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Abstract

Resource awareness is an important step towards the realization of reliable and ef-

fective communication systems, particularly in the context of mobile code. Since the

amount of consumption of computing resources (file system, threads, sockets, etc.) is

not monitored in most mobile execution environments such as in the Java language,

some kind of change to the security model seems indispensable.

It is the goal of this research to gain insight into a richer security model – one that

enables monitoring of resource consumption and ensures that allowable constraints

are met. Specifically, we extend an existing approach to monitoring and checking of

running Java programs to the enforcement of resource-aware policies. Specifically,

our work focusses on monitoring and controlling aspects of file system use.
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Chapter 1

Introduction

1.1 Motivation

As the use of bytecode as a medium of exchange becomes integrated into our daily

lives, our dependence on security increases. Electronic communication for the mili-

tary, business and the public at large depend on a protected technology infrastruc-

ture [Mar03].

Resource awareness in the context of mobile code is an important concept for

application security. Hosts that execute unknown foreign code have to control resource

consumption: the system has to account for resources consumed by mobile code

and prohibit allocations that exceed foreign code resource limits. This way, applet

attacks which may limit access to a program by legitimate users that are launched

by malicious (or buggy) segments of foreign code, are prevented [VB01].

The popularity of the Web has lead to more regular use of Java and other languages

that support mobility. Together with increased security threats posed by importing

more and more mobile code, this development has caused an emphasis on the security
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CHAPTER 1. INTRODUCTION 2

of executing Java applets [MS98]. Mobile code is risky: What might it do? What

if it is hostile? The naive user moves from one Web page to another, unaware that

Java applets and other forms of mobile code are included in Web pages, ready to be

executed on the page reader’s machine [Mar03].

How can users protect against possible resource-consuming attack? The Java

Virtual Machine (JVM), an abstract computing machine and execution environment

for the Java language, includes a bytecode verifier that checks bytecode properties

before execution and a bytecode interpreter that performs run-time tests [CMS01].

Despite the support for initial access control, the Java sandbox lacks control over the

extent to which a resource can be used. The sandbox model features a restrictive

environment in which to run untrusted code. Once access to a resource has been

granted to a piece of code, the code is free to use it to any extent. Therefore, control

is necessary to prevent resource-consuming attacks: control that imposes limits on

privileges and address the availability of resources. Otherwise, excessive amounts of

data could be written to disk for instance, denying other applications access to the

file system because the target system is overwhelmed. Many variants of this kind of

attack exist [HS02b].

A mechanism that monitors and controls resource usage is needed. In this work,

we develop a mechanism that monitors and controls aspects of Java file system re-

source usage. Our approach relies on a portable transformation technique applied

directly to executable Java bytecode; we demonstrate that it is possible to use run-

time monitoring to enforce resource-aware policies.
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1.2 Problem and Approach

While the Java Virtual Machine includes a bytecode verifier that checks bytecode

programs before execution, and a bytecode interpreter that performs tests at run-

time, mobile code may still behave in ways that are harmful to users [CMS01]. Java’s

security architecture is known for not taking resource availability into account. More

precisely, Java lacks the ability to monitor the extent of resource (file system, threads,

sockets, etc.) use during a program’s execution [HS02b].

This thesis intends to provide a mechanism for monitoring resource consumption of

mobile programs. Our work develops a tool for monitoring and checking mobile code

in a flexible, extensible and fine-grained manner. Firstly, we provide a mechanism

to create flexible and configurable resource-aware policies for mobile code, by means

of our extensions of MaC, a run-time monitoring and checking tool. In addition,

we monitor resource requirements described in a formal language. This enables the

user to customize his or her version of personally designed security policies to place

constraints on how an applet uses system resources.

1.3 Objective

The goal of this research is to examine the application of run-time monitoring to

the enforcement of resource-aware policies. Specifically, we will be looking at how

to produce a resource controlled system that could safely execute untrusted Java

bytecode. Our work focuses on aspects of file system resources.

To leverage existing work, we chose to extend a tool called Monitoring and Check-

ing (MaC), which monitors a running system and checks its run-time behaviour
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against a formal requirement specification. In its original form, MaC provides a

framework that offers fine-grained control over policy enforcement, simple composi-

tion of policy specification, and a flexible mechanism for user customization, in a Java

run-time environment. We extend MaC to allow it to enforce resource-aware security

policies. Our extension focusses on aspects of file system resources.

1.4 Contributions

This thesis makes the following contributions:

1. We designed and implemented an extension of MaC to specify and enforce a

class of resource-aware security policies

2. Our work adds the following functionalities to MaC:

- Ability to monitor Java API methods

- Ability to communicate method arguments

- Ability to communicate Strings

- Ability to use sets in MEDL (the requirements specification language of

MaC)

- Perform set operations add, emptySet, size, and print

3. We evaluated our work on several small examples

Note that the extensions listed in 2. are useful using MaC for run-time monitoring

in general – even when security or resource usage is not of concern.
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1.5 Organization of Thesis

The organization of this thesis is as follows:

• Chapter 1: This chapter provides the introduction of the thesis.

• Chapter 2: We will provide background in the area of Java Security and provide

a review of the literature of existing work on methods to enforce resource control

in Java environments.

• Chapter 3: We will present a tool called Monitoring and Checking (MaC), which

monitors a running system and checks its run-time behaviour against a formal

requirement specification. In our work, we extend MaC to provide a mechanism

that monitors and checks aspects of file resource consumption of applets.

• Chapter 4: This chapter is the main section of this thesis. We will describe

our extensions to the MaC tool necessary for monitoring file system use. We

provide examples and implementation details and describe the limitations.

• Chapter 5: We will provide some small examples of resource-aware policies that

were not possible before, but can now be specified and enforced with MaC,

using the extensions this thesis has contributed.

• Chapter 6: This is the concluding chapter of the thesis. In this chapter, the

thesis is summarized and areas of future work are discussed.

We also provide appendices to complement the material presented in the chapters

of this thesis:
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• Appendix A,B: We provide the grammar in Backus-Naur Form (BNF) for the

Primitive Event Declaration Language (PEDL) and Meta-Event Declaration

Language (MEDL) specifications, respectively. PEDL and MEDL are used by

MaC to express the constraints that are to be enforced on the monitored system.

PEDL and MEDL consist of the monitor and requirements specifications of the

MaC language, respectively.



Chapter 2

Background

In this chapter, we review the Java security architecture and arrive at an understand-

ing of what security is provided by the architecture that addresses resource control.

This understanding is the foundation for our proposed solution for secure resource

control given in Chapter 4. In Chapter 4 we present our extensions to a tool called

Monitoring and Checking (MaC), which monitors a running system and checks its

run-time behaviour against a formal requirement specification. Our extension allows

MaC to enforce a limited class of resource-aware security policies.

The purpose of Section 2.1 is to provide a high-level introduction to Java security.

Section 2.1.1 to Section 2.1.4 delve into deeper details: Section 2.1.1 provides some

background on the existing Java permission syntax and enforcement, which helps to

understand the necessity of extending the resource security features of Java. Section

2.1.2 explains Java’s use of its core class library (API). Section 2.1.3 extends the

discussion of the Java API in context of the Java Security Manager. Section 2.1.4

discusses the security restrictions and capabilities most applets face. Section 2.1.5

concludes our introduction to Java security.

7
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Section 2.2 reviews existing work on methods to enforce resource control in Java

environments. We describe the goals of these methods and the approaches these

methods have taken. Prevailing approaches fall under one of three main categories:

Section 2.2.1 to Section 2.2.3 concern approaches that involve modifying the JVM,

extending Java native and system code, and program transformations, respectively.

Section 2.2.4 concludes our review of the literature. In this section we also briefly

introduce how the development of MaC could provide better security than the current

Java run-time execution environment affords. This can be achieved by monitoring

resource consumption and assurance that allowable constraints are met. Our re-

search extends the assurance the run-time monitoring tool MaC brings with resource-

awareness, to prevent the risk of a particular class of resource-consuming attacks.

2.1 Introduction to Java Security

Since its birth in the early 1970s as a 12-node network called the ARPANET, the

Internet has expanded into a network that forms an important part of the world’s

information infrastructure. Initially, the Internet was almost completely text-based:

It was used to transfer files and to communicate via email. Further developments

made it possible to send mobile code across the Net. Mobile code is based on the idea

of sending code to a remote computer to be executed. Now, all current Web browsers

include the capability of running mobile code automatically [MF99].

Java brings the ability to add mobile code to Web pages, independent of the

client’s platform [CMS01]. McGraw and Felten explain the way Java works in this

context: The administrator must first install a Java Virtual Machine (JVM), or a

browser that includes a JVM [MF99]. Then, a requesting Web browser (1) fetches
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the code from the Web, (2) automatically verifies it before the code is run, and (3)

performs additional tests at run-time.

A fundamental concern lies in the fact that Java code is automatically downloaded

across the network and runs on the client’s machine. This means that a networked

computer can import and execute Java mobile code (bytecode) in ways that are

invisible or only partly visible to the user. For example, a user (or browser) may

execute a Java program embedded within a Web page. This mobile code that traverses

a network and executes at a remote site can behave in ways that are annoying,

erroneous, and/or potentially harmful – and it runs in the same environment as all

of the machine’s resources [MS98, CMS01].

Any mobile code platform, including Java, suffers from four basic categories of

mobile code risks: leakage, tampering, resource stealing, and antagonism ??.

Leakage

In this case, unauthorized access is attempted, to obtain information belonging to

or intended for someone else.

Tampering

Unauthorized change or deletion of information is called tampering.

Resource Stealing

This occurs when there is unauthorized use of computing resources or facilities such

as memory or disk space.

Antagonism
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These are interactions that don’t result in a gain for the intruder, but are annoying

for the attacked party.

To deal with these threats, the Java run-time environment provides a security model

that tries to protect users from erroneous or malicious code.

Java provides fairly good levels of protection against leakage and tampering, but

resource stealing and antagonism cannot be fully prevented since it is difficult to

distinguish between legitimate and malicious actions [Ais03]. Attacks that prevent

someone from using his or her machine are called denial-of-service attacks in the

security community. McGraw and Felten explain that denial-of-service attacks are by

far the most commonly encountered Java Security concern and go on to say:

“Implementing such an attack is not hard, but stopping one is” [MF99].

Denial-of-service attacks can come in many different forms. For instance, a brute-

force attack may simply attempt to use all available resources. A more sophisticated

attack may be based on legitimate, but taxing use of resources. Unfortunately, Java’s

security architecture does not take resource consumption into account.

2.1.1 Existing Permission Syntax and Enforcement

The Java Security model implements a “sandbox” that imposes strict controls over

what a Java program can and cannot do. The sandbox model features a restrictive

environment in which to run untrusted code. These controls are based on a policy

and an enforcement mechanism [HS02b].

Herzog and Shahmehri explain existing Java permissions, their syntax, and the

existing enforcement mechanism [HS02b]. A policy consists of a sets of permissions.
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keystore "file:/home/user/michael/.keystore/";

grant signedBy "Kathryn" {

permission java.security.AllPermission;

};

grant signedBy "Andrew", codeBase "file:/sw/li/tool.jar" {

permission java.io.FilePermission "/tmp/a", "read";

}

grant codeBase "file:/sw/lib/app.jar" {

permission java.io.FilePermission "/tmp/b", "read";

};

Table 2.1: Example Policy File

permissions java.io.FilePermission(“/tmp/myLogFile”,“read,write,execute,delete”)

Table 2.2: Example File Permission Syntax

A set of permissions is assigned to a given code base and/or a signer. Consider, for

instance, the example policy file given in Table 2.1. It contains the policy of a user

called Michael. As illustrated in Table 2.1, Michael trusts code that was signed by

Kathryn with full permissions. Michael allows Andrew’s tools only to read the file

/tmp/a. Code in the Java archive (Jar) file app.jar is only allowed to read from

/tmp/b [HS02b].

A Java permission is identified by its class name, a target string, and an action

string. The example file permission syntax given in Table 2.2 illustrates how file

permissions are identified by their class name java.io.FilePermission. The target

string in a Java permission identifies the file(s) to which the permission applies, and

the action string denotes which actions are allowed for the given file(s) [HS02b].

The policy is enforced by Java’s Security Manager. The Security Manager is a

single Java object that performs run-time checks on security-sensitive methods. The

Java core classes (API) provide all calls necessary to interface with operating system
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resources. Whenever a dangerous call is made to the Java library, the library queries

the Security Manager [HS02b].

The Java library’s use of the Security Manager works as follows [Her02]:

1. A Java program makes a call to a potentially security-sensitive operation in the

Java API.

2. The Java API code asks the Security Manager whether the operation should be

allowed. Permissions are checked against the rules specified in the policy file.

