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Abstract

Governments collect data in which they hope to find patterns of terrorist activity. It is hard to know what
such patterns look like and, in any case, terrorists are actively trying to avoid leaving any distinctive
traces. However, if they work as a group, it is impossible to avoid some correlation among their
attributes and actions. We show that such correlation can be detected, partly because it is likely to be
qualitatively different from the correlations among groups with more innocent purpose. We show that
matrix decompositions, in particular singular value decomposition and semidiscrete decomposition, have
several useful properties for this problem. In many cases it is possible to identify a terrorist group with
few false positives.
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Abstract: Governments collect data in which they hope to find patterns of terrorist activity. It is
hard to know what such patterns look like and, in any case, terrorists are actively trying to avoid leaving
any distinctive traces. However, if they work as a group, it is impossible to avoid some correlation among
their attributes and actions. We show that such correlation can be detected, partly because it is likely
to be qualitatively different from the correlations among groups with more innocent purpose. We show
that matrix decompositions, in particular singular value decomposition and semidiscrete decomposition,
have several useful properties for this problem. In many cases it is possible to identify a terrorist group
with few false positives.

1 Introduction

One important component of counterterrorism efforts is the analysis of data looking for traces of
planned terrorist activity. The available data is extremely large, of multiple kinds, and collected
via a number of different pathways, both overt and covert.

It is extremely unlikely that planned terrorist activity can be directly discovered in such data,
for two reasons. First, there is not enough experience to judge what patterns in the data might
correspond to terrorist action and, in any case, each new attack is presumably designed to differ in
significant ways from previous attacks. Second, terrorists are aware of potential surveillance and
hence make every effort to look innocuous with respect to any collectable data.

An effective data analysis strategy for counterterrorism must therefore aim to discover the pre-
cursors to a terrorist attack rather than an attack itself. These might include unusual patterns of
money transfer, patterns of surveillance of a potential target, or patterns of collusion or collabora-
tion. Precursors are likely to be both more common, so that some assessment of the effectiveness
of the detection mechanism can be made; and more consistent, since different forms of attack may
use, for example, similar patterns of funding. An effective data analysis strategy must also take
full account of the efforts of terrorists to hide in the background noise of the ordinary actions of
ordinary people.

Fortunately there is some evidence [2] that terrorist groups, like criminal groups, are structured
differently from the other groups that make up a society. For example, such groups are typically
more cohesive internally, both because of a common purpose and the need to keep that purpose
undetected; and less connected to other groups. Hence, while it may not be possible to detect a
single terrorist, it may be possible to detect a terrorist group because of differences in the correlative
structure among its members.

At present it is not plausible to build a classification model that would perfectly separate
terrorists and their actions from the innocent, partly because of our limited understanding of data-
mining technology, and partly because of problems with the quality of data that might be collected.
What is plausible is to build a ranking model, which provides a predicted measure of the risk of
terrorism posed by each object or person. This ranked list can be used to reduce the data to
a manageable size, either for more sophisticated downstream data mining or for human analysis.
The use of a staged approach also has the advantage of providing a point for judicial or procedural
oversight, after which the data may be perhaps be augmented with more confidential attributes
[19], for example names or other identifiers.



We show that it is possible, using matrix decompositions, to detect small groups of objects with
unusual correlative structure against a background typical of societal groups. Some lesser known
properties of singular value decomposition (SVD) are used to produce various kinds of ranked lists,
and also clusterings in which clusters corresponding roughly to terrorist groups can be seen. We
then show how semidiscrete decomposition (SDD) can be used to classify objects in an unsupervised
way, often detecting terrorist groups with low false positive rates.

The results described here can be used for early-stage analysis of large datasets, potentially
reduced the number of objects requiring further consideration by more than 90%.

Section 2 describes the major approaches to detecting signatures or patterns of terrorist action in
large datasets. Section 3 discusses the datasets we will work with. Section 4 presents the properties
of singular value decomposition, and Section 5 the properties of semidiscrete decomposition. Section
6 describes the experiments we perform and shows their results. Finally we draw some conclusions.

2 Approaches to detection

Terrorists whose information will be captured in a dataset, and who are aware of the fact, will
take steps to ensure that the values of their attributes will be, as far as possible, innocuous. They
cannot be entirely successful at this because:

e They have a purpose, and this purpose requires certain actions (purchasing fertilizer, surveilling
a target) that necessarily force certain attribute values. They can hope that each of these
attribute values is, in itself, either common or innocuous, and so that such actions will not
make them stand out. For example, many people buy fuel oil and many people buy fertilizer.
It is only the conjunction, together perhaps with a city address, that makes each individual
purchase suspicious.

e They are working together, and this forces certain other actions such as meeting or commu-
nicating which generate related attribute values.

Three broad strategies for analyzing datasets exist, each assuming the existence of a different
signature or pattern in the data:

1. Analyze each object in the dataset independently. This approach assumes that objects related
to terrorism have attribute values that are somehow anomalous. Many standard data-mining
techniques, for example decision trees, support vector machines, and supervised neural net-
works can be used to build predictive models of this kind (although obtaining accurately
labelled data is still problematic).

The countermeasure to this kind of analysis is to make sure that each object’s attribute
values are (together and separately) in the ‘normal’ range. For example, if airline profiling
flags passengers who travel in first class, who pay cash, and who buy one-way tickets, the
obvious strategy is to travel economy, pay with a credit card, and buy a return ticket. In
general, models of this kind can be defeated by probing [3].

However, single-object analysis is not necessarily useless. First of all, it may sometimes be
hard to determine what attributes are being collected, so it may be hard to avoid generating
anomalous attribute values ‘by accident’. Second, the existence of such analysis forces unusual
behavior in the effort to seem ‘normal’, and this unusual behavior is therefore self-conscious.
This itself may generate a signature that is visible to more sophisticated analysis. For example,
the paper [18] shows how the existence of a watch list of words in messages may force unusual
word usage that is readily detectable.



