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Abstract

The generalized LR parsing algorithm for context-free grammars, invented by
Tomita in 1986, is extended for the case of Boolean grammars – a recently introduced
generalization of context-free grammars with logical connectives added to the formalism
of rules. A high-level description of the algorithm, an elaborate example of its operation
and a suggested implementation are provided. The algorithm has been implemented in a
parser generator. However, the proof of the algorithm’s correctness is so far incomplete,
hence the preliminary status of this report.

1 Introduction

Knuth’s discovery of the LR parsing algorithm [4] in 1965 became one of the most significant
contributions of formal language theory to software engineering. Being applicable to every
deterministic context-free language and working in linear time, this algorithm possessed ex-
actly the qualities in demand by the compiler industry, which ensured quick recognition and
continued work in this direction.

For technical details on Knuth’s LR the reader is directed to the well-known textbook on
compilers by Aho, Sethi and Ullman [1]. In short, the algorithm uses stack memory, which
contains a stringα of terminals and nonterminals and the computation history of a certain
DFA onα. The algorithm performs actions of two types:

• Shift, which means reading the next symbol of the input string, pushing it onto stack
and consuming it.
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• Reduce, which pops the symbols forming the righthand sideα of some ruleA → α ∈
P off the stack and then pushesA onto the stack.

By the names of these actions, LR parsing is nicknamedShift–Reduceparsing. The choice
of action to apply at every step of the computation is determined by the contents of the stack
and byk lookahead symbols, accounted by the means of a parsing table. If the table unam-
biguously specifies the action to perform in any possible situation, the LR(k) can proceed
deterministically and do the parsing in linear time. The grammars for which such a table can
be constructed is called LR(k), and the language family covered by such grammars, for any
k > 1, is the family of deterministic context-free languages.

If one attempts to construct an LR(k) parser for a grammar that is not LR(k), one obtains
so-calledLR conflicts– ambiguously defined entries of the parsing table, which correspond
to the situations where the correct action to perform cannot be determined out ofk lookahead
symbols and the contents of the stack. In such a situation the parser has to guess whether
it shouldshift or reduce, and by which rule should it reduce if there are several candidates.
Although this nondeterminism could be simulated by backtracking, that would yield worst-
case exponential time, which is unacceptable.

A polynomial-time algorithm to simulate nondeterminism in LR was given by Tomita
[11, 12]. Whenever a standard deterministic LR(k) has to make a choice between two or
more actions (Shift or Reduce), Tomita’s parser, namedGeneralized LRby its author, per-
forms both actions at the same time, storing all possible contents of the LR parser stack in
the form of a graph. Although the number of possible computations of a nondeterministic
LR parser can depend exponentially on the length of the string, the graph-structured stack
never contains more thanO(n) vertices and therefore always fits inO(n2) memory. A lot of
improvements and refinements of the original Tomita’s algorithm have been proposed since
it was introduced [2, 13]; in particular, it was shown that if the most efficient graph search
algorithms are employed, then the algorithm can be made to work in time at most cubic of
the length of the input. Also this algorithm has been adapted for conjunctive grammars by
the author [6].

In this paper, this algorithm is further extended to handle the case of Boolean grammars
[8]. This results in a method general enough, so that the conjunctive LR [6], Tomita’s context-
free generalized LR [12] and Knuth’s deterministic LR [4] become its simple subcases. This
makes the new algorithm technically quite complicated, yet computationally still feasible:
it can be implemented to work in no more than cubic time on conjunctive and context-free
grammars (by the virtue of performing exactly the same computation as the more specialized
algorithms [12, 6] would perform), and in linear time on context-free LR(k) grammars, while
for Boolean grammars of the general form it works in cubic time under not at all restrictive
assumptions upon a grammar.
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2 Boolean grammars

Boolean grammars are context-free grammars with explicitconjunctionandnegationopera-
tions in the formalism of rule.

Definition 1 ([8]). A Boolean grammar [8] is a quadrupleG = (Σ, N, P, S), whereΣ and
N are disjoint finite nonempty sets of terminal and nonterminal symbols respectively;P is a
finite set of rules of the form

A → α1& . . . &αm&¬β1& . . . &¬βn (m + n > 1, αi, βi ∈ (Σ ∪N)∗), (1)

whileS ∈ N is the start symbol of the grammar.
For each rule (1), the objectsA → αi andA → ¬βj (for all i, j) are called conjuncts,

positive and negative respectively. A conjunct with unknown sign can be denotedA → ±γ,
which means “A → γ or A → ¬γ”.

A Boolean grammar is called a conjunctive grammar [5], if negation is never used, i.e.,
n = 0 for every rule (1). It degrades to a context-free grammar if neither negation nor
conjunction are allowed, i.e.,m = 1 andn = 0 for all rules.

Defining the semantics of Boolean grammars – i.e., the language a grammar generates –
turned out to be rather nontrivial [8]. The definition is based upon language equations with
concatenation and all set-theoretic operations, roughly similar to the well-known characteri-
zation of the context-free grammars by a simpler class of language equations with union and
concatenation only [3].

