
Technical Report No. 2005-492

THE MYTH OF UNIVERSAL COMPUTATION�

Selim G. Akl

School of Computing

Queen's University

Kingston, Ontario, Canada K7L 3N6

February 24, 2005

Abstract

It is shown that the concept of a Universal Computer cannot be realized. Speci�-

cally, instances of a computable function F are exhibited that cannot be computed on

any machine U that is capable of only a �nite and �xed number of operations per step.

This remains true even if the machine U is endowed with an in�nite memory and the

ability to communicate with the outside world while it is attempting to compute F . It

also remains true if, in addition, U is given an inde�nite amount of time to compute F .

This result applies not only to idealized models of computation, such as the Turing Ma-

chine and the like, but also to all known general-purpose computers, including existing

conventional computers, as well as contemplated ones such as quantum computers.

Keywords: Universal computer, Turing machine, simulation, parallel computation,

superlinear speedup, real-time computation, uncertainty, geometric transformation.

1 Introduction

Universal computation, which rests on the principle of simulation, is one of the foundational
concepts in computer science. Thus, it is one of the main tenets of the �eld that any

computation that can be carried out by one general-purpose computer can also be carried
out on any other general-purpose computer. At times, the imitated computation, running

on the second computer, may be faster or slower depending on the computers involved. In

order to avoid having to refer to di�erent computers when conducting theoretical analyses,
it is a generally accepted approach to de�ne a model of computation that can simulate all
computations by other computers. This model would be known as a Universal Computer U .

Without doubt, the most well-known contender for the title of U is the Turing Machine.

It is widely believed that if a computation can be carried out on any model of computa-

tion, then it can be carried out on the Turing Machine. Conversely, it is also believed that if
a computation cannot be performed by a Turing Machine then it cannot be computed at all

(regardless of what model one uses). In recent years, however, it has become obvious to a

�This research was supported by the Natural Sciences and Engineering Research Council of Canada.

1

growing number of computer scientists that the Turing Machine cannot in fact capture the

entire spectrum of new applications of computers. In order to remedy this situation several

models were proposed to replace the Turing Machine as a universal model of computation.

These include models that communicate with the outside world during their computations,

models that appeal to the laws of physics to perform a huge numbers of operations every

time unit, models that can manipulate real numbers, parallel computers, and so on.

The contribution of this paper is twofold. First we show that all conventional models,

including the Turing Machine, are inadequate as universal models of computation. Then

we prove that in fact the notion of a Universal Computer is itself absurd: Because of its

necessarily �nite nature, a Universal Computer is an impossibility. This is accomplished by

exhibiting problems that can be solved by a machine capable of executing n operations at

every step, but these problems are not solvable by any machine capable of at most n � 1

operations per step, for any integer n > 1. Of course, n is a variable, rendering the notion

of a Universal Computer meaningless. In other words, if the purported Universal Computer
has been de�ned as capable of a (necessarily �nite and �xed) number n of operations per
step, then that computer will fail to compute a function requiring n+1 operations per step.

This paper is intended to present an existence proof. We provide three examples of
computations that cannot be performed by any �nite machine, regardless of how much time

it is allowed to operate. This remains true even if the �nite machine is allowed to interact

with the outside world. In fact, our examples allow the machine to receive input from, and
deliver output to, its environment during the computation, as well as to compute without

deadline; it still fails to perform the computations. Of course, one counterexample to the
notion of a Universal Computer would have su�ced. However, we felt that by o�ering three
distinct examples, with actual computations to support the theoretical set-up, we would

demonstrate that our result is not an isolated curiosity.
The remainder of this paper is organized as follows. Section 2 introduces the idea of

universal computation by �rst de�ning the Universal Computer U , as a general model, then
presenting the Turing Machine as the most widely accepted embodiment of a Universal Com-
puter. Models previously proposed as capable of performing computations that cannot be

carried out on a Turing Machine are reviewed briey in Section 3. Three computational
problems are described in Section 4. None of these problems can be solved on a computer

that obeys the �niteness condition, that is, a computer capable of only a �nite and �xed

number of operations per step. Computers obeying the �niteness condition include all `rea-
sonable' models of computation, both theoretical and practical, such as the Turing Machine

and all of today's existing and contemplated general-purpose computers. The �rst of these
computational problems involves a set of independent time-varying variables. In the second

problem a function is to be evaluated over a set of physical variables that a�ect one another.

The third problem requires a transformation to be performed on a geometric object while
obeying a certain mathematical condition throughout the computation. The failure to solve

these problems by any computer that obeys the �niteness condition (regardless of whether it
has an in�nite memory, is capable of communicating with the outside world while computing,

or is allowed to compute for as long as it needs), leads us to conclude in Section 5 that the

concept of the Universal Computer cannot be realized (neither in theory nor in practice) so
long as the �niteness condition holds. Some �nal remarks are o�ered in Section 6.

2

2 Universal Computation

We begin by providing a high-level description of U , a Universal Computer. This description

is intended to be su�ciently general to encompass any particular manifestation of such a

computer. This is followed by a formal presentation of the most famous of all candidates for

a Universal Computer, namely, the Turing Machine.

2.1 The universal computer

A Universal Computer U is de�ned as a computing system with the following capabilities:

1. A means of communicating with the outside world with the purpose of receiving input

and producing output, at any time during a computation.

2. The ability to perform all elementary arithmetic and logical operations (such as addi-
tion, subtraction, logical AND, and so on).

3. A program made up of basic input, output, arithmetic, and logical operations.

4. An unlimited memory in which the program, the input, intermediate results, and the
output are stored and can be retrieved.

Furthermore, U obeys the �niteness condition: In one step, requiring one unit of time,

U can execute a �nite and �xed number of basic operations. Speci�cally, it can:

1. Read a �nite and �xed number of �nite and �xed-sized inputs;

2. Perform a �nite and �xed number of elementary arithmetic and logical operations on

a �nite and �xed number of �nite and �xed-sized data;

3. Return a �nite and �xed number of �nite and �xed-sized outputs.

We consider this to be a `reasonable' model of computation. What makes computer

U `universal' is its supposed ability to simulate any computation performed on any other

model of computation: Anything that can be computed on some model, can be computed

on U . There is no bound on the number of steps that U can perform to solve a problem; a

simulation can run for as long as required.

