multicast path is 
built as a tree rooted as the source of the multicast group. The research later on shifted to core-
based trees with the motivation of scalability in sparsely distributed multicast group in a wide 
domain. Recent trends in multicast protocols include multi-core multicast trees, which involve 
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more than one core in the multicast group for improved tree accessibility and performance. The 
assumed problem for tree construction in all multicast routing protocols in Figure 1 is SPT on 
delay metrics.  
 
 
2.1 Source-Based Protocols 
 
In this group of protocols, the multicast tree is rooted at the source of the group with an attempt 
to minimize delay between the source and each receiver. As we demonstrate in Figure 1, we 
further categorize source-based protocols with respect to the unicast scheme they are built on.  
 
Distance vector multicast routing protocol (DVMRP) [WPD88] is the earliest multicast routing 
protocol on Internet. It is an implementation of distance vector routing for multicasting and is an 
extension of RIP. DVMRP is a “broadcast-and-prune” protocol: it assumes “every router is a 
receiver unless it is pruned”. The multicast stream arriving at a node via the shortest path from 
its source is transmitted to every other link except the incoming link and those links to pruned 
nodes. It is the protocol one step further from broadcasting in earliest smaller Internet domains 
towards multicasting to designated nodes. DVMRP is easy to deploy and troubleshoot. Its 
simplicity has been its major strength in earlier Internet environments with small domain size. 
Protocol Independent Multicasting–Dense Mode (PIM-DM) [DEFJ94], source-based extension 
of PIM for dense mode has similar characteristics to DVMRP. 
 
Multicast extension for OSPF (MOSPF) [M94, M94b] is, as the name implies, an extension of 
the unicast link-state OSPF protocol for multicasting, and is the only link state multicast routing 
protocol described in the literature. Every MOSPF router keeps a map of the entire domain, and 
communicates recent changes on links to its immediate neighbors to every other router in the 
domain. Full availability of domain knowledge to every node makes available centralized 
processing for multicast path construction: every router uses Dijkstra’s [D59] shortest path 
algorithm to calculate the portion of the tree passing through it. With this, the identical process 
running on same domain and group information, with identical tie-breakers to provide 
consistency among the operating nodes in choices made in cases of equally good options 
throughout the execution of the algorithm generates the same results with local processing on all 
nodes.  
 
Note that MOSPF is the only suite that assumes a link state approach. In all distance-vector 
protocols building a multicast tree, path construction is initiated by the new receiver to join the 
group: the receiver sends a join-request message towards the core or the root of the tree along the 
shortest path from itself to it. The path the join request travels is remembered by the routers on it, 
and constitutes the portion of the tree connecting the new receiver to the tree. Thus, the multicast 
tree constructed by the multicast routing protocols operating in distance-vector platform are 
reverse-shortest rather than shortest path trees, and correspond to shortest path trees only when 
the network is symmetric. MOSPF stands out in this respect due to its centralized operation on 
the availability of full link-state information on all nodes. Every node under this protocol 
computes the SPT portion on which itself resides using the SPT algorithm with identical tie-
breakers as on every other node in the domain. MOSPF routers build and operate on a unique 
shortest path tree for a multicast stream.  
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Source-based protocols in general are mostly suitable for small-scale, local-area applications. In 
sparse mode, the scalability of source-based protocols tend to degrade in terms of network 
resource consumption. A major incentive in source-based architectures is the simplicity of the 
protocol as an extension of the underlying unicast platform. As we will be reviewing in the 
following section, Core-based protocols consider the tree root not necessarily as the multicast 
source for scalability issues.  
 
 
2.2 Single-Core Based Protocols  
 
The main incentive behind source-based SPT protocols is cost optimization during multicast 
forwarding. SPT allows minimum available delay for forwarding the data stream to destinations 
of the receiver group. However, this comes at the expense of overall bandwidth consumption 
during transmission and the cost of protocol operation and maintenance.  
 
Core-based trees separate the concept of source from that of the tree root. A shortest path 
multicast tree is still constructed, but this time rooted at the core. However, the core(s) may or 
may not be the source. A tree is formed still, rooted at a core this time. The choice of the core(s) 
can be made according to the topological location of the receiver group considering not only the 
delay in data forwarding, but also the bandwidth and protocol control overhead. In Figure 2, we 
present an extreme case when a core-based tree outperforms a source-based tree in terms of total 
bandwidth consumption, which is a significant advantage of the approach. The example includes 
a single source in the multicast group. The receivers are located close to one another in a 
topological neighborhood, and the source is far from their location. The dashed lines indicate a 
SPT rooted at the source minimizing the delay-distances to each receiver. The alternative is 
placing a core local to the receiver group and building the tree rooted at this core. The individual 
delays from the source to the receivers are not necessarily the shortest since each has to pass 
through the core. However, the data stream travels to the distant location of the receiver group 
only once, resulting in less bandwidth utilization. For the same reason, core-based tree in this 
case is easier to maintain than a source-based tree.  
 
There are two single-core based multicast routing protocols in the literature: Protocol 
Independent Multicasting (PIM) [DEF+96] and Core-Based Tree (CBT) [B97, B97b]. Both 
protocols build a single tree rooted at a node designated as the core. The core is advertised 
throughout the domain so that the new receivers to join the tree know whom to contact to initiate 
the process, and the sources to multicast the group know where to forward their stream for 
delivery. The multicast tree is constructed/updated as new members join the group.  
 
CBT allows the bidirectional use of the tree so that when the data stream addressed to the core 
hits the tree at another node on its way, then that node acts as the tree root and relays the stream 
to every one of its links on the tree. Similarly, an on-tree CBT node, receiving data packets 
addressed to the multicast group it is serving, relays the stream to every tree link except the 
incoming one. The bidirectional nature of CBT makes more efficient use of the multicast tree in 
terms of the network resources. (Note that bi-directional trees are effective to serve this purpose 
in symmetric network environments. In asymmetric networks where the link cost and delay 
values are not necessarily equal in both directions, minimal cost is not guaranteed.)  
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Figure 2. An example for core-based tree outperforming a source-based tree in case of a single 
source in the multicast group. The receiver group is located close to one another and far from the 
single source.  
 
 
PIM is less reliant on the underlying unicast routing protocol in its operation. It refers only to the 
unicast state database for node distances. All message transmission, including control messages 
and transmission of the stream from the source to the core of the tree is governed by the protocol 
itself. PIM also offers individual receivers the option to receive the stream directly from the 
sender itself if the receiver decides that direct path from the source is more favorable for the path 
is shorter and/or the data rate warrants direct transmission.  
 
Core-based trees are preferable to source-based trees in case of multiple sources in the multicast 
group. In this case, source-based schemes result in multiple shortest path trees with each having 
a source at the root, while a core-based scheme will have a single core based tree serving the 
entire members of the multicast group. The core-based approach then has the significant 
advantage of less control traffic of a single shared tree rather than multiple trees and, for the 
same reason, less state maintenance. Indeed a core-based tree can support a multicast session 
from more than one sender with only incremental increase in protocol overhead. Results in Wei 
and Estrin [WE94], and Calvert et al’s [CZD95] indicate that the advantages of core-based trees 
are eminent in sparse mode when the multicast group is distributed widely in a large portion of 
domain.  
 
 
2.3 Multi-Core Based Protocols 
 
A core on a multicast tree is a reference on the tree to the multicast tree for the non-member 
nodes. Since it is among on-tree nodes only the core(s) are advertised throughout the domain so 
that new receivers can join the tree and sources know where to forward the data stream for 
delivery. More cores would then mean more references to the tree and thus more efficient use of 
the tree. More reference points allow the selection of connection points to the tree according to 
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their proximity by the outsider routers, improving the resource consumption and traffic load. 
Multi-core tree schemes utilize this idea under distance-vector architecture. 
 
There are different multi-core based architectures in the literature. Ordered Core-Based Tree 
(OCBT) [Sh96, SG97] constructs a unique tree governed by multiple cores to spans the entire 
receiver group. The senders-to-Many scheme [ZFL02] partitions the receiver groups among the 
cores and builds exactly one tree per core rooted at that core.  Zappala et al [ZFL02] also propose 
Members-to-Many that supports multiple single-core based trees, each spanning the entire set of 
receivers. In Members-to-Many, all core-trees are equally available to all new receivers wanting 
to join and to sources for their choice of the core according to the distance in between.  
 