2. Find connections among the objects in the dataset based on values of attributes that they
share. Such analysis usually creates a graph in which the nodes are objects, and there is a
link between two nodes when their objects share an attribute value. Particular subgraphs
may represent a particular form of terrorist precursor.

Link analysis and social network analysis [6] have been used to analyze such graphs [4,9],
and are responsible for the ubiquitous ‘connecting the dots’ metaphor. Krebs showed [13],
in retrospect, that there were many links among the September 11th hijackers, and also that
the diameter of the graph of connections among them was substantially reduced by a single
meeting of some members of the group. The paper [15] describes experiments using Inductive
Logic Programming on relational datasets recording nuclear smuggling and contract killing.
This work could presumably be generalized to counterterrorism.

Link analysis approaches have two weaknesses. The first has to do with the pattern that is
searched for in the data. This pattern must be identified beforehand, which is problematic
if some form of novel attack is being mounted. Also, there is no straightforward way to
‘approximately’ match a pattern (for example, if an edge is missing in the dataset because
the corresponding attribute value was not collected).

The second weakness is that countermeasures to decouple the links are relatively easy. For
example, many links capture the fact that two or more people were in the same place at
the same time; techniques such as the use of drops (in the physical world) and wikis (in the
online world) can decouple the temporal aspects of such links. Intermediaries help to decouple
the spatial aspects (especially since changing identities in the electronic and online worlds is
easy). For example, it is known that groups can be determined by examining patterns of
email traffic [20], but this can be defeated by using readily-available transient email accounts.

3. Find connections between objects based on correlations among the attribute values that they
share. Analysis of this kind is the subject of this paper.

Correlations have three advantages in comparison to link analysis. First, many attempts to
avoid similar attribute values lead to correlated values: instead of all travelling to a meeting
on one day, members of a group may travel spread over several days, but the similarity of
travel patterns is still visible as correlation. Second, it is hard for a group of individuals to
assess how similar their correlation is to that of other groups, and so it is hard for them to
engineer the way in which they appear to an analysis technique. Third, and perhaps most
important of all, techniques that detect correlation do not have to be primed with what to
look for; they will detect correlation wherever it appears.

3 Data Generation Models

Datasets of a number of different kinds have been collected for counterterrorism analysis. Each
dataset describes a number of objects by providing values for some set of attributes belonging to
the objects. Some examples of such datasets are:

e Datasets where the objects are individuals, and the attributes are facts about them (age,
address, educational attainment, citizenship). Such datasets are dense: every individual
should have values for every attribute. For example, the CAPSS II airline passenger profiling
system will use information from both the Lexis/ Nexis and Axciom databases [17].



e Datasets where the objects are individuals, and the attributes are actions they have taken (for
example, travel to particular places during given time periods). Such datasets are usually
sparse: most individuals will have done only a small subset of the possible actions. For
example, airline travel databases are of this form.

e Datasets where the objects are messages, and the attributes are senders/receivers or the
content of each message. Such datasets might be either dense or sparse, depending on which
message attributes are collected. For example, the Echelon system intercepts many forms
of communication and examines the properties of a legally-defined subset, for example the
presence of particular words from a watch list [5].

Since, for obvious reasons, real datasets containing terrorist actions are not available, the quality
of detection models will be evaluated using artificial datasets. This immediately raises the question
of what kinds of datasets are plausible and, of course, any choice is open to criticism.

Dense datasets can plausibly be modelled using Gaussian distributions, both because this nat-
urally captures the properties of large populations, and also the likely structure of attribute values
within a terrorist group. For example, the locations where the members of a group live reflect a
balance between the practicality of living in close proximity to each other (and perhaps to a target);
and the need not to form an obvious group.

Sparse datasets can plausibly be modelled using Poisson distributions with small mean for
the non-zero entries. These generate datasets in which small values are common and large ones
uncommon. For example, in any given time period, most people will not have visited a particular
city; those who have are most likely to have visited it only once; and there will be a small minority
who have visited it several times.

4 Singular Value Decomposition

4.1 Structure of the decomposition

Singular Value Decomposition (SVD) [7] is a well-known technique for reducing the dimensionality
of data.

Suppose that a dataset is represented as a matrix A with n rows (corresponding to objects) and
m columns (corresponding to their attributes). Then the matrix A can be expressed as

A =USV’

where U is an n x m orthogonal matrix, S is an m X m diagonal matrix whose r non-negative
entries (where A has rank r) are in decreasing order, and V' is an m x m orthogonal matrix. The
superscript dash indicates matrix transpose. The diagonal entries of S are called the singular values
of the matrix A.

SVD is as an axis transformation to new orthogonal axes (represented by V'), with stretching
in each dimension specified by the values on the diagonal of S. The rows of U give the coordinates
of each original row in the coordinate system of the new axes.

The useful property of SVD is that this transformation is such that the maximal variation
among objects is captured in the first dimension, as much of the remaining variation as possible in
the second dimension, and so on. Hence, truncating the matrices so that Uy is n x k, Sk is k x k
and V} is m X k gives a representation for the dataset in a lower-dimensional space.

A way to understand SVD is the following: suppose that points corresponding to both rows
and columns are plotted in the same k-dimensional space. Then each point corresponding to a



row is at the weighted median of the positions of the points corresponding to the columns and,
simultaneously, each point corresponding to a column is at the weighted median of the positions
of the points corresponding to the rows. Hence SVD can be viewed as translating correlation or
similarity into proximity.

SVD measures variation with respect to the origin, so it is usual to transform the matrix A so
that the attributes have zero mean and unit variance.

While SVD is a workhorse of data manipulation, it has number of subtle properties that are
not well-known. We will use five of them.

Fact 1: The correlation between two objects is proportional to the dot product between their
positions regarded as vectors from the origin. Two objects that are highly correlated have a dot
product (the cosine of the angle between the two vectors) that is large and positive. Two objects
that are highly negatively correlated have a dot product that is large and negative. Two objects
that are uncorrelated have dot product close to zero.