A key question is how the Security Manager decides whether access to a

resource is granted. To decide whether access to a resource is granted, a stack

inspection algorithm and a security policy are used. The algorithm searches

stack frames on the caller’s stack in order from newest to oldest. If the search

finds a stack frame with the appropriate enabled-privilege annotation, it termi-

nates, allowing access. If the search finds a stack frame that is forbidden from

accessing the target by local policy, or has explicitly disabled its privileges, the

search terminates, forbidding access [MF99].

3. The Security Manager throws a SecurityException back to the Java API if the

operation is denied. This exception propagates back to the Java program.

4. If the operation is permitted, the call to the Security Manager returns without

throwing an exception, and the Java API performs the requested dangerous

operation and returns normally.
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2.1.2 Java API

Java applications use the Java Application Program Interface (API) of the Java De-

velopment Kit (JDK) [Yak02]. Java applications access system resources (such as

I/O, for example) by calling methods in the classes that implement the Java API. In

addition, the Java API contains numerous native methods, that is, methods that are

written in a different language than Java. Native methods can be used to provide

Java programs with direct access to the resources of the underlying operating system.

JDK classes are tightly interwoven with these native methods [Yak02]. These de-

pendencies, which are not well documented, have to be respected in order to preserve

the integrity of the Java platform. For instance, it is important that the structure of

the call stack, when a native JDK method is invoked, remains intact. It is therefore

very difficult to change the JDK classes without violating these dependencies. Con-

sequently, the opportunities to enforce security constraints by changing the Java API

are very limited.

2.1.3 Security Manager and the Java API

The Security Manager defines the outer boundaries of the “sandbox”. The sandbox

model features a restrictive environment in which to run untrusted code. A Security

Manager is any class that descends from class java.lang.SecurityManager. The

Security Manager is customizable. The Java API enforces the custom security policy

by asking the Security Manager for permission to take any action, before it fulfills

requested activity on a system resource [Ven97].

For each security-sensitive operation, there is a method in the Security Manager

that defines whether or not that action is allowed by the sandbox. Each such method’s
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name starts with “check”, so for example checkRead() defines whether or not a thread

is allowed to read from a specified file, and checkWrite() defines whether or not a

thread is allowed to write to a specified file. The implementation of these methods is

what defines the custom security policy of the application [Ven97].

Note that only Java applications are considered “trusted” and can install a custom

Security Manager. By default, a Java application has no Security Manager. It can

choose to install one. However, for security reasons Java applets that are loaded

over the network cannot install a new Security Manager. Applets are subject to the

Security Manager of the application (Web browser or appletviewer) in which they are

running [CW96].

2.1.4 Applet Restrictions and Capabilities

Campione and Walrath [CW96] describe the security restrictions and capabilities of

applets. Applet restrictions include:

1. An applet cannot load libraries or define native methods.

2. An applet cannot read or write files on the host that is executing it.

3. An applet cannot make network connections except to the host that it came

from.

4. An applet cannot start any program on the host that is executing it.

5. An applet cannot read the system properties: user.name, user.home, user.dir,

java.home, and java.class.path.
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6. Windows that an applet brings up look different than windows that an appli-

cation brings up.

Besides the obvious feature that applets can be loaded over the network, applets

also have the following capabilities:

1. An applet can play sounds.

2. An applet running within a Web browser can cause HTML documents to be

displayed and control in which browser window(s).

3. An applet can invoke public methods of other applets on the same page.

4. An applet that is loaded from the local file system (from a directory in the

user’s classpath) have none of the restrictions that an applet loaded over the

network does. This is because applets that are in the user’s classpath become

part of the application when they are loaded.

5. Although most applets stop running once their page is left, they do not have to.

Java does not require that applets implement the stop() method (if necessary)

to stop any processing when the user leaves the applet’s page.

In short, applets that are loaded over the network come from a possible unknown

source with unknown proper functioning, and run in the same environment as the

client’s computer system resources. Most applets “should” not abuse their use of

computing resources, but it is not outside their capabilities [CW96].
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2.1.5 Conclusion

Despite the support for initial access control, the Java sandbox does not allow control

over the extent to which a resource can be used. The policy for a Java application

environment, specifying which permissions are available for code from various sources,

only defines rules for actions particular pieces of code are allowed to perform. Access

is granted or forbidden without further qualifications. In other words, once access

to a resource has been granted to a piece of code, the code is free to use it to any

extent. For example, with permission granted to write in directory /tmp, there is no

control over, for instance, how many bytes are written or how many files are created.

Malicious or otherwise malformed code could exceed its allotment of resource use and

make system resources unavailable.

Secondly, the JDK classes do not lend themselves easily to instrumentation. The

tight interweaving of JDK classes causes subtle complications for the rewriting of

JDK classes. Unfortunately, monitoring the use of the Java API is necessary for an

accurate awareness of resource utilization.

Lastly, applet restrictions and capabilities motivate the need for run-time moni-

toring of resource consumption. By default, applets are subject to strict restrictions

of their access to system resources. Security policies can be customized somewhat

using the policy files read by the Security Manager. However, creation of more fine-

grained policies is difficult and error-prone because it requires the modification of the

checking routines. Our extension of run-time monitoring and checking will allow for

the easy creation and enforcement of fine-grained, abstract security policies.
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2.2 Review of the Literature

The focus of this review of the literature is on previous work that has been done

to bring resource awareness to Java. Prevailing approaches rely either on modifying

the JVM, extending Java native and system code, or on program transformations

[HK02].

2.2.1 Modifying the JVM

Approaches that modify the JVM offer a replacement for the standard Java run-time

system environment. NOMADS is a mobile agent system, based on a modified JVM

that supports resource control [SBB+00]. The NOMADS environment is composed of

two parts: an agent execution environment called Oasis and a new Java compatible

Virtual Machine called Aroma.

Unfortunately, since NOMADS is based on a modified JVM, its portability is

limited. Also, the configurability of this approach is questionable: NOMADS is based

on a set of standard Java security policies and mechanisms, and as such is not easily

amenable to user customization [VB01, SBB+00].

2.2.2 Extending Java Native and System Code

Extending Java with resource management support involves the modification of Java

system and/or native code libraries. Both require expression in a given program-

ming language. Furthermore, modification of Java native code libraries is inherently

different from language run-time system customization: Java API classes are tightly

interwoven with native code of the Java run-time system. Dependencies between Java
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native and system code are not well documented [Yak02].

JRes [CvE98]

JRes is a resource control library for Java, introduced by Czajkowski and von

Eicken [CvE98]. The JRes prototype is implemented on top of standard JVMs and

requires a small amount of native code.

JRes allows accounting for CPU time, heap memory, and network resources. The

basic idea is to add resource accounting and limiting facilities to Java, as a class

library that replaces other core Java classes by bytecode rewriting. JRes introduces

a Resource Manager class that co-exists with the Java class loader and the Security

Manager [Yak02].

Accounting for CPU time relies on a mixture of bytecode rewriting and native

code. During thread registration, a native code routine is invoked to create a new

thread handle. The new handle is rewritten to query the operating system for CPU

consumption [CvE98].

The goal of memory accounting is to know at any point in a program’s execution,

how much memory is used. Appropriate bytecode is inserted whenever an object

allocating instruction occurs in the original method code. Further, methods which

allocate memory will change during bytecode transformation: JRes needs the support

of a native method to account for memory occupied by array objects [CvE98].

To achieve accounting for network resources, a new java.net package is inserted.

The java.net package comprises the core classes Java uses to access the network

directly [CvE98].

JRes extends Java with an interface that is flexible to allow resource consumption

policies to be built. It motivates the incorporation of a resource management interface
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into the language specification of Java. However, JRes is not easy to use. It requires

transformation of native code, which in itself requires knowledge and skill in Java and

manipulation of its core class libraries [CvE98]. Furthermore, with the introduction

of a resource manager class into the existing security architecture, there are a number

of restrictions on what it can do [Yak02].

Herzog and Shahmehri [HS02b]

Herzog and Shahmehri implement resource control by extending the existing Java

permission syntax for stating policies [HS02b]. Recall, a Java permission is identified

by its class name, a target string, and an action string. The target string in a

Java permission identifies the file(s) to which the permission applies. In the work of

Herzog and Shahmehri, the action string denotes which actions are allowed for the

given file(s). The target string can be extended with a target-specific resource limit

< target > [:< global target limit >]

that restricts access to the resource as a whole. The action string, if present, can

receive an action-specific resource limit:

< action > [:< action limit >] .

For handling purposes, an abstract permission class is built that extends

java.security.Permission .

With this approach, the abstract class which originally defined the set of standard

permissions for accessing a system resource, can then be subclassed for specific per-

missions [HS02b].



CHAPTER 2. BACKGROUND 20

This work provides integration of resource control into the existing Java security

architecture. This contributes to a clear design of the security framework. The

disadvantage of this solution is that it adds complexity to the already complex Java

security architecture. Extension of the target and action strings allow target- and

action-specific resource limits to be appended onto the existing permission syntax.

In addition, ways of achieving this solution require modification of the Java virtual

machine (JVM) or automatic class modification at run-time. This work is only a

proof-of-concept. In order to work with it, ways must be found to force the use of its

resource-aware classes [HS02b].

Mehta and Sollins [MS98]

Mehta and Sollins expanded the security features of Java by modifying the Security

Manager, rather than the JVM or the system classes [MS98]. In this work, they built

a constraint language to describe more complex permission constraints within the

scopes of the sandbox model. In addition, logging facilities were added to the Java

security architecture. A log is maintained to keep track of the actions by applets.

The Security Manager was extended through modification of several checkX meth-

ods. Originally, checkX methods were used when the applet’s Security Manager was

questioned by the Java system classes upon request for access to a system resource.

In this work, when one of the Security Manager’s checkX methods is called, it uses

the rules and the logs to determine whether the permission is granted.

This approach introduces a policy language that allows specification of constraints

to go beyond the simple sandbox model of identity and actions, by means of logging

facilities that track applets as file owners and their accesses. The disadvantage in this

approach is that it requires the user to know how to modify the Security Manager.
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Several checkX methods in the applet Security Manager must be modified, because

these methods are used to check access and their activity must be logged [MS98].

2.2.3 Program Transformations

Approaches that rely on program transformation perform bytecode transformation:

Executable code is rewritten by inserting additional code [Yak02].

J-RAF [Yak02]

The Java Resource Accounting Framework (J-RAF) is exclusively based on program

transformation [HK02, Yak02]. A resource control layer is added to the bytecode

of Java programs. In this approach, the bytecode of applications is rewritten in

order to make their CPU and memory consumption explicit. Programs rewritten

with J-RAF keep track of the number of executed bytecode instructions and update

a memory account interface that accounts for the size, in bytes, of the classes loaded

and instantiated objects created by the application.

J-RAF understands that rewriting the bytecode of an application is not sufficient

to account for and control its resource consumption, because Java applications use

the APIs of the Java Development Kit (JDK). Because native code may invoke Java

methods and J-RAF does not modify native code, this approach adds wrapper meth-

ods which access the account objects associated with each thread, and passes them

to the resource-aware methods that take these account objects as extra arguments.

However, significant complexity is added to the rewritten API class. Usage monitor-

ing and resource control instructions are inserted into the code, increasing the size of

the code by about 80% for the different JDKs [Yak02].
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Chander, Michell, and Shin [CMS01]

Chander, Mitchell, and Shin introduce bytecode instrumentation to monitor and

control resource usage [CMS01]. New, safe classes are substituted to replace the

original Java classes before bytecode execution. Their technique is performed as

follows:

1. Identify the Java API classes which control the resource the user is interested

in monitoring.

2. Subclass these API classes to create a safe version of the original class, which

contains user defined checks.

3. Invoke the bytecode filter on the original API class, so that all references to the

original class are replaced with references to the new (safe) subclass.

Handling final classes requires bytecode modification at the method-level, but follows

a similar approach [HS02b].

Their system captures and modifies Java bytecode before it enters the browser by

means of a piece of software called a “network proxy”. When a Web server sends a

Java applet, the proxy will pass the applet code to a bytecode filter. The bytecode

filter will examine the bytecode for potential risks, and modify the bytecode before

sending it for execution to the Web browser. The proxy also has access to a repository

of Java classes, including safe library classes that can be substituted for original library

classes, if need be. Safe library classes restrict resource usage and functionality.

Unfortunately, the technique provided by Chander, Mitchell, and Shin [CMS01] is

restricted to a standard definition of resource constraints. Alternatively, a “security-

tuner” interface can be installed, that allows the user to customize their security
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constraints. The portability of this alternative is limited.

JPaX [Hs01]

Close in spirit with our work with MaC, Havelund and Roşu present Java PathEx-

plorer (JPaX), a runtime verification system for monitoring Java programs [Hs01].

This tool facilitates automatic instrumentation of a program’s bytecode, which will

emit events to an observer during its execution, who will then check the events against

user provided high-level requirement specifications.