Definition 2. Let G = (Σ, N, P, S) be a Boolean grammar. The system of language equa-
tions associated withG is a resolved system of language equations overΣ in variablesN , in
which the equation for each variableA ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[ m⋂
i=1

αi ∩
n⋂

j=1

βj

]
(for all A ∈ N) (2)

A vectorL = (L1, . . . , Ln) is called a naturally reachable solution of (2) if for every finite
M ⊆ Σ∗ closed under substring and for every stringu /∈ M (such that all proper substrings
of u are inM ) every sequence of vectors of the form

L(0), L(1), . . . , L(i), . . . (3)

(whereL(0) = (L1 ∩M, . . . , Ln ∩M) and every next vectorL(i+1) 6= L(i) in the sequence is
obtained from the previous vectorL(i) by substituting somej-th component withϕj(L

(i)) ∩
(M ∪ {u})) converges to

(L1 ∩ (M ∪ {u}), . . . , Ln ∩ (M ∪ {u})) (4)

in finitely many steps regardless of the choice of components at each step.
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In all practical cases (which exclude artistry like using a nonterminalA with a rule
A → ¬A&B), a system associated with a grammar will have a naturally reachable solu-
tion (L1, . . . , Ln), and the languageLG(Ai) generated by everyi-th nonterminalA can be
defined asLi then. The language of the grammar isL(G) = LG(S).

Following is a Boolean grammar that generates the well-known non-context-free lan-
guage{ww | w ∈ {a, b}∗}:

S → ¬AB&¬BA&C
C → aaC | abC | baC | bbC | ε

A → aAa | aAb | bAa | bAb | a
B → aBa | aBb | bBa | bBb | b

3 A restricted case of Boolean grammars

Define the following transform of a Boolean grammar: given a grammarG = (Σ, N, P, S),
consider the set of rules

positive(P ) = {A → α1& . . . &αm | A → α1& . . . &αm&¬β1& . . . &¬βn ∈ P} (5)

Using (5) as the set of rules of a new grammar, a grammarpositive(G) =
(Σ, N, positive(P ), S) is obtained. It is a conjunctive grammar [5].

Definition 3. LetG be a Boolean grammar. A sequence of conjuncts

A1 → ±η1A2θ1,
A2 → ±η2A3θ2,

...
A` → ±η`A`+1θ`,

(6)

such that̀ > 1, ε ∈ Lpositive(G)(ηi) andε ∈ Lpositive(G)(θi) for all i, is called a chain from
A1 to A`+1. A cycle is a chain from a nonterminal to itself.

If the conditionε ∈ Lpositive(G)(ηi) is lifted, while the rest of the conditions remain (in-
cluding the requirement thatε ∈ Lpositive(G)(θi) for all i), the sequence (6) is called a right-
chain fromA1 to A`+1.

A chain (or a right-chain) fromA to B means a certain dependency ofA on B – or, in
other words, an influence ofB onA.

Definition 4. Let G be a Boolean grammar and let a nonterminalA have a chain to itself.
This cycle is said to be negatively fed by a right-chain, if there exists a right-chain fromA to
a nonterminalB, such that some rule forB contains a negative conjunct.

In the following a loop negatively fed by a right-chain will be referred to as just a nega-
tively fed loop.

The following grammar has a cycle (a chain fromA to A, going throughT andS), which
is negatively fed by a right-chain fromA to B, where a rule forB has a negative conjunct:
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S → A
A → T | X
T → S
X → aB
B → ε&¬E
E → ε

The dependence of nonterminals on each other is illustrated in Figure1.

X → a B





B → ε &   E


E → ε

S → A


A → T  |  X


T → S





Figure 1:How a cycle is negatively fed.

Note that the associated system of language equations has a naturally reachable solu-
tion (∅,∅,∅,∅,∅, {ε}). Hence this is a well-formed Boolean grammar that generates the
language∅. However, this grammar and any other grammars with negatively fed loops are
problematic for the LR parsing algorithm described below.

In the following it will be assumed that Boolean grammars used with the algorithm have
no negatively fed loops. This is a very weak condition. For instance, every Boolean grammar
in the binary normal form [8] does not have any chains at all, not to mention any loops,
especially negatively fed ones. Since every Boolean grammar can be effectively transformed
to the binary normal form, this requirement causes no loss of generality.

The absense of negatively fed loops is a syntactical condition that does not rely upon the
semantics of Boolean grammars. The following useful result can be proved:

Theorem 1. Every Boolean grammar without negatively fed cycles complies to the semantics
of naturally reachable solution.

The proof is by reduction to a system of Boolean equations. Let us first define the corre-
sponding restriction on Boolean equations.

Definition 5. Let xi = fi(x1, . . . , xn) (1 6 i 6 n) be a system of Boolean equations. A
sequence of variablesxi1 , . . . , xi`+1

(` > 1), such thatxij+1
is an essential variable infij for

all j (1 6 j 6 `), is called a chain fromxi1 to xi`+1
.

A cycle is a chain from a variable to itself. It is said to be negatively fed, if there exists a
chain from somexij to a variablexk, such thatfk is not a monotone function.

The following lemma on Boolean equations contains the main idea of the proof of Theo-
rem1.
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Lemma 1. Let xi = fi(x1, . . . , xn) (1 6 i 6 n) be a system of Boolean equations without
negatively fed cycles. Consider any sequence of Boolean vectors

(b
(0)
1 , . . . , b(0)

n ), (b
(1)
1 , . . . , b(1)

n ), . . . , (b
(j)
1 , . . . , b(j)

n ), . . . , (7)

such that(b(0)
1 , . . . , b

(0)
n ) = (0, . . . , 0), and for everyj > 0 it holds that:

• There exists a nonempty set{t1, . . . , tp} ⊆ {1, . . . , n} of positions in the vector, such
that b(j+1)ti = pti(b

(j)
1 , . . . , b

(j)
` ) (for 1 6 ti 6 `) b(j+1)ti = fti(b

(j)
1 , . . . , b

(j)
ti−1) (for

` < ti 6 n) andb
(j+1)
i = b

(j)
i for all positionsi not in the designated set, and

• (b
(j+1)
1 , . . . , b

(j+1)
n ) 6= (b

(j)
1 , . . . , b

(j)
n ),

Then, regardless of the choice of the sets of positions at each step, this sequence converges
to a solution of this system of Boolean equations in at most2n steps, and all these sequences
converge to the same solution. If{1, . . . , n} is chosen as a set of positions at every step, the
sequence converges in at mostn steps.