The usefulness of this property comes because there are two ways for a dot product to be close
to zero. The obvious way is for the vectors concerned to be orthogonal. However, when m is less
than n (as it typically is) there are many fewer directions in which vectors can point orthogonally
than there are vectors. Hence if most vectors are uncorrelated, they must still have small dot
products but cannot all be orthogonal. The only alternative is that their values must be small.
Hence vectors that are largely uncorrelated must have small magnitudes, and the corresponding
objects are placed close to the origin in the transformed space. Hence, in a transformed space from
an SVD, the points corresponding to objects that are ‘uninteresting’ (they are correlated either with
nothing or with everything) are found close to the origin, while points corresponding to interesting
objects are located far from the origin (potentially in different direction indicating different clusters
of such objects).

The dot products between rows of a U S matrix, even when truncated, capture these correlation
relationships well because the neglected terms in the dot products are small.

Fact 2: The singular value decomposition of a matrix is insensitive to the addition (or subtraction)
of independent zero-mean random variables with bounded variance [1]. This property has been used
to speed up the computation of SVD by sampling or by quantizing the values of the matrix. In
counterterrorism, the effect we are looking for is so small and the results so important that neither
of these is attractive. However, the fact does explain why SVD is good at detecting clusters within
clusters — the outer cluster representing the majority of the data has zero mean (by normalization)
and so, by the fuzzy central limit theorem, increasingly resembles a normal distribution as the
number of ordinary objects (and the number of attributes) increases.

Fact 3: SVD is a numerical technique, and so the magnitudes of the attribute values matter.
However, multiplying the attribute values of a row of A by a scalar larger than 1 has the effect of
moving the corresponding point further from the origin. Because the positions of all of the other
points depend, indirectly, on their correlations with the scaled point, via their mutual interactions
with the attributes, points that are correlated with the scaled point are pulled towards it. When
there is little structure in the low-dimensional representation of a dataset, this scaling technique
can be used to find the objects that are (positively) correlated with a given object. In practice,
this often makes it easier to see a cluster that would otherwise be hidden inside another in a
visualization.



Fact 4: A typical data matrix with m columns will have rank m. There is a general construc-
tion, due to Wedderburn [8], that can be used to remove values of a particular form from the
matrix, leaving a new matrix whose rank is one smaller. The particular values removed can repre-
sent already-known information, which is thereby discounted, or information that is of particular
interest.

Suppose that y is an n x 1 vector (so it looks like a column of A) and z is an m x 1 vector (so
its transpose looks like a row of A). Then if w = ¢y Az # 0, the matrix B = %A:Uy’ A has the same
shape as A, and the matrix A — B has rank one less than the rank of A. The products Az and y' A
are the cosine similarities of the rows and columns of A to the specified vectors, and therefore the
product (Az)(y'A) can be thought of as a stencil of the locations and values in A that together are
similar to those specified.

Fact 5: The decomposition depends on all the data used, both normal and anomalous. The
precise geometry of the separation of clusters of SVD is hard to predict without performing the
decomposition, and impossible without knowledge of the dataset. Hence, a terrorist group cannot
reverse engineer the transformation to determine how they will appear, even knowing that SVD is
being used. In particular, SVD is resistant to probing attacks since any attempt to probe cannot
control for the innocent objects considered at the same time.

4.2 Complexity

The complexity of SVD is O(nm?), where n is the number of objects and m the number of attributes.
For dense data, such a complexity verges on impractical. However, for sparse data SVD can be
computed with complexity O(rk) where r is the number of nonzero entries in A and k is the number
of dimensions retained. For travel data, this amounts to complexity linear in the number of objects,
that is linear in the number of people considered.

4.3 Ways to use SVD

These properties allow SVD to be used in a number of ways to analyze complex datasets:

1. Denoising and dimensionality reduction. Because the axes of the transformed space are
arranged in decreasing order of importance (visible in the magnitudes of the singular values
on the diagonal of S), the SVD can be truncated at some number of dimensions, k, while
retaining the greatest possible information. In some settings, it is natural to interpret the
dimensions from k41 to m as containing ‘noise’ that appears in the data as a side-effect of the
collection process. Removing this ‘noise’ may make it easier to analyze the data subsequently.

There are also some advantages to reducing the dimensionality of the data, even if some of
its information is lost. For example, when & = 2 or 3, the rows of U can be plotted and
visualized. Even for larger values of k, the geometry of the transformed space can be easier
to work with than the full m dimensions.

However, in a counterterrorism setting, dimensionality reduction per se carries some risks
because the ‘noise’ may carry the interesting and useful information.

2. Spectral clustering. There are several ways in which the results of SVD can be used to cluster
the objects (or indeed the attributes). For example, objects can be placed in clusters based on
their similarity to the (left) singular vectors. Those objects whose vectors have dot product
greater than 1/2 with the first singular vector are placed in the first cluster, those with dot



product greater than 1/2 with the second singular vector in the second cluster, and so on.
Alternatively, the values of the first column of U can be sorted into ascending order, and
sharp increases in value considered as boundaries between clusters. There are many other
possibilities (see, for example, [21] and [10] for a survey of some possibilities).

The existence of multiple, principled ways of clustering the same data into different clusters
makes the use of these techniques problematic unless the form of the solution is already well-
understood (as it is, for example, in image analysis). However, in a counterterrorism setting,
the form of the solution is, and will continue to be, unknown and so it is not clear how to
apply spectral clustering reliably.

. Using distance from the origin as a surrogate for interestingness. Fact 1 above explains
that points corresponding to objects must be mutually arranged so that the dot products of
slightly correlated vectors are close to zero. Hence objects that are uninteresting (correlated
with everything or with nothing) are close to the origin. The objects in the dataset can
therefore be ranked in order of distance from the origin, and the objects at the bottom of the
list will be most important. Some information is lost by doing this, because the directions in
which interesting points lie contain some information, but this can still be a useful procedure.

Alternatively, points corresponding only to those objects that are far from the origin (greater
than the median distance, say) can be plotted. This preserves directional information, and
allows the cluster structure of the remaining points to be visualized.