Inspired by the MaC language framework, specification is split into an instrumen-

tation script and a verification script. JPaX monitors the execution of temporal logic

formulae, checking events against high-level requirement specifications, and error pat-

tern analysis of deadlocks and data races, searching for low-level programming errors

[Hs01].

This project mainly focuses on application to survey safety-critical systems. In an

example analysis provided only integer variables are accepted by their specification

language. Furthermore, no examples of policy statements are provided [Hs01].

2.2.4 Conclusion

Proposed solutions for resource control in Java rely either on a modified JVM, on

extending Java native and system code, or on program transformations. Approaches

that modify the JVM have limited portability. Extending the Java system and native

code comes at a price of lower ease-of-use, flexibility, and configurability, because each

requires knowledge of a given programming language. Existing approaches that use

program transformations lack capability for application to monitor aspects of resource

use and/or provide no example of their policy expression.
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In Chapter 3, we present the development of Monitoring and Checking (MaC), a

tool for monitoring systems and checking their run-time behaviour against a formal

requirement specification at run-time. The requirement specification is unambigu-

ously described in a formal language, defined for monitoring and checking purposes.

The availability of a monitoring component to protect against possible resource-

consuming attacks should be considered crucial for any mobile code environment, in

order to observe the behaviour of foreign code at run-time and to enforce user-defined

policies for resource usage of mobile code.
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Overview of the Monitoring and

Checking (MaC) Architecture

This chapter introduces the Monitoring and Checking (MaC) architecture, a frame-

work that provides assurance on the correctness of program execution at run-time [Kim99].

Section 3.1 provides a brief introduction to MaC. Section 3.2 introduces the bytecode

instrumentation tool that MaC uses. Section 3.3 gives an overview of the MaC archi-

tecture. Section 3.4 presents the monitoring and requirement specification languages

of the MaC architecture. Section 3.5 summarizes this chapter’s overview of MaC.

Section 3.6 will clarify our choice of the MaC approach as the framework we will

extend to enforce resource-aware policies.

3.1 Introduction to MaC

The MaC system was developed by the Real-Time systems Group (RTG) at the

University of Pennsylvania, to provide a run-time formal analysis architecture. The

25
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approach is based on a framework of monitoring and checking a running system with

the aim of ensuring that it is running correctly with respect to a formal specifica-

tion of system requirements. The MaC approach involves instrumentation of a target

program’s executable codes (bytecodes), and checks the implementation against re-

quirements at run-time [Kim99, KKLS01].

3.2 Bytecode Instrumentation

The Java bytecode instrumentation is performed using the JTrek bytecode engineering

tool developed at Compaq [Hs01]. JTrek makes it possible to write Java applications

that examine and modify Java class files. The MaC tool represents a requirement

specification as an abstract syntax tree [Hs02a]. JTrek traverses the Java class files

to be monitored. Instrumentation inserts new code. The inserted code can access

the contents of various run-time data structures, such as the run-time and local

variable stacks, and will, when eventually executed, emit events carrying the extracted

information to the observer [atUoP, Hs01].

There are two steps to the instrumentation process:

1. First, the JTrek-based application is run to instrument the target program.

2. Next, the target program is executed to allow the instrumented code to generate

the desired log of run-time activity.
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Figure 3.1: Overview of the MaC Architecture

3.3 Overview of the MaC Architecture

The structure of the architecture is shown in Figure 3.1. The architecture involves

two main divisions: Static phase and Run-time phase. Given a target program and a

formal requirement specification, the static phase (which occurs before a program is

run) involves the automatic generation of run-time components including a Filter, an

Event Recognizer, and a Run-time Checker. The run-time phase (which occurs during

the execution of a target program), involves the collection of information of the target

program execution and its check against a formal requirement specification [Kim99].
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3.3.1 Static Phase of the MaC Architecture

Run-time components of MaC are generated from PEDL and MEDL specifications in

the static phase [Kim99]. MaC has three static phase components: an instrumentor,

a PEDL compiler, and a MEDL compiler.

A MaC instrumentor takes a Java bytecode (*.class) and instrumentation infor-

mation (instrumentation.out) containing a list of monitored variables/methods and

monitoring flags in the PEDL specification [Kim99]. Based on these two inputs, the

MaC instrumentor inserts a monitor (Filter) into the target bytecode. A PEDL com-

piler compiles a PEDL specification into an abstract syntax tree (AST) (pedl.out),

which is evaluated by an Event Recognizer at run-time. At the same time, a PEDL

compiler generates instrumentation information (instrumentation.out) which is

used by the instrumentor. Similarly, a MEDL compiler compiles a MEDL specifica-

tion into an AST (medl.out), which is evaluated by a Run-time Checker at run-time.

Note that MaC uses JavaCC and JJTree to compile its PEDL and MEDL speci-

fications. JavaCC is an environment for writing parsers and for generating and ma-

nipulating abstract syntax trees (AST) [Mic02]. JJTree is a preprocessor for JavaCC,

that inserts parse tree building actions at various places in the JavaCC source. The

output of JJTree is run through JavaCC to create the parser. JJTree provides ac-

cess to the parse tree nodes from within grammar actions: push, pop and otherwise

manipulate parse tree contents however appropriate.

Run-time components of the MaC architecture are generated automatically from

a target program and a formal requirement specification [Kim99]. The MaC run-time

components consist of:

• an instrumented target program, called Filter
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• a low-level activity (PEDL) monitor, called Event Recognizer

• a high-level activity (MEDL) monitor, called Run-time Checker

Separation of the low-level requirement specification from the high-level require-

ment specification offers one significant advantage: This separation provides a descrip-

tion of high-level requirement specification by abstracting out the implementation

specific details [Kim99]. A user need not know, interact with, or even worry about

low-level details of the implementation language in order to write a specification for

requirements of the system.

3.3.2 Run-time Phase of the MaC Architecture

The run-time phase of the MaC architecture consists of three components: a Filter,

an Event Recognizer, and a Run-time Checker. At run-time, low-level information

of the instrumented target program execution is extracted and reported to the Event

Recognizer. Based on the values of the monitored entities it receives from the Filter,

the Event Recognizer detects the occurrence of events according to a low-level speci-

fication written in PEDL, and sends them to the Run-time Checker. The Run-time

Checker then checks the correctness of the target program execution according to a

high-level requirement specification written in MEDL, based on the information of

events it receives from the Event Recognizer [Kim99].

3.4 The MaC Languages

The MaC languages consist of Primitive Event Declaration Language (PEDL) and

Meta-Event Declaration Language (MEDL). PEDL describes what to monitor in the
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<C> ::= c | defined( <C> ) | [ <E> , <E> )

| ! <C> | <C> && <C> | <C> || <C>

| <C> => <C>

<E> ::= e | start( <C> ) | end( <C> )

| <E> && <E> | <E> || <E>

| <E> when <C>

Table 3.1: The Syntax of Conditions and Events

target program and is used to generate the Event Recognizer. MEDL describes the

requirements that the target program must satisfy and is used to generate the Run-

time Checker [Kim99].

3.4.1 Primitive Event Declaration Language (PEDL)

The design of PEDL is based on low-level (implementation-specific) details to describe

what to monitor in the target program. Declarations of monitored entities are by

necessity, specific to the implementation language of the target system. Furthermore,

the name of the language reflects the fact that PEDL specifications are limited to

primitive entities. PEDL is based on a logic for events and conditions similar to

that of interval past-time Linear Temporal Logic (LTL). The models for this logic

are sequences of states. Each state has a description of the truth values of primitive

conditions and occurrences of primitive events. The syntax of conditions and events

is given in Table 3.1 [Kim99, KKLS01].

The condition defined(c) is true whenever the condition c has a well-defined

value, namely true or false. There are some events associated with conditions, namely

the instant when the condition becomes true (start(c)), and the instant when the

condition becomes false (end(c)). Also, any pair of events e1 and e2, define an

interval of time and form a condition [e1,e2) that is true from event e1 until event
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e2. Finally, the event (e when c) is present if e occurs at a time when condition c is

true [KKLS01].

Defining Events

The primitive events in PEDL correspond to updates of monitored variables and

invocations/returns of monitored methods [Kim99]. The event update(x) is triggered

when variable x is assigned a value. The value associated with this event is the new

value of x. Events startM(f) and endM(f) are triggered when control enters method

f and returns from f, respectively. For example,

event OpenGate = startM(Control.open())

defines an event to be triggered as soon as a controller starts to open a gate.

All operations on events defined in the logic can be used to construct more com-

plex events from these primitive events [Kim99]. Events have associated with them

attribute values. These can be accessed using the attribute value.

Value

value(e,i) gives the ith value in the tuple of values associated with primitive event

e, provided e occurs [Kim99]. Values of primitive events are defined as follows:

• A value of update(var) is a tuple containing the current value of variable var.

• Values of method events start(method) and end(method) have not been im-

plemented in the original version of MaC
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3.4.2 Meta Event Declaration Language (MEDL)

The goal of a MEDL script is to provide a high-level requirement specification, by

abstracting out implementation specific details. Like PEDL, MEDL is also based on

logic for events and conditions: Primitive events and conditions in MEDL specifica-

tions are imported from PEDL specifications. More complex events and conditions

are then built up using various connectives. The correctness of the system is described

in terms of safety properties and alarms.

Past-time LTL is especially useful for safety properties. Havelund and Roşu ex-

plain,

“These properties are very suitable for logic-based monitoring because

they only refer to the past, and hence their value is always either true or

false in any state along the trace” [Hs01].

The overall structure of a MEDL specification is given in Table 3.2 [Kim99, KKLS01].

A MEDL specification consists of five sections [Kim99]:

• the import section declares a list of events and conditions to be imported from

an event recognizer.

• the auxiliary variable declaration section declares a list of auxiliary variables.

• the event and condition definition section defines events and conditions based

on the imported events and conditions and auxiliary variables.

• the property and violation definition section defines safety properties and vio-

lations.
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ReqSpec name_of_requirement_script

/* Import section */

import event e; // imported event declarations

import condition c; // imported condition declarations

/* Auxiliary variable declaration section */

var int x; // auxiliary variable declarations

/* Event and condition definition section */

event e2 = ...; // event definition

condition c2 = ...; // condition definition

/* Property and violation definition section */

property c3 = ...; // safety property definition

alarm e3 = ...; // violation definition

/* Auxiliary variable update section */

e -> { x‘ := ... ; } // auxiliary variable update

End

Table 3.2: Structure of a MEDL Specification
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• the auxiliary variable update section defines rules for how and when auxiliary

variables are updated.

3.4.3 Example

In this subsection, we illustrate the use of PEDL and MEDL using a simple but

representative example [Kim99]. The example is inspired by the railroad crossing

problem, which is routinely used as an illustration of real-time formalisms. The

system is composed of a gate, trains, and a controller. The gate opens and closes.

The trains pass through the crossing. The controller is responsible for closing the

gate when a train approaches the crossing and opening it after it was passed.
The following code shows a fragment of the gate controller implemented as a Java

class.

public class Control {

public static final int GATE_UP = 0;

public static final int GATE_DOWN = 1;

public static final int IN_TRANSIT = 2;

int gatePosition;

public void open() {...}

public void close() {...}

...

}

In this example, we monitor the controller of the gate, using the requirement that the

gate is down within 30 seconds after event CloseGate is sent, unless event OpenGate

is sent before the time elapses.

Figure 3.2 shows the PEDL specification for the railroad crossing example. This

PEDL specification declares two methods in the target program for monitoring: meth-

ods open() and close() of the Control class. In addition, two variables in the

target program are declared for monitoring: integers gatePosition and GATE_DOWN
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MonScr RailRoadCrossing

export event OpenGate, CloseGate;

export condition Gate_Down;

monmeth void Control.open();

monmeth void Control.close();

monobj int Control.gatePosition;

monobj int Control.GATE_DOWN;

event OpenGate = startM(Control.open());

event CloseGate = startM(Control.close());

condition Gate_Down = (Control.gatePosition == Control.GATE_DOWN);

End

Figure 3.2: Excerpt of the PEDL Specification for the Gate Controller

of the Control class. Next, the PEDL specification introduces the high-level events

OpenGate and CloseGate, as well as condition Gate_Down. Event OpenGate will be

raised when the open() method of the Control class is invoked. Event CloseGate

will be raised when the close() method of the Control class is invoked. Condition

Gate_Down is true as long as monitored variable gatePosition of the Control class

is equal to the monitored variable GATE_DOWN of the Control class.

The correctness requirement for the gate is given in Figure 3.3. The MEDL

specification uses the events and condition imported from the PEDL specification.