2.2 The Turing Machine as Universal Computer

\As far as we know, no device built in the physical universe can have any more

computational power than a Turing machine. To put it more precisely, any

computation that can be performed by any physical computing device can be
performed by any universal computer, as long as the latter has su�cient time

and memory." [40]

The Turing Machine was proposed by Alan Turing in 1936 in his famous paper [65]. The

following description follows from the treatment of Turing machines in [44].

3

2.2.1 Formal de�nition

A Turing Machine consists of three physical components:

1. A control unit that can be in any one of a �nite set of states K = fq0; q1; : : : ; qr�1g.

There are two special states: the initial state s 2 K, and the halt state h =2 K.

2. An input/output tape that extends, from one �xed end at the left, inde�nitely to the

right. The tape is divided into squares, each of which capable of holding one symbol

(of �nite and �xed-sized) from a �nite alphabet � = fa0; a1; : : : ; as�1g. One of the

elements of � is the blank symbol #.

3. A read/write head allows the control unit and the input/output tape to communi-

cate. The head can read/write a symbol from/to the tape and move itself either one

tape square to the left (L) or one tape square to the right (R).

A computation by the Turing Machine proceeds in discrete steps. During each step, a
�nite number of operations (precisely two!) are executed. Depending on the current state
qi of the control unit and on the symbol aj written on the tape square at which the head is

presently positioned,

1. The control unit enters a new state (possibly staying in qi),

2. The read/write head

(a) either writes a new symbol in the tape square at which it is positioned (possibly

writing aj again),

(b) or executes one of the L or R moves.

Formally, a Turing Machine is a quadruple

(K [fhg;� [fL;Rg; �; s);

where � is a function from K � � to (K [fhg) � (� [fL;Rg). The function � describes

the operation of the machine at each step; thus �(qi; aj) is equal to one of (qk; a`), (qk; L), or

(qk; R), for some qk 2 K [fhg and a` 2 �.

The Turing Machine receives its input on tape squares beginning at the left end of the
tape. It produces its output also on the tape. When the control unit enters state h, the
computation terminates.

Suppose we want to compute the product 3� 5. We would put the two strings 111 and

11111 on the tape and set up the � function so that the Turing Machine reads the two inputs

and writes on the tape three adjacent copies of 11111, producing as output 111111111111111.
It is important to note the following crucial properties that make the Turing Machine a

`reasonable' model of computation:

1. The cardinalities of the sets K and �, the size of each symbol in �, and the number

of operations performed during each step, are all �nite and �xed.

4

2. The only part of the model that is not �nite is the input/output tape. This is under-

standable, since all intermediate calculations between reading the input and producing

the output are written on the tape. Owing to the fact that for many computations it

is impossible to predict the number of steps required to produce the output (in fact,

some computations may never terminate), the number of tape squares is assumed to

be in�nite.

The reader will have noticed that, unlike the Universal Computer de�ned in Section

2.1, the Turing Machine does not have the means to communicate with the outside world,

particularly during a computation. Furthermore, there is no explicit mechanism for placing

the input on the tape initially, nor is there any cost (for example, running time) incurred for

this operation. The input is miraculously `there' when the computation begins.

2.2.2 Universality thesis

While fairly simple conceptually, the Turing Machine is a truly powerful model of computa-

tion. So powerful in fact, that it was believed until recently that no model more powerful
than the Turing Machine can possibly exist (in other words, a model that would be able to

perform computations that the Turing Machine cannot perform). This belief is captured in
the following statement, known as the

Church-Turing Thesis: Any computable function can be computed on a Tur-
ing Machine [73, 54].

The statement may sound like a tautology, so let's reword it: If a function f can be
computed `somehow' on `some model of computation', then it is always possible to compute

f on a Turing Machine. Originally stated by Church [23] and Turing [65] independently, the
thesis appears to have evolved and there are many ways of formulating it [24, 34, 35, 43, 47].

(Originally, the Turing Machine was meant to be `universal' in the sense that it could imitate
any computation performed by a humanmathematician who was following an algorithm. The
evolution of the `thesis' from its modest origins to its current elevated status is traced in

[24].)
The statement is a `thesis' and not a theorem because of the di�culty of formally de�ning

what it means \to compute". However, it was generally felt that the statement could have

as well been called a theorem based on the following overwhelming evidence:

1. Every conceivable computation was shown to be executable by a Turing Machine.

2. Every attempt to extend the Turing Machine (by adding more features such as, for

example, multiple tapes, multiple heads, a doubly in�nite tape, even the ability to
behave nondeterministically, and so on) resulted in a model equivalent to the Turing

Machine.

But how does one show that all known computations can be carried out by a Turing

Machine? This is usually done quite simply by appealing to a very important idea that

permeates the science of computing, namely, the

5

Principle of Simulation: Any computation by some model A can be simulated on a

Turing Machine.

The idea is that the Turing Machine can (painstakingly and excruciatingly slowly, for

sure, but successfully nevertheless) replicate all the steps performed by model A. In other

words, given enough time, the Turing Machine can compute anything that can be computed.

As a model of computation, the Turing Machine may not be e�cient, but it is certainly

e�ective. As put by Lewis and Papadimitriou [44]:

\ : : : as primitive as Turing machines seem to be, attempts to strengthen them seem not

to have any e�ect. : : : Thus any computation that can be carried out on the fancier type of

machine can actually be carried out on a Turing machine of the standard variety. : : : any

way of formalizing the idea of a `computational procedure' or an `algorithm' is equivalent to

the idea of a Turing Machine."

In some sense, using the Simulation Principle, the Church-Turing thesis implies a de�ni-

tion of computability. If the Church-Turing thesis is correct, then a function is computable

if and only if it is computable by a Turing Machine.
For all the reasons presented, the Turing Machine has been called a universal model of

computation. (Technically, a Universal Turing Machine is a general Turing Machine that can
simulate any special-purpose Turing Machine.) Formal grammars, �-recursive functions, and
a variety of di�erent models were shown to be equivalent to the Turing Machine [44, 54, 73].