. Using correlation with a target object. When there is a natural interpretation for one object
in the dataset as the target object (for example, the terrorist cell might be expected to have
correlated attribute values because of surveillance), then the dataset can be further reduced
by omitting those objects that are negatively correlated with the target.

. Using both distance from the origin and correlation. The preceding techniques can both be
applied, so that points that are either too close to the origin or negatively correlated with the
target are omitted. This reduces the number of objects to be considered still further.

. Looking for differences in the local neighborhood of each object. The nature of the correlative
structure around each object can be explored by repeated application of SVD. In the first
round, an SVD is performed on the full dataset, and those objects negatively correlated with
the object under consideration are removed. The SVD is then repeated on the remaining rows
of the original matrix (those corresponding to objects positively correlated with the object
being considered). Some of these objects will now be negatively correlated in the context of
the reduced number of objects, and these can be removed, and the process repeated. The
size of the remaining sets of objects provide information about how well the object being
considered is connected to the other objects. Intuitively, an object with a small, tight set
of related objects will produce a sequence of subsets of the objects of rapidly shrinking size;
while one with more normal, widespread connections will produce a sequence that shrinks
more slowly.

. Weighting objects and/or attributes. Objects and attributes of particular interest can be
given increased weights before the SVD is calculated. As mentioned in Fact 3, the effect is
to move the weighted objects further from the origin (making them seem more interesting)
but also moving other correlated objects further from the origin as well. The size of the
movement reflects the importance of the correlation between these other objects and the



weighted objects. This can be used to validate apparent connections among objects — they
should become stronger and more visible when some of them are weighted.

8. Using rank 1 reductions. The rank 1 reductions described in Fact 4 can be used in several
ways. One is to find those object-attribute pairs that are similar to those of the target, a
kind of similarity-based lookup. For example, suppose that the target is row 27 of the matrix
and attributes 13 and 57 are particularly significant. The vector ¢ can be chosen to be zeroes
except at row 13, and the vector x chosen to the zeroes except at columns 13 and 57. The
resulting B matrix has entries whose magnitude corresponds to their similarity to the given
stencil. In particular, rows that are particularly well-correlated with the target with respect
to these attributes will have entries of large magnitude. On the other hand, the matrix that
results from subtracting this matrix from A discounts the effect of this stencil.

5 SemiDiscrete Decomposition

5.1 Structure of the decomposition

Semidiscrete decomposition (SDD) [11,12,16] is superficially similar to SVD but is, underneath,
a bump-hunting technique [14]. It finds regions of rectilinearly aligned locations in a matrix that
contain elements of similar magnitude (the bumps).

Once again, given a matrix A representing data, its SDD is

A = XDY

where X is n x k, D is a k X k diagonal matrix, and Y is k x m. The differences from SVD are (a)
k can take any value, including k& > m, (b) the entries on the diagonal of D are non-negative but
need not be decreasing, and (c) the entries of X and Y are all —1, 0, or +1.

The easiest way to see what SDD is doing is to consider A; the (outer product) matrix obtained
by multiplying the ith column of X and the ith row of Y. Each such matrix has the same shape
as A and contains rectilinear patterns of +1s (representing positive bumps) and —1s (representing
negative bumps) against a background of 0s. Hence each A; represents the stencil of a region of
similar (positive and negative value) and the value of d; represents its height. Note that A is the
sum of the A; weighted by the d;.

It is natural to sort X and Y so that the corresponding entries of D are in decreasing order, so
that the most significant bumps are selected first. The X matrix can then be naturally interpreted
as a hierarchical ternary classification of the rows of A. The first column of X classifies the rows of
A into three groups: those whose X entry is +1, those whose X entry is —1, and those whose X
entry is 0. Those whose entries are +1 and —1 are similar but opposite, while those whose entries
are 0 are not in the bump being selected at this level.

Here is a small example:

1 1 4 4 0101 8 00 0 1100
8 8 1.1 | |1 010 0400 0 011
8 8 1.1 |1 010 0010 0 011
1111 0 011 00 01 1100

There are no —1 values in this example. The product of the first column of X and the first row of



0 00O
1100
1 1 00
0 00O

which is a stencil covering the region of the array where the elements have the value 8 (which is
the value of dy). The second outer product selects the regions where the elements have the value
2. The third and fourth outer products select regions where the elements have value 1. These two
could not be selected as a single stencil because they cannot be rectilinearly aligned.

5.2 Complexity

The algorithm to compute SDD has a heuristic component, but its complexity is usually considered
to be O(k?(n + m) +nlogn + mlogm). For k = m this is comparable to the complexity of SVD
but, of course, for smaller values of k it is much less.

5.3 Ways to use SDD

Semidiscrete decomposition is useful to find regions (not necessarily contiguous) in a matrix that
contain values of similar magnitude. It can be applied in three ways:

1. Directly to the data matrix A. This amounts to finding sub-blocks of the matrix of similar
magnitude. This could be quite effective as a method of link analysis, but it is disappointing
when the matrix entries are correlated but of different magnitude.

2. To the correlation matrix AA’. Applying SDD to the correlation matrix performs better than
applying it to the data matrix directly (although when n > m the correlation matrix is much
larger and correspondingly more difficult to work with).

3. To a truncated version of the correlation matrix. SVD and SDD can be combined into a single
technique called the JSS (Joint SVD SDD) methodology. The following steps are performed:

e The SVD of A is computed, the component matrices U, S and V are truncated at some
k (say k = 15), and the truncated matrices are multiplied to produce a matrix A. This
matrix has the same shape as A.

e The correlation matrix C' = AiA) is computed. This matrix is n x n and its entries
represent the ‘higher-order’ correlation among objects. Some correlation due to ‘noise’
has been removed and some indirect correlation is now explicitly visible in this matrix
(e.g. entries that would have been 0 in the correlation matrix of A may now contain
non-zero values).

e Each entry of C' is replaced by its signed square. Unlike SVD, SDD is not scale inde-
pendent. The selection of a bump depends on both the average magnitude of the values
it includes and also the number of array positions that it covers. Increasing the relative
magnitude of the entries weights the selection towards bumps of high magnitude but low
area, which is appropriate for this problem.

e The SDD of the scaled C' matrix is computed. This SDD finds regions of similar value
in the matrix; since it is a correlation matrix, such regions correspond to correlated rows
in the original matrix, A.