Ordered core-based tree (OCBT) [Sh96, SG97] constructs and maintains a unique tree consisting 
of multiple cores with one of them being the root. The main motivation behind OCBT is the 
development of a loop-free multi-core based tree by assigning level numbers to the cores and the 
nodes to join the tree to help maintain the tree structure. OCBT ensures a loop-free multicast tree 
structure even when the underlying unicast domain contains loops. Every on-tree node in OCBT 
has a unique level number. The tree is rooted at one of the cores. The level number of the root is 
the highest, and each child has a level number smaller than or equal to that of its parent. The 
level numbers of the parent and child are not necessarily consecutive. The core nodes do not 
change level numbers within the tree: a core node’s level number is assigned and fixed when it is 
selected as a core node. Other nodes are assigned level numbers when they join the tree and these 
numbers are released when they leave the tree. Lower level numbered nodes can move to higher 
levels, but higher level nodes cannot move down on the tree. The relative accuracy of level 
numbers is maintained throughout all tree operations. The OCBT tree can be of any depth.  
 
The alternative for a single tree in multi-core approach in the literature is multiple-trees each 
governed by one core. Zappala, Fabbri and Lo [ZFL02] propose Senders-to-Many, an 
architecture that maintains multiple trees with exactly one tree per core. The receivers are 
partitioned among the trees so that each receiver is exactly on one core tree at a time. Multicast 
senders forward their data streams to each core to deliver to the respective receiver partition. 
Zappala et al [ZFL02] also propose Members-to-Many, which consists of multiple core trees 
each spanning the entire receiver group with the idea that various senders in the multicast group 
utilize different trees with respect to the proximity of the source to the tree to balance the traffic 
load and improve performance. Members-to-Many corresponds to multiple single-core trees to 
serve the same multicast group. The distinct trees are maintained independently in multiple-tree 
architectures and the cores need not coordinate with one another for their operations unlike in 
OCBT. All multi-core schemes operate similarly to CBT in protocol specifics other than their 
tree structures and maintaining these structures.  
 
Multi-core trees extend the single-core approach to trees of higher access points (cores) to non-
group nodes, while maintaining the advantages of single-core based trees. As well, multi-core 
trees have better fault tolerance in case of a core failure compared to single-core trees. Note that 
the core is the single point of failure in a single-core based tree. A back-up core list is maintained 
within the bootstrap mechanism [EH+97] in both CBT and PIM. Still, the core replacement 
mechanisms in single-core based protocols incur high delays, as the multicast tree must be 
rebuilt around a new core. Since different senders are likely to multicast via different cores, it is 
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less likely that the entire traffic will be concentrated around one particular core in the multi-core 
approach. In single-core trees, traffic concentration is high around the core especially in case of 
multiple senders in the group. In multi-core architectures, the traffic concentration decreases as 
the number of cores increase especially when the cores are randomly distributed, since the traffic 
is spread around the domain on different cores. [CZD95, ZFL02]  
 
Zappala, Fabbri and Lo’s results [ZFL02] indicate that multi-core trees with effective sub-
optimal core placement mechanisms result in less delay than single-core based trees with 
optimum placement of the unique  core, since the multi-core case allows trees which are likely to 
be distributed adequately to be closer to a group of sender(s) than a single core. Similarly, multi-
core trees incur less total cost of delivering the multicast stream in terms of bandwidth utilization 
than a single core tree since a new node to join the tree is likely to locate a core among the 
alternatives, which is potentially closer to it than the only core alternative which is the tree root 
in the single-core based tree. 
 
 
3. Core Selection Algorithms   
 
Core selection is the problem of selecting the placement of a core or cores in the domain for the 
purpose of improving the performance of the tree(s) constructed around these core(s) and thereby 
the performance of the multicast routing protocol according to the predetermined metrics. In this 
section, we analyze core selection algorithms in the literature and classify them with respect to 
certain characteristics based on their deployment. In the following subsection, we provide 
notations and definitions In Section 3.2, we present our classification scheme. We review the 
core selection algorithms in Section 3.3. Following this review, in Section 3.4, we analyze 
computational and message complexity of each algorithm. Section 3.5 includes further 
discussion on core selection methods. 
 
 
3.1 Preliminaries 
 
Before we proceed, we review in this section the terminology and preliminary research related to 
core selection. Wall’s study [W80] on single core selection problem for broadcasting is 
precedent in this line of research in the literature. The terminology we introduce is parallel to his, 
and adequately covers the generic terminology we use throughout our review since Wall’s study 
in context of broadcasting outlined this line of research, and is the foundation of early 
contributions to core selection for multicasting.  
 
We denote minimum delay distance of any given node pairs u, v in the domain by d(u,v). For a 
shortest path tree Tc rooted at node c, D(s,Tc) denotes the maximum of all distances between s 
and the group members along the tree Tc. According to this definition, D(s,Tc) = D(c,Tc) + d(s,c) 
where D(c,Tc) is the maximum delay of the tree Tc. Similarly, the average delay of the tree, 
A(s,Ts) is the average of all delays between the source and the receivers. A(s,Tc) in turn is the 
average of all delays between the source s and each receiver in the group throughout the tree Tc 
via the tree root c. Diameter of a tree is the longest path on the tree between any two nodes. D-
centered and A-Centered trees respectively represent the trees of which D(s,Ts) and A(s,Ts) are 
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minimum among all such possible trees. A diameter-centered tree is the tree with the smallest 
possible diameter. MaxD, MaxA, AveD, AveA respectively denote the maximum delay, maximum 
of average delays, average delay and average of average delays, which are obtained by 
considering each node separately as source for its respective shortest path tree, and taking the 
maximum or the average values across these results. The computations of MaxA [W80] and 
AveA [JLK78] are NP-complete while the other values can be computed in polynomial time.  
 
Wall’s [W80] findings are theoretical on the delay bounds of the trees rooted at the selected 
cores compared to the optimal shortest path trees. His results apply for multicasting with certain 
restrictions. The selection criteria he studied, applying directly to the problem, is adapted for 
latter solutions in multicasting environment. He considers delay as the single metric in various 
measures for core placement for the development of a shortest path tree to broadcast to all nodes 
in the domain. His findings are delay bounds on maximum, average and diameter-centered trees 
compared to the optimum shortest path tree.  
 
Wall [W80] suggested D-center, A-center and diameter-centered trees for core node selection 
based on the use of local/minimal information and computational complexity of the mechanism. 
Maximum and average delays can be computed by using the local unicast routing information on 
each router to result in D-centered and A-centered core selection in the domain. The computation 
of a diameter-centered tree is somewhat more complex, as the diameter of a tree does not always 
pass through the root. However, Wall presents a polynomial-time algorithm that runs on the tree 
root using the unicast routing information to return the diameter value if the diameter is within 
certain topological proximity to the root [W80].  
 
 

 
 

D(s,Tc) ≤ 2D(s,Ts) when Tc is diameter-centered or D-centered  
D(s,Tc) ≤ 3D(s,Ts) when Tc is any other SPT. 
A(s,Tc) ≤ 3A(s,Ts) when Tc is A-centered. 
 
MaxD(Tc) ≤ 2MaxD(Ts) when Tc is any SPT. 
MaxA(Tc) ≤ 3MaxA(Ts) when Tc is any SPT. 
AveD(Tc) ≤ 2AveD(Ts) when Tc is diameter-centered or D-centered. 
AveD(Tc) ≤ 3AveD(Ts) when Tc is any other SPT. 
AveA(Tc) ≤ 2AveA(Ts) when Tc is A-centered. 

 
Table 1. Delay bounds on D-centered, A-centered and diameter-centered trees compared to 
the optimal SPT. The bounds are tight. The missing bounds indicate that the measure can be 
arbitrarily bad compared to the optimum value.  
 

 
Let Tc be the SPT rooted at node c for a host group. Let s be any sender node and Ts be the SPT 
rooted at s for the same group. We present in Table 1 Wall’s findings on delay bounds. 
According to the first of these, for example, the maximum delay between the source and a 
receiver can be as high as twice the maximum delay of the source-rooted tree when the source is 



 10

multicasting via a core-based tree of which the core is selected to yield a diameter-centered or D-
centered tree.  
 
However, Wall’s [W80] findings are for broadcast environments and their applicability for 
multicasting are limited with the necessity of considering the sources and all candidate cores as 
on-tree alongside the host group members in the calculations for core selection. With this in 
mind, Wall’s findings suggest that although A-centered trees may have higher upper-bounds on 
certain measures, they are more consistent to the average performance than the other types of 
trees.  