Next, two auxiliary variables are declared: lastClose and currentTime. A safety

property GateClosing states that if there was a CloseGate event at the time when

the gate was not down, which was not followed by either event OpenGate or condition

Gate_Down becoming true, then the time allotted for gate closing has not elapsed yet.
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ReqScr SafeCrossing

import event OpenGate, CloseGate;

import condition Gate_Down;

var float lastClose;

var float currentTime;

property GateClosing =

[ CloseGate when !Gate_Down,

OpenGate || start(Gate_Down) ) => lastClose+30 > currentTime;

CloseGate -> {

lastClose‘ = time(CloseGate);

}

End

Figure 3.3: Excerpt of the MEDL Specification for the Gate Controller

The time of the last occurrence of event CloseGate is recorded by auxiliary variable

lastClose.

3.5 Summary

MaC offers a run-time framework that provides necessary assurance of software sys-

tems in a real-time environment [Kim99]. Formal monitoring and requirement speci-

fication languages (PEDL and MEDL) describe properties based on instantaneous

events and continuous conditions. PEDL is based on low-level (implementation-

specific) details to describe what to monitor in the target program. It is defined to
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describe primitive events in terms of program entities such as method calls and vari-

ables. The MaC architecture uses an approach that separates monitoring program-

dependent, low-level activities from checking high-level activities. High-level activi-

ties, which are mapped from the low-level activities, are checked according to high-

level requirement specification provided by MEDL.

Secondly, the MaC software is applied to executable code, not source code which

is available to its developers only [LBAK+99]. Instrumentation is performed directly

on the executable code (bytecode, in the case of Java). Instrumentation is automatic,

which is made possible by the low-level description in the monitoring script.

Furthermore, the components of the MaC architecture, Filter, EventRecognizer,

and Run-time Checker, are automatically generated from the PEDL and MEDL

specifications. These components do not require a specialized execution environ-

ment such as a special hardware or specific Operating System (OS)/Virtual Machine

(VM) [Kim99].

3.6 Application of MaC to Monitoring and Con-

trol of Resource Consumption

We present work on an extension of MaC, to monitor aspects of resource consumption

in a mobile code environment. MaC is a tool that performs run-time formal analysis

to provide assurance on the correctness of software execution [KKLS01]. Run-time

formal analysis takes a program and a formal requirement specification as inputs.

Then, when a program is running, the execution of the program is checked by the

formal requirement specification at run-time. Run-time formal analysis can find errors
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and help users to take a recovery action before critical failure happens to the system.

Original MaC, as described in this chapter, cannot be applied to the monitor-

ing and control of system resource use. As a result, we have extended MaC to the

enforcement of security policies governing ways to better monitor and control re-

source consumption by Java applets. Original MaC is restricted to communication of

primitive events and cannot communicate, for instance, the parameters of monitored

methods [KKLS01]. This is not sufficient if MaC is to monitor, for instance, file re-

source consumption, where filenames are expressed in String objects and file resource

use is performed through access to methods in the Java core classes (API). In addi-

tion, in order to accurately monitor the resource utilization of Java applications, the

application code as well as the libraries used by the application – in particular classes

of the Java Development Kit (JDK) – have to be transformed.

In the following chapter Extensions, we describe several hurdles we have encoun-

tered in using MaC to monitor the resource use of Java applications and present

solutions to these problems through extensions to MaC.
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Extensions

In this chapter, we describe our extensions to the MaC software to the enforcement

of security policies. These extensions are aimed at providing ways to monitor and

control resource consumption by Java applets. Specifically, our focus is on control of

file system resource use.

Firstly, to restrict access of foreign pieces of code to file system resources, it is

necessary to monitor application program interface (API) methods. Whenever an

instruction tries to access a system resource, Java’s API library is called [HK02]. It

is our goal to design a mechanism that enables a user to customize his or her own

version of personally designed security policies that place constraints on how an applet

uses file system resources. As such, a methodology to monitor Java API methods is

needed, since these methods control access and use of file system resources.

Next, with the ability to monitor Java API methods, it is necessary to extend

MaC with the ability to monitor file system use. Using MaC to monitor file system

use involves the following three steps:

39
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1. Allow Method Arguments to be Communicated

For security purposes, it is necessary to have access to the values of arguments

to API methods that we wish to monitor. API methods perform actions on

system resources [Yak02]. In order to place limits on resource use, arguments

are necessary because they allow the resources to be identified.

Kim, Viswanathan, Ben-Abdallah, Kannan, Lee, and Sokolsky explain,

“The user should be able to reason about any program object that

holds a value and thus forms part of the program state, and any

event that the program can engage in. The former includes individual

variables and composite data structures (objects in Java). The latter,

at least in Java programs, includes only method calls and returns

(which also captures other activities, such as process creation and

communication)” [KVBA+98].

In original MaC, each monitored variable event (update(var)) has an associ-

ated value: The value associated with this event is the value of that variable.

However, method events (startM(method) and endM(method)) do not have a

corresponding value associated with them [Kim99]. For security purposes, it is

desirable for the value of method events associated with the start of the mon-

itored methods, to be given by the values of all arguments to the method. In

addition, original MaC is restricted to primitive values. As a result, a first step

toward extending MaC to monitor file system use, is to provide the communi-

cation of primitive values of methods.
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2. Allow Strings to be Communicated

It is necessary to augment the types of values of method invocation events, with

Strings. A String value is a non-primitive object that consists of a stream of

characters. Communication of String values is necessary if communication is to

handle filenames: Filenames identify files. Typically, filenames are expressed

as Strings. Furthermore, many file resource API methods require filenames as

arguments. It is necessary to communicate these arguments to keep track of the

identity of files. This extension is reflected in changes to the PEDL and MEDL

grammars given in Appendix A and B, respectively.

3. Add Sets to MEDL

Some sort of a collection/set is needed as a storage mechanism to collect and

keep track of the use of different files. Sets in MEDL provide a means of re-

taining file identities so that policy specification can restrict, specify, and limit

file system use. In addition, in original MaC, like PEDL, MEDL is restricted to

primitive types. This extension is reflected in changes to the MEDL grammar

given in Appendix B.

With the facility to monitor API methods and the above three extensions to MaC,

user access to files can be monitored, and MaC can uniquely identify files and monitor

operations (open, read, write, close, etc.) on specific files. In short, aspects of file

resource usage can be monitored. This chapter proceeds to describe each extension.

Section 4.1 describes our technique to monitor API methods. Section 4.2 describes

the three extensions necessary to MaC for it to monitor file system use.
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4.1 Monitor API Methods

Java API methods provide a set of classes that the Java system uses to access system

resources [HK02]. Therefore, it was necessary to monitor API methods to account

for and restrict system resource consumption. In particular, our work looks at file

system resource use.

However, MaC cannot monitor API methods directly: MaC cannot monitor meth-

ods invoked on an object within a class [LBAK+99]. Secondly, API classes are tightly

interwoven with native code of the Java run-time system, which causes subtle com-

plications for the rewriting of Java API classes [HK02]. For these reasons, when a

running program attempts to access a file system resource of which it is desirable

to monitor resource consumption, in our approach we redirect program control to a

subclass of the API class invoked. For example, if an applet tries to open a file, the

applet will try to invoke a constructor method of class java.io.FileInputStream.

The constructor method

java.io.FileInputStream.FileInputStream(String)

opens a connection to a file.

In our work, we would subclass

java.io.FileInputStream with class FileInputStream. We do not change Java

API classes. Instead, we provide subclasses for API methods we wish to monitor as

shown in Figure 4.1, that redirect their calls to subclasses, that merely serve to invoke

the corresponding API methods themselves. With this scheme, the use of the API is

also where it is defined. This fulfills the MaC requirement that the monitored object

or method be in the class where it is defined.
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Example 4.1.1 Monitor API Methods.

In this section, we provide an example of our API subclass BufferedReader.java

given in Figure 4.1 and its monitoring specification given in PEDL in Figure 4.2.

Our approach to monitor calls to Java API methods is based on the class modifica-

tion and method-level modification techniques introduced by Chander, Mitchell and

Shin [CMS01]. The main techniques of our approach involve subclassing non-final

API classes, and containing one object in another (composition) when access to final

classes is desired.

Java uses the API class BufferedReader.java to handle input efficiently. That

is, it wraps another reader, so that when large chunks of data are read in,

BufferedReader.java can be used to retrieve data in smaller, more manageable

bits [Mic03b]. Since our work was to monitor file resource access, a subclass for

BufferedReader.java was created.

An excerpt of subclass BufferedReader.java is given in Figure 4.1.

BufferedReader.java is a subclass that extends API class BufferedReader.java,

but intercepts calls to methods readLine() and close() and merely serves to call

the corresponding API methods. API method BufferedReader.readLine() per-

forms the task of reading text; API method BufferedReader.close() closes the

input/output (I/O) stream.

It was necessary to create a subclass for each API class that we wished to monitor.

The subclasses insure that we could properly specify API use in the MaC language

PEDL. Declarations of monitored entities takes place in the PEDL script.

An excerpt of the PEDL specification is given in Figure 4.2. The PEDL specifi-

cation associates events with the invocation and termination of monitored methods.
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public class BufferedReader extends java.io.BufferedReader {

public BufferedReader(java.io.Reader in) {

super(in);

}

public String readLine() throws java.io.IOException {

return super.readLine();

}

public void close() throws java.io.IOException {

super.close();

}

}

Figure 4.1: Excerpt of Subclass BufferedReader.java

Three methods are monitored: permissions.run(),

FileInputStream.FileInputStream(String), and BufferedReader.close().

Next, three events are defined and exported: initialize, fileOpened, and

fileClosed. Note that specification of

monmeth FileInputStream.FileInputStream(String) and

monmeth BufferedReader.close() refers to subclass FileInputStream.java and

BufferedReader.java, where the API methods FileInputStream(String) and

close() are used, respectively.

Implementation 4.1.2: Monitor API Methods

This section describes the implementation of our approach to monitoring Java API

methods. Our approach to monitor calls to Java API methods is based on the
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MonScr permissions

export event initialize, fileOpened, fileClosed;

monmeth void permissions.run();

monmeth void FileInputStream.FileInputStream(String);

monmeth void BufferedReader.close();

event initialize = startM(permissions.run());

event fileOpened =

startM(FileInputStream.FileInputStream(String));

event fileClosed = endM(BufferedReader.close());

end

Figure 4.2: Excerpt of PEDL Specification for Subclass FileInputStream.java and
BufferedReader.java

class modification and method-level modification techniques introduced by Chan-

der, Mitchell and Shin [CMS01]. The main techniques of our methodology involve

subclassing non-final API classes, and containing one object in another (composition)

when access to final classes is desired. In the following, we will describe a general

methodology for creating the structure necessary for monitoring API methods.

Methodology for Creating an API Subclass

1. Call subclass’ name the same name as its corresponding Java API class. Place

subclass in the directory that the target application is in.

It is not a compile-time error to give a class of the application system a

name that is identical to a Java API class [GJSB00]. For example, the I/O

import import java.io.*; causes the names of all public types declared in
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the package java.io to be available within the class and interface declarations

of the compilation unit (application package). However, if an imported class

conflicts with a class of the application package, the imported class is ignored

in such cases.

2. Add extend java.io.filename in classname declaration

For example:

public class BufferedReader extends java.io.BufferedReader {

}

By extending the Java API class, we are able to override the methods we

wish to monitor. Furthermore, we can keep the original functionality of methods

we do not wish to monitor, by letting the API extension take program control

to where it is defined.

However, this subclassing technique cannot be done for final classes. Our

approach to dealing with final classes is based on the composition technique

introduced by Wells [Wel03]. Composition simply refers to containing one object

within another.

(a) Create a class object in the global variable declaration section of the class
through which you want to intercept an API call, so that this class will
remember its process object each time it is called.

For example:

public class Class {

private java.lang.Class cl;

}
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(b) Include all methods from the original API class packagename.filename

that are to be monitored, and simply call each API method on the class

object.

(c) Initialize the class object with, for instance, cl = new java.lang.Class()

with necessary parameters given in the constructor method parameters as
the first call in the composition constructor.

For example:

public class Class {

private java.lang.Class cl;

public Class () {

cl = new java.lang.Class();

}

}

This insures that the class object cl is initialized when the class is first

instantiated. The class is first instantiated when the constructor method is

called [Mic03a]. In addition, this insures that methods we want to monitor

will call each API method on this initialized class object cl.

3. For any method whose declaration indicates that it throws an exception, include

java.io.ExceptionName in its declaration.

This insures that the appropriate API Exception class is called.

4. Declare all constructors that are called in the monitored Java code.

This insures that all constructors called can be resolved within its corre-

sponding subclass. By default, constructors are not inherited by subclasses.

5. Only include methods of the API that are to be monitored. Methods that are

not monitored are inherited from the corresponding superclass in the API.
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This insures that subclass construction is kept as simple as possible.

6. For constructor methods:

First line of the constructor must call super(...) .