The results of SVD require inspection to determine the possible presence of a terrorist cluster;
SVD transforms the data into a form where such anomalous clusters are more visible. On the
other hand, SDD produces a hierarchical classification in which objects are allocated to clusters
with a proximity structure (closeness in the classification tree). Hence the technique can sometimes
identify a terrorist cluster itself, particularly if the target is known.

6 Experiments

In the experiments that follow, the part of the matrix A representing normal objects will usually
consist of 1000 rows and 30 columns. The 30 columns represent a set of attributes about each object
— we assume that these are intrinsic attributes and that a threat is forced to correlate with a target
in the values of at least some of these attributes. Each dataset has a small number of additional
rows added to represent a terrorist group. The results are for the first random dataset of each kind
generated — no selection of datasets to provide better than average results was made. Many of our
experiments were more clear-cut than the examples reported here. We use the datasets described
in Figure 1.

In plots of two- or three-dimensional space derived from SVD, points corresponding to normal
objects are shown as (blue) dots, the target is shown as a (red) star, and the points corresponding
to terrorists as (blue) squares. In plots involving SDD, the color and shape coding comes from the
SDD classification. The rows of U are plotted in three dimensions but the points are labelled by
their classification from the top three levels of the SDD hierarchical ternary classification. Color is
used as the indicator for the first level (red = +1, green = 0, blue = —1) and shape as the indicator
for the subsequent two levels like this:

+1 41| dot |0 +1 + -1 +1 diamond
+1 0 | circle || O 0| star -1 0 | triangle down
+1 —1|cross | 0 —1|square | —1 —1| triangle up

Dataset 1. The results for Dataset 1 are shown in Figures 2, 3, 4, 5, 6, 7, 8, and 9. This dataset
consists of one large 30-dimensional cluster with a much smaller diffuse cluster centered at one of
its points. This situation illustrates that basic ability of these matrix decompositions to see clusters
that fall within other clusters.

Figure 2 shows the positions corresponding to each object plotted in 3 dimensions. The SVD
does not have any information about either the ‘target’ (the object around whom the terrorist
cluster is centered) nor about the terrorist cluster. We can center the terrorist cluster around a
target point without loss of generality, since the target point can then be deleted from the dataset
if desired without changing the results in any significant way. Hence the target object can be
regarded as either a genuine target with which the terrorist group’s attributes are connected, or a
mathematical fiction used to generate a correlated terrorist group.

The labelling in the figure is done externally; the SVD does not ‘detect’ the terrorist cluster but
simply arranges the points in such a way that the terrorist cluster is easily detectable by inspection.
In the list of objects ordered by distance from the origin, the last 15 entries are: 849, 127, 630, 179,
931, 1010, 1009, 1006, 1, 1002, 1004, 1005, 1001, 1008, 1007, 1003, and row 1 is the target object.
Hence the terrorist cluster is easily found among the objects farthest from the origin.

The SVD also has the useful property that the point corresponding to the ‘target’ is placed far
from the origin. Hence, the activities of a terrorist group may reveal their target simply because
they have attributes that correlate with that object.
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Dataset

Description

In 30 dimensions, 1000 points normally distributed with variance 1, terrorist
group of size 10 normally distributed with variance 1 centered at one of the
points

In 30 dimensions, 1000 points normally distributed with variance 1, terrorist
group of size 10 normally distributed with variance 0.5 centered at one of
the points

In 30 dimensions, 100 points normally distributed with variance 1, 100 clus-
ters of 10 points normally distributed with variance 1 whose centers are the
original points, terrorist group of size 10 normally distributed with variance
1 around a random one of the second level points

In 30 dimensions, 100 points normally distributed with variance 1, 100 clus-
ters of 10 points normally distributed with variance 1 whose centers are the
original points, terrorist group of size 10 normally distributed with variance
1 around a random one of the second level points, weight on the point used
as the center of the terrorist group (the ‘target’) increased to 1.2

In 30 dimensions, 100 points normally distributed with variance 1, 100 clus-
ters of 10 points normally distributed with variance 1 whose centers are the
original points, 20 groups of size 10 normally distributed with variance 1
around random second level points, one of these groups chosen as the ter-
rorist group

In 30 dimensions, 5000 points normally distributed with variance 1, terrorist
group of size 10 normally distributed with variance 1 centered at one of the
points

In 30 dimensions, 1010 points normally distributed with variance 1, but
70% of the entries set to zero. The terrorist group is then correlated with a
randomly chosen target row like this: if the target attribute has a non-zero
value for a particular attribute, the corresponding attribute of a terrorist is
changed to the a normally distributed value whose mean is the value of the
target attribute and whose variance is 1; otherwise the terrorist attribute is
not changed

In 30 dimensions, 1000 points Poisson distributed with mean 1, terrorist
group of size 10 Poisson distributed with mean 1 centered at one of the
points. Mean subtracted to approximate zero mean data

In 30 dimensions, 1000 points uniformly Os or 1s, terrorist group of size 10 in
which each new point and attribute is uniformly 0 or 1 if the corresponding
attribute of the target was 1; otherwise only a slight probability of being set
to 1

Figure 1: Datasets used in experiments
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Figure 3 is the same plot, but with only the points of objects correlated with the target remain-
ing. This, of course, requires knowledge of the target. In practice, this might be obtained either by
inspection of plots such as Figure 2 or because only a number of worthwhile targets are known to
be present in the dataset. Correlation here means being on the same side of a hyperplane through
the origin as the target in 15 dimensions; this property will not, in general, hold exactly when the
plot uses only 3 dimensions.
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Figure 2: Dataset 1, SVD clustering showing positioning of the terrorist cluster
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Figure 3: Dataset 1, 474 objects correlated with the target

Figure 4 is the same plot, but with only those points farther than the median distance from
the origin (in 15 dimensions) remaining. This discards those points that are not interesting in the
sense that they show only weak correlation with all of the other points. Removing these points
does not require knowledge of the target and, reassuringly, both the target and all of the terrorists
remain in the plot. Figure 5 shows the points that remain when only those points farther than 1.3
times the median distance from the origin are retained. As expected, this removes even more of
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the points, leaving a residue of approximately 10% of the original objects for further consideration.