2.2.3 Limitations

Careful examination of the de�nition of the Turing Machine reveals that the model is actually
capable only of evaluating a restricted set of functions. In fact, the �rst person to recognize

the limitations of the Turing Machine appears to have been Turing himself. Indeed, Turing
proposed a number of variants to the automatic machine (or a-machine, the name he gave
to what is now known as the Turing Machine), in an attempt to extend the model. These

variants included the choice machine (or c-machine) [65] and the unorganized machine (or
u-machine) [67], neither of which seems to have survived later scrutiny. Most intriguing,

however, is the o-machine that he described in his Ph.D. thesis of 1938 (supervised by

Church), and later published as [66] (see also [28]). An o-machine is a Turing Machine
augmented with an oracle; the latter is capable of returning the value of a function that

cannot be computed on the Turing Machine (such as a function which determines whether a
given arbitrary computation terminates, also known as the halting function). This is clearly

a machine more powerful than the Turing Machine; its fate, nevertheless, has been no better

than other variants proposed by Turing.
The Church-Turing thesis (as interpreted today) implies that there does not exist a

computable function that cannot be computed by a Turing Machine. This thesis has had its
fair share of critics (by far outnumbered, however, by staunch defenders of the thesis) [63].

It has been argued, often successfully, that the Turing Machine is not a Universal Computer.

Several examples of computations have been exhibited that cannot be performed by the
Turing Machine. Sometimes these computations are referred to as super-Turing computations

[25, 56, 62], a restricted subset of which are called hypercomputations [17, 26, 29, 41, 64]. We
review this work in Section 3. (It is interesting to note that the word `myth' appearing in

6

the title of this paper, has been used equally by both sides of the debate; see, for example,

[33, 37, 38] for di�ering views.)

3 Previous Work

\It is theoretically possible, however, that Church's Thesis could be overthrown at

some future date, if someone were to propose an alternative model of computation

that was publicly acceptable as ful�lling the requirement of `�nite labor at each

step' and yet was provably capable of carrying out computations that cannot be

carried out by any Turing machine. No one considers this likely. " [44]

Since the early 1960s, some researchers began to question the adequacy of the Turing

Machine as a universal model of computation. Over the years, two types of results were

obtained:

1. Unconventional computations were exhibited that can be computed on other models
of computation, but not on the Turing Machine.

2. Conventional problems believed to be undecidable (that is, unsolvable, or uncom-
putable), because they had been proven not to be computable on the Turing Machine,
were shown to be decidable on other models of computation.

One distinguishing characteristic of these results, is the willingness of the researchers,
whose work we briey describe in this section, to address the thorny question referred to in
Section 2.2.2: What does it mean \to compute"? In answer, they o�er a broad perspective.

Speci�cally, computation is viewed as a process whereby information is manipulated by, for
example, acquiring it (input), transforming it (calculation), and transferring it (output).

They describe instances of processes, each of which is a computation, including,

1. Measuring a physical quantity,

2. Performing a basic arithmetic operation on a pair of numbers, and

3. Setting the value of a physical quantity,

to cite but a few. Of these, only the second represents what we could call a conventional

computation. Furthermore, each of these computational processes may itself be carried out

by a variety of means, including, of course, conventional (electronic) computers, but also

through physical phenomena in the quantum [18] and optical [45] realms, through chemical
reactions [58], and through transformations in living biological tissue [1].

7

3.1 Interacting computing agents

One of the shortcomings of the Turing Machine pointed out early on, is its inability to

simulate several communicating computing agents. A model, seemingly able to do just that,

namely, the Actors Model, was proposed as an alternative [39]. A related criticism of the

Turing Machine is its inability to interact with the outside world (see, for example, [38, 68,

69, 70] and the references therein), As stated in [69] (where TM stands for Turing Machine):

\Turing machines are �nite computing agents that noninteractively transform input into

output strings by sequences of state transitions. TM computations for a given input are

history-independent and reproducible, since TMs always start in the same initial state and

shut out the world during computation." It is then argued in [69] that \interactive �nite

computing agents" are more powerful than Turing Machines, as they are capable of receiving

input from, and producing output to, the outside world throughout the computation. Similar

ideas are articulated in [30, 46, 49]. These approaches present a strong and convincing case

against the Turing Machine as a Universal Computer. It may be said in defense of the Turing
Machine that both the idea of interaction among agents, as well as interaction with the

outside world, can be simulated using a number of independent Turing Machines operating
in sequence. Speci�cally, the computations occurring between two interactions are carried
out each time by a completely new Turing Machine. In other words, whenever an input

is received, the previous Turing Machine halts, and a new Turing Machine takes over from
that point on. At no point are two machines operating simultaneously. It is far from clear,

however, how the transition from one machine to the next would be executed.

3.2 Physical realizations

Certain physical realizations of computers have also been proposed as possible demonstra-

tions of models more powerful than the Turing Machine. Some of the most exciting ideas
come from Physics and Biology. Thus, in theory at least, quantum computation promises
to o�er great advantages when it comes to solving certain computational problems [16, 50].

Because of their ability to perform an enormous number of operations simultaneously, while
requiring very little in terms of hardware, quantum computers can solve extremely quickly

problems that are infeasible to solve on conventional electronic computers. Two computa-

tions, in particular, namely, factoring large numbers and searching large databases, can be

readily solved on a quantum computer while requiring a prohibitive time on a classic com-

puter. This has led some to argue that the quantum computer is `more powerful' than the

Turing Machine (see, for example, [18, 42] and the references therein). This claim, however,

must be quali�ed. Strictly speaking, a Turing Machine will, given enough time, solve any

problem solvable on a quantum computer. The quantum algorithms involve exhaustive enu-

meration of cases. There is nothing, except our patience (or lack of it!), that impedes the

Turing Machine in principle, preventing it from arriving at the same answer as the quantum

computer (much later in time). However, while the claim of the superiority of the quantum

computer does not hold in theory, one could say, in fairness, that the claim does makes sense

in practice (the Turing Machine may take longer than the age of the Universe).