Proof of Theorem1. For allM, w andL (modM) as in Definition2, it has to be shown that
the computation of a naturally reachable solution moduloM ∪ {w} always terminates and
converges to the same vector moduloM ∪ {w}. The proof is an induction on the cardinality
of M .

Basis.M = ∅, w = ε.

xA =
∨

A→α1&...&αm&¬β1&...&¬βn∈P

( m∧
i=1

conjunct(αi) ∧
m∧

i=1

¬conjunct(βi)

)
(8a)

conjunct(s1 . . . sk) =

{
xs1 ∧ . . . ∧ xsk

, if ε ∈ Lpositive(G)(si) for all i
0 otherwise

(8b)

Let the equation for a variablexA refer to a variablexB in its right hand side; this implies
ε ∈ Lpositive(G)(si) for all i, and hence a conjunctA → ±ηBθ, such thatε ∈ Lpositive(G)(η)
andε ∈ Lpositive(G)(θ). Hence, every chain in the dependencies (8) implies a chain in the
grammar in the sense of Definition3, and every negatively fed cycle in (8) implies a cycle
negatively fed by a chain in the grammar. By assumption, the original grammar contains
no such cycles, which implies that the Boolean system (8) has no negatively fed cycles.
Therefore, Lemma1 holds with respect to (8), and the condition of Definition2 is satisfied.

Induction step. Let LM be the naturally reachable solution moduloM . Construct a
system of Boolean equations as follows:

xA =
∨

A→α1&...&αm&¬β1&...&¬βn∈P

( m∧
i=1

conjunct(αi) ∧
m∧

i=1

¬conjunct(βi)

)
(9a)

conjunct(s1 . . . sk) =





1, if w ∈ s1 . . . sk(LM)∨

i:ε ∈ LM (sj) for all j 6= i

xsk
otherwise (9b)
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Again, if the equation forxA refers toxB, this implies a conjunctA → ±ηBθ, such
that ε ∈ Lpositive(G)(η) andε ∈ Lpositive(G)(θ). The rest of the argument is as in the basis
case.

4 The parsing table

Each algorithm from the LR family is guided by a parsing table constructed with respect to
a grammar. For every state from a finite set of statesQ and for each lookahead string from
Σ6k, the parsing table provides the parser with the action to perform – whether to shift the
next input symbol or to reduce by a certain rule. There exists a multitude of different table
construction techniques for Knuth’s deterministic algorithm, applicable to slightly different
classes of grammars and yielding tables of different size. In the case of Tomita’s nonde-
terministic algorithm, the difference between these methods is not very essential, and the
simplest of them, SLR(1) [1], is typically used. Let us adapt the context-free SLR(k) table
construction method for the case of Boolean grammars.

The first step is to construct a deterministic finite automaton over the alphabetΣ ∪ N ,
called the LR(0) automaton, which recognizes the bodies of grammar rules in the stack. In
our case this step is the same as in the context-free case. While in the context-free case the
states of the LR(0) automaton are sets of dotted rules, dotted unsigned conjuncts are used in
the case of Boolean grammars:

Definition 6. Let G = (Σ, N, P, S) be a Boolean grammar.A → α · β is called a dotted
conjunct, if the grammar contains a conjunctA → ±αβ. Letdc(P ) denote the (finite) set of
all dotted conjuncts.

Let the set of states beQ = 2dc(P ). In order to define the initial state and the transitions
between states, the functionsclosure andgoto are used. They are defined as in the classical
context-free LR theory, with the only difference that the objects they deal with are called
conjuncts rather than rules.

For every set of dotted conjunctsX and for everys ∈ Σ ∪N , define

goto(X, s) = {A → αs · β | A → α · sβ ∈ X} (10)

closure(X) is defined as the minimal set of dotted conjuncts that containsX and satisfies
the condition that for eachA → α ·Bγ ∈ closure(X) (whereα, γ ∈ (Σ∪N)∗, B ∈ N ) and
for each conjunctB → ±β ∈ conjuncts(P ) it holds thatB → ·β ∈ closure(X).

Define the initial state of the automaton asq0 = closure({S → ·σ | S → ±σ ∈
conjuncts(P )}), while the transition from a stateq ⊆ dc(P ) by a symbols ∈ Σ ∪ N is
defined as follows:δ(q, s) = closure(goto(q, s)). The state∅ ⊆ dc(P ) is an error state
and will be denoted by−. Note that, in the terminology of Aho, Sethi and Ullman [1]
δ(q, a) = q′ (a ∈ Σ) is expressed as “ACTION[q, a] = Shift q′”, while δ(q, A) = q′ (A ∈ N )
means “GOTO(q, A) = q′”.
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An important property of this DFA is that each state has unique accessing string – in the
sense that ifδ(q1, w1) = δ(q2, w2) and|w1| = |w2|, thenw1 andw2 coincide. Hence for every
stateq and for every numbern, if q has ann-symbol accessing string, this string is uniquely
defined.