When you instantiate a subclass, execution will begin with an invocation of

the constructor in the base class [Mic03a]. Note that the argument list of

super(...) must be identical to the formal parameter list of the constructor.

7. For non-constructor methods that return something:

Include: return super.methodName(...); Same remarks about argument

list expressed in 6., apply here.

For instance,

public String readLine() throws java.io.IOException {

return super.readLine();

}

This calls the extended class’ readLine() method.

8. For non-constructor methods that do not return something

Include: super.methodName(...); Same remarks about argument list ex-
pressed in 6., apply here.

For instance,

public void close() throws java.io.IOException {

super.close();

}

This calls the extended class’ close() method.
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Limitations 4.1.3: Monitor API Methods

The use of subclasses to monitor API methods provides a way to monitor actions on

system resources, but is not without some limitations.

Firstly, current subclass construction is performed manually. Section 4.1.2 outlines

a methodology for creating subclasses appropriately. The subclass serves to redirect

program call execution to a class that simply calls the corresponding API method,

and thus provides a means to monitor those calls. However, the subclass must be

constructed manually. Although an automatic design appears straightforward, this

issue was designated for future work.

Another limitations of our technique to monitor API methods lies in its depen-

dency on the Java language. We chose to use Java for two reasons: Firstly, the current

implementation of MaC works on applications written in Java, despite the framework

is generic and can apply to any language [KKLS01]. Secondly, Java easily tops the

list of preferred platforms for Internet-savvy mobile code [MF99]. Most popular and

used Internet browsers on the market, Netscape Navigator and Internet Explorer, are

automatically configured to dynamically download and run Java code. However, Java

is but one programming language for mobile code among many. The methodology we

provided for constructing a subclass serves to provide a means to monitor Java API

methods that make system resource calls.

4.2 Monitor File System Use

In this section, we describe our technique to monitor file system use. The current

Java security model provides a permissions framework that specifies the host resources
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that mobile code may access [CMS01]. The problem is that the framework does not

monitor the extent to which a resource is used. This means that code which may

have legitimate use for a certain resource, may abuse this privilege. For example, the

system may be rendered useless by greedy actions that monopolize CPU time, use all

available system memory, or starve other threads and system processes. A mechanism

that controls resource use is needed. In this work, we develop a mechanism that

monitors and controls Java file system resource use.

Original MaC cannot support the monitoring of system resource use. Three es-

sential limitations exist and had to be addressed in this research project:

1. The arguments of methods are not communicated.

In order to track system resource use, it was necessary to enhance MaC’s

primitive language to communicate not only the value of monitored variables,

but also communicate the arguments of monitored methods. Java API methods

provide a set of classes that Java uses to access system resources. For track-

ing Java’s use of system resources, the value of corresponding API monitored

methods should be associated with the value of method inputs.

2. Both MaC’s PEDL and MEDL languages do not recognize Strings.

The MaC language must include Strings if MaC is to handle filenames,

because filenames are typically represented as Strings. Since the goal of this

research is to provide a mechanism that supports the monitoring and control of

file resource use, a language that supports filename expression is necessary.

3. The MaC language has no means to keep track of the use of different files.

The ability to handle some sort of a collection in MaC is essential to the
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monitoring and control of file resource use: It enables MaC to keep track of the

resources that the applet has accessed during its execution.

Given the above limitations, three extensions to MaC were necessary to give it

the ability to monitor file resource use:

1. Allow method arguments to be communicated

2. Allow Strings to be communicated

3. Add sets to MEDL

The above three extensions are discussed in the following three subsections. With

these three extensions, operations (such as open, read, write, and close) on files can

be monitored, and the identity of the files involved can be tracked.

4.2.1 Allow Method Arguments to be Communicated

We established communication of the value(s) associated with the start of monitored

methods. The value(s) associated with the start of monitored methods are given by

the values of all arguments. However, original MaC communication could not get at

these method arguments.

Events startM(f) and endM(f) are triggered when control enters and returns

from method f, respectively. For example,

event intToInt = startM(Integer.Integer(int));

expresses that the event intToInt should be raised when the constructor

Integer(int) is invoked. The value of intToInt is the integer that was passed into

the constructor.
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alarm intToIntAlarm = intToInt;

intToInt -> {

print "IN PERM.MEDL: intToIntAlarm";

print "IN PERM.MEDL: value(intToInt,0)= " + value(intToInt,0);

}

Figure 4.3: Excerpt of MEDL Script for Example Allow Method Arguments to be
Communicated.

Since methods may have zero, one, or many arguments, the events have a tuple

of values associated with them. Individual elements can then be obtained via a

projection, i.e., value(e,i) gives the ith value in the tuple of values associated with

event e, provided e occurs. We define the value of an event e defined by event e =

startM(m) as the tuple containing the arguments of method m, when m starts.

Example 4.2.1.1: Allow Method Arguments to be Communicated

An excerpt of the MEDL script for example Allow Method Arguments to be Com-

municated is given in Figure 4.3. The MEDL script raises an alarm when the event

intToInt is raised. In addition, the MEDL script prints the value of the argument

of the monitored method.

Implementation 4.2.1.2: Allow Method Arguments to be Communicated

The MaC architecture consists of three components: Filter, Event Recognizer, and

Run-time Checker [KVBA+98]. The Filter extracts low-level information such as



CHAPTER 4. EXTENSIONS 53

variable values, from the running code. In order to achieve this, MaC instruments

the code of the system to be monitored. The Filter sends this information to the Event

Recognizer. The Event Recognizer receives information from the Filter, recognizes

events by evaluating the PEDL expressions that define them, and sends them to the

Run-time Checker. The Run-time Checker will receive the events and check them

against requirement specifications expressed in the MEDL script.

There are two parts to the implementation of the value tuple for startM: one

consists of ensuring that the right values are passed from the Filter to the Event

Recognizer. The second part consists of properly packaging these values in the vector.

The MaC software provides a set of classes for invoking the target program, the Event

Recognizer, and the Run-time Checker. For instance, the Filter thread is initialized

through a method init(). The init() method of the Filter thread is instrumented

into the main method of the application class [Kim99]. Then, the instrumentor adds

an invocation of init() to the main method of the monitored code. Code to send

a message to the Event Recognizer is also added to all other monitored class files.

The code consists of calls to methods in SendMethod.java. If the event was defined

through a method event, then the message contains the name of the called method,

and its argument values in the case of startM. If the event was defined through a

variable update event, then the message contains the name of the updated variable

and its new value.

Firstly, we needed to address instrumentation: MaC performs instrumentation

through invocation of its class Instrumentor.java. Recall from Chapter 3 that

a PEDL compiler generates instrumentation information (instrumentation.out)

which is used by the instrumentor. Ability to manipulate parse tree contents, which
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was gained through use of the JJTree preprocessor run through JavaCC to create

the grammar parser, was used to retrieve method arguments and communicate them

from Filter, to Event Recognizer, to Run-time Checker. The following sequence of

instructions were added to Instrumentor.java:

1. The first instrumentation creates a call to a new method in SendMethod.java.

2. The second instrumentation passes a code so that the Event Recognizer knows

that an event for some execution point is coming. Execution points refer to

method invocation, method return, start and end of program, and method

exception [LBAK+99].

3. The third instrumentation passes the argument from the top of the local variable

stack as the value of an event to SendMethod.java.

4. The fourth instrumentation passes the ID of the primitive variable to be com-

municated.

Java has two stacks: local variable stack and operand stack [MF99]. Method

arguments in Java sit on the stack frame with local variables. In step 3, it was

imperative to pass an argument from the top of the local variable stack, to insure we

pass the value of a method argument.

Over in MaC class SendMethod.java, an additional method needed to be created,

that took in the stack parameter value passed. This parameter was then sent to the

Event Recognizer. In original MaC, after a connection between the Filter and the

Event Recognizer is established, the Filter sends snapshots to the Event Recognizer.

A snapshot consists of a ID field for a monitored variable and a value field of the
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Figure 4.4: Example of Snapshots from Filter to Event Recognizer in Original MaC

monitored variable. A snapshot reporting a beginning/ending of a method has a

boolean value field: false means beginning of a method and true means ending of a

method. An example of snapshots from a Filter to an Event Recognizer in original

MaC is illustrated in Figure 4.4.

So, in original MaC, execution points were passed by means of method

SendMethod.sendMethod(boolean,int).

The boolean argument reports a beginning/ending of a method and the integer ar-

gument contains the ID of the monitored object or method. For an event, ID is

eventID, where eventID can be any number between -128 to 127. The Event Rec-

ognizer sends an object containing a table mapping eventIDs to event names. The

Run-time Checker uses the table to recognize what an ID from the Event Recognizer

means.

Over in MaC class SendMethod.java, an additional method needed to be created,

that took in the stack parameter value passed. This parameter was then sent to the

Event Recognizer.

However, in our extension we wanted to implement a value for startM. As a result,

two new fields were added to the snapshot sent from Filter to Event Recognizer: a

type-event-valueID to indicate the type of method argument passed (String, int, etc.),

followed by the method argument value. An example of snapshots from a Filter to



CHAPTER 4. EXTENSIONS 56

Figure 4.5: Example of Snapshots from Filter to Event Recognizer After Our Exten-
sion Allow Method Arguments to be Communicated

an Event Recognizer after this extension is illustrated in Figure 4.5.

In addition, a new method in MaC class SendMethod.java had to be defined:

sendMethod(boolean,int,int).

The boolean argument reports a beginning/ending of a method, the second argument

int contains the method argument, and the third argument int contains the ID of

the monitored object.

The above changes to MaC classes Instrumentor.java and SendMethod.java

ensured that the right value (the method parameter) was passed from the Filter to

the Event Recognizer. The next step required changes to the Event Recognizer, to

ensure it read off the incoming method arguments after receipt of a startM event.

This step ensured that the method event values were properly packaged into a value

tuple for the monitored method and sent to the Run-time Checker.

Limitations 4.2.1.3: Allow Method Arguments to be Communicated

Although communication of primitive values of method arguments is now possible

with the extension “Allow Method Arguments to be Communicated”, MaC is still

restricted to primitive values: That is, variables in PEDL and MEDL scripts can only

range over the types boolean, byte, char, short, int, long, float, double.

A restriction to primitive values limits the extent of system resource control, including
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that of file system resources. For example, filenames are typically represented by

String type, a type outside the scope of Java primitive types. In this research project,

we wanted to enable the ability to place limits on file system resource use. As a result,

MaC’s restriction to primitive constructs needed to be resolved. This limitation is

addressed in our next extension.

Another limitation is that events are assigned at most one value. Methods take in

zero, one, or several input parameters. Only the first method parameter, if it exists,

makes up the value of a method invocation event. Although each method parameter

is placed into a value vector, the communication of the entire argument list and not

just the first argument is not yet implemented.

A PEDL compiler compiles a PEDL script into an abstract syntax tree. The

abstract syntax tree consists of monitored method parameter values and updated

variable values. The Event Recognizer evaluates the events and conditions defined

in the PEDL abstract syntax tree when it receives a snapshot from the Filter. To

overcome the limitation above, the abstract syntax tree has to be traversed to retrieve

all of the parameter values sequentially stored on the local variable stack for each

startM monitored method event. Each of these values would then have to be placed

into their corresponding value vector.

4.2.2 Allow Strings to be Communicated

In this extension, we modified MaC to allow String communication between Filter,

Event Recognizer, and Run-time Checker. Refer to Appendix A for changes to the

PEDL grammar and to Appendix B for changes to the MEDL grammar. Original

MaC communication was restricted to primitive definition.
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The rationale for restricting MaC to monitoring only primitive variables was the

following: If the size of an acceptable variable is not defined, MaC must always watch

an arbitrarily large object graph [KVBA+98]. This practice poses an unacceptable

performance penalty. There is a tradeoff between the expressiveness of event defi-

nitions and the run-time cost of event detection. The language can be designed to

allow very expressive event definitions so that violation of any requirement property

is itself an event. However, the drawback of an expressive event definition language

is the cost of event detection at run-time. In general, as the language becomes more

expressive, the granularity of detection needs to be finer, which incurs more overhead

in terms of time and space.

On the other hand, if the language has limited expressiveness, it cannot define

some useful events. The current Java security model does not monitor the extent of

use of host resources that foreign mobile code may access. A mechanism that con-

trols system resource use is needed. With the goal of preventing resource-consuming

attacks, any gain of ability to control resource use is worth a trade-off to performance.

In addition, extending MaC beyond primitive communication to a language that

handles the communication of Strings, is not cause for severe performance degra-

dation. In this extension, MaC’s PEDL and MEDL grammars were extended to

recognize Strings. Now, not only is String communication in MaC possible, but also

the method arguments that are Strings can be communicated and referenced in the

requirement specification.
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monmeth void FileInputStream.FileInputStream(String);

event fileOpened =

startM(FileInputStream.FileInputStream(String));

Figure 4.6: Excerpt of PEDL Script for Example Allow Strings to be Communicated.

alarm openedFileAlarm = fileOpened;

fileOpened -> {

print "IN PERM.MEDL: value(fileOpened,0)= " + value(fileOpened,0);

}

Figure 4.7: Excerpt of MEDL Script for Example Allow Strings to be Communicated.