 
 
3.2 Classification of Core Selection Algorithms  
 
Before proceeding with the review of core-selection schemes, we present a classification for their 
deployment and structural and operational characteristics (Figure 3).We mainly distinguish core 
selection algorithms as single-core versus multi-core for this is the dominant determinant of the 
complexity of the scheme. Parallel to the emergence of single-core based shared trees before 
multi-core based architectures, research on single-core selection precede multi-core selection in 
literature.  
 
 

Algorithm M C A D Metrics 
maxDist [TR97]   + + hop-count 
aveDist [TR97]   + + hop-count 
Diam [TR97]   + + hop-count 

estCost [TR97]   + + hop-count 
Topology-based [CZD95]   + + hop-count 

Group-based/Center [CZD95]   + + hop-count 
Group-based/WA [CZD95]   + + delay & cost 

Tournament [SBK94]    + Cost 
MinMaxD [Sa96]  +  + Delay 
INITIAL [Sa96]  +  + Delay 

n-dominating set [ZFL02] +  +  hop-count 
k-center [ZFL02] +  +  hop-count 
GREEDY [Sa96] + +   Delay 
NAÏVE [Sa96] + +  + Delay 

NAÏVE/MinMaxD [Sa96] + +  + Delay 
NAÏVE/AVGD [Sa96] + +  + Delay 

optTree [KH03] + +   hop-count & delay 
Table 2. A classification of core selection algorithms. M: multi-core (vs. single-core), C: 
constrained (vs. unconstrained), A: asymmetric (vs. symmetric), D: distributed (vs. centralized). 
MinMaxD and INITIAL [Sa96] have additional assumption that all members in the multicast 
group are both sources and receivers. 
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The underlying platform assumed in all core selection algorithms is the distance-vector routing 
environment in which restricted domain information, namely the distances from the router itself 
to each other domain router are available to a particular router. In our context, we assume the 
availability of this information in every metric. According to this, the state information of a 
given router includes the shortest delay, cost and hop-count distances from itself separately to 
every other domain router along with the outgoing links to lead to the shortest-distance path.   
 
The extent of the use of local information on domain nodes for the operation of the algorithm 
determines whether the algorithm is centralized or distributed. A distributed algorithm is one that 
operates on multiple nodes using the local information on each node. The solution is obtained as 
the nodes are traversed, or as the performance results obtained locally from each candidate are 
gathered at one node by message transmission. In a centralized algorithm, the entire processing 
is carried at one node, and the information required for the process is forwarded to it. We classify 
an algorithm as centralized if its deployment to operate on one router is more feasible than its 
distributed implementation, distributed otherwise. Once again, the assumed state information 
available to all routers in the domain is the distance-vector environment—the distances in each 
metric from the node that the state table resides on to every other router. As we analyze the 
algorithms for their computational structure in Section 3.4, we further distinguish a group of 
distributed algorithms for their operational characteristics as “Compute-and-Report” Class-CR 
algorithms.  
 
We denote a core-selection algorithm as constrained if the algorithm considers a given delay-
bound for the group during the selection process, and the resulting core set is such that there 
exists a path between each source-receiver pair in the group which passes through at least one 
core without violating the delay-bound. 
 
An asymmetric network is one in which the link costs in all metrics are not necessarily equal in 
both directions. It is clear that the algorithmic complexity reduces when the network is 
symmetric especially in distributed processing. This is because in the assumed distance-vector 
setting, the information available to each node represents the distance information not only from 
the node itself to every other node in the domain, but also the distances to it. Asymmetric 
algorithms, however, operating on a directed network, have wider applicability.  
 
As we see in Table 2, the set of single-core algorithms overlap with the set of distributed 
algorithms for the simplicity of their computations in one process operating. The constrained 
algorithms studied so far are restricted to symmetric networks for considerable increase in the 
effectiveness of these algorithms upon this restriction at the cost of their applicability also in 
asymmetric networks.  
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Figure 3. Classification of core selection algorithms. Class-CR’ denotes those distributed 
algorithms which are not in Class-CR.  
 

Core Selection 
Algorithms 

Single-core 
(Distributed)  

Class-CR 

Constrained 
(Symmetric) 

Unconstrained 

Class-CR’
Class-CR 

(Asymmetric) 
Class-CR’ 

(Symmetric) 

• MinMaxD • maxDist 
• aveDist 
• Diam 
• estCost 
• Topology-based 
• Group-based/Center 
• Group-based/WA 

• INITIAL • Tournament 

Multi-core  

Constrained 
(Symmetric) 

Unconstrained 
(Asymmetric, Centralized)

• GREEDY 
• optTree 

• n-dominating set 
• k-center Centralized 

Distributed 
(Class-CR) 

• NAÏVE 
• NAÏVE/MinMaxD
• NAÏVE/AVGD 



 13

3.3 Review of Core Selection Algorithms  
 
In this section, we review the core selection schemes according to the selection criterion they 
apply and their performance. Our analysis in Section 3.4 completes the characterization of these 
algorithms for their computational properties.  
 
 
3.3.1 Single-Core Selection Algorithms  
 
As previously stated, earlier protocols applied a single-core scheme for the ease of construction 
and maintenance of a loop-free multicast path. The relative simplicity of the selection of a single 
core to serve the entire multicast group allows feasible deployment of these algorithms on local 
information and moderate message exchange among the participant nodes.   
 
 
3.3.1.1 Single-Core Selection Algorithms / Unconstrained 
 
Thaler and Ravishankar [TR97] adapt Wall’s [W80] broadcast single core selection criteria to 
multicasting to a subset of nodes in the domain. An additional selection criterion, estimated cost, 
is also introduced. The estimated cost is the average of minimum and maximum possible tree 
costs computed. The applicability of the results is restricted to the case where all the link costs in 
the network are assumed to be equal. However, the core selection algorithms in [TR97] apply for 
asymmetric networks for they rely on local information on the nodes during the selection 
process. The criteria considered are: 
 
1.) maxDist: maximum distance from the core to any multicast group member. Corresponds to 

D-centered trees described by Wall [W80] for broadcasting environment.  
2.) aveDist: average distance from the core to all multicast group members. Corresponds to 

Wall’s A-centered trees. 
3.) Diam: diameter of the tree rooted at the core defined as the sum of the distances of the two 

farthest away members in the group from the core. Note that this definition does not describe 
the exact diameter of the tree rooted at the core minimizing this measure since the diameter 
of a shortest path tree does not necessarily pass through the root [W80]. 

4.) estCost: the average of the minimum possible and maximum possible cost of the tree rooted 
at the candidate node being tested. The minimum cost is estimated to be the sum of the 
maximum destination cost and the number of duplicate distance nodes in the multicast group, 
on the assumption that the minimum cost tree is of a chain structure, with the exception of 
the group members that are of equal distance to the core with one another, adding minimum 
of one more link each to the tree. The other extreme, tree of highest cost, is of star structure 
with all multicast group members directly connected to the core. The exception arises when 
the degree of core is less than the number of multicast group members, in which case 
multiple group members share the links outgoing from core.   The minimum estimated cost, 
estCostmin, and the maximum estimated cost, estCostmax, are given by: 

 
estCostmin= Su∈max d(c,u)+( number of duplicate distance nodes in S ) 
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estCost= (estCostmin + estCostmin )/2 
 

where c is the candidate core, and S is the multicast group being considered for evaluation.  
 
Results indicate that estCost and aveDist return the best results in terms of the tree cost measured 
as total number of links on the tree. estCost, although not a close approximation of the tree cost, 
returns trees with lowest costs as the only measure testing directly this metric. For maximum 
source-to-destination delay, maximum delay and maximum diameter performed higher. Note 
here that, maximum source-to-destination delay is the maximum of minimum possible delays 
between any two source and destination pair where maximum distance is the delay distance 
between the root and an on-tree node. As expected, Maximum diameter, minimizing the distance 
between any two nodes on the tree, approximat the tree more accurately for the maximum 
source-to-destination delay.  
 