Another claim, in the same vein, was made in [52]: It is impossible to use models of
computation, in general, and the Turing Machine, in particular, in order to arrive at a full

8

understanding of the functioning of the human brain; instead, our conscious mentality can

be explained (only?) by quantum physics. It is an interesting open question whether this

claim could be veri�ed in the near future.

In [22] it is argued that a quantum computer, using a probabilistic approach, can evaluate

a function that a Turing machine eminently cannot, the notorious halting function. The

quantum computer, through sampling, can predict with a probability approaching 1, whether

or not a program running on its input will halt (see also [71, 72]). Another computation

quantum computers might be capable of carrying out, if ever built, is to generate true random

numbers, as opposed to pseudo-random numbers generated by functions. This is a feat that

a Turing machine has no way of accomplishing. (We note in passing that obtaining true

random numbers is something conventional computers of today can do routinely by reading

values of a variety of physical parameters from their environment; see [53] for a discussion.)

These results should represent su�cient proof that the Turing machine is not a Universal

Computer.
Finally, current research may show some day that certain unconventional models, such

as biological [21, 32] and optical [51] computers, are more powerful than the Turing Machine.

3.3 Pushing the limits of what's possible

In the same spirit that seemed to have motivated those who extended the Church-Turing
thesis from its modest original claim to its current overarching status in computing, it is

generally believed today that the halting function is uncomputable on any model of compu-
tation. (In fact, Turing showed only that the halting function is uncomputable on the Turing
Machine; but, of course if one assumes that the Turing Machine is `universal', it is easy to

see how the uncomputability of the halting function, on all models, must follow.) As it turns
out, a very simple and quite ingenious proof shows how a Turing Machine, extended with

the ability to perform each step in half the time taken by the previous step, can solve the
halting problem in two time units! This proof holds even if the computation being checked
for termination does not terminate, indeed, the sum of the terms 2�i, for i = 0; 1; : : : ;1, is

2 [25]. The origins of this approach are traced in [16, 21, 27, 60, 61] along with a discussion
of its validity. It is debatable whether the assumption of an accelerating machine is a rea-

sonable one; however, the argument is clearly sound from a logical point of view. In fact, a

proposal is made in [21] for implementing this idea using living cells.
Another way of solving the halting problem, that appeals to so-called X-machines [36],

is proposed in [59]. Unlike discrete models of computation (such as the Turing Machine and
all digital computers), X-machines are analog systems capable of behaving like continuous

functions. For example, they can explore the entire in�nite interval [0; 1]. Thus, in order to

determine whether or not a certain program halts when running on its input, the (discrete)
steps of the computation are mapped to the (continuous) interval [0; 1]. The X-machine then

scans that interval in the same way as a ball traverses a gently sloped plane.
Somewhat related, is a chaotic dynamical system presented in [56, 57], that models the

behavior of neural networks and analog machines. The model is shown to be more powerful

than the Turing Machine. This power depends primarily on the system's assumed ability
to represent and manipulate real numbers of in�nite precision. Though no one knows for

9

sure, perhaps this is the way computations occur in the natural world (that is, using in�nite

precision reals).

3.4 Parallel computers

Some of the earliest examples of the inability of the Turing Machine to execute all possible

computations used an entirely di�erent approach. Beginning in [14], and continuing with

[2, 19, 20] and [7, 8, 9], parallel computation was used to exhibit two classes of computational

problems that expose the limitations of the conventional sequential (that is, one-processor)

models of computation in general (including the Turing Machine):

1. Problems for which an algorithm running on a parallel computer achieves a signi�cant

improvement in performance over an algorithm running on a sequential computer (for

example, the Turing Machine). In each case, the improvement in the speed of execu-

tion or in the quality of the solution, obtained by a parallel computer with n processors
operating simultaneously, is superlinear in n. Typically, if T1 and Tn are the sequential
and parallel running times, respectively, then T1=Tn = 2n. The same is true of the

quality of the solution returned, where quality is de�ned according to the problem
being solved (for example, quality might be closeness to the optimal solution in a com-
binatorial optimization problem [5, 10]). It is important to note that all the problems

in this class are in fact solvable on a sequential computer. They include, for example,
problems in cryptography [4, 12], numerical computation [11], and the evaluation of

nonlinear feedback functions [6]. The point, however, is that superlinear performance
is achieved in each case, either because the sequential computer is unable to simulate

the parallel computation (in n� Tn time units), or simply because the simulation does

not make sense.

2. Problems that can readily be solved in parallel but cannot be solved by a sequential

computer (such as the Turing Machine). Here, the inability of the sequential com-
puter to carry out the computation successfully is due to the circumstances in which
the computation is being performed. For example, it may be that there are certain

human-imposed deadlines for processing the input and producing the output in a real-
time computation, and these deadlines cannot be met by a sequential computer [8].

Alternatively, the computation may have to be performed in an environment that is

under the control of the laws of nature, and no sequential computer can cope with the
transformations undergone by the data during the computation [7]. Finally, the com-

putation could be subject to certain mathematical constraints that dictate the result
of every step, and no sequential computer can satisfy these conditions throughout the

entire computation [9].

These two classes of problems showed that there are models more powerful than the Tur-

ing Machine and that, consequently, the latter is not a universal model of computation.

Furthermore, all these computations share one important characteristic that has particular

relevance to our subsequent discussion: If a problem in any of these two classes requires n

processors in order to be solved as described, but at most n � 1 processors are available

10

instead, then no gains whatsoever are obtained through parallel computation. Thus, with

fewer than n processors, no speedup at all (let alone superlinear speedup) is achieved for the

problems in the �rst class, and all problems in the second class are no longer solvable. This

work culminated in the results described in this paper.

4 Three Computational Problems

We begin by making two important points regarding our assumptions in the remainder of

this paper. The �rst point concerns the de�nition of computation used in what follows.