Example 4.2.2.1: Allow Strings to be Communicated

In original MaC, PEDL could only monitor changes to variables of primitive type.

With this extension, now PEDL can also define an event related to Strings. With

String communication enabled, MaC can be used to monitor updates to String vari-

ables and invocations of methods with String arguments.

An excerpt of PEDL script for example Allow Strings to be Communicated is

given in Figure 4.6. The PEDL script monitors method

FileInputStream.FileInputStream(String) .

Also, this excerpt of our PEDL script specifies a method invocation event fileOpened

whose values is the name of the file opened.

Figure 4.7 shows a MEDL script that raises an alarm whenever the fileOpened

event is received and prints the name of the file opened.
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Implementation 4.2.2.2: Allow Strings to be Communicated

Both MaC languages PEDL and MEDL needed to be extended to include Strings.

Refer to Appendix A and B for extensions to the PEDL and MEDL grammars,

respectively.

Recall from Chapter 3 that a PEDL compiler compiles a PEDL specification into

an abstract syntax tree (AST) (pedl.out), which is evaluated by an Event Recog-

nizer at run-time. Similarly, a Run-time Checker evaluates events and conditions

defined in a MEDL AST (medl.out) when it receives an event or a condition from an

Event Recognizer. Both PEDL and MEDL grammars needed to be addressed in this

extension to allow Strings to be communicated:

1. The input to the PEDL code generator, a specification given in a separate file

from the MaC application program, was modified.

2. The JJTree preprocessor for JavaCC was run to provide access to the parse tree

nodes.

3. The JavaCC parser generator was run. Output from this parser generation

would be read into the MaC application program at run-time.

Steps 1-3 were completed for the MEDL code generator as well.

Once PEDL and MEDL grammars were extended to include String definition,

communication between the Filter and Event Recognizer had to be addressed. The

Filter sends snapshots to the Event Recognizer: A snapshot consists of an ID field

for a monitored variable and a value field of the monitored variable. The ID field for

a monitored variable identifies if the entity represents an execution point, a global

variable, or a local variable. A snapshot reporting the invocation or termination of a
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method has a boolean value field: false means the method has been invoked and true

means the end of a method. Communication between Filter and Event Recognizer

is read off byte-by-byte, since original MaC communication is restricted to primitive

types. However, a String type represents a stream of bytes, so a data type identifier

byte needed to be added to the stream. A data type identifier byte would serve to

tell the stream reader how to interpret the following sequence of characters.

Changes to both MaC classes Instrumentor.java and SendMethod.java were

made: Class Instrumentor.java was changed to pop method arguments of moni-

tored methods from the top of the local variable stack. In addition, a new method

in class SendMethod.java was defined. In original MaC, execution points startM

and endM would invoke method sendMethod(boolean, int). The boolean argument

reports a beginning/ending of a method, and the integer contains the ID of the mon-

itored object. Now, with an additional method argument (a filename) passed, a new

method

sendMethod(boolean,String,int)

was defined. The boolean argument reports a beginning/ending of a method, the

second argument String contains the String value of the method argument, and the

third argument int contains the ID of the monitored object. An example of snapshots

from Filter to Event Recognizer after this extension is illustrated in Figure 4.8

Furthermore, changes needed to be made to the Event Recognizer and Run-time

Checker: Upon recognizing a method invocation event, a data type identifier byte was

placed on the stream that links communication of the Event Recognizer to the Run-

time Checker. At the Run-time Checker end, upon recognizing a method invocation

event, the checker would first read off the data type identifier byte and then interpret
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Figure 4.8: Example of Snapshots from Filter to Event After Our Extension Allow
Strings to be Communicated

the following character appropriately based on the value of its preceding identifier

byte.

Limitations 4.2.2.3: Allow Strings to be Communicated

With MaC communication able to handle Strings, MaC is no longer restricted to

primitive values. However, String is but one of several non-primitive types. Non-

primitive types in Java include user-defined classes and collections such as arrays and

vectors.

In the case of policy definition of file system resources, it is relevant to be able to

handle not only filenames, but file descriptors as well. A file descriptor is a handle

created by a process when a file is opened [Mic03a]. Without the ability to commu-

nicate more complex objects such as file descriptors, a policy that limits currently

opened files cannot be specified: This is because the closing of a file does not take

in any arguments (such as a filename), but rather is performed on its file descriptor.

Consequently, even with our extensions, it is still impossible to specify and determine

the identity of a file involved in a close operation on the Run-time Checker side.

On another note, MaC uses Data Streaming communication over a Pipe. Commu-

nication via Data Streaming allows threads to send events and receive primitive and

String values via an underlying input stream [Mic03a]. However, a design that would
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allow primitive data types and all object types requires communication via Object

Streaming. Although in this research project implementation of an Object Stream-

ing over Pipe approach was begun, efforts were diverted to extending MaC’s current

communication via Data Streaming. Two main reasons explain this choice: Firstly,

rather than introduce the potential for errors by replacing MaC’s original approach

to communication, extension of its existing communication mechanism was a more

practical idea. Also, Object Streaming over Pipes does not appear to be particularly

reliable in the current version of Java. Documented problems include: exceptions

thrown for reasons not understood, reader or writer threads held in infinite loops,

and premature termination of threads. The communication of arbitrary objects be-

tween the threads in MaC would thus not only require MaC’s communication to be

based on Object Streaming over Pipes, but also a more stable release of Java.

4.2.3 Add Sets to MEDL

With the ability to use MaC to retrieve the arguments of Java API file system resource

calls, it is possible to communicate them to MaC’s Run-time Checker. For example,

if a call is made to Java’s API method FileInputStream.FileInputStream() to

open a file, the value of the corresponding method invocation event is now assigned

the name of the file. Our next extension will allow the Run-time Checker to collect

these filenames and store them in a set. To this end, it was necessary to extend

MEDL with a Set data type. Refer to Appendix B for the addition of sets in MEDL.

Facility of sets in MEDL allow for the values of events to be collected. This, in turn,

allows a number of policies relevant to the control of file resource use to be specified.

For example, it is now possible to limit the input/output (I/O) activity of a Java
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var String valueFileOpened;

var Set filesOpenedSet;

alarm openedFileAlarm = fileOpened;

alarm fileClosedAlarm = fileClosed;

initialize -> {

filesOpenedSet’ = emptySet;

}

fileOpened -> {

valueFileOpened’ = value(fileOpened,0);

filesOpenedSet’ = add(valueFileOpened,filesOpenedSet);

print "IN PERM.MEDL: filesOpenedSet= " + filesOpenedSet;

}

Figure 4.9: Excerpt of MEDL Script for Example Add Sets to MEDL.

applet: limits can be placed on the total number of files an applet tries to access.

The filename can be checked for membership in a set collecting the different files an

applet tries to open. As soon as the size of that set exceeds a certain limit, an alarm

is raised.

Example 4.2.3.1: Add Sets to MEDL

An excerpt of the MEDL script for example Add Sets to MEDL is given in Figure

4.9. The MEDL script initializes set filesOpenedSet to be empty. Next, whenever

a file is opened, event fileOpened is raised and the name of the opened file is added

to set filesOpenedSet.

With the facility to monitor API methods and the above three extensions realized,

many interesting policies can now be specified in MaC to control resource use. The

next chapter will illustrate them through several examples.
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Implementation 4.2.3.2: Add Sets to MEDL

The addition of sets in MEDL involved the addition of sets into the MEDL grammar.

Refer to Appendix B for addition of sets into the MEDL grammar. Furthermore, the

String data type was added to the MEDL grammar so that Strings could be expressed

in requirement specification. Next, the MEDL grammar had to be parsed. The Java

Compiler Compiler (JavaCC) is the parser generator MaC uses to read the MEDL

grammar specification and generate a Java program that can parse MEDL scripts.

In addition to changes to the MEDL grammar, changes to a symbol table needed

to be made. A symbol table is derived from a set of Java class files provided as part

of the MaC software. There are three types of nodes in the abstract syntax tree of

a MEDL script: condition node, event node, and expression node. A node referring

to a program variable (a method) has a link to an entry in the MaC symbol table,

which contains both type and value of monitored variables. A set was added to the

MaC symbol table definition, for persistent storage of its contents. To simplify the

implementation, a set in MEDL was implemented in terms of java.util.Set.

In addition, operations add, emptySet, size, and print were added to the

functionality of sets in MEDL.

• set = add(x,set) Returns a set with the specified element added to this set

if it is not already present.

• emptySet The set with no elements.

• set = size(set) Returns the number of elements in this set (its cardinality).

• print(set) Prints the contents of the set.
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The operations implemented for the functionality of sets in MEDL offered a good

selection of resource-aware policies that limit files resource use to be expressed. For

example, with set operation add policies that need to collect and retain file identities

can be expressed. Set operation emptySet enable set identity tests. Set operation

size provides set cardinality so that limits can be placed on the amount of file access.

Lastly, set operation print lets the contents of the set to be printed.

Limitations 4.2.3.3: Add Sets to MEDL

The inclusion of sets in MEDL is not without some limitations. Firstly, the list of

operations on sets implemented in MEDL is not complete. Common set operations

include add, contains, equals, isEmpty, remove, and size. Our implementa-

tions of set operations in MaC includes set operations add, isEmpty, and size.

However, set operations contains, equals, and remove were not implemented. As

a result, policies that require set membership tests, set equality, and set subtraction

cannot be expressed. For instance, policies that require collecting the names of cur-

rently open files cannot be expressed. On the other hand, a good selection of policies

were already possible with the addition of set operations add, isEmpty, and size.

Secondly, our implementation of sets in MEDL currently limits MaC to the use of

one set.

With the extensions to MaC discussed in this chapter, MaC can now be used

to the enforcement of certain kinds of resource-aware policies. A good selection of

policies are possible. In the next chapter, a number of example policies that limit file

resource use are described.
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Examples

5.1 Small Examples

We demonstrate five MaC examples of resource-aware policies in this section. These

policies show how we made use of the syntax of MaC languages PEDL and MEDL

to integrate file resource control by means of the extensions described in the previous

chapter.

In our first example, we present a policy that limits the read and write operations

on a particular file. Our policy specifies that an alarm will sound for any attempt to

read from a file and write to a file.

Our second example shows how to print the names of files which have had actions

exercised upon them. The ability to print the filenames serves to keep a log of

input/output activity.

In our third example, a policy that limits the total number of files the user has

tried to access, is described. This example involves the ability to count the total

number of files, a capability that was added through our work.
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Our fourth example presents an example policy that restricts access to a particular

file that the user might not want a segment of foreign code to access.

Given the extensions this research project has brought and the language operators

in MaC (such as disjunction, conjunction, implication, equivalence, etc.), numerous

varied policies can be expressed which monitor and control file resource consumption.

Our fifth example illustrates this expansive reach: In our fifth example, we illustrate

an example policy that specifies that certain files can only be accessed a certain

number of times.

It is important to point out that none of these policies were expressible or en-

forceable in the original version of MaC. Moreover, our list of example policies is

not exhaustive. The examples provided in this chapter serve to illustrate how the

extensions presented in Chapter 4 can be used to develop a number of interesting

resource-aware policies relevant to the security of file resource use. In summary, this

thesis has extended the MaC software to allow the enforcement of certain kinds of

security policies that monitor and control resource consumption by Java applets.

5.1.1 Example: Limit Read/Write

In this first example, we present a policy that limits the read and write operations of

a segment of code.

Original MaC had no way to monitor system resource usage, communicate values

of methods used to provide access to system resources, and understand String types

which is necessary to communicate filenames. The extension that we need for this

example is the ability to monitor API methods.

The design of this example’s PEDL script in Figure 5.1 proceeds as follows: Two
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monmeth String BufferedReader.readLine();

monmeth void PrintWriter.println();

event fileRead = startM(BufferedReader.readLine());

event fileWrite = startM(PrintWriter.println());

Figure 5.1: Excerpt of PEDL Script for Example Limit Read/Write.

alarm fileReadAlarm = fileRead;

alarm fileWriteAlarm = fileWrite;

Figure 5.2: Excerpt of MEDL Script for Example Limit Read/Write.

API methods are monitored: BufferedReader.readLine() which is used to read text

from a file, and PrintWriter.println() which is used to write text to a file. Next,

invocation of these methods are mapped to events. Event startM(f) is triggered

when control enters method f.