Calvert, Zegura and Donahoo [CZD95] propose the use of topological center of the domain and 
the subgraph induced by the multicast group for placement of a single core to serve the group 
without the consideration of a delay constraint. The core selection methods are tested across 
different application scenarios. In each of these scenarios, the multicast group is distributed 
widely throughout the network. The following core choice techniques are tested: 
 
1.) Topology-based: This group includes the core choice methods with respect to the proximity 
of the core to the topological center of the network. Let a Tol-t node be a node at which the 
distance is no more than t hops away from the topological center of the domain, where a Tol-0 
node is at the center of the domain. Results indicate that the placement of the core close to 
domain center improves both delay and total bandwidth consumption compared to average-core 
choice case, which is obtained by taking each node in the domain as the core, testing the 
performance of the tree for each case and taking the average of all performances. Performance of 
topology-based core selection demonstrated steady improvement in delay and very small 
improvement in bandwidth consumption as the tolerance (Tol value) is reduced.  
 
2.) Group-based: This includes the following schemes for core selection among the receivers:  

a.) Center: according to the proximity to the topological center of the receivers 
group, 

b.) WA: weighted average of bandwidth and delay.  
Results indicated that group-based core placement is effective only when the multicast group is 
localized in a topological area, and the performance can be reduced compared to the topology-
based core choice if the participants are widely distributed. 
 
Calvert et al [CZD95] provide the performance measurement for multicast data stream flow 
excluding the core selection and tree construction overhead. Thus their study excludes the 
specifics of the implementation of the process. A node is a center of a graph if its maximum hop-
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distance to any other node in the graph is minimum possible across all nodes in the graph. 
Consider the function D’(u,Tv), a modification of the function D(u,Tv) to operate on hop-distance 
rather than delay-distance between the domain nodes in case of broadcasting. Then, a node u is a 
graph center if D’(u,Tu) = Vv∈min D’(v,Tv) where V is the set of all nodes in the domain —
corresponding to the optimal core to lead to a D-centered tree with unit link weights in 
broadcasting to entire domain. Considering the hop-distance to the domain nodes are available to 
a node itself, topological center of the graph can be computed in a distributed manner by local 
computation of D(u,Tu) for each node and comparison of the accumulated results of this 
computation for the minimum value to yield the center. Following a similar argument, the core 
choice schemes proposed by Calvert et al [CZD95] suggest distributed deployment for the 
efficiency of the implementation. The computations in all cases are based on local information 
available on each node, namely the distance (according to various metrics) of the node itself to 
the other domain nodes. Note that the schemes proposed in [CZD95] are applicable on 
asymmetric networks.  
 
Shukla et al [SBK94] propose Tournament, a core selection algorithm based on the single metric 
which is the cost distance of the multicast group members to one another in a symmetric 
network. The selection process is a tournament at each of which phase a candidate core selected 
with respect to the locations of two candidates of the previous phase is a participant in the next 
level of tournament.  
 
Initially, the multicast group members are paired so that a sender is matched with a receiver 
before the remaining members are matched. During the initial matching, the distance of the 
nodes to one another is considered so that the nodes farthest apart are paired first, and the process 
is repeated until all nodes are paired. At each step, nodes that are not matched due to an odd 
number of candidates are elected for the next level. The matching process is coordinated by one 
of the nodes in the domain designated as the “scheduler”. The distance between the node pairs is 
compared by one of the nodes leading the pair, and the node closest to the midpoint of the 
shortest path between the two nodes is selected for the next level. The process terminates when a 
single core remains at the end of the tournament. At each phase, the “winners” of pairs are 
reported to the scheduler node where they are paired for the next phase. Tournament is a 
distributed algorithm, processing at the scheduler for the matching process and at the node pairs 
for the election between the pairs. Shukla et al [SBK94] propose the distance information 
between the winners of the second and subsequent phases be ignored during the matching 
process for the knowledge of entire winners is not available to a winner at these phases and the 
distance to each other winner can not be communicated to the scheduler. The communication of 
the winner set to each member in this set, and the transmission of relative distances information 
between winner pairs back to the scheduler under the coordination of scheduler, however, can be 
considered to improve performance of the algorithm at the cost of increased message 
transmission still keeping the operation distributed.  
 
The algorithm is likely to locate a core well-centered to the member set for operating on 
“midpoints” between distant pairs rather than considering equally the cost distances of all 
members throughout the entire process. [SBK94]’s studies comparing the performance of the 
tree rooted at the core selected by the algorithm indicate improvement in the tree cost in case of 
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single and multiple sources in the group, with the difference in this cost gain diminishing as the 
number of sources increase and the network is highly connected.  
 
 
3.3.1.2 Single-Core Selection Algorithms / Constrained 
 
Salama [Sa96] studied two single-core selection algorithms for delay-constrained shared trees in 
symmetric networks. Salama’s solutions are restricted to the case in which all receivers are also 
sources. A typical example of this case is a video-conference application, where all participants 
can communicate with every other member in the group both ways. Salama tested the following 
delay-constrained single-core selection methods:  
 
1.) MinMaxD: the node that has minimum of maximum delay distance to any multicast group 

member. This corresponds to the delay-constrained extension of MaxDist proposed in 
[TR97]. 

2.) INITIAL: A random multicast group member is selected to initiate the core selection process. 
The selected member locates the most distant group member from itself, and constructs a 
delay-constrained path in between. The node closest to the center of this path is selected to be 
the core. INITIAL applies the main intuition behind the Tournament selection algorithm 
[SBK94] to a lesser extend, considering the delay constraint between only two distant 
members of the multicast group. INITIAL, however, does not guarantee success to locate a 
core that would result in a tree spanning all multicast group members within the delay 
bounds, even if such a core existed. 
  

 
The delay bound to be fed as input to the delay-constrained tree construction algorithm varies 
depending on which method is used for the selection of the core. Note that with Salama’s 
assumption that all multicast group members are both sources and receivers, the delay-
constrained tree construction problem transforms to the construction of a “diameter-constrained” 
tree, in which the longest on-tree path passing through the core is within the given bound. With 
this, Salama suggests that the delay bound, ∆’, used for MinMaxD is at most as great as ∆/2 
where ∆ is the actual delay bound for the group to ensure that an on-tree path crossing the core 
between a source-destination pair does not exceed the actual constraint. For INITIAL, the on-tree 
delay constraint value to be considered, however, differs in that the delay from the core to one of 
the two members on the initially constructed path can exceed half the value of actual value. The 
on-tree delay constraint value for this latter case, therefore, is computed as ∆’=min(∆/2, ∆-
max(d1,d2)) where d1 and d2 are the delays on paths between the core and the initial multicast 
group members joining the tree to select the core.  
 
Both selection criteria are based on a single metric — delay. Cost of the trees in both cases 
improved closer to the cost of the optimal tree as the number of group members increased, 
verifying the fact that the cost-performance of the tree is higher in dense mode. INITIAL 
outperformed MinMaxD in terms of cost especially when the delay bound is tighter. Note that, 
this result is biased by the fact that the tree cost increase is based on successfully generated trees 
satisfying the delay bounds by the use of a polynomial-time tree construction algorithm, which 
lacks well-approximation of cost minimization. Performance results indicate that the difference 
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in costs of the trees generated in MinMaxD and INITIAL remained within 15% of the cost of the 
optimal tree, with this difference diminishing as the number of group members increase. 
 
 
3.3.2 Multi-Core Selection Algorithms  
 
Multi-core algorithms have the common property that their feasibility is eminent in centralized 
implementations using extensive domain knowledge compared to the local state information on 
distance-vector protocol routers.  
 
3.3.2.1 Multi-Core Selection Algorithms / Unconstrained 
 
Zappala, Fabbri and Lo [ZFL02] tested two multi-core selection algorithms against average core 
choice in Senders-to-Many and Members-to-Many protocol settings: 
 
1.) n-dominating set: locates a minimal dominating set as the set of cores, which is a subset of 

nodes in the domain so that all nodes in the multicast group are within n-hops of this set for a 
given n.  

2.) k-center: places a given number of k cores in the domain so that the hop-distance from all 
nodes in the multicast group to the cores is minimum.  
 

Note that neither the dominating set nor k-center algorithms has polynomial-time solutions 
[GJ00]. Zappala et al [ZFL02] also use the greedy dominating set algorithm with modifications 
for k-center heuristics. A node r is said to be dominated by a core c if n is within at most n-hops 
distance of c. We denote by domination set of a given node v the set of nodes that are dominated 
by v. Dominating set, on the other hand, refers to a set of nodes so that the set of receivers is a 
subset of the union of domination sets of the members of the dominating set. The algorithm 
iterates to select the node in domain that currently dominates the maximum number of un-
dominated members until all the group members are dominated. The dominating set heuristics is 
further parameterized with a constant k to specify the exact number of cores to be selected for a 
solution to k-center problem.  It should be noted that Zappala et al [ZFL02] were not specific on 
the algorithmic details of k-center heuristics. 
 