Let Σ6k = {w | w ∈ Σ∗, |w| 6 k}. For any stringw, define

Firstk(w) =

{
w, if |w| 6 k
first k symbols ofw, if |w| > k

(11)

This definition can be extended to languages asFirstk(L) = {Firstk(w) | w ∈ L}.
In the case of the context-free SLR(k), the reduction function is constructed using the sets

FOLLOWk(A) ⊆ Σ6k (A ∈ N ) that specify the possible continuations of strings generated by
a nonterminalA. This is formalized by context-free derivations:u ∈ FOLLOWk(A) means
that there exists a derivationS =⇒∗ xAy, such thatFirstk(y) = u. The corresponding notion
for the case of Boolean grammars is, in the absense of derivation, somewhat harder to define:

Definition 7 ([9]). Let us say thatu ∈ Σ∗ followsσ ∈ (Σ ∪N)∗ if there exists a sequence of
conjunctsA0 → α1A1β1, A1 → α2A2β2, . . .A`−1 → α`A`β`, A` → ησθ, such thatA0 = S
andu ∈ LG(θβ` . . . β1)

Now, for every nonterminalA ∈ N , define FIRSTk(A) = Firstk(LG(A)) and
FOLLOWk(A) = {Firstk(u) | u follows A}.

Already for conjunctive grammars there cannot exist an algorithm to compute the sets
FIRSTk and FOLLOWk precisely [6]. However, since the LR algorithm uses the looka-
head information solely to eliminate some superfluous reductions, if the setsFIRSTk(A)
and FOLLOWk(A) are replaced by some of their supersets, the resulting LR parser will
still work, though it will have to spend extra time doing some computations that will not
influence the result. Algorithms to construct supersetsPFIRSTk(A) ⊇ FIRSTk(A) and
PFOLLOWk(A) ⊇ FOLLOWk(A) have been developed for top-down parsing of Boolean
grammars and can be found in the corresponding technical report [9]; let us reuse them
for LR parsing.

The setsPFOLLOWk(A) are used to define thereduction functionR : Q×Σ6k → dc(P )
which tells the reductions possible in a given state if the unread portion of the string starts
with a givenk-character string. In the SLR(k) table construction method, it is defined as
follows:

R(q, u) = {A → α | A → α· ∈ q, u ∈ PFOLLOWk(A)} (12)

for everyq ∈ Q andu ∈ Σ6k. In the notation of Aho, Sethi and Ullman,A → α ∈ R(q, u)
means “ACTION[q, u] = ReduceA → α”.

As in the context-free case, the states fromQ \ {qerror} can be enumerated with consec-
utive numbers0, 1, . . . , |Q| − 1, where 0 refers to the stateq0. The set of dotted conjuncts
(items) corresponding to a stateq ∈ Q will be denotedI(q) then.
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5 The algorithm

The new LR-style algorithm for Boolean grammars is a generalization of the algorithm for
conjunctive grammars [6], which in turn extends Tomita’s algorithm [12] for context-free
grammars.

All three algorithms share a common data structure: agraph-structured stack, introduced
by Tomita [12] as a compact representation of the contents of the linear stack of Knuth’s LR
algorithm in all possible branches of nondeterministic computation. The graph-structured
stack is an oriented graph with a designatedsource node. The nodes are labeled with the
states of the LR automaton (such as the SLR(k) automaton constructed in the previous sec-
tion), with the source node labeled with the initial state. The arcs are labeled with symbols
from Σ ∪ N . There is a designated nonempty collection of nodes, calledthe top layerof
the stack. Every arc leaving one of these nodes has to go to another node from the top layer.
The labels of these nodes should be pairwise distinct, and hence there can be at most|Q| top
layer nodes.

0
a

1

2

4

3




A
2

5A

B

B

b

b

A

Figure 2:Sample contents of the graph-structured stack.

Consider the graph in Figure2: the leftmost node labeled 0 is the source node; the two
rightmost nodes labeled 5 and 2 form the top layer. There is another node labeled 2 – the
direct predecessor of 5 – which is not in the top layer.

Initially, the stack contains a single source node, which at the same time forms the top
layer. The computation of the algorithm is an alternation ofreduction phases, which modify
the nodes in the top layer without reading the input, andshift phases, each reading and
consuming a single input symbol and forming an entirely new top layer as a successor of the
former top layer.

The shift phase is done identically in all three algorithms. Leta be the next input symbol.
For each top layer node labeled with a stateq, the algorithm looks up the transition table,
δ(q, a). If δ(q, a) = q′ ∈ Q, then a new node labeledq′ is created andq is connected toq′

with an arc labeleda; this action is calledShiftq′. If δ(q, a) = −, no new nodes are created,
this condition is called “Local error”; if this is the case for all the nodes, the algorithm
terminates, reporting a syntax error. The nodes created during a shift phase form the new top
layer of the graph, while the previous top layer nodes are demoted into regular nodes.

In Figure3(a) the top layer contains the nodes 1, 2, 3 and 4, andδ(1, a) = 5, δ(2, a) = −
andδ(3, a) = δ(4, a) = 6. Thus a new top layer formed of 5 and 6 is created, while 2 and its
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predecessors that are now disconnected from the new top layer are removed from the stack.

3

2α1

αm
2

0
A

1

α

3


1

0
3

2



4


0

A

1

4


a 5


6
a

a

a

(a) (b) (c)

Figure 3:(a) Shifting; (b) Reductions for context-free and (c) conjunctive grammars.

The reduction phase in each of the cases amounts to doing some identical transformations
of the top layer until the stack comes to a stable condition, i.e., no further transformations are
applicable. The difference between the three algorithms is in the particular transformations
used.

