
Workspace Model Specification
Version 1.0

W. Greg Phillips and T.C. Nicholas Graham
greg.phillips@rmc.ca graham@cs.queensu.ca

Technical Report 2005-493
School of Computing, Queen’s University

Kingston, Ontario K7L 3N6

Copyright c© 2005, W.G. Phillips and T.C.N. Graham
Document prepared March 31, 2005

Abstract

This specification defines the Workspace Model, a multi-level architectural
style that supports describing, reasoning about and implementing synchronous
groupware systems.

The top level of the model is the conceptual level which makes visible such
features as users’ workspaces, available computational devices, active and pas-
sive components (both real and virtual), calls, messages, and information shared
between users. It is defined in terms of workspaces, people, computational nodes,
components, ports and connectors. An evolution calculus defines the available
operations for manipulating these workspace entities.

A conceptual level architecture and its changes over time can be used to
describe a particular collaborative scenario. When instantiated in a software
system, the conceptual level architecture represents a distribution-independent
design description which can be mapped to any one of a number of possible
implementations.

The implementation level of the model makes visible such concepts as pro-
cess boundaries, method invocations, asynchronous and request-reply messag-
ing protocols, concurrency control, caching, and replica consistency mainte-
nance. The implementation level has its own evolution calculus.

Allowable refinements from the conceptual level to the implementation level
are specified using a graph grammar notation. In effect, a refinement of a con-
ceptual diagram results in an implementation. The refinements have been de-
signed such that the implementation of any given conceptual level architecture
will be both complete and correct with respect to the conceptual level design.

This specification defines the syntax and semantics of the conceptual and
implementation levels, evolution at both levels, and refinement between levels,
within a unified semi-formal framework.

1

Contents 2

Contents

1 Introduction and Rationale 5
1.1 This is a Specification . 5
1.2 A Note About Terminology . 6
1.3 Organisation . 6

2 Core Model Elements 6
2.1 Person . 6
2.2 Computational Node . 6

3 Conceptual Level Model Elements 7
3.1 Workspace . 7
3.2 Components . 8
3.3 Connectors . 8
3.4 Ports . 11
3.5 Components Redux . 12
3.6 Attributes . 14
3.7 Relations Among Conceptual Level Elements 14

4 Conceptual Level Evolution Calculus 14
4.1 Meta-Notation and Pattern Matches 15
4.2 Workspaces . 17
4.3 Nodes . 17
4.4 Components . 17
4.5 Ports . 18
4.6 Components and Nodes . 18
4.7 Connectors . 19
4.8 Connectors and Ports . 21
4.9 People . 22
4.10 Attribute Modification . 23
4.11 Conceptual Level Reflection Operations 23

5 Implementation Level Model Elements 25
5.1 Implementation Components . 25
5.2 Connectors . 26
5.3 Ports . 26
5.4 Infrastructure Components . 27
5.5 Relations Among Implementation Level Elements 29

6 Implementation Level Evolution Calculus 30
6.1 Components . 30
6.2 Ports . 30
6.3 Connect and Disconnect . 32
6.4 Implementation Level Reflection Operations 32

Contents 3

7 Refinements from the Conceptual to the Implementation Level 33
7.1 Components . 33
7.2 Ports . 34
7.3 Calls . 35
7.4 Subscriptions . 37
7.5 Synchronization . 39
7.6 Channels . 39
7.7 Inter-level Reflection Operations . 41

References 41

A Definitions 43

B Implementation Considerations 44
B.1 Component Implementations . 44
B.2 Unique Identifiers . 44
B.3 Failure Reports . 44
B.4 Custom Implementations of Infrastructure Components 44
B.5 Attributes as Implementation Hints 44
B.6 Convenience Operations . 45
B.7 Port Creation and Use . 45
B.8 Channels . 45
B.9 Implementing Refinement . 45
B.10 Concurrency Control Issues . 46

List of Figures 4

List of Figures

1 Core notation. 7
2 Conceptual level notation. 7
3 Semantically equivalent synchronization group depictions, canonical

description in the centre. 11
4 Meta-notation used in evolution calculus diagrams. 16
5 Conceptual level operations on workspaces. 17
6 Conceptual level operations on nodes. 18
7 Conceptual level operations on components. 19
8 Port creation and destruction. 20
9 Anchoring and floating components. 20
10 Conceptual level operations on connectors. 21
11 Attaching connectors to ports. 22
12 Detaching connectors from ports. 23
13 Implementation level notation. 25
14 Implementation level infrastructure components. 27
15 Operations on implementation level components. 31
16 Operations on implementation level ports. 31
17 Implementation level port connection and disconnection. 32
18 The schema used for refinement rules. 33
19 Refinements of components. 34
20 Refinements of ports . 35
21 Refinements for call connectors. 36
22 Refinements for subscriptions. 37
23 Further refinements for subscriptions. 38
24 Refinements for synchronizations. 39
25 Refinements for channels. 40

1. Introduction and Rationale 5

1 Introduction and Rationale

This specification introduces and defines the Workspace Model, a multi level ar-
chitectural model for groupware which fills two roles not well served by other such
models [7].