Zappala, Fabbri and Lo [ZFL02] tested each of these algorithms comparing their performance to 
random core selection. Both k-center and dominating set algorithms demonstrated modest 
improvement in delay compared to random core selection. k-center core placement with multiple 
cores resulted in lower delays than single-core tree with optimal core placement as the value of k 
increased. Zappala et al’s results suggest that polynomial-time heuristics for dominating set, and 
especially k-center core placement contribute to the efficiency of multi-core protocols.   
 
Both k-center and dominating set algorithms refer to hop-count as the single metric for core 
selection. We assume, due to the complexity of especially the k-center algorithm for potential 
heuristics, that both algorithms are implemented as centralized, since the transmission of relevant 
domain information to the operating node in centralized deployment is likely to match for the 
advantages of the distributed implementation which involves excessive message exchange 
among the participant nodes for the same level of approximation of the optimum result as a 
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centralized algorithm provides. Hop-count is an asymmetric metric for it describes equal link 
weights in both directions by definition, and hence k-center and n-dominating set algorithms 
operating on hop-count classify as asymmetric.  
 
 
3.3.2.2 Multi-Core Selection Algorithms / Constrained 
 
Salama [Sa96] also studied the problem of multiple core selection for Zappala, Fabbri and Lo’s 
[ZFL02] Senders-to-Many architecture for delay-constrained environment. Observe that, for 
delay-constrained case, the additional motivation for multi-core as opposed to single-core 
scheme is that multiple cores extend the potential solutions to delay-bound paths between 
source-receiver pairs passing through a core where a single core could fail to serve the entire 
group in this manner without violating the delay constraint. Salama’s multi-core selection 
algorithms assume a symmetric network:   
 
1.) GREEDY: This algorithm uses a variation of the solution for the dominating set problem in 
which the domination criterion is the delay bound rather than the hop-count. Note that the 
problem remains NP-complete in the modified version [Sa96]. GREEDY assumes as input, for 
each node in the domain, the set of receiver nodes that the node is dominating for the delay 
bound for all sources in the group. The algorithm merely iterates to select the node that 
dominates the maximum number of un-dominated receivers as the next core until all receivers 
are dominated. GREEDY operates on full domain information and is centralized. 
 
2.) NAÏVE: NAÏVE applies iterative selection of the core set as the tree is constructed. Initially 
the selected core set is empty. When a new receiver attempts to join the multicast path, the 
algorithm checks iteratively the members of the core set to see whether there already exists a 
core so that the paths from each source to the new receiver via the core is within the delay bound. 
If the search fails, then the candidate core set is searched for a core to lead to a feasible solution. 
Salama suggests as the candidate core set either the set of receivers, or an ordered list of a set of 
nodes with respect to the maximum (NAÏVE-MinMaxD), or average (NAÏVE-AVGD) delay of the 
candidate to the multicast group members. When the receiver set constitutes the candidate cores, 
the next core to be selected is always the new receiver to join itself in case of inexistence of a 
feasible core among the selected ones. In all versions, NAÏVE processes for at most as many 
cores as the number of sources in the group be selected, and terminates without providing a 
solution with the idea that source-based trees would be more feasible when the number of cores 
and hence number of distinct trees exceed the number of source-based trees. NAÏVE and its 
variations operate on the minimum delay distances between source-candidate core and receiver-
candidate core pairs which is maintained in the routing state database of these nodes. Thus, 
NAÏVE can be implemented for distributed processing alternatively with the transmission of the 
delay-routing state information of the group nodes and candidate cores to a coordinator node in 
the domain to execute the algorithm, or with the transmission of group information to the 
candidate cores where each candidate evaluates itself against the group members and returns its 
result back to the coordinator for comparison with the other candidates. We will be comparing 
commenting these two implementations in Section 3.4 during our complexity analysis.  
 
Both GREEDY and NAÏVE return a feasible solution whenever such a solution exists, provided 
that the candidate core set in NAÏVE does not exclude some subset that can actually  lead to a 
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feasible solution. Both algorithms lack the consideration of the cost within the core selection 
criterion. In terms of the number of cores generated, GREEDY, considering the delay-domination 
of the group members directly throughout the algorithm, performed very close to the optimal 
solution. NAÏVE-MinMaxD and NAÏVE-AVGD underperformed GREEDY, generating similar 
results still close to optimal.  
 
Karaman and Hassanein [KH03] extend GREEDY to consider an “optimization criterion” in 
addition to the “domination criterion”, which still is the given delay-bound between any source-
destination pair in the group. The algorithm, which we call optTree, generates a set of cores each 
associated with a domination set — the receiver partition including those receivers dominated by 
that core for all sources in the group. The assumed design problem for optTree is the delay-
constrained minimization of total number of links on the resulting set of paths for the multicast 
group for optimization of tree structure on total link count. During its iteration to extend the 
selected core set until all receivers are dominated, optTree updates the existing domination sets 
according to the optimization criterion to better approximate the optimum set of multicast paths 
to be constructed. According to this, each receiver dominated by the new core and in the 
domination set of the already selected core is assigned to the domination set of that core ranking 
higher with respect to the optimization criterion. The following are considered for optimization 
criteria: 
 
1.) Node-count: highest number of nodes that the node is dominating 
2.) Delay-residue: highest average delay-residue from the core to the receivers in its domination 

set which are not yet dominated by a selected core  
3.) aveHop: highest average hop-count from the core to the receivers in its domination set which 

are not yet dominated by a selected core  
4.) Degree: highest node degree  

 
 
The number of nodes that are not currently dominated by any of the selected cores and 
dominated by the candidate core, namely item (1) above is the criterion used by Salama, and 
optTree/Node-count turns into the greedy algorithm in [Sa96] when it is used as the entire 
criterion. Criteria (2) and (4) directly consider the continuous changes in the tree structure due to 
membership dynamics, with (2) leaving more residue for the delay-bound for potential 
extensions of the existing paths for new members, and (4) selecting the node of higher degree. 
We consider these two as additional criteria. The farther the link-distance to the members 
dominated, the more the paths connecting the core to multiple members are combined on the 
tree. On the other hand, a core local to a set of receivers is likely to lead to a core-tree of a 
simpler structure possibly at the cost of extending the corresponding path(s) on the source 
tree(s). Item (3) is open to be tested for the performance. optTree is proposed for multi-point 
communication groups with multiple sources under dynamic group memberships.  
 
 
3.4 Complexity Analysis 
 
In this section, we analyze the computational and message complexity of the selection criteria at 
each node. We consider as the core selection process the sequence of events that begins after the 
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triggering of participant nodes to mark the beginning of the process, and ends with the set of 
core(s) selected among the candidates. We exclude from this cycle the announcement of the 
selected core(s) to the domain. As we proceed in this section, we will be observing that for some 
of the algorithms, the candidate core set—the pool of nodes among which the core-choice is to 
be made—can be restricted externally to the selection algorithm without affecting the modular 
operation of the algorithm. In such cases, we assume as input to the core selection process the set 
of candidate cores, and exclude the process of restricting this set from core selection. For 
distributed algorithms, we generically name the node designated for the gathering of local results 
from the participant nodes, and processing on this compiled information, where necessary as the 
coordinator node. In the case of Tournament it is the “scheduler” [SBK94]. In the centralized 
case, we use the term “coordinator” to represent the only processing node in the domain. We 
assume that the coordinator node is already selected and known in the domain.  
 