In thecontext-freecase [12], the only operation isreduction. Suppose there exists a top
layer nodeq, a nodeq′ and a ruleA → α, such thatA → α ∈ R(q) andq′ is connected toq
by a pathα. Then the algorithm can perform the operation “ReduceA → α” at q′, adding a
new arc labeled withA, which goes fromq′ to a top layer node labeledδ(q′, A). If there is
no nodeδ(q′, A) in the top layer, it is created. This case is illustrated in Figure3(b).

In theconjunctive case [6], reductionis still the only operation. However, now rules may
consist of multiple conjuncts, and hence the conditions of performing a reduction are slightly
more complicated. LetA → α1& . . . &αm be a rule, letq be a node and letqi1 , . . . , qim be
top layer nodes, such that, for allj, A → αj ∈ R(qij) andq is connected to eachqij by a
pathαj. The operation “ReduceA → α1& . . . &αm” can be done, adding a new nonterminal
arcA from q to a top layer nodeδ(q, A). See Figure3(c).

The case ofBooleangrammars requires more complicated handling. There are two oper-
ations:reduction, which is the same as in the previous cases, but with yet more complicated
prerequisites, andinvalidation, which means removing an arc placed by an earlier reduction.
In order to reduce by a ruleA → α1& . . . &αm&¬β1& . . . &¬βn from a nodeq, this node
q should be connected to the top layer by each of the pathsα1, . . . , αm and by none of the
pathsβ1, . . . , βn. This nonexistence of paths is shown in Figure4(left) by dotted lines ending
with crosses. This allows the algorithm to do “ReduceA → α1& . . . &αm&¬β1& . . . &βn”,
adding an arc labeledA from q to δ(q, A) in the top layer.

Invalidation is the opposite of reduction. Suppose there exists a nodeq and an arc
labeled with A from q to a node in the top layer, such that the conditions for mak-
ing a reduction by any rule forA from the nodeq are not met – i.e., for every rule
A → α1& . . . &αm&¬β1& . . . &βn for A either for somei there is no path fromq to the
top layer labeledαi, or for somej there exists a path fromq to the top layer with the la-
bels formingβj. Then the earlier made reduction (which added thisA arc to the graph) has
to be invalidated, by removing the arc fromq to the top layer nodeδ(q, A). Note that an
invalidation of an arc can make the graph disconnected.
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3

2

0

A

1

α1

αm

4


β1

βn

3

2

0

A

1

α1

αm

4


β1

βn

Figure 4:Reduction phase for Boolean grammars:ReduceandInvalidate

Let us note that in the case of context-free and conjunctive grammars, in the absense
of negation, arcs can only be added, and the conditions for invalidation would never hold.
On the other hand, if there is negation, then a reduction by a ruleA → α&¬β at a nodeq
can be made at the time when there is a pathα from q to the top layer, but there is no path
β; however, subsequent reductions may cause this pathβ to appear, rendering the earlier
made reduction invalid. This is something that does not have an analog in LR parsing for
negation-free grammars.

The reduction phase as a whole can be partially formalized by the following nondeter-
ministic algorithm:

while any reductions or invalidations can be done
choose a nonempty set of reductions/invalidations to do
add/remove these arcs simultaneously

In Section7 below the algorithm is claimed to be correct regardless of the choice of
reductions/invalidations at every step.

One possible implementation of the reduction phase is to do just one action at once;
this is the most intuitively clear approach, and it is used in the example in Section6. The
implementation described in Section8 does all valid reductions and invalidations at every
step, which allows to prove a polynomial complexity upper bound.

Except for these major differences in the reduction phase, the three algorithms are iden-
tical in all other respects. Following is the general schedule of the algorithm:

Input: a stringw = a1 . . . an.
Let the stack contain a single nodex labeledq0, let the top layer be{x}.
Do theReduction phaseusing lookaheadFirstk(w)
for i = 1 to |w|

Do theShift phaseusingai

If the top layer is empty, Reject
Do theReduction phaseusing lookaheadFirstk(ai+1 . . . an)
Remove the nodes unreachable from the source node.
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If there is an arc labeledS from the source node toδ(q0, S) in the top layer
Accept

else
Reject

6 Example

.
Consider the following grammar for the language{anbncn | n > 0}:

S → AP&QC
A → Aa | ε
C → Cc | ε
P → bPc | ε
Q → aQb | ε

It does not use negation at all, and hence is a conjunctive grammar [5]; the generalized
LR parsing algorithm for this class of grammars [6] is just a simple subcase of the algo-
rithm being investigated now. Let us artificially modify this grammar by restating the pair
of context-free rules for the nonterminalQ using de Morgan’s law. The resulting grammar
generates the same language, but makes a heavy use of negation, which would be interesting
to trace in action:

S → AP&QC
A → Aa | ε
C → Cc | ε
P → bPc | ε
Q → ¬R
R → ¬aQb&¬ε

In order to comply to the requirement of the positive first conjunct, let us add a new
nonterminalX that generates{a, b}∗ and then use conjunction withX in the rules forQ and
R. This gives the following grammar, which still generates{anbncn | n > 0}:

S → AP&QC
A → Aa | ε
C → Cc | ε
P → bPc | ε
Q → X&¬R
R → X&¬aQb&¬ε
X → Xa | Xb | ε

Table1 contains the setsPFIRST1 andPFOLLOW1 constructed for this grammar.
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First1 Follow1

S {ε, a, b} {ε}
A {ε, a} {ε, a, b}
C {ε, c} {ε, c}
P {ε, b} {ε, c}
Q {ε, a, b} {ε, b, c}
R {a, b} {ε, b, c}
X {ε, a, b} {ε, a, b, c}

Table 1:PFIRST1 andPFOLLOW1 tables.