First, the Workspace Model provides a set of notations that allow us to coher-
ently describe and reason about a wide range of existing and desired collaboration
modes and the software that supports them. These notations allow the state of a
collaboration to be represented at any point in time, and also support description of
the system dynamics required for changing collaboration modes and configurations
of devices, networks, applications, data, and collaboration participants [8].

Second, the Workspace Model decouples necessarily-user-visible system issues
from issues related to distributed implementation. User-visible issues include input
and output displays, collaborative groups, and the ability to modify data or receive
messages from message sources. Implementation issues include process boundaries,
concurrency control, replicated versus centralised implementations of shared data,
and performance optimisations. A mechanism is provided within the Model to
rigorously reason about correspondences between user-visible system descriptions
and implementation descriptions.

The Workspace Model is divided into a conceptual level and an implementation
level, with two core constructs (people and computational nodes) that are visible at
both levels. This specification presents the core, the conceptual level, the implemen-
tation level, the representable changes or evolutions at each level and the mapping
between levels (called refinement).

1.1 This is a Specification

It is worth emphasising that this document is a specification of a particular architec-
tural model. It defines the model elements, the allowed evolutions on architectures,
the required relationships between architectural levels, and nothing else. The syntax
and semantics presented are deliberately abstract and independent of any particular
programming language, application programming interface or implementation. The
specification is not intended to guarantee interoperability of different implementa-
tions of the Workspace Model.

A language, toolkit or runtime system supporting the Workspace Model would be
said to conform to this specification if it provides a semantically correct implemen-
tation of each of the key elements defined herein, such that all defined constraints
are met.

The operations in the evolution calculus are deliberately primitive in order to
support rigorous reasoning. We anticipate that implementations of the model would
provide higher-level “convenience operations”. This, and other implementation is-
sues, are discussed further in appendix B.

2. Core Model Elements 6

1.2 A Note About Terminology

The terms side-effect free, request, update, request-update, passive, active, deter-
ministic, non-deterministic, and consistent are used in specific technical senses in
this specification. For definitions, see appendix A on page 43.

1.3 Organisation

The specification is organised as follows. The next section presents the core model
elements which are visible at both the conceptual and implementation levels. Section
3 introduces the key model elements of the conceptual level, their properties and
their relations to one another. This is followed by a description of the conceptual
level evolution calculus, which is used to express changes to the conceptual level
architecture over time. Sections 5 and 6 similarly introduce the implementation
level and its evolution calculus. Finally, section 7 defines how conceptual level
architectures are refined to implementation level architectures which may ultimately
be realized in hardware and software.

2 Core Model Elements

The notation for the Workspace Model’s core elements is shown in figure 1. The
two core elements are person, computational node. These are briefly introduced
below. However, since people and nodes are present at both the conceptual and
implementation levels of the Workspace model, they are discussed further in the
presentations of those levels.

2.1 Person

The people in workspace diagrams are the raison d’être and main initiators of ac-
tivity in the system. Other elements in the system exist to support their activities.
Because of this, we often describe the Workspace Model as a “human centred archi-
tectural style”.

People are also treated as a special type of component in workspace diagrams.
See section 3.5 for more details.

2.2 Computational Node

In order to support virtual objects, workspaces contain computational nodes. A
node represents an identifiable element of computing power available to the owner
within the workspace. For example, a node might be a laptop computer or a process
running on the owner’s behalf on a remote server. A node is always contained
within a single workspace; this is indicated by graphical containment. Nodes are
non-overlapping.

3. Conceptual Level Model Elements 7

nodeperson

Figure 1: Core notation.

Components

Connectors

Portsreactor

actor

store

call

subscription

synchronization

call

subscription

synchronization

workspace

Workspace

Figure 2: Conceptual level notation.

3 Conceptual Level Model Elements

The conceptual level of the Model is intended to serve two purposes. First, it
supports the description of multi-user interaction scenarios, which may be employed
in requirements gathering or in early-phase architectural exploration for a given
system. This use is described in more detail in [8].

Second, the conceptual level can be used to provide a precise but abstract soft-
ware architectural description which may later be transformed automatically into a
running implementation. This transformation is described in detail in section 7.

The conceptual level notation is summarised in figure 2. In addition to the two
core constructs already presented in figure 1, the conceptual level includes a small
set of component, connector and port types. Roughly speaking, components are
things, connectors are communication paths between things, and ports are attach-
ment points for connectors, found on the surfaces of components.