The security requirements that need to be enforced are written in MaC language

MEDL. The requirement uses the events imported from the PEDL script: An alarm

is raised whenever a segment of foreign code tries to read from a file. Code uses

method BufferedReader.readLine() to read from a file. Similarly, an alarm is

raised whenever a segment of foreign code tries to write to a file. Code uses method

PrintWriter.println() to write to a file. An excerpt of the MEDL script for Ex-

ample Limit Read/Write is given in Figure 5.2.

This policy can also be applied to specify that a read operation be allowed from,

but not allowed a write operation to, a particular file. Using the logic for events and

conditions described in Appendix A, complexity can be added using the Java boolean
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connectives included in the language.

5.1.2 Example: Print Filenames

In this second example, we show how to print the names of files which have had

actions exercised upon them. The ability to print the filenames serves to keep a log

of input/output activity.

An auxiliary variable filesOpenedSet initializes a set. Auxiliary variables can

be used to record certain aspects of the current execution. To be able to print the

filenames, we needed to define a variable type that could collect them. In addition

we needed to extend the print function of original MaC, to record each element of the

collection. In this example, an auxiliary variable of set type was added, that would

collect the names of files which had actions exercised upon them.

In keeping with the standard operations on sets, two necessary operations were

added to MaC’s language (as described in the previous chapter): add(x,set) and

emptySet. add(x,set) adds the specified element x to the set set. The expression

emptySet evaluates to the empty set.

An excerpt of the MEDL script for example Print Filenames is given in Figure 5.3.

The MEDL script initializes a set filesOpenedSet to be empty. Event initialize

is specified so that the set (and other variables, if present) can be initialized. This

event was defined in PEDL with startM(f), to assure that when control is first passed

to the thread, that event initialize is triggered. Next, whenever the fileOpened

event is received, the name of the file is added to the set filesOpenedSet and the

contents of the set are printed.
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var String valueFileOpened;

var Set filesOpennedSet;

initialize -> {

filesOpenedSet’ = emptySet;

}

fileOpened -> {

valueFileOpened’ = value(fileOpened,0);

filesOpenedSet’ = add(valueFileOpened,filesOpenedSet);

print "IN PERM.MEDL: filesOpennedSet= " + filesOpenedSet;

}

End

Figure 5.3: Excerpt of MEDL Script for Example Print Filenames.

5.1.3 Example: Limit Amount of File Access

This third example specifies a policy that limits the total number of files the user has

tried to access. An alarm exceeedingAllowableSize is raised when the number of

files the user tries to access exceeds a given number.

To establish a count on the number of elements in a set, a cardinality operation was

needed: Operation size(set) was added to MEDL. Operation size(set) returns

the number of elements in the set.

An excerpt of the MEDL script for example Limit Amount of File Access is given

in Figure 5.4. The MEDL script initializes a set filesOpenedSet to be empty.

Next, whenever a file is opened, the event is captured by event fileOpened and

the set filesOpenedSet is added to with element valueFileOpened. Note that

size(filesOpenedSet) returns the number of different files that have been opened.
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var String valueFileOpened;

var Set filesOpenedSet;

alarm exceedingAllowableSize = start( ( size(filesOpenedSet) ) >= 200 )

initialize -> {

filesOpenedSet’ = emptySet;

}

fileOpened -> {

valueFileOpened’ = value(fileOpened,0);

filesOpenedSet’ = add(valueFileOpened,filesOpenedSet);

}

Figure 5.4: Excerpt of MEDL Script for Example Limit Amount of File Access.

Original MaC allowed counting the number of times an event has been raised. Oper-

ation size(filesOpenedSet) allows for fileOpened events to be counted, but not

the number of different files.

5.1.4 Example: Restrict Access to Particular File

In this fifth example, we present a policy that restricts access to a specified file that

the user might not want a segment of foreign code to access. Suppose the user wants

to restrict access to a file named “passwd”. To monitor and enforce this requirement,

the names of files opened must be communicated from the Event Recognizer to the

Run-time Checker.

As a result, method FileInputStream.FileInputStream(String) is specified to

be monitored the excerpt of PEDL Script for Example Restrict Access to Particular

File given in Figure 5.5. The method argument type String will be the name of
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MonScr permissions

export event initialize, fileOpened;

monmeth void permissions.run();

monmeth void FileInputStream.FileInputStream(String);

event initialize = startM(permissions.run());

event fileOpened = startM(FileInputStream.FileInputStream(String));

End

Figure 5.5: Excerpt of PEDL Script for Example Restrict Access to Particular File.

alarm exceedingAllowableValue = start((value(fileOpened,0))==‘‘passwd’’);

Figure 5.6: Excerpt of MEDL Script for Example Restrict Access to Particular File.

the file to which attempt is made to access (open) at run-time. Event initialize

is specified so that the set (and other variables, if present) can be initialized. An

excerpt of the PEDL script for example Restrict Access to Particular File is given in

Figure 5.5 .

On the MEDL side, event fileOpened is imported into the script for requirement

specification. With the value of the String method communicated to the Run-time

Checker, operation value(e,0) gives the value of the first input parameter of event

e, provided e occurs. Whenever a file access is attempted on file passwd, an alarm

will sound.

An excerpt of the MEDL script for example Restrict Access to Particular File is

given in Figure 5.6. Alarm exceedingAllowableValue is raised whenever there is

attempt to open file passwd.
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var String valueFileOpened;

var int filePASSOpenedVar;

event filePASSOpened = start(valueFileOpened==‘‘passwd’’);

alarm filePASSOpenedVarAlarm = start(filePASSOpenedVar >= 1);

filePASSOpened -> {

filePASSOpenedVar’ = filePASSOpenedVar + 1;

}

initialize -> {

filePASSOpenedVar’ = 0;

numFileOpened’ = 0;

}

fileOpened -> {

valueFileOpened’ = value(fileOpened,0);

}

Figure 5.7: Excerpt of MEDL Script for Example Restrict File Access Amount.

5.1.5 Example: Restict File Access Amount

This last example serves to exemplify the expansive reach of resource-aware policies

that are now possible with MaC. It illustrates a policy that specifies that certain

files can only be accessed a certain number of times. More specifically, this policy

specifies that the file named passwd can only be opened once. Each time a file

is opened, event fileOpened, which indicates the opening of a file, registers the

filename into variable valueFileOpened. Event filePASSOpened is recognized as

occurring, as soon as variable valueFileOpened equals the filename passwd. Each

time the event filePASSOpened occurs, a counter filePASSOpenedVar variable is

incremented by one. When the number of times variable filePASSOpenedVar (or
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similarly, the number of times filename passwd is opened) equals or exceeds one,

alarm filePASSOpenedVarAlarm sounds.

An excerpt of the MEDL script for example Restrict File Access Amount is given in

Figure 5.7. If an attempt is made to open a file named passwd, event filePASSOpened

occurs, which increments variable filePASSOpenedVar by one. When this variable

equals or exceeds one (i.e. attempt is made to open file passwd at any time), alarm

filePASSOpenedVarAlarm will sound.

The above five examples illustrate a selection of the resource-aware policies that

MaC is now able to enforce, given the extensions described in Chapter 4. These

examples illustrate that it is possible to enhance the security of Java programs using

run-time monitoring. Although Java monitors access to system resource use, it does

not monitor the extent of use. The above five examples serve to exemplify some of

the ways the MaC software can now be used to specify and enforce desired resource

limits on downloaded applets.

The examples provided in this chapter are not exhaustive and serve only to il-

lustrate how the extensions presented in previous Chapter 4 can now be exercised

to develop resource-aware policies. Note that this approach could also be used to

monitor and control usage of other resources and services provided by the Java API.

For example, other resources include:

• Network communication

• User input

• Database drivers

• Distributed computation through Java Remote Method Interface (RMI) or
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Common Object Request Broker Architecture (CORBA)

• ... and many others



Chapter 6

Summary and Future Work

6.1 Summary

We have presented an architecture for enforcing resource-aware policies using run-

time formal analysis. An existing approach to the monitoring and checking of running

systems, Monitoring and Checking (MaC) software, was extended to allow the specifi-

cation and enforcement of desirable constraints on resource consumption. Specifically,

our work focused on resource awareness of file system use.

The main contribution of this thesis is confirming that the enforcement of resource-

aware policies can be achieved with run-time formal analysis. This is demonstrated by

extending and implementing a prototype system of MaC with our extensions. More

specifically, the Monitoring and Checking (MaC) architecture was extended with the

following abilities:

1. Monitor Java API methods

2. Allow method arguments to be communicated
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3. Allow Strings to be communicated

4. Add sets to MEDL

5. Perform set operations emptySet, add, size, and print

A central aspect of the MaC architecture is its use of formal requirement specifi-

cations to check the run-time execution of a target program. In our research project,

we implemented a MaC prototype with our extensions, and showed the additional

security of run-time formal analysis for enforcing resource-aware policies, through

several examples.

In addition, extensions provided in this research project have a general availability;

that is, they facilitate the use of MaC in general, and not just in the context of

monitoring resource usage.

6.2 Future Work

6.2.1 Short Term

The extensions provided in this thesis can be exercised to develop and enforce certain

kinds of resource-aware policies with the MaC software. A good selection of policies

are possible. However, there are some natural extensions to this work that would

help expand the range of policies MaC can enforce; these extensions can be drawn

out from the limitations provided in Chapter 4.
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6.2.2 Future Work

Probing deeper, this research project also provides a strong foundation for future work

that focusses on the enforcement of resource-aware policies using run-time analysis.

This subsection discusses the following four directions:

1. Alternative modes of communication

2. Logical frameworks expansion

3. Feedback capability extension

4. Application to other languages

6.2.3 Alternative Modes of Communication

An additional area of research is the exploration into appropriate modes of com-

munication. Unrestricted object communication is important for monitoring system

resource use. Without the ability to communicate more complex objects other than

Strings, the kinds of policies MaC can enforce is limited. For example, without the

ability to communicate file descriptors, it is not possible to specify a policy that limits

the number of files currently open. A file descriptor is a handle that uniquely identi-

fies a file – the action of closing a file is performed on its file descriptor [Mic03b]. As a

result, the same file could be closed many times, but without the ability to recognize

its file descriptor, MaC could only assume that different files are being closed and

cannot identify the closing of any one file in particular.

The current mode of communication is adequate for a number of resource-aware

policies, but may not be the best choice. This is especially clear from the current tech-

nique in which communication is done through Data Streaming over Pipe Streaming.
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Data Streaming communication includes primitive Java data types as well as

String objects [Mic03b]. A Data Streaming approach to communication recognizes

basic data types: boolean, byte, char, short, int, long, float, double, and also String

types which are necessary for filename communication. However, Object Streaming

communication supports primitive data types as well as all objects, including Strings,

file descriptors, etc. As a result, more interesting resource-aware policies are possi-

ble with communication done through Object Streaming. Certain actions on system

resources, such as file close, are performed on a class object (in this case, a file de-

scriptor), that uniquely identifies that resource. A first step in looking at alternative

modes of communication would require a more stable release of Java and research

into how to implement communication via Object Streaming over Pipes in MaC.

6.2.4 Logical Frameworks Expansion

Different requirements can be best expressed using different underlying logics, so an

avenue for future research is to explore the attachment of new logical frameworks for

expressing policies with MaC. Adding other logics to MaC would increase its cover-

age of monitoring and enhance the expressiveness of monitoring scripts. Currently,

MaC uses a kind of interval past-time temporal logic of events to specify program

behaviours. However, policy range could be expanded if MaC were to try to use other

kinds of logics in its policy specification. For example, future-time logics could enable

the specification of properties that prevent, rather than detect violation once it has

occurred. Similarly, UML notations could be used to check original designs (via state

charts and/or sequence diagrams) against execution traces.
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6.2.5 Feedback Capability Extension

This work has extended MaC to the enforcement of resource-aware policies. Although

MaC can now be used to detect violations of aspects of desired file resource consump-

tion, MaC is unable to provide any feedback to the running system. A remedy for this

weakness exists for the original MaC implementation. The resulting system is called

MaCS (Monitoring and Checking with Steering). The feedback component uses the

information collected during monitoring to steer the application back to a safe state

after a violation occurs [KLS+02].

It would be desirable to extend this research project with a feedback capability.

In our case, MaCS could detect violations of desired limits of applet resource con-

sumption, and implement a remedy for the situation. More specifically, the current

MaCS approach involves specification of an additional “steering script” which defines

steering actions. An avenue of future research would involve applying this research

project to the MaCS approach.

6.2.6 Application to other Languages

The MaC system has been applied to the monitoring of Java bytecode programs;

MaC instrumentation is performed on Java bytecodes. As a result, our extensions

to MaC are in Java. However, it is worthwhile investigating the methodology of

applying the MaC architecture to support various target platforms other than Java.