δ R
a b c S A C P Q R X ε a b c

0 1 17 2 3 4 5
A → ε

R → ¬ε
X → ε

A → ε
X → ε

A → ε
R → ¬ε
X → ε

R → ¬ε
X → ε

1 1 6 4 5
R → ¬ε
X → ε

X → ε
R → ¬ε
X → ε

R → ¬ε
X → ε

2 7 8 9 P → ε P → ε

3 10 C → ε C → ε

4 Q → ¬R Q → ¬R Q → ¬R

5 11 12
Q → X
R → X

Q → X
R → X

Q → X
R → X

6 13
7 A → Aa A → Aa A → Aa

8 8 14 P → ε P → ε

9 S → AP

10 15 S → QC

11 X → Xa X → Xa X → Xa X → Xa

12 X → Xb X → Xb X → Xb X → Xb

13 R → ¬aQb R → ¬aQb R → ¬aQb
14 16
15 C → Cc C → Cc

16 P → bPc P → bPc
17

Table 2:The LR table.
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The LR table for this grammar is given in Table2. Let us trace the computation of the
corresponding Boolean LR parser on the inputw = abc.

Reduction phase:·abc This is the computation done before consuming any input symbols.
Initially, the stack contains the source node only, as shown in Figure5 (left).

The lookahead symbol isa, the reduction function for the only node evaluates to
R(0, a) = {A → ε, X → ε}. Each of these conjuncts is a rule in itself, and hence the
following two context-free reductions can be done:

• Reduce byA → ε from 0 to 2.

• Reduce byX → ε from 0 to 5.

The stack is now as in Figure5 (right). No other reductions are possible, since
R(2, a) = R(5, a) = ∅.

0

2


0
A

0

2


5


A

X

Figure 5:Example of LR parsing:·abc.

Shift phase:abc There are three nodes in the top layer: 0, 2 and 5 – see Figure5 (right).
For each of them the transition bya is defined.

• Shift 0 to1 = δ(1, a).

• Shift 2 to 7.

• Shift 5 to 11.

The resulting contents of the tree-structured stack is shown in Figure6 (leftmost).

Reduction phase:a · bc The nodes in the top layer are 7, 1 and 11, the lookahead symbol
is b. The reduction function provides the following conjuncts:R(7, b) = {A → Aa},
R(1, b) = {R → ¬ε,X → ε}, R(11, b) = {X → Xa}. Among these four conjuncts,
R → ¬ε is a part of the ruleR → X&¬aQb&¬ε, by which we cannot reduce in the
absence of the other two conjuncts, while the other three conjuncts form context-free
rules, which can be handled as in the context-free case:

• Reduce byA → Aa from 0 to 2.

• Reduce byX → Xa from 0 to 5.
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Figure 6:Example of LR parsing:a · bc.

• Reduce byX → ε from 1 to 5. Since the state 5 already exists in the top layer, no
new nodes are created, and the new arc arrives at the node added at the previous
step.

The contents of the stack at this point is shown in Figure6 (the second graph).

For the newly added nodes, 2 and 5, the relevant entries of the reduction table are:
R(2, b) = ∅ andR(5, b) = {Q → X,R → X}. Now having the conjunctQ → X, it
is possible to “assemble” the ruleQ → X&¬R, while the conjunctR → X allows to
consider reduction by the ruleR → X&¬aQb&¬ε:

• Reduce byQ → X&¬R from 0 to 3. This reduction is possible, because (1)
there is a path from 0 to the top layer with labels on the arcs formingX (which
satisfies the conjunctQ → X), and (2) there isno path from 0 to the top layer
with labels on the arcs formingR (which satisfies the conjunct ).

• Reduce byQ → X&¬R from 1 to 6. This case is similar to the previous one.

• Reduce byR → X&¬aQb&¬ε from 0 to 4. This is possible, because: (1) 0 is
connected to the top layer by a path “X” (which satisfies the conjunctR → X),
and (2) 0 is not connected to the top layer by a path “aQb”, and (3) 0 is not
connected to the top layer by a path “ε”.

Note that we cannot similarly reduce byR → X&¬aQb&¬ε from 1 (to 4). That
is because the node 1is connected to the top layer by a path “ε” and R → ¬ε ∈
R(1, b). Thus the condition (3) does not hold for the node 1, and the reduction is
impossible.
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Three more nodes, 3, 6 and 4, have been added to the top layer; the stack is now
as displayed in Figure6 (the third graph). The following conjuncts are given by the
reduction function:R(3, b) = ∅, R(6, b) = ∅ andR(4, b) = {Q → ¬R}. It is the last
of these conjuncts that calls for a change, this time a removal of an arc.

The earlier made reduction byQ → X&¬R from 0 to 3 relied upon the non-existence
of a path from 0 to the top layer labeled withR. Once the arc from 0 to 4 labeled with
R has been added, this condition no longer holds, and hence theinvalidationoperation
has to be executed: Hence the earlier made reduction has to be reversed:

• Invalidate the reduction byQ → X&¬R from 0 to 3.

At this point the graph (the rightmost in Figure6) is stable: no new arcs can be added,
and no arcs can be removed either.

Shift phase:abc There are seven nodes in the top layer: 7, 4, 6, 1, 5, 2, 11. The transition
by b is defined for the states 6, 5 and 2 only.

• Local error in 7: both 7 and its predecessor 2 are removed from the stack.

• Local error in 4: it is removed.