Traditionally, to compute has been de�ned as to evaluate a function: Given some initial

input, the computer evaluates a function of this input and produces a �nal output. This

de�nition, of course, has been challenged, as pointed out in Section 3 (see, for example,

[2] and [70]). The argument has been presented that computation today (unlike the case
perhaps only three decades ago) involves computing agents that have many properties not
possessed by their ancestors. They can receive input from their environment, as well as

other agents, during the computation, they can move freely and autonomously exploring a
landscape virtually without bounds, and they can a�ect their environment by producing the
outputs of their calculations to the outside world. Despite all this, and in order to make our

case as simply yet as strongly as possible, we shall restrict ourselves here to the conventional
(albeit narrow) interpretation of the nature of computation. This will avoid confusing the

issue with additional assumptions (often valid, but not necessary in the present analysis).
Thus, all of our examples will be restricted to the evaluation of functions. In addition, all
the input is available at the outset and all the output need only be produced at the end of

the evaluation.
The second point concerns the capabilities of the Turing Machine. In the remainder

of this paper we will assume that the standard Turing Machine de�ned in Section 2.2 is

extended in the following way. If external input is to be read onto the machine's tape at any
time during the computation, then this will be allowed, provided that: In one step (requiring

one time unit) the Turing Machine can read exactly one �nite and �xed-sized datum xi onto
its tape, possibly from among n data x0, x1, : : :, xn�1. (An n-tape Turing Machine can read
the n data x0, x1, : : :, xn�1, in one step, requiring one time unit, one datum per tape.)

Now, consider the following three computational problems. For a positive integer n larger
than 1, all three problems have in common the fact that they involve n functions, each of one

variable, namely, F0, F1, : : :, Fn�1, operating on the n variables x0, x1, : : :, xn�1, respectively.

Speci�cally, all three problems call for the computation of Fi(xi), for i = 0, 1, : : :, n�1. For
example, Fi(xi) may be equal to x2i . The problems di�er from one another with respect to

the conditions imposed on the xi, 0 � i � n�1. Finally, once the Fi(xi) have been obtained,
it is required to compute a simple function F of the form

F(F1(x1); F2(x2); : : : ; Fn�1(xn�1)):

For example, F could be the sum of the Fi(xi), or their minimum, and so on.

11

4.1 Computation 1: Time-varying variables

In this computation, the xi are themselves functions that vary with time. It is therefore

appropriate to write the n variables as x0(t), x1(t), : : :, xn�1(t), that is, as functions of the

time variable t. It is important to note here that, while it is known that the xi change with

time, the actual functions that e�ect these changes are not known (for example, xi may be

a true random variable).

All the variables are available on an external input medium at the beginning of the

computation but not stored in the memory of the computing device on which the computation

is to be performed. Each variable xi(t) must therefore be read from the external input before

Fi(xi(t)) can be computed.

Time is divided into intervals, each of duration one time unit. It takes one time unit to

read xi(t). It also takes one time unit to compute Fi(xi(t)).

The problem calls for computing Fi(xi(t)), 0 � i � n � 1. In other words, once all the

variables have assumed their respective values at time t, and are available for reading at the
beginning of the computation, the functions Fi are to be evaluated for all values of i.

4.1.1 Example 1: Space exploration in real time

On the surface of Mars n robots, R0, R1, : : :, Rn�1, are roaming the landscape. The itinerary
of each robot is unpredictable; it depends on the prevailing conditions in the robot's envi-

ronment, such as wind, temperature, visibility, terrain, obstacles, and so on. At regular
intervals, each robot Ri relays its current coordinates xi(t) = (ai(t); bi(t)) to mission control
on Earth. Given the coordinates of the n robots at time t, mission control determines the

distance of Ri, 0 � i � n � 1, to a selected landmark L(t) using a function Fi. (Similar
examples were previously described in [2, 3, 8] and the references therein.)

4.1.2 Conventional solution

A Turing Machine fails to compute all the Fi as desired. Indeed, suppose that x0(t) is read
initially and placed onto the tape. It follows that F0(x0(t)) can then be computed correctly

(perhaps at a later time). However, when the next variable, x1, for example, is to be read,

the time variable would have changed from t to t + 1, and we obtain x1(t + 1), not x1(t).
Continuing in this fashion, x

2
(t+ 2), x

3
(t+ 3), : : :, xn�1(t+ n� 1) are read from the input.

In Example 1, by the time x
0
(t) is read, robots R

1
, R

2
, : : :, Rn�1 would have moved away

from x1(t), x2(t), : : :, xn�1(t).
Since the function according to which each xi changes with time is not known, it is

impossible to recover xi(t) from xi(t+ i), for i = 1, 2, : : :, n�1. Consequently, this approach
cannot produce F

1
(x

1
(t)), F

2
(x

2
(t)), : : :, Fn�1(xn�1(t)), as required.

4.2 Computation 2: Interacting variables

In this case, x
0
, x

1
, : : :, xn�1, are the variables of a physical system. They need to be

measured in order to compute Fi(xi), 0 � i � n� 1.

12

The physical system has the property that measuring one variable disturbs any number

of the remaining variables unpredictably (meaning that we cannot tell which variables have

changed value, and by how much).

4.2.1 Example 2: Biological laws of nature

In a laboratory, n living organisms are under observation in a closed environment that they

share. The organisms depend on each other for survival. It is required to perform a test

on each of these organisms. Suppose that, in preparation for a test, the parameters of

one organism are measured in exclusion of the others. This has the e�ect of disturbing

the equilibrium su�ciently to provoke a serious adverse e�ect on several of the remaining

organisms. (This example is a variant of [31]. The role played by the model of computation

when the laws of nature interfere with the computation was �rst studied in [7]. Other

examples, based on the laws of physics and dealing with dynamical systems, are presented

in [13, 15].)

4.2.2 Conventional solution

Here, as in section 4.1, the Turing Machine fails to compute the required Fi. Suppose that
x0 is measured �rst, this choice being arbitrary, and placed onto the tape. While this allows

a correct evaluation of F0(x0), this initial measurement a�ects any number of the remaining
variables x1, x2, : : :, xn�1 irremediably. Since we cannot recover the original values of x1,
x2, : : :, xn�1, the computation of Fi(xi), for i = 1, 2, : : :, n � 1, is impossible. In Example

2, as the parameters of one organism are being measured, the remaining organisms may be
altered irreparably, or may even die.