Figures 6 and 7 show the effect of combining both of these techniques. In the second case, the
number of objects requiring further consideration is only 6% of the original population, and both
the target and all of the terrorists are still present (and increasing well-separated from the points
corresponding to other objects).
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Figure 4: Dataset 1, 504 objects greater than median distance from the origin
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Figure 5: Dataset 1, 101 objects greater than 1.3 times the median distance from the origin

SVD is unable to predict or classify points as likely to be terrorists, other than by distance from
the origin. In contrast, techniques based on SDD generate a hierarchical classification allowing
the algorithm itself to predict at least the degree of anomaly of each point. When the target is
known, SDD-based techniques can also report those other points that fall into the same branch of
the hierarchical classification at any depth. This is clearly more powerful.
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Figure 6: Dataset 1, 253 objects greater than median distance from the origin and correlated with
the target
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Figure 7: Dataset 1, 61 objects greater than 1.3 times the median distance from the origin and
correlated with the target

Figure 8 shows the points plotted at positions determined by SVD (so the positions are the
same as in the preceding figures) but with color and position determined by the top three levels of
the hierarchical classification. In this case, the target and terrorist group are represented by x (and
almost no other points are). However, the crosses are of two different colors because the terrorist
group falls into the classes down the 0,+1,—1 and +1,+1,—1 branches. Without knowledge of
the target it would be difficult to know which group represented the terrorist group, since most
of the other points are distributed across of number of other branches in groups of moderate size.
In general, these results are typical of applying SDD directly to the data matrix — the values
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themselves correctly identify groupings among the objects but are not sufficient to distinguish the
terrorist cluster from the other groups without more information.

Figure 9 shows a similar plot, but with the SDD color and position labelling derived from the
JSS methodology. This result is much more useful — the terrorist cluster is completely identified at
the top level (it is a different color). In this case, the technique itself is able to identify the terrorist
cluster and report it exactly. Notice that almost all of the terrorist group fall into the same branch
as the target (the +1,+1,+1 branch labelled by red dots) even after three levels.

-0.05 u2
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Figure 8: Dataset 1, position from SVD, color and shape from SDD.

Ul

Figure 9: Dataset 1, position from SVD, color and shape from JSS. The terrorist cluster is identified
by the JSS hierarchical classification
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Dataset 2. In the previous experiment, the terrorist cluster had the same variance as the base
cluster. Hence, it is likely that points from the terrorist cluster are overrepresented among points
far from the origin in the original 30-dimensional space. We now show that this is not the reason for
the quality of the SVD plot by repeating the experiment with the variance of the terrorist cluster
at 0.5. We now expect points from the terrorist cluster to remain inside the background cluster on
average.

The results for Dataset 2 are shown in Figures 10, 11, 12, 13, 14, 15, and 16. Figure 10 shows
that the terrorist cluster is still visible although there are other points that are quite far from the
origin. If the terrorist cluster were unlabelled, the terrorist cluster would certainly arouse suspicion,
but another 10-20 points would also require further investigation. As before, about half the objects
are correlated with the target, about half are farther than the median distance from the origin, and
about a quarter are both. When the required distance from the origin is increased, the set requiring
further attention is again reduced to about 6% of the dataset and includes all of the terrorist group.
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Figure 10: Dataset 2, SVD clustering showing positioning of the terrorist cluster

The plot in Figure 16 shows the classification by the JSS methodology in which the terrorist
group is correctly identified, with one false positive. Note the presence of a cluster of two objects
labelled by a blue circle and a blue +. These represent the objects who are most ‘opposite’ to the
terrorist cluster. They therefore deserve special consideration because of the possibility that they
represent alternative personas for members of the terrorist cluster — if two individuals are never at
the same place at the same time, they may be two completely unconnected people — but the may
be the same person using two identities.

This is arguably an easy dataset, but not entirely trivial because the fuzzy central limit theo-
rem suggests that, given enough data, and given that normalization takes place after the data is
collected, we can expect that many parts of a real dataset should look as if they were generated by
a normal distribution.

Dataset 3. We now consider a dataset with following structure: 100 points are generated, nor-
mally distributed around 0 with variance 1. 100 clusters of 10 points are generated, normally
distributed with variance 1 with centers at each of the original points. A terrorist cluster of size 10,
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Figure 11: Dataset 2, 462 objects correlated with the target
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Figure 12: Dataset 2, 504 objects greater than median distance from the origin

normally distributed with variance 1 is generated around a random one of the second level points.
So rather than a single background cluster around zero, we have a large set of background clusters
with many different centers. This better represents the grouped structure and many connections
in real sets of people. The results for Dataset 3 are shown in Figures 17, 18, 19, 20, 21, 22, and 23.

As Figures 17, 18, and 19 show, it is now much more difficult to identify the terrorist cluster
without the external labelling. Restricting attention to points much further than the median
distance from the origin reduces the number of objects to consider but, for the first time, eliminates
some of the terrorist group from consideration.

The JSS classification, shown in Figure 23, correctly groups all but one member of the terrorist
group in the same cluster as the target, and includes 12 other objects (false positives). Hence a
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Figure 13: Dataset 2, 120 objects greater than 1.3 times the median distance from the origin
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Figure 14: Dataset 2, 226 objects greater than median distance from the origin and correlated with
the target

total of 2.5% of the population would be selected for further scrutiny and half of them are terrorists.