• Shift 6 to 13.

• Local error in 1, but it is not removed, since it has successors.

• Shift 5 to 12.

• Shift 2 to 8.

• Local error in 11: both 11 and its predecessor 5 are removed.

The contents of the graph-structured stack after shifting the symbolb is shown in Fig-
ure7(left).

Reduction phase:ab · c The top layer contains the nodes 13, 12 and 8.R(13, c) = {R →
¬aQb}, R(12, c) = {X → Xb}, R(8, c) = {P → ε}. P → ε andX → Xb form
single-conjunct rules, while the negative conjunctR → ¬aQb is a part of a three-
conjunct rule. The following actions can be done:

• Reduce byX → Xb from 0 to 5.

• Reduce byX → Xb from 1 to the existing state 5.

• Reduce byP → ε from 8 to 14.

Two new states were added, 5 and 14; the new conjuncts areR(5, c) = {Q → X, R →
X} andR(14, c) = ∅. The conjunctsQ → X andR → X allow to consider the rules
Q → X& R andR → X&¬aQb&¬ε:
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Figure 7:Example of LR parsing:ab · c.

• Reduce byQ → X& R from 0 to 3.

• Reduce byQ → X& R from 1 to 6: there is an arcX from 1 to 5 in the top layer
(it has been added a couple of steps before), but there is no arcR from 1 to the
top layer.

• Reduce byR → X&¬aQb&¬ε from 1 to 4, justified by the arcX from 1 to 5 in
the top layer and by the absense of pathsaQb andε from 1 to the top layer.

Now the condition that “there is no arcR from 1 to the top layer” is no longer true, and
hence the previous reduction has to be invalidated. Also, the other arcQ from 0 to 3 in
the top layer yields a conjunct{C → ε} = R(3, c), which makes one more reduction
possible.

• Invalidate reduction byQ → X& R from 1 to 6. The state 6 is removed.

• Reduce byC → ε from 3 to 10.

The graph, presented in Figure7(right), is now stable.

Shift phase:abc The top layer contains eight nodes: 3, 10, 13, 4, 5, 12, 8, 14. The transition
by b is defined for 10 and 14.

• Local error in 3: it is not removed because it has a successor.

• Shift 10 to 15.

• Local error in 13: it is removed along with its predecessor 6.

• Local error in 4: it is removed.
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• Local error in 5: it is removed.

• Local error in 12: it is removed, along with its direct predecessor 5. This time the
node 1 is removed as well, because all of its successors are now gone.

• Local error in 8: it is not removed because of a successor.

• Shift 14 to 16.

This yields a stack with two nodes in the top layer, 15 and 16. It is shown in Fig-
ure8(left).
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Q
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Figure 8:Example of LR parsing:abc·.

Reduction phase:abc· At this point the string has been entirely consumed and the looka-
head string isε. The sets of conjuncts given by the reduction function areR(15, ε) =
{C → Cc} andR(16, ε) = {P → bRc}. Both conjuncts are alone in their respective
rules, and hence these two steps are done as in the context-free case:

• Reduce byC → Cc from 3 to 10.

• Reduce byP → bPc from 2 to 9.

The current contents of the stack is shown in Figure8(middle).

The two new nodes bring forth new conjuncts:R(10, ε) = {S → QC}, R(9, ε) =
{S → AP}. These two conjuncts are the halves of the ruleS → AP&QC, which
allows to carry out the following reduction:

• Reduce byS → AP&QC from 0 to 17.

The contents of the stack, given in Figure8(right), has now stabilized.

The acceptance conditionThe whole input has been consumed and the stack is stable.
Since it contains an arc from the source node to the top layer labeled withS, the
string is accepted.
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S -> A P & Q C


A -> A a


P -> b P c


Q -> X & ~R
 C -> C c


A -> e


a
 b
 P -> e
 c


X -> X b


X -> X a


X -> e


C -> e


Figure 9:The parse tree ofabc constructed by an implementation.

7 On proving the correctness

Though no formal proof of the algorithm’s correctness has been written so far, some obser-
vations on a possible proof are provided in this section.

In order to analyze the LR parsing algorithm, it is convenient to redefine the graph-
structured stack by augmenting its nodes with the information on when they were added
– a layer number corresponding to a position in the input. There is no need to store this
extended information in an implementation; simply the properties of the algorithm become
much clearer in these terms:

Definition 8. LetG = (Σ, N, P, S) be a Boolean grammar without negatively fed cycles. let
w = a1 . . . a|w| be the input string, let(Σ, N, Q, q0, δ, R) be the SLR(k) automaton.

The graph-structured stack is an acyclic graph with the set of verticesV = Q ×
{0, 1, . . . , |w|} and with the arcs labeled with symbols fromΣ ∪ N , such that the follow-
ing conditions hold: for every arc from(q′, p′) to (q′′, p′′) labeled withs ∈ Σ ∪ N , p′ 6 p′′

andδ(q′, s) = q′′.
For eachp (0 6 p 6 n) the set of all vertices of the form(q, p), whereq ∈ Q, is called

thep-th layer of the graph. The nonempty layer with the maximal number is called the top
layer.

Consider the reduction phase in a layerp (0 6 p 6 |w|): the symbolsa1 . . . ap have
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already been read, whileFirstk(ap+1 . . . a|w|) is the lookahead string. Any arcs going to
layers less thanp (i.e., other than to the top layer) are fixed and cannot be changed in course
of the reduction phase. The terminal arcs leading to the top layer are also fixed. These will
be calledpermanent arcsin this proof.