4.3 Computation 3: Variables obeying a global condition

Here the xi, 0 � i � n � 1, are all available (they even already reside in memory). The

present computation has three distinguishing properties:

1. All the xi obey a certain global condition (a mathematical property). This condition

must hold throughout the computation. If the condition happens to be violated at

some point during the computation, the latter is considered to have failed.

2. Applying Fi to xi produces a new value for xi; thus,

xnewi = Fi(xi); 0 � i � n� 1:

3. Computing Fi(xi) for any one of the variables causes the global condition to no longer
be satis�ed.

4.3.1 Example 3: Computing subject to a geometric constraint

The object shown in in Fig. 1 is called a convex subdivision, as each of its faces is a convex
polygon. This convex subdivision is to be transformed into that in Fig. 2. The transforma-

13

Figure 1: Original convex subdivision.

tion can be e�ected by removing edges and replacing them with other edges. The condition
for a successful transformation is that each intermediate �gure (resulting from a replace-

ment) be a convex subdivision as well. There are n edges in Fig. 1 that can be removed
and replaced with another n edges to produce Fig. 2 (where n = 12 for illustration). These
are the `spokes' that connect the outside `wheel' to the inside one. However, as Fig. 3 illus-

trates, removing any one of these edges and replacing it with another creates a concavity,
thus violating the condition [9, 48].

4.3.2 Conventional solution

With all the xi on its tape, a Turing machine evaluates

xnew
0

= F0(x0);

for example. This causes the computation to fail, as the set of variables xnew
0

, x1, x2, : : :,

xn�1 does not obey the global condition. In Example 3, only one edge of the subdivision in

Fig. 1 can be replaced at a time. Once any one of the n candidate edges is replaced, the

global condition of convexity no longer holds.

5 The Universal Computer Does Not Exist

In all three computations examined in Section 4, once an attempt was made to obtain an
input or to evaluate one of the functions Fi, the input to each of the remaining functions

became invalid. Because the Turing Machine (as de�ned quite reasonably by Turing) can

only perform a �nite and �xed number of operations at each step, it failed to carry out these

computations. This remains true as long as the size of the input exceeds (even by one) the

number of operations per step that the machine can perform, regardless of the size of the

14

Figure 2: Destination convex subdivision.

machine's memory, its ability to receive input and deliver output to the outside world during
the computation, and the length of time it is allowed to run.

We now ask two questions in connection with the computations in Section 4.

5.1 Question 1: Are they computable?

The answer here is Yes. If a computer capable of performing n operations per step is

available, then it can:

1. Read all the xi(t) simultaneously (in computation 1)

2. Measure all the xi simultaneously (in computation 2)

3. Compute all the Fi(xi) simultaneously (in computation 3).

For example, n independent processors may perform all the computations in parallel, one
processor per variable, leading to a successful computation in each case. In Example 1, the

distances of all robots to L(t) can be found concurrently before any of them strays away. In

Example 2, measurements on all n living organisms are performed at the same time, thus

avoiding harming any of them. In Example 3, n edges are removed from Fig. 1 and n new
edges replace them to obtain Fig. 2, all in one step. In each case, once Fi(xi) has been
obtained for 0 � i � n � 1, the function F can be easily evaluated (whether it is equal to

the sum of the Fi(xi), or their minimum, and so on). It is important to note here that:

1. The computer capable of n operations in one step may belong to any one of several

possible models of computation, such as the n-tape Turing Machine [44], the Parallel

Random Access Machine, a network of processors, or even a combinational circuit (a
memoryless model) [2].

15

Figure 3: A subdivision with a concavity.

2. Any model capable of fewer than n operations in one step fails to perform the compu-
tation successfully. Even if n� 1 operations are possible in one step, but not n, then

the computation of F fails.

3. The above observations hold regardless of the technology used to build the computer. In

other words, the computer can be mechanical, electronic, optical, quantum, chemical,
or biological, and the same limitations will be true.

5.2 Question 2: Are they computable when the �niteness condi-

tion holds?

As the preceding analysis shows, the answer here is No. In fact, the analysis suggests
that simulating the algorithms given in response to Question 1 on any computer capable

of fewer than n operations per step is impossible, regardless of how much time is available
to perform the simulation. Even if given in�nite time, the computer still fails to compute
F . This remains true regardless of the size of the memory on the computer attempting the

simulation (it can be in�nite), and whether or not the computer is allowed to receive input

and produce output during the computation.

While various computers in Section 5.1 succeeded to evaluate F , none quali�es as a
Universal Computer. The reason is simple: All obey the �niteness condition. Once n, the
number of operations a computer is capable of performing is �nite and �xed, that computer

looses its ability to be a Universal Computer, thanks to the computations described in Section

4. In each of these computations, n is a variable; if it exceeds the pre-established number of
operations per step that a computer is capable of, that computer cannot be universal. For

the same reason, none of the computers mentioned in Section 3, despite being more powerful
than the Turing Machine, can be a Universal Computer.

Therefore, The Universal Computer U as de�ned in Section 2.1 is clearly a myth. Another

16

consequence is that the Church-Turing thesis (in the current stage of its evolution) does not

hold. It may either have to be revised, or better still forgotten.

6 Conclusion

It has been demonstrated by many researchers that the Turing Machine is not an appropriate

model for describing the increasingly complex and diversi�ed computations that need to be

performed on today's computers. In response, some have argued that the Turing Machine is

a `closed system' never meant to interact with the outside world; that the Turing Machine

is meant to operate neither on external input that may be changing, nor under evolving

computational conditions; that the input tape should contain at the start of the computation

all that is required to carry out that computation. But this is precisely the main shortcoming

of the Turing Machine as illustrated here and elsewhere.
In fact, we have shown here that any model of computation that aspires to replace the

Turing Machine as a Universal Computer, misses the mark as long as it is restricted to a

�nite and �xed number of operations per step. This holds even if the contender is allowed to
have extraordinary powers that the Turing machine possesses (but not today's computers,
such as being endowed with an in�nite memory and an unlimited amount of time to perform

a required computation), as well as the routine capabilities that today's computers take for
granted (but not the Turing Machine, such as the ability to interact with the outside world).