Dataset 4. When the target is known, but there is a large amount of background correlation, the
weight of the target row can be increased. This has the effect of moving the point corresponding
to the target farther from the origin, but also tends to pull other points that are correlated with
the target farther from the origin as well (Fact 3). We increase the weight on the target row by a
modest factor of 1.2. Even this small change produces a visible movement of the location of points
and, in particular, improves the JSS classification.
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Figure 15: Dataset 2, 64 objects greater than 1.3 times the median distance from the origin and
correlated with the target
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Figure 16: Dataset 2, position from SVD, color and shape from JSS. The terrorist cluster is
identified by the JSS hierarchical classification

The results for Dataset 4 are shown in Figures 24, 25, 26, 27, 28, 29, and 30. The results are
almost identical to the previous case, except for the JSS classification (Figure 30). Here the group
containing the target contains exactly 9 other objects, all from the terrorist group. Hence, with
modest weight added, JSS is able to determine the terrorist group with no false positives and one
false negative.
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Figure 17: Dataset 3, SVD clustering showing positioning of the terrorist cluster
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Figure 18: Dataset 3, 503 objects correlated with the target
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Figure 19: Dataset 3, 504 objects greater than median distance from the origin
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Figure 20: Dataset 3, 84 objects greater than 1.3 times the median distance from the origin. Boxes
without a dot inside them represent members of the terrorist group who have been removed from
consideration. For the first time, some members of the terrorist cluster are not detected.
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Figure 21: Dataset 3, 248 objects greater than median distance from the origin and correlated with
the target
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Figure 22: Dataset 3, 38 objects greater than 1.3 times the median distance from the origin and
correlated with the target.
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Figure 23: Dataset 3, position from SVD, color and shape from JSS. The terrorist cluster (the red
dots) is identified by the JSS hierarchical classification, with some false positives
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Figure 24: Dataset 4, SVD clustering showing positioning of the terrorist cluster
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Figure 25: Dataset 4, 504 objects correlated with the target
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Figure 26: Dataset 4, 504 objects greater than median distance from the origin
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Figure 27: Dataset 4, 84 objects greater than 1.3 times the median distance from the origin

0.1+

0.05 —|

u3
o
/

-0.05

-0.1

Ul

Figure 28: Dataset 4, 248 objects greater than median distance from the origin and correlated with
the target
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Figure 29: Dataset 4, 38 objects greater than 1.3 times the median distance from the origin and
correlated with the target. Once again some members of the terrorist group are not detected
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Figure 30: Dataset 4, position from SVD, color and shape from JSS. The terrorist cluster is
identified by the JSS hierarchical classification

26



Increasing the weight on the target does not necessarily improve performance. Beyond a certain
point, the target appears in a group by itself. Although the terrorist cluster remains in a close branch
of the hierarchical classification, it becomes harder to select it with confidence. For example, if the
target weight is increased to 4, the target and the terrorist group are similarly classified, but only
at level four of the classification tree.

Dataset 5. In the previous datasets (Datasets 3 and 4), the terrorist cluster was still distinguished
because it was the only cluster at the ‘third’ level. We now generate a dataset with 100 points,
normally distributed around 0 with variance 1. 100 clusters of 10 points are generated, normally
distributed with variance 1 around each of the original points, and 20 clusters of size 10 normally
distributed with variance 1 are generated around randomly chosen points in the second level. One
of these ‘third’ level clusters is chosen as the terrorist cluster and its center as the target.

The results for Dataset 5 are shown in Figures 31, 32, 33, 34, 35, 36, and 37. Techniques based
on SVD now find it difficult to detect the terrorist cluster, although using correlation and distance
from the origin is still able to reduce the pool of potential terrorists to 12% of the total if the target
is known.
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Figure 31: Dataset 5, SVD clustering showing positioning of the terrorist cluster

The JSS methodology remains strong, selecting the entire terrorist cluster and fewer than 10
other points (Figure 37).

In the dataset, the local environment of each of the second level cluster centers is the same and
we can choose any of them as possible terrorist clusters. On the other hand, the local environment
of all of the other points is quite different. Figure 38 shows the sizes of the sets of points correlated
with a particular point, when that point is a second-level cluster center (a possible target) and
when it is one of the other points.

Those points that are targets have neighborhoods that start out smaller and shrink more rapidly
than the neighborhoods of points that are not targets. The difference between the two types of
points is marked, even by the third round.
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Figure 32: Dataset 5, 655 objects correlated with the target
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Figure 33: Dataset 5, 599 objects greater than median distance from the origin

Dataset 6. In our experiments so far, the number of terrorists has been about 1% of the total
number of objects. This fraction is too large to be realistic, even if a substantial prescreening
process is applied before this kind of data mining is used.

Figure 39 shows the three-dimensional plot of a dataset with 5000 rows, normally distributed
around the origin with variance 1, with a 10-terrorist cluster normally distributed with variance 1
generated around one of the ordinary objects.

The results for Dataset 5 are shown in Figures 39, 40, 41, 42, 43, 44, and 45. The smaller
relative size of the terrorist cluster means that it has less effect on the remainder of the points,
and particularly on the target. However, a significant number of terrorist points are well outside
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Figure 34: Dataset 5, 196 objects greater than 1.3 times the median distance from the origin
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Figure 35: Dataset 5, 354 objects greater than median distance from the origin and correlated with
the target

the main cluster. As expected, discarding both points uncorrelated to the target and points close
to the origin leaves the same fraction of points, but this fraction is a larger number and it is
correspondingly harder to be sure of the location of the terrorist cluster. Aggressive winnowing
reduces the population to 264, 5% of the total population, but at the expense of missing three
terrorists.

Once again, the JSS classification correctly identifies the terrorist cluster, although with a larger
number of false positives.
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Figure 36: Dataset 5, 121 objects greater than 1.3 times the median distance from the origin and
correlated with the target

0.05 |

u3
*

-0.05 +

U1

Figure 37: Dataset 5, position from SVD, color and shape from JSS. The terrorist cluster is
identified by the JSS hierarchical classification

Dataset 7. Fact 2 suggests that sparseness in datasets will not cause difficulties for SVD. This
illustrates one of the strong properties of SVD — it is capable of detecting correlation even between
objects that have no (non-zero values of) attributes in common, via higher-order correlations.