0
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2 2

a

2
2

2

B C

D

X Y

Z

T

0

2 2

a

2

2X Y

Z

T

Figure 10:A graph-structured stack before a reduction phase; the possible arcs.

The reduction phase manipulates the nonterminal arcs going to the top layer. Initially,
there are none of them. A reduction adds an arc. An invalidation removes an arc. This
process can be viewed as flipping the bits in the bit vector of possible arcs, starting from a
zero vector.

A triple (q, p0, A), whereq ∈ Q, 0 6 p0 6 p andA ∈ N , is called apossible arc
(implying an arc from(q, p0) to (δ(q, A), p) labeledA), if the transitionδ(q, A) is defined
and there is either a permanent arc entering the vertex(q, p0), or an arc already known to be
a possible arc. It is easy to see that there are at mostp · |Q|2 possible arcs.

Every possible arc(q, p0, A) has acondition of existence– a certain configuration of
permanent and possible arcs in the graph that causes a reduction by some rule forA at the
vertex(q, p0), or prevents an invalidation ofA at (q, p0). A possible arc(q′, p′, A) is said
to influencea possible arc(q′′, p′′, A), if the condition of existence of(q′′, p′′, A) essentially
depends upon(q′, p′, A).

These dependencies can be written down in the form of a system of Boolean equations,
and then the behaviour of the algorithm at each reduction phase corresponds to a search for
a solution of this Boolean system – exactly as in Lemma1.

Proposition 1 (Termination and confluence).The reduction phase in every layerp termi-
nates, and the contents of the graph-structured stack after every phase does not depend upon
the order of reductions and invalidations.

Definition 9. A possible arc(q′, p′, A) is called tentatively correct if and only ifδ(q′, A) 6= −,
ap′+1 . . . ap ∈ LG(A), Firstk(ap+1 . . . an) ∈ PFOLLOWk(A).

Proposition 2 (A model computation). For each layerp, there exists a computation of
the reduction plase in the layerp that employs only reductions and no invalidations, and
constructs a stable graph, which contains the maximal subset of tentatively correct arcs,
such that the graph is connected.

A formal proof of the algorithm’s correctness can apparently be constructed around these
two propositions.
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8 Implementation

The overall composition of the algorithm has been given in Section5, and it can be directly
used in an implementation. The only question is how to implement the reduction phase.

The results of Section7 clearly imply that the reduction phases can be implemented in
many different ways, and the algorithm would still be correct. One possible implementation
is suggested in this section. This implementation is based upon doing all possible actions at
every step of the reduction phase; the rest are straightforward graph search techniques.

Definition 10. Consider a fixed state of the graph-structured stack. For each vertexv and
for each number̀ > 0, let predecessors`(v) be the set of vertices that are connected tov
with a path that is exactlỳ arcs long.

This set can be computed inductively on` in the following way:

• predecessors0(v) = {v}.
• predecessors`+1(v) consists of all verticesv′, such that there is an arc fromv′ to some

v′′ ∈ predecessors`(v).

Now the algorithm for doing the reduction phase reads as follows:

while the graph can be modified.
{

// Conjunct gathering.
let x[ ] be an array of sets of vertices, indexed by conjuncts.
for each nodev = (q, ptop) in the top layer

for eachA → α ∈ R(q, u)
x[A → α] = x[A → α] ∪ predecessors|α|(v)

// Reductions.
let valid be a set of arcs, initially empty
for each ruleA → α1& . . . &αm&¬β1& . . . &¬βn ∈ P

for each nodev ∈ ⋂m
i=1 x[A → αi] \

⋃n
i=1 x[A → βi]

if v is not connected to the top layer by an arc labeledA
add an arc fromv to the top layer labeledA

valid = valid ∪ {the arc fromv to the top layer labeledA}
// Invalidations.
for each nodev = (q, ptop) in the top layer

for each incoming arc(v′, v) labeledA
if this arc is not in the setvalid

remove the arc from the graph
}
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On the stage of conjunct gathering, the algorithm scans the stack and determines, which
reductions and invalidations can be possibly done. The setx[ ] of gathered conjuncts stores
this information, referring to the state of the graph at the time of conjunct gathering. After
that all these operations are applied sequentially on the basis of the gathered conjuncts. This
ensures that all reductions and invalidations are being done independently.

Let us give an upper bound for the complexity of this implementation of the reduction
phase, and of the algorithm as a whole. The number of iterations in each reduction phase
should beO(n): the idea is that the dependencies of the possible arcs upon each other are
O(n) deep, and henceO(n) parallel applications of all possible reductions and invalidations
should be enough. Note that if reductions and invalidations were applied randomly one by
one, then it would be easy to construct an example on which exponentially many operations
are required.

The conjunct gathering stage computespredecessors` a constant number of times, and`
is also bounded by a constant. Computing the set of predecessors involves consideringO(n)
nodes, each of which hasO(n) predecessors. Hence, each conjunct gathering stage takes
O(n2) steps. The reduction and invalidation stages takeO(n) time.

This gives a cubic upper bound for the complexity of the reduction phase, while the com-
plexity of the whole algorithm isO(n4). The worst-case execution time can be improved to
O(n3) by using a clumsy method for doing the conjunct gathering developed for the con-
junctive LR [6].

9 Conclusion

A practically usable algorithm for the recently introduced Boolean grammars has been ob-
tained. Though the proof of its correctness is not yet complete, the algorithm itself has been
implemented in an ongoing parser generator project [7] and tested on numerous grammars,
including a grammar for the set of well-formed programs in a simple programming language
[10], which is being parsed in quadratic time.
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