 

Algorithm Local Local-nodes Coordinator Message
maxDist [TR97] (*) O(|M|) C; [|C|] O(|C|) O(|C|) 
aveDist [TR97] (*) O(|M|) C; [|C|] O(|C|) O(|C|) 
Diam [TR97] (*) O(|M|) C; [|C|] O(|C|) O(|C|) 

estCost [TR97] (*) O(|M|) C; [|C|] O(|C|) O(|C|) 
Topology-based [CZD95] (*) O(|V|) V; [|V|] O(|V|) O(|V|) 

Group-based/Center [CZD95] (*) O(|M|) M; [|M|] O(|M|) O(|M|) 
Group-based/WA [CZD95] (*) O(|M|) M; [|M|] O(|M|) O(|M|) 

Tournament [SBK94] O(|V|) V; [|M|-1] O(|M|2) O(|V||M|)
MinMaxD [Sa96] (*) O(|M|) C; [|C|] O(|C|) O(|C|) 

INITIAL [Sa96] O(|V|) M; [1] O(1) O(|V|) 
n-dominating set [ZFL02] - - O(|M|2|C|) - 

k-center [ZFL02] - - O(|M|2|C|hdiam) - 
GREEDY [Sa96] - - O(|M|2|C|) - 
NAÏVE [Sa96] O(|M2|) M; [|M|2] O(|M|2) O(|M|2) 

NAÏVE/MinMaxD [Sa96] O(|M|2) C; [|M||C|] O(|M||C|) O(|M||C|)
NAÏVE/AVGD [Sa96] O(|M|2) C; [|M||C|] O(|M||C|) O(|M||C|)

optTree [KH03] - - O(|M|3|C|) - 
Table 3. Computational and message exchange complexity of core selection algorithms. M, C 
and V denote respectively the sets of multicast group members, candidate cores and the entire 
nodes in the domain. hdiam is the maximum hop-distance between any two domain nodes. Class-
CR algorithms are indicated with an asterix.  
 
 
Table 3 summarizes our complexity analysis of the algorithms in Section 3.3. The entry of 
column “Coordinator” is the computational complexity of the process operating on the 
coordinator node. For distributed algorithms, we also analyze the proportional growth of 
message exchange throughout the entire algorithm and present our results in respective columns 
of the table. “Local” indicates the computational complexity of the distributed algorithm 
processing locally at each node, and “Local-nodes” specify the minimal set of nodes which is a 
superset of the set of domain routers that operate on local information. We also provide in 
“Local-nodes” in square-brackets the total number of times the local process executes throughout 
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the entire algorithm. Note that, in the centralized case, only the “Coordinator” column of the 
table applies and the rest of the row entries are nil. The assumed state information available on a 
given router in all cases consists of the distance information from the router itself to every other 
router in domain in each relevant metric. For centralized algorithms, we further comment in 
Section 3.4.1 on the amount of message transmission to communicate the required information to 
the coordinator under the availability of restricted domain knowledge as assumed.  
 
We note that a number of a distributed core selection algorithms have similar computational 
characteristics to locally compute to evaluate the candidate cores and report the results to 
coordinator for comparison. We group these in a class and denote it as the class of “Compute-
and-Report”, Class-CR. In Class-CR algorithms, each candidate node measures itself for the 
selection criterion based on the local information and reports the result to the coordinator. The 
coordinator compiles the node results from the candidate cores and compares them to select the 
best scoring node as the core. All selection algorithms proposed by Thaler and Ravishankar 
[TR97] and Calvert et al [CZD95], and MinMaxD single core selection algorithm [Sa96] are in 
this class. Message exchange involves the transmission of the group members information from 
the coordinator to the candidate cores, and the node-results back to the coordinator with the 
exception of Topology-based core choice [CZD95] in which each node testing itself against the 
values for all domain nodes, the communication of group information to the candidate cores is 
eliminated. Therefore O(|C|) messages are transmitted for the selection of a particular core in 
Class-CR algorithms, where C is the candidate core set. Selection of the best core among the 
candidates on the coordinator node is done by iterating over individual node values with 
constant-time computation at each iteration, and requires linear time in the size of candidate core 
set provided that the node results are transmitted to coordinator within a given time-out period. 
The time-complexity of computation on coordinator is the same as the bound on number of 
message exchange for all Class-CR schemes.  
 
Local computations of Class-CR algorithms iterate for each node in the multicast group to 
calculate the node measure on the selection criteria which, in each case, requires to look up the 
local state table followed by the calculation and comparison with current optimum in constant 
time. Thus, local computations in Class-CR algorithms take O(|M|) time where M is the set of 
multicast group members. Specifically, observe that MinMaxD, selecting the among the 
candidates according to the same criterion as MaxDist unless no node among the candidates 
satisfying the delay constraint exists is computationally same as MinMax with the resulting core 
additionally tested for in constant time to satisfy the delay bound. Similarly, Topology-based 
core choice operates the same algorithm as MaxDist with the difference that the “multicast 
group” this time is the entire set of domain nodes, and the link weights are unit for hop-count 
metric.  For Group-based/center choice of a core, a similar process takes place, but this time on 
the modified graph of which the nodes are the receivers and weight of each link connecting a 
pair of receivers is the total hop-count of the minimum hop-distance path connecting the same 
two receivers in the original graph. Note that Topology-based core choice, operating solely on 
the domain topology stands out among all others in that it requires only static processing 
irrespective of the varying multicast groups active in the domain. 
 
If we consider NAÏVE operating in a relatively static network environment where routing state 
updates are unlikely during the multicast session, one-time transmission of multicast group and 
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candidate core delay-routing state tables to the coordinator and maintenance of this information 
at the coordinator allows local operation for the selection of core set. However, considering the 
dynamisms of network environment, we assume the core selection algorithm executing on up-to-
date network state information for the selection of each core. According to this, we assume the 
distributed design of the algorithm so that, when a new group member request to join, the 
coordinator transmits the identification of this node to the candidate cores. Each candidate 
operates on its routing state database to test itself for the evaluation criterion depending on the 
NAÏVE version, and returns its result back to the coordinator. Thus, at each iteration of NAÏVE 
for the selection of another core, the algorithm operates as a Class-CR algorithm. The message 
transmission involves, as in other Class-CR algorithms, the transmission of group information to 
the candidates and the node results back to the coordinator and hence is bounded by O(|C|). For 
the selection of a single core, the algorithm operates in O(|C|) time at the coordinator for message 
transmission and comparison of node results. During a local execution, each candidate core 
processes on its distances to the group members and thus the complexity of computation during a 
core selection is O(|M|). NAÏVE iterates this cycle at most as many times as the number of group 
members. Therefore, the message complexity, and the complexity of local computations at the 
coordinator and the candidate nodes are multiplied by |M|. The local processes execute at most as 
many times as |C||M| where the operating local-node set is M in NAÏVE, and C in 
NAÏVE/variations.  
 
Tournament suffers from heavy message exchange. Each level of tournament is the sequence of 
following steps: 

i.) pairing the multicast group members at coordinator 
ii.) triggering the pair leaders 
iii.) each pair finding their midpoint 
iv.) each midpoint reported back to the scheduler. 
 

The random pairing process in step (i) is linear in time to the number of candidates at each level. 
During the first level of tournament, the process involves the comparison of distances between 
the node pairs for the matching process, and takes square time in the group size, i.e., O(|M|2). 
Triggering the pair leader requires transmission of pair knowledge to it from the coordinator. The 
number of messages transmitted in step (ii) is half the number of candidates at current 
tournament level and hence O(|M|). The process of locating the node closest in cost-distance to 
the midpoint of a pair in step (iii) merely requires the knowledge of nodes that lie on the shortest 
path connecting the pair available to the pair leader, requiring transmission of O(|V|) messages 
and comparison of node distances of the intermediary nodes in O(|V|) time at the pair leader. In 
step (iv), as many messages as in part (2) are transmitted back to the coordinator.  
 
Throughout the tournament, the steps (i)..(iv) are iterated in n levels where n = log2(|M|). Since 
the matching process at coordinator operates in time O(|M|2) at the first level and O(|M|) at 
subsequent levels, the overall computational complexity of Tournament at coordinator is, 
therefore, O(|M|2 +|M|log2(|M|)) = O(|M|2). For a multicast group of size |M|, the process at local 
nodes for finding the midpoint of a pair executes |M|-1 times throughout the tournament. (The 
idea for an inductive proof for this statement is as follows: when the multicast group size is an 
exact power of 2, i.e., when |M|=2n for any n, the tournament “schedule tree” to indicate the 
paired nodes and those elected to the further level of the tournament for all levels is a full binary 
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tree, and the number of pairs depicted on it is |M|-1. When one member is removed from the set 
M, one competing pair involving the removed node turns into an unmatched node at the first 
tournament level due to an odd number of nodes at that level. Similarly, the removal of each 
further node from M results in the loss of exactly one pair in one level further set of pairs until 
exactly one half of the binary tree is lost and the multicast group size is  |M|=2n-1. The number of 
times the midpoint-computation process is executed is exactly the number of pairs matched 
throughout the entire tournament, and is exactly one less than the group size with this argument.) 
As we stated above, each execution of the local process at step (iii) requires message 
transmission of O(|V|), hence the overall number of messages at this step is bound by O(|V||M|). 
Additional message transmission which take place at steps (ii) and (iv) in Tournament amount to 
O(|M|), and total number of messages exchanged throughout the O(|V||M|).  
 