The �niteness condition, the key to our claim, is a reasonable one. It is the hallmark of
a feasible computer. Turing formulated it as an essential requirement of a realistic computer
[65] (see also [55] for a discussion).

Will there ever be a Universal Computer? No one knows. It appears, however, that the
only way to conceive such a computer is to allow it to have an in�nite number of processors
(and thus be able of an in�nite number of operations per step). Perhaps this implies that

the only Universal Computer possible is the Universe itself!

References

[1] L.A. Adleman, Molecular computation of solutions to combinatorial problems, Science,
Vol. 266, 1994, pp. 1021{1024.

[2] S.G. Akl, Parallel Computation: Models And Methods, Prentice Hall, Upper Saddle

River, New Jersey, 1997.

[3] S.G. Akl, Discrete steepest descent in real time, Parallel and Distributed Computing

Practices, Vol. 4, No. 3, 2001, pp. 301{317.

[4] S.G. Akl, Secure �le transfer: A computational analog to the furniture moving paradigm,
Parallel and Distributed Computing Practices, Vol. 5, No. 2, 2002, pp. 193{203.

[5] S.G. Akl, Parallel real-time computation: Sometimes quality means quantity, Comput-
ing and Informatics, Vol. 21, No. 5, 2002, pp. 455{487.

17

[6] S.G. Akl, Parallel real-time computation of nonlinear feedback functions, Parallel Pro-

cessing Letters, Vol. 13, No. 1, 2003, pp. 65{75.

[7] S.G. Akl, Computing in the presence of uncertainty: Disturbing the peace, Proceedings

of the International Conference on Parallel and Distributed Processing Techniques and

Applications, Las Vegas, Nevada, June 2003, Vol. I, pp. 442{448.

[8] S.G. Akl, Superlinear performance in real-time parallel computation, The Journal of

Supercomputing, Vol. 29, No. 1, 2004, pp. 89 - 111.

[9] S.G. Akl, Inherently parallel geometric problems, Technical Report No. 2004-480, School

of Computing, Queen's University, Kingston, Ontario, April 2004.

[10] S.G. Akl and S.D. Bruda, Parallel real-time optimization: Beyond speedup, Parallel

Processing Letters, Vol. 9, No. 4, 1999, pp. 499{509.

[11] S.G. Akl and S.D. Bruda, Parallel real-time numerical computation: Beyond speedup
III, International Journal of Computers and their Applications, Special Issue on High
Performance Computing Systems, Vol. 7, No. 1, 2000, pp. 31{38.

[12] S.G. Akl and S.D. Bruda, Improving a solution's quality through parallel processing,
The Journal of Supercomputing, Vol. 19, No. 2, 2001, pp. 219 - 231.

[13] S.G. Akl, B.J. Cordy, and W. Yao, An analysis of the e�ect of parallelism in the control

of dynamical systems, to appear in the International Journal of Parallel, Emergent and
Distributed Systems.

[14] S.G. Akl and L. Fava Lindon, Paradigms admitting superunitary behaviour in parallel
computation, Proceedings of the Joint Conference on Vector and Parallel Processing

(CONPAR 94, VAPP VI), Linz, Austria, September 1994, pp. 301{312.

[15] S.G. Akl, and W. Yao, Parallel computation and measurement uncertainty in nonlinear
dynamical systems, to appear in the Journal of Mathematical Modelling and Algorithms,
Special Issue on Parallel and Scienti�c Computations with Applications.

[16] I. Antoniou, C.S. Calude, M.J. Dinneen, Eds., Unconventional Models of Computation,
Springer-Verlag, New York, 2001.

[17] M. Burgin and A. Klinger, Eds., Theoretical Computer Science, Special Issue on: Super-

recursive algorithms and hypercomputation, Vol. 317, Issues 1{3, June 2004.

[18] J. Brown, The Quest for the Quantum Computer, Simon & Schuster, New York, 2000.

[19] S.D. Bruda and S.G. Akl, Pursuit and evasion on a ring: An in�nite hierarchy for parallel
real-time systems, Theory of Computing Systems, Vol. 34, No. 6, 2001, pp. 565{576.

[20] S.D. Bruda and S.G. Akl, A case study in real-time parallel computation: Correcting

algorithms, Journal of Parallel and Distributed Computing, Vol. 61, No. 5, 2001, pp.

688{708.

18

[21] C.S. Calude and G. P�aun, Bio-steps beyond Turing, BioSystems, Vol. 77, 2004, pp.

175{194.

[22] C.S. Calude and B. Pavlov, Coins, quantum, measurements, and Turing's barrier, Quan-

tum Information Processing, Vol. 1, Nos. 1{2, 2002, pp. 107{127.

[23] A. Church, An unsolvable problem of elementary number theory, American Journal of

Mathematics, Vol. 58, 1936, pp. 345{363.

[24] B.J. Copeland, The Church-Turing thesis, http://plato.stanford.edu/entries/church-

turing/

[25] B.J. Copeland, Super Turing-machines, Complexity, Vol. 4, 1998, pp. 30{32.

[26] B.J. Copeland, Hypercomputation, Minds and Machines, Vol. 12, No. 4, 2002, pp. 461{

502.

[27] B.J. Copeland, Accelerating Turing machines, Mind and Machines, Vol. 12, No. 2, 2002,
pp. 281{301.

[28] B.J. Copeland and D. Proudfoot, Alan Turing's forgotten ideas in computer science,

Scienti�c American, Vol. 280, No. 4, 1999, pp. 77{81.

[29] B.J. Copeland and D. Proudfoot, Introduction to hypercomputation: Computing the
uncomputable, http://www.calculemus.org/x/Copeland-etc/copeland1.html

[30] B.J. Copeland and R. Sylvan, Beyond the universal Turing machine, Australasian Jour-

nal of Philosophy, Vol. 77, No. 1, 1999, pp. 46{66.