The results for Dataset 7 (with 30% non-zeros) are shown in Figures 46, 47, 48, 49, 50, 51, and
52. Techniques based on SVD perform well in this setting, although they are all slightly weaker
than in the dense case.
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After Size of sets correlated with a point

round | that is a target | that is not a target

1 145 | 419 | 199 | 831 | 370 | 586 | 416
2 20| 27| 47 | 513 | 90 | 194 | 150
3 20 | 461 | 48 | 86 | 78
4 400 | 42| 56 | 65

Figure 38: Sizes of correlated sets after elimination of uncorrelated objects. Initial size of all sets
is 1200.
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Figure 39: Dataset 6, SVD clustering showing positioning of the terrorist cluster
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Figure 40: Dataset 6, 2251 objects correlated with the target
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Figure 41: Dataset 6, 2504 objects greater than median distance from the origin
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Figure 42: Dataset 6, 528 objects greater than 1.3 times the median distance from the origin
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Figure 43: Dataset 6, 1129 objects greater than median distance from the origin and correlated
with the target
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Figure 44: Dataset 6, 264 objects greater than 1.3 times the median distance from the origin and
correlated with the target
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Figure 45: Dataset 6, position from SVD, color and shape from JSS. The terrorist cluster is
identified by the JSS hierarchical classification
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Figure 46: Dataset 7, SVD clustering showing positioning of the terrorist cluster
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Figure 47: Dataset 7, 358 objects correlated with the target
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Figure 48: Dataset 7, 504 objects greater than median distance from the origin
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Figure 49: Dataset 7, 248 objects greater than 1.3 times the median distance from the origin
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Figure 50: Dataset 7, 205 objects greater than median distance from the origin and correlated with
the target
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Figure 51: Dataset 7, 96 objects greater than 1.3 times the median distance from the origin and
correlated with the target
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The classification from JSS does not perform as well as in the dense case. This is not entirely
surprising since SDD does not use correlation directly, and the use of indirect correlation in the
JSS methodology relies on a weaker result from SVD.
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Figure 52: Dataset 7, position from SVD, color and shape from JSS. The terrorist cluster is
identified by the JSS hierarchical classification

Dataset 8. We now show that similar effects hold for distributions other than the normal distri-
bution. The Poisson distribution with mean 1 generates many values close to 1, with the frequency
decreasing rapidly with magnitude. We build a dataset of a 1000 rows from this distribution,
subtracting A to make the values approximately zero mean as required by SVD.

The results for Dataset 8 are shown in Figures 53, 54, 55, 56, 57, 58, and 59. The results are
very similar to those obtained when the data was distributed normally — the terrorist cluster is
clearly distinguished in all cases, and the number of points correlated with the target and far from
the origin remain about the same. The JSS methodology classifies 7 of 10 terrorists in a group with
the target.

Dataset 9. Some settings have data that is binary in nature; each person did, or did not do some
action, or does or does not have some particular attribute. We show what happens when the data
are restricted to the binary case.

The results for Dataset 9 are shown in Figures 60, 61, 62, 63, 64, 65, and 66. Both SVD-based
techniques and the JSS methodology have difficulty in this case — not only are there a limited range
and values and hence a limited range of variability, but also the data is effectively sparse because
of the number of Os.

All of the winnowing techniques return about as many points as in the real-valued case but,
for the first time, one of the terrorist groups does not show up as a point further from the origin
than the median distance; and all but one of the terrorist group are eliminated when 1.3 times the
median is used as the threshold. On the other hand, this group contains only 15 objects so, in a
sense, it is still performing well.
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Figure 53: Dataset 8, SVD clustering showing positioning of the terrorist cluster
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Figure 54: Dataset 8, 465 objects correlated with the target
The JSS methodology is quite weak on this binary dataset. Although the terrorist group is still

similar to the terrorist, a large number of other points are also considered just as similar.
6.1 Summary

SVD performs well at separating terrorist clusters from ordinary objects over a wide range of dataset
types. However, the results of SVD require human analysis to detect such clusters. Although this
can be partly automated, for example by ranking points by their distance from the origin, this
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Figure 55: Dataset 8, 504 objects greater than median distance from the origin
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Figure 56: Dataset 8, 171 objects greater than 1.3 times the median distance from the origin

process loses the important directional information. Nevertheless, such a ranking could be used to
generate a threat score for downstream analysis.

The combination of SVD and SDD in the JSS methodology is the strongest of the analysis
techniques. It exploits SVD’s ability to detect correlation, but enhances it by using SDD’s ability
to detect regions of similar value in a correlation matrix. In general, the JSS methodology is better
at partitioning objects into groups, and at identifying the group or groups that is most closely
related to the target (when this is known).
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Figure 57: Dataset 8, 247 objects greater than median distance from the origin and correlated with
the target
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Figure 58: Dataset 8, 89 objects greater than 1.3 times the median distance from the origin and
correlated with the target

7 Conclusion

We have shown that two matrix decompositions, SVD and SDD, are able to detect small correlated
clusters, representing terrorists, against a variety of backgrounds representing degrees of innocent
correlation. In particular, their use in combination using the JSS methodology is able to identify
terrorist groups with very few false positives and no false negatives for terrorist groups as a whole.
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Figure 59: Dataset 8, position from SVD, color and shape from JSS. The terrorist cluster is
identified by the JSS hierarchical classification
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Figure 60: Dataset 9, SVD clustering showing positioning of the terrorist cluster

These techniques represent the front line of data mining for counterterrorism. They are not
strong enough to identify terrorists unambiguously, but they reduce the size of the problem for
downstream techniques, often reducing the size of the datasets that need to be considered by more
than 90%.
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Figure 61: Dataset 9, 478 objects correlated with the target

0.1+
0.08 —|
0.06 —|
0.04 —|
0.02 —|

u3
o
/

-0.02

-0.04 —

Ul

Figure 62: Dataset 9, 504 objects greater than median distance from the origin
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Figure 63: Dataset 9, 27 objects greater than 1.3 times the median distance from the origin. Now
only one terrorist is detected
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