INITIAL operates similar to Tournament at a single step in that one randomly selected group 
member (i) determines the member farthest from itself in delay, and (ii) locates the domain node 
closest to the “midpoint” of the shortest-delay path between the two. Using a similar argument as 
in Tournament, steps (i) and (ii) are executed respectively in O(|M|) and O(|V|), resulting in time 
complexity of O(|V|) of the algorithm. The number of messages transmitted in step (ii) is bound by 
O(|V|) and constant in step (i).  
 
NAÏVE iteratively adds a new core to the set of selected cores when none of the current cores 
satisfy to serve a new multicast group member within the given delay bound. For each new 
group member, the existing core set is searched for a satisfactory core. During this search, each 
core is examined whether to meet the delay bound for each source in the group to transmit the 
receiver. Assuming knowledge of the farthest source in delay-distance to each selected core is 
maintained throughout the algorithm, the time complexity for searching the current core set is 
O(|Cselect|) where Cselect is the set of selected cores and is bound by M—the set of multicast group 
members. If the search in Cselect fails, then the new receiver itself is designated as a new core 
provided that it is in reach within the delay constraint from every source in the group—executing 
in time linear to the number of sources in the group. Therefore, the entire algorithm computes in 
time O(|M|2). In case of NAÏVE/MinMaxD and NAÏVE/AVGD, the candidate core set, which is 
the set of domain nodes, is ranked respectively for the maximum and average node delays to the 
group members. This process executes modularly to the generic NAÏVE algorithm with the 
modification of NAÏVE to operate on an input candidate set, and takes O(|M||C|) time. The 
computational complexity of variations of NAÏVE, therefore, is O(|M|2+|M||C|) = O(|M||C|).  
 
A greedy dominating set heuristic iterates for the following steps until all the multicast group 
members are dominated by the core set: 

i.) select the candidate core, c, ranking highest according to the “optimization criterion” 
ii.) add c to the set of selected cores 
iii.) update the domination sets.   

 
 
As mentioned earlier, we refer by domination set to a set associated to a candidate core to return 
the set of currently un-dominated multicast group members. A typical implementation maintains 
a two dimensional table with the multicast group members and the candidate cores being 
separately the indices of these dimensions. Note that, in case of delay-constrained 
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implementation of heuristic, the process to generate the domination sets considers the delay-
distances separately between source-core and receiver-core pairs in two different cycles without 
extending the computational complexity of the process. The greedy algorithm needs as input the 
set of domination sets, which can be constructed in O(|M||C|) time for all candidates. Updating 
the domination sets in step (iii), following the same procedure on already-constructed sets, have 
the same time complexity. Step (i) operates on domination sets to count the number of members 
in each set to find the one that has the maximum set size, executing in time proportional to |M||C| 
in the worst case. Step (ii) clearly executes in constant time. Steps (i)-(iii) are iterated exactly 
once for each group member in the ultimate case. Therefore, the complexity of the entire 
algorithm is O(|M|2|C|). The generic algorithm we described applies for both n-dominating set 
problem [ZFL02] and GREEDY [Sa96] with modification on the initial construction of 
domination sets so that a group member is in domination set of a candidate core if it is in 
respectively within the n-hops or delay-constraint’s reach from that candidate.  
 
The optimization criteria suggested for optTree [KH03] can be computed for one core in the 
iteration that the core is examined as a candidate, without changing the structure of the greedy 
algorithm. If we consider a combination of Node-count, Delay-residue, aveHop and Degree as 
the optimization criterion of the algorithm, the additional computational complexity to the 
greedy algorithm is clearly that of the one among four with the highest complexity. In Node-
count, Delay-residue and aveHop of optTree, each candidate core is examined for its rank 
depending on the receiver set they are potentially dominating—repeating at most as many times 
as the number of receivers. Delay-residue and aveHop also examine the distances of the core 
from the sources for residue in delay and hop-distances to the receivers. Therefore, the 
computational complexity of optTree is O(|M|3|C|).  
 
As we mentioned in Section 3.1, Zappala et al [ZFL02] suggest a modification of the dominating 
set approximation algorithm for a k-center heuristic. Assuming repeated execution of n-
dominating set heuristic for increasing values of n until a set of cores of maximum size k is 
obtained to dominate the all members of the multicast group, the complexity of k-center 
approximation for algorithm core selection is O(|M|2|C|hdiam) where hdiam is the maximum hop-
distance considered between a core and a group member and is bound by the diameter of the 
domain in this metric.  
 
 
 
3.4.1 Implementation of Centralized Algorithms in Distributed Environments  
 
As mentioned earlier, local information available to routers in generic setup is the distances of the 
router the state table is residing on to every other router in the domain in all metrics. Centralized 
algorithms are not readily supported in this setup for these algorithms demand and operate on 
broader domain information then that locally available. Our classification of centralized algorithms 
is based on their higher feasibility compared to their distributed implementation on multiple nodes 
with message exchange among the nodes, as opposed to processing on one particular node with the 
required domain information transmitted to it in centralized version. We further examine the 
amount of message transmission in centralized algorithms to facilitate their deployment in 
distance-vector routing environment.  
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We examined the generic dominating set heuristics as iterative steps, for each new multicast group 
member, of selecting the best candidate core to serve the next new member of the multicast group 
and updating the domination sets accordingly for the next iteration. If we look into these steps, 
they all operate on the distance-vector information of the candidate cores to determine the 
domination set of each candidate for a given multicast group, and examine each candidate with 
respect to “optimization criterion”. Then, an algorithm to approximate the domination set solution 
following this heuristics simply transmits the distance-vector information of each candidate core in 
all relevant metrics to the coordinator. Similarly, the coordinator is notified of new members to 
join the multicast group merely for their domain identification. Therefore, assuming a particular 
candidate core set and stable network conditions, each candidate transmits its state table once to 
coordinator in |C| messages, and the coordinator is notified of the members of the multicast group 
in |M| number of messages, resulting in overall message complexity of O(|M|+|C|) = O(|C|) on 
assumption that |C| ≥ |M|.  
 
 
3.4.2 Bidirectional Implementation of GREEDY and optTree  
 
In a bidirectional routing tree, the first on-tree node receiving the data stream acts as a tree root 
and the stream is forwarded from this “root” towards all leaves. If the tree is not maintained 
bidirectional, the stream travels first to the root of tree  and then  delivered throughout the tree.  
 
Whether the multicast tree is maintained as a bidirectional in a symmetric network environment is 
especially significant in constrained dominating set heuristics, since a bidirectional tree can 
describe shorter-delay paths between source-receiver pairs than a non-bidirectional one on which 
every path between such a pair has to pass through the tree root. Each core has broader potential 
domination in this case, resulting in better approximation of optimal core selection. The core 
selection process in this case, however, demands not only for the evaluation of delay-distances 
between multicast group members and candidate core sets, but also the corresponding information 
between the members of these sets and any other domain node, for any such node is a potential 
intermediary on the tree to be developed to act as the root for certain data source(s) on the tree. So, 
the bidirectional consideration of the multicast tree to be governed by the core set is a trade-off 
between the optimality of the result and the complexity of the core selection process.  
 
Salama [Sa96] approaches this problem by first computing the domination set of each potential 
core before proceeding with the iterative selection process to produce a set of nodes to dominate 
the group. During the computation of the domination sets, each source, receiver and potential core, 
(s,r,c) triple, is examined for a delay-bound path between s and r on the core-tree rooted at c. Since 
the tree to be constructed is assumed to be bidirectional, the path between s and r passing through c 
can be shorter than the concatenation of the paths between (c,s) and (c,r) pairs if these two paths 
overlap partially at the core end. In other words, there may exist a node v which is on the shortest 
paths between both the pairs (c,s) and (c,r), and thus the portion between c and v is shared by both 
paths. The minimum-delay between s and r via the tree governed by c in this case reduces from the 
sum of the delays between (c,s) and (c,r) to that of (v,s) and (v,r). The corresponding computation 
to generate domination sets examines each node separately between (c,s) and (c,r) node pairs to 
locate a overlapping paths. The process then requires as input the knowledge of the entire domain 
nodes, and the message transmission for the bidirectional implementation of constrained 
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dominating set algorithms is O(|V|). As stated by Salama [Sa96], the process iterates for each 
source, receiver and potential core triple on all intermediary nodes lying on the examined paths, 
and the computational complexity of the preliminary process for the generation of domination sets 
is O(|M|2|C||V|). The additional component of both algorithms to select the cores among the 
candidate pool under this approach is computationally less complex than the preliminary phase. 
Therefore,  the complexity of GREEDY [Sa96] and optTree [KH03] on assumption of bidirectional 
trees is O(|M|2|C||V|). However, the effectiveness of bi-directional design of core selection 
algorithms is restricted to multicast groups in which the source and receiver sets overlap to share 
paths on the core-trees.  
 