[31] B.J. Cordy, private communication.

[32] M. Daley and L. Kari, DNA computing: Models and implementations, Comments on

Theoretical Biology, Vol. 7, No. 3, 2002, pp. 177{198.

[33] M. Davis, The myth of hypercomputation, in [63].

[34] D. Deutsch, Quantum theory, the Church-Turing principle of the Universal Quantum
Computer, Proceedings of the Royal Society of London, 1985, pp. 97{117.

[35] D. Deutsch, The Fabric of Reality, Penguin, New York, 1997.

[36] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, New York,

1974.

[37] C. Eliasmith, The myth of the Turing machine: The failings of functionalism and related
theses, Journal of Experimental and Theoretical Arti�cial Intelligence, Vol. 14, 2002, pp.

1{8.

[38] D. Goldin and P. Wegner, The origins of the Turing thesis myth, manuscript, University

of Connecticut, June 2004.

19

[39] C.E. Hewitt, P. Bishop, and R. Steiger, A universal modular actor formalism for arti-

�cial intelligence, Proceedings of the Third International Joint Conference on Arti�cial

Intelligence, Stanford, California, August 1973, pp. 235{245.

[40] D. Hillis, The Pattern on the Stone, Basic Books, New York, 1998.

[41] Hypercomputation, http://en.wikipedia.org/wiki/Hypercomputation

[42] G. Johnson, A Shortcut Through Time: The Path to the Quantum Computer, Random

House, New York, 2003.

[43] S.C. Kleene, Mathematical Logic, Wiley, New York, 1967.

[44] H.R. Lewis and C.H. Papadimitriou, Elements of the Theory of Computation, Prentice

Hall, Englewood Cli�s, New Jersey, 1981.

[45] K. Li, Y. Pan, and S.-Q. Zheng, Eds., Parallel Computing Using Optical Interconnec-

tions, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.

[46] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems,

Springer-Verlag, New York, 1992.

[47] W. Marciszewski, Text commented: B. Jack Copeland's \The Church-Turing Thesis",

http://www.calculemus.org/forum/4/CT-thesis.html

[48] H. Meijer and D. Rappaport Simultaneous Edge Flips for Convex Subdivisions, 16th
Canadian Conference on Computational Geometry, Montreal, August 2004.

[49] R. Milner, Elements of interaction, Communications of the ACM, Vol. 31, No. 1, January
1993, pp. 78{89.

[50] M. Nielsen and Isaac Chuang, Quantum Computation and Quantum Information, Cam-
bridge University Press, Cambridge, England, 2000.

[51] S. Pavel and S.G. Akl, Area-time trade-o�s in arrays with optical pipelined buses,

Applied Optics, Vol. 35, 1996, pp. 1827{1835.

[52] R. Penrose, The Emperor's New Mind, Oxford University Press, Oxford, England, 1989.

[53] J. Raskin, Computers are not Turing machines,

http://humane.sourceforge.net/unpublished/turing machines.html

[54] J.E. Savage, Models of Computation, Addison-Wesley, Reading, Massachusetts, 1998.

[55] O. Shagrir, E�ective computation by humans and machines, Minds and Machines, Vol.
12, 2002, pp. 221{240.

[56] H.T. Siegelmann, Computation beyond the Turing limit, Science, Vol. 268, No. 5210,

1995, pp. 545{548.

20

[57] H.T. Siegelmann, Neural Networks and Analog Computation: Beyond the Turing limit,

Birkh�auser, Boston, 1999.

[58] C. Siehs and B. Mayer, Dynamical hierarchies of structure and control in chemical

reaction networks, Nanotechnology, Vol. 10, 1999, pp. 464{471.

[59] M. Stannett, X-machines and the halting problem: Building a super-Turing machine,

Formal Aspects of Computing, Vol. 2, No. 4, 1990, pp. 331{341.

[60] I. Stewart, Deciding the undecidable, Nature, Vol. 352, August 1991, pp. 664{665.

[61] I. Stewart, The dynamics of impossible devices, Nonlinear Science Today, Vol. 1, 1991,

pp. 8{9.

[62] Super-Turing computation, http://en.wikipedia.org/wiki/Super-Turing computation

[63] C. Teuscher, Ed., Alan Turing: Life and Legacy of a Great Thinker, Springer-Verlag,
New York, 2004.

[64] C. Teuscher and M. Sipper, Hypercomputation: Hype or computation?, Communica-
tions of the ACM, Vol. 45, No. 8, 2002, pp., 23{24.

[65] A.M. Turing, On computable numbers with an application to the entscheidungsproblem,
Proceedings of the London mathematical Society, Ser. 2, Vol. 42, 1936, pp. 230{265; Vol.

43, 1937, pp. 544{546.

[66] A.M. Turing, Systems of logic based on ordinals, Proceedings of the London Mathemat-

ical Society, Ser. 2, Vol. 45, 1939, pp. 161{228.

[67] A.M. Turing, Intelligent machinery, Report, National Physics Laboratory, 1948.
Reprinted in: B. Meltzer and D. Michie, Eds., Machine Intelligence 5, Edinburgh Uni-
versity Press, Edinburgh, Scotland, 1969, pp. 3{23.

[68] P. Wegner, Why interaction is more powerful than algorithms, Communications of the
ACM, Vol. 40, No. 5, May 1997, pp. 80{91.

[69] P. Wegner and D. Goldin, Interaction, computability, and Church's thesis, manuscript,

Brown University, 1999.

[70] P. Wegner and D. Goldin, Computation beyond Turing Machines, Communications of

the ACM, Vol. 46, No. 4, May 1997, pp. 100{102.

[71] C.P Williams and S.H. Clearwater, Explorations in Quantum Computing, Springer-

Verlag, Heidelberg, 1998.

[72] C.P Williams and S.H. Clearwater, Ultimate Zero and One: Computing at the Quantum

Frontier, Springer-Verlag, Heidelberg, 2000.

[73] D. Wood, Theory of Computation, Harper & Row, New York, 1987.

21