The popularity of the Web has lead to more regular use of Java and many other

languages that support mobility. Although Java now easily tops the list of preferred

platforms for Internet-savvy mobile code, other mobile code languages are gaining in

popularity.
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Appendix A

BNF for PEDL

addObj ::= java code

location ::= java code

checkMethodObj ::= java code

contained ::= java code

addExec ::= java code

setRelOp ::= java code

setArithOp ::= java code

addToSymbolTable ::= java code

searchSymbolTable ::= java code

connectAndSetName ::= java code

error skipto ::= java code

MonitoringScript ::= <MONSCR> <IDENTIFIER> Declarations

Definitions <END>

Declarations ::= ( ( ( EventDeclaration

| ConditionDeclaration |

MonitoredObjectDeclaration |

MonitoredMethodDeclaration ) ) ( ";"

)? )*
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Definitions ::= ( ( ( EventDefinition |

ConditionDefinition ) ) ( ";" )? )*

EventDeclaration ::= <EXPORT> <EVENT> EventNames

ConditionDeclaration ::= <EXPORT> <CONDITION> ConditionNames

EventNames ::= <IDENTIFIER> ( "," <IDENTIFIER> )*

ConditionNames ::= <IDENTIFIER> ( "," <IDENTIFIER> )*

MonitoredObjectDeclaration ::= <MONOBJ> Type ( AliasVariableName

"<-" )? ObjectName ( "," ( <IDENTIFIER>

"<-" )? ObjectName )*

MonitoredMethodDeclaration ::= <MONMETH> ( Type | <VOID> ) (

AliasMethodName "<-" )? MethodName

ObjectName ::= ( <IDENTIFIER> "." )* <IDENTIFIER>

( "." <IDENTIFIER> FormalParameters )?

"." <IDENTIFIER>

MethodNameWOparameters ::= ( <IDENTIFIER> "." )+ <IDENTIFIER>

MethodName ::= MethodNameWOparameters

FormalParameters

AliasVariableName ::= <IDENTIFIER>

AliasMethodName ::= <IDENTIFIER>

FormalParameters ::= "(" ( Type ( "," Type )* )? ")"

EventDefinition ::= <EVENT> <IDENTIFIER> "="

EventExpression

EventExpression ::= ( SimpleEventExpression ( ( EventOp

EventExpression ) )? OptionalWhen )

OptionalWhen ::= ( <WHEN> ConditionalExpression )*

SimpleEventExpression ::= ( <IDENTIFIER> | "(" EventExpression

")" | <START> "(" ConditionalExpression

")" | <END> "(" ConditionalExpression

")" | <UPDATE> "(" ObjectName ")" |

<STARTM> "(" MethodNameWOparameters

FormalParameters ")" | <ENDM> "("

MethodNameWOparameters FormalParameters

")" | <IOM> "(" MethodNameWOparameters

FormalParameters ")" )
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EventOp ::= "&&" | "||"

ConditionDefinition ::= <CONDITION> <IDENTIFIER> "="

ConditionalExpression

Type ::= ( ( PrimitiveType | Name ) ( "[" "]"

)* )

PrimitiveType ::= ( "boolean" ) | ( "char" ) | (

"byte" ) | ( "short" ) | ( "int" ) |

( "long" ) | ( "float" ) | ( "double" )

| ( "String" )

Name ::= <IDENTIFIER> ( "." ( <IDENTIFIER> )

)*

NameList ::= Name ( "," Name )*

Expression ::= ConditionalExpression

ConditionalExpression ::= ConditionalOrExpression

ConditionalOrExpression ::= ( ConditionalAndExpression ( "||"

ConditionalAndExpression )* )

ConditionalAndExpression ::= ( InclusiveOrExpression ( "&&"

InclusiveOrExpression )* )

InclusiveOrExpression ::= ( ExclusiveOrExpression ( "|"

ExclusiveOrExpression )* )

ExclusiveOrExpression ::= ( AndExpression ( "^" AndExpression

)* )

AndExpression ::= ( EqualityExpression ( "&"

EqualityExpression )* )

EqualityExpression ::= ( <INM> "(" MethodNameWOparameters

FormalParameters ")" ) | ( <DEFINED>

"(" ConditionalExpression ")" ) |

InstanceOfExpression ( ( ( "==" | "!=" )

InstanceOfExpression ) )*

InstanceOfExpression ::= ( RelationalExpression (

"instanceof" Type )?

RelationalExpression ::= ShiftExpression ( ( ( "<" | ">" |

"<=" | ">=" ) ShiftExpression ) )*

ShiftExpression ::= AdditiveExpression ( ( ( "<<" | ">>"

| ">>>" ) AdditiveExpression ) )*
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AdditiveExpression ::= MultiplicativeExpression ( ( ( "+" |

"-" ) MultiplicativeExpression ) )*

MultiplicativeExpression ::= UnaryExpression ( ( ("*" | "/" | "%"

) UnaryExpression ) )*

UnaryExpression ::= ( ( "+" | "-" ) UnaryExpression ) |

UnaryExpressionNotPlusMinus | ( <TIME>

"(" EventExpression ")" ) | ( <VALUE>

"(" EventExpression "," Expression ")" )

UnaryExpressionNotPlusMinus ::= ( ( " " | "!" ) UnaryExpression ) |

CastExpression | PrimaryExpression

CastLookahead ::= "(" PrimitiveType | "(" Name "["

"]" | "(" Name ")" ( " " | "!" | "(" |

<IDENTIFIER> | Literal )

CastExpression ::= ( "(" Type ")" UnaryExpression | "("

Type ")" UnaryExpressionNotPlusMinus )

PrimaryExpression ::= PrimaryPrefix ( ( PrimarySuffix ) )*

PrimaryPrefix ::= Literal | "("Expression")" |

ObjectName | <IDENTIFIER>

PrimarySuffix ::= ( "[" Expression "]" | "."

<IDENTIFIER> | Arguments )

Literal ::= ( <INTEGER_LITERAL> )| (

<FLOATING_POINT_LITERAL> ) |

( <CHARACTER_LITERAL> ) | (

<STRING_LITERAL> ) | ( "true" ) | (

"false" ) | ( "null" )

Arguments ::= "(" ( ArgumentList )? ")"

ArgumentList ::= Expression (","Expression)*



Appendix B

BNF for MEDL

setRelOp ::= java code

setArithOp ::= java code

addToSymbolTable ::= java code

searchSymbolTable ::= java code

error skipto ::= java code

RequirementScript ::= <REQSCR> <IDENTIFIER> Statements

Guards <END>

Statements ::= ( ( Statement ) (";")?)*

Statement ::= EventDeclaration |

ConditionDeclaration | ActionDeclaration

| AuxiliaryVariableDeclaration |

EventDefinition | ConditionDefinition

| SafetyPropertyDefinition |

AlarmDefinition

EventDeclaration ::= <IMPORT> <EVENT> IdentifierList

ConditionDeclaration ::= <IMPORT> <CONDITION> IdentifierList

ActionDeclaration ::= <IMPORT> <ACTION> IdentifierList

IdentifierList ::= <IDENTIFIER> ( "," <IDENTIFIER> )*

AuxiliaryVariableDeclaration ::= <AUXVAR> PrimitiveType

IdentifierList

EventDefinition ::= <EVENT> <IDENTIFIER> "="

EventExpression
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ConditionDefinition ::= <CONDITION> <IDENTIFIER> "="

ConditionalExpression

SafetyPropertyDefinition ::= <PROPERTY> <IDENTIFIER> "="

ConditionalExpression

AlarmDefinition ::= <ALARM> <IDENTIFIER> "="

EventExpression

EventExpression ::= ( SimpleEventExpression ( ( EventOp

EventExpression ) )? OptionalWhen )

OptionalWhen ::= ( <WHEN> ConditionalExpression )*

SimpleEventExpression ::= ( <IDENTIFIER> | "(" EventExpression

")" | <START> "(" ConditionalExpression

")" | <END> "(" ConditionalExpression

")" )

EventOp ::= "&&" | "||"

Guards ::= ( Guard )*

Guard ::= <IDENTIFIER> "->" "{" Updates "}"

Updates ::= Update (";" Update)*";"

Update ::= ( (<IDENTIFIER>> "=" Expression |

( <INVOKE> <IDENTIFIER>) | (<PRINT>

Expression) )

Type ::= ( (PrimitiveType|Name)("[" "]")* )

PrimitiveType ::= ( "boolean" ) | ( "char" ) | (

"byte" ) | ( "short" ) | ( "int" ) |

( "long" ) | ( "float" ) | ( "double" )

| ( "String" ) | ( "Set" )

ResultType ::= ( "void" ) | ( Type )

Name ::= <IDENTIFIER> ( "." ( <IDENTIFIER> )

)*

Expression ::= ConditionalExpression

|SetExpression
SetExpression ::= SimpleSetExpression

sizeSetExpression ::= sizeSimpleSetExpression
SimpleSetExpression ::= ( <SETADD> ”(” Expression ”,”

SetExpression | <SETEMPTY > |

<IDENTIFIER> )
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sizeSimpleSetExpression ::= Name
ConditionalExpression ::= ConditionalOrExpression ( "?"

Expression ":" ConditionalExpression

)? )

ConditionalOrExpression ::= ( ConditionalAndExpression ( "||"

ConditionalAndExpression )* )

ConditionalAndExpression ::= ( InclusiveOrExpression ( "&&"

InclusiveOrExpression )* )

InclusiveOrExpression ::= ( ExclusiveOrExpression ( "|"

ExclusiveOrExpression )* )

ExclusiveOrExpression ::= ( AndExpression ( "^" AndExpression

)* )

AndExpression ::= ( EqualityExpression ( "&"

EqualityExpression )* )

EqualityExpression ::= ( "[" EventExpression ";"

EventExpression ")" ) | ( <DEFINED> "("

Expression ")" ) | InstanceOfExpression

( ( ( "==" | "!=" ) InstanceOfExpression

) )*

InstanceOfExpression ::= ( RelationalExpression (

"instanceof" Type )?

RelationalExpression ::= ShiftExpression ( ( ( "<" | ">" |

"<=" | ">=" ) ShiftExpression ) )*

ShiftExpression ::= AdditiveExpression ( ( ( "<<" | ">>"

| ">>>" ) AdditiveExpression ) )*

AdditiveExpression ::= MultiplicativeExpression ( ( ( "+" |

"-" ) MultiplicativeExpression ) )*

MultiplicativeExpression ::= UnaryExpression ( ( ("*" | "/" | "%"

) UnaryExpression ) )*

UnaryExpression ::= ( ( "+" | "-" ) UnaryExpression )

| ( <SETSIZE> ”(” sizeSetExpression
”)” ) | UnaryExpressionNotPlusMinus

| ( <TIME> "(" EventExpression ")" )

| ( <VALUE> "(" EventExpression ","

Expression ")" ) | ( <SETADD> ”(”
Expression ”,” SetExpression ”)” )
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UnaryExpressionNotPlusMinus ::= ( ( " " | "!" ) UnaryExpression ) |

CastExpression | PrimaryExpression

CastLookahead ::= "(" PrimitiveType | "(" Name "["

"]" | "(" Name ")" ( " " | "!" | "(" |

<IDENTIFIER> | Literal )

CastExpression ::= ( "(" Type ")" UnaryExpression | "("

Type ")" UnaryExpressionNotPlusMinus )

PrimaryExpression ::= PrimaryPrefix ( ( PrimarySuffix ) )*

PrimaryPrefix ::= SetLiteral | Literal |

"("Expression")" | ResultType "."

"class" | Name

PrimarySuffix ::= ( "[" Expression "]" | "."

<IDENTIFIER> | Arguments )

Literal ::= ( <INTEGER_LITERAL> )| (

<FLOATING_POINT_LITERAL> ) |

( <CHARACTER_LITERAL> ) | (

<STRING_LITERAL> ) | ( "true" ) | (

"false" ) | ( "null" )

SetLiteral ::= <SETEMPTY >

Arguments ::= "(" ( ArgumentList )? ")"

ArgumentList ::= Expression (","Expression)*



Vita

Name Natalie Alexandra Bowles

Place and year of birth Ottawa, Ontario, Canada, 1978

Education Queen’s University, Kingston, Ontario, 2002-2004
M.Sc. (Computing and Information Science), 2004

Queen’s University, Kingston, Ontario, 1998-2002
B.Sc. (Honours, Computing and Information Science), 2002

Queen’s University, Kingston, Ontario, 1997-2001
B.Com (Honours), 2001

Experience Research assistant, School of Computing,
Queen’s University, 2002-2004

Awards Office of Critical Infrastructure Protection and Emergency
Preparedness (OCIPEP) Research Fellowship, 2002-2003
Queen’s Graduate Award (QGA) , 2002-2003
Queen’s University, School of Business, Dean’s Honour Role,
1997-1998
D. I. McLeod Scholarship, 1998
Lena MacNeil Scholarship, 1997
NORTEL Scholarship, 1997
Student Council Scholarship, 1997

95