 
3.5 Discussion 
 
The integration of core-selection algorithms into core-based multicast routing protocols is 
dominated by whether the components are serving single or multi-core scheme—the single-core 
selection algorithms are restrictive for the performance of multi-core protocols and the 
algorithms to generate multiple core can not co-operate with single-core protocols. The 
remaining characteristics of core-selection algorithms superior to the protocols clearly do not 
restrict their applicability in coordination with these protocols.  
 
Hop-count assumed as the only metric in most core selection algorithms restricts the potential 
results of the implementing protocol for all protocols described use delay-distance for exact 
measure. Hop-count, however, can be replaced by delay as the metric in the algorithms proposed 
by Thaler et al [TR97] except for estCost—in maxDist, aveDist and Diam, hop-count is used as a 
measure for point-to-point distance and can be replaced by delay without affecting the algorithm 
structure. In case of estCost, hop-count is measuring the overall tree structure and is the metric in 
context. Likewise, the description and measurement of topology center can be extended by 
allowing variable link weights during the process for computing the topology and group center—
modifying Topology-based and Group-based/Center [CZD95] core selection algorithms for 
delay metric. The problem of k-center is defined for optimization on average hop-distance of the 
multicast group to the core set for a given size of core set, and can be modified as a problem to 
optimize on average delay-distance with an extended heuristics. n-dominating set problem has a 
different characteristics in that the hop-count is used as the domination criterion to be referred to 
rule in/out domain nodes into the candidate-core pool to be further filtered by the optimization 
criterion which in case of the applied heuristics by Zappala et al [ZFL02] is the number of 
multicast group members dominated by the particular node. A certain delay-distance to be given 
as the dominating criterion rather than the hop-distance imposes delay as the more precise metric 
during the selection process. However, the delay-constrained dominating set algorithm, namely 
GREEDY [Sa96] readily provides a broader solution in terms of potential performance by 
considering the given delay bound from source(s) to receivers via core(s) rather than separately 
between source-core and receiver-core pairs with a process of similar complexity. Cost in 
Tournament [SBK94] can be replaced by delay with no change in its algorithmic structure since 
both metrics are additive and have similar characteristics. Note that hop-count mainly serves for 
measuring the tree structure through measuring the number of on-tree links as it is perceived in 
[KH03] as additional metric to delay, and clearly has positive correlation with delay.  
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The core-based protocols studied so far assumed symmetric networks only for they all initiate the 
path construction process at the new member to join and measure the path distance from receiver 
to core rather than the other direction in which the stream flows. The asymmetry in path 
construction and maintenance can be accomplished by delegating the path construction to the 
core from the receiver-to-join simply by traversing the path to be added to the tree as the 
acknowledgement travels towards the receiver—rather than as the join request travels the core. 
Providing asymmetry in protocol features to realize the tree structure is far less challenging than 
the algorithmic components—including core selection—to specify the tree structure, and existing 
protocols apply with straightforward modifications to asymmetric networks. Note here that, hop-
count is an asymmetric metric and characterizes the algorithm as asymmetric regardless of its 
symmetry characteristics. Those distributed algorithms we concluded to be applicable also for 
delay metric above, however, maintain their asymmetry since they all utilize the link values in 
their exact direction during the computations.  
 
All core selection methods proposed by Salama [Sa96] are constrained, designed to meet the 
given delay bound on the tree to be constructed rooted at the selected core(s). The core selection 
algorithms studied by Salama [Sa96] can be described into protocol suites by their extension 
with tree maintenance and failure recovery components. Salama is leaving the cost optimization 
to the phase of tree construction and is not considering it as an additional design goal for core 
selection. The suggested optTree [KH03] heuristics take the constrained multi-core scheme one 
step further by bringing in additional metric for the refinement of ultimate protocol performance.  
 
An interesting result as part of [SBK94]’s studies is that the tree rooted at core selected in 
consideration of the source group incurred less cost than the tree rooted at the core selected close 
to center of the receiver set, with the gain in tree cost increasing as the number of sources 
increase. This result validates the fact that a multicast tree rooted at a single core to optimize the 
paths to the receivers rather than those from the sources provides more gain in efficiency for 
optimizing the shared paths to the receivers rather than the unique paths from each source to the 
core. Note that this result is less significant for multi-core architectures which allow the 
placement of cores according to the proximity of multicast group members partitions in the 
domain, thereby optimizing the incurred cost locally on the tree portion covering the member 
partition.  
 
Calvert et al [CZD95]’s topological center results are significant for single-core selection in 
homogeneously distributed applications for separating the selection process from the multicast 
group information and allowing the use of a core selected statically in the domain. Topological 
center contributes especially for the case the frequency of changes in group membership is high 
in a well-distributed group, reducing the necessity for the core migration to the instance of core 
failures.  
 
The candidate core set processed by each algorithm is indicative for the message exchange and 
processing overhead during the selection process. In certain algorithms the selection method 
inherently restricts the candidate core set to a particular set of nodes in the domain. Tournament 
[SBK94] and INITIAL [Sa96], examining only the nodes which are in the subgraph “bordered” 
by the receiver group are in this group. Group-based core choices [CZD95] restrict the candidate 
core set to the set of receivers. Candidate core set of a smaller size can also be imposed 
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externally to the ultimate selection module by restricting the candidate domain through a less 
excessive and less dynamic process to reduce the overhead still keeping the coverage of the set 
well-distributed throughout the network.  
 
Core selection is a trade-off between the amount of processing and message transmission during 
the selection process, and the performance of the protocol in significant metrics. The 
performance results improved as the group size increased validating that as the size increases, the 
receivers are well-distributed over the network making the locations of the core less significant 
[TR97, CZD95]. According to Calvert et al [CZD95], group information does not necessarily 
improve performance. When the multicast group is widely distributed, the group-based core 
choice can degrade the performance relative to the topology-based methods. A certain core 
selection mechanism demonstrates different results for various applications. However a core 
selection method effective for one application is very likely to be effective in a similar manner 
for other types of applications compared to other selection mechanisms. There is no single-best 
core choice method across all metrics.  
 
 
4. Conclusions   
 
In this paper, we reviewed and analyzed the core-based approach for core selection algorithms in 
multicast routing protocols. We started with a brief overview of multicast routing protocols and 
the current trend into core-based approach. We reviewed the core selection algorithms studied in 
literature for their algorithmic structures, application issues and performance results as tested by 
their respective authors. Our review resulted in classification of core-selection schemes for their 
operational characteristics. We then analyzed the computational and message complexity of each 
algorithm in availability of local distance-vector state information at domain nodes. Our 
discussion included remarks on the applicability of these algorithms into the available multicast 
routing protocols.  
 
Multicast routing protocols are mainly designed for their feasible deployment in distributed 
domains. Development and maintenance of the multicast tree structure above a certain level in 
the measures described in its design goal is determinant on a protocol performance. The existing 
architectures can be enriched with components for selection and management of core set for 
improved approximation of the generated tree and thus protocol operations. In this paper, we 
examined core selection—placement of core(s) to govern the multicast path for its placement in 
domain, and its construction especially in multi-core case. Other areas of similar concern are 
measurement of the tree deterioration from the optimal or approximated structure over the course 
of multicast session, and core migration for keeping the tree quality above a certain level 
according with its design description.  
 
The design goals fulfilled by the core-based algorithms are governed by those of the routing 
protocols, and the assumed design problem in a multicast routing protocol existing in literature is 
the development of shortest paths between the tree root(s), namely the core(s) in core-based 
architecture, and the receivers. Multicast routing protocols and most core selection algorithms 
assume and operate on a unique metric. However, today’s QoS-demanding applications require 
consideration of multiple metrics in optimization, and the typical design problem is the 
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minimization of overall resource consumption during multicast session while meeting the delay-
bound of the application. The research field is open to sophisticated architectures to support QoS 
provisions to increasingly demanding Internet applications, still maintaining the feasibility in 
actual deployments.  
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