3.1 Workspace

A workspace serves to bound a collection of people and the physical and virtual
objects (components) that support their activities. Every workspace has an owner,
who is a person. Items in the workspace belong to the owner. Ownership is indicated
as an attribute (see section 3.6).

Workspaces are always distinct. In the visual language, this is indicated by the
constraint that workspaces may not be drawn overlapping.

3. Conceptual Level Model Elements 8

3.2 Components

Components represent the objects found within a workspace. The objects may be
purely physical (e.g., a whiteboard), purely virtual (e.g., a slide in an electronic
presentation), or they may act as bridges between the physical and virtual worlds
(e.g., a computer display, video camera, or mouse). Each component exists in exactly
one workspace and is owned by the owner of that workspace.

Within the Workspace model we distinguish between three kinds of components
as shown in figure 2: reactors, actors, and stores.

It is difficult to explain characteristics of the three kinds of components without
first discussing connectors and ports. We therefore delay complete definition of
components to section 3.5. However, in the interim an approximate intuition is:

• A reactor is a software or hardware component which is passive (inert until
acted upon, see appendix A). Once acted upon it may send messages to, or
directly operate on, other components to which it is connected.

• An actor is like a reactor except that it is active; that is, it has the ability to
independently initiate activity within the workspace.

• A store is like a reactor except that it may not directly operate on other
components. In addition, stores may represent information that is shared
between workspaces.

Components may have names and types, which may be specified using a textual
notation in the centre of the component symbol. For example, a component called
“myEditor” of type “emacs” might be shown with myEditor:emacs in its centre; an
unnamed component of type “emacs” might be shown with the label :emacs. The
name and type are visible as attributes of the component (see section 3.6).

3.3 Connectors

In the Workspace Model’s conceptual level, connectors are first-class entities that
may be attached to components at ports. There are three kinds of connectors:
call, subscription, and synchronization. Call connectors allow synchronous method
invocations; subscription connectors allow asynchronous one-way message delivery;
and synchronization connectors mediate state-sharing within and across workspaces.

Call and subscription connectors are directed, so they have source and target
ends. Communication may be initiated only at source ends. In the diagrammatic
notation, the target end is indicated by an arrowhead.

Synchronization connectors are undirected; however, order of attachment to a
synchronization connector has semantic significance. See section 3.3.4 for details.

In this section we first discuss an important restriction on the values passed by
workspace connectors, then describe the three kinds of connectors in more detail.

3.3.1 Values Passed By Workspace Connectors

All values passed by workspace connectors must be either immutable or passed by
value. This prevents a component from having a direct reference to another compo-

3. Conceptual Level Model Elements 9

nent’s internal state, which is undesirable since it would allow for inter-component
communication that is not architecturally visible.

In effect, this restriction creates a strong semantic division at the component
boundary. Objects on the “inside” of a component may hold arbitrary references
to other objects inside the same component. However, all communication between
components must be mediated by workspace connectors.

3.3.2 Call

A call connector allows a source component to invoke methods1 provided by a port
on a target component. An individual method invocation is referred to as a call.
Call connectors have the following characteristics:

• Call connectors connect a single source to a single target.
• The source and target of a call connector must be within the same workspace.
• Calls have a blocking semantics; that is, the thread of control that initiated

the call at the source end of the connector blocks until the call completes on
the target.

• Call connectors have an associated vocabulary which identifies the calls they
support. The vocabulary of a call connector may include requests, updates,
and update-requests in any combination (see Appendix A).

• If a call connector’s vocabulary consists entirely of requests it is a request
connector, which may be indicated graphically by a ? annotation on the
connector arrow.

• If a call connector’s vocabulary consists entirely of updates it is an update
connector, indicated graphically by a ! annotation.

• If a call connector’s vocabulary consists of a combination of requests and up-
dates, or includes one or more request-updates, it is a request-update connector,
indicated graphically by a !? annotation. Call connectors without annotations
are also assumed to be request-update connectors.

3.3.3 Subscription

A subscription connector allows one or more sources to provide a stream of messages
to one or more targets (subscription connectors are many-to-many). The term
“message” is used here in a broad sense: for example, notification of a mouse click
might be carried by a message, as might a frame of video forming part of a video
stream.

Subscription connectors have the following characteristics:
• Subscriptions may connect one or more source ports to one or more target

ports.
• All sources and targets of a given subscription connector must be within the

same workspace.
1“Methods” is used in a generic sense in this document and should not be taken to imply that
components need be implemented in object-oriented languages.

3. Conceptual Level Model Elements 10

• Subscription connectors are non-blocking: that is, delivery of a message into
a subscription connector may return before the message has been delivered to
the subscription’s target(s).

• Each subscription connector has a vocabulary of messages it can pass.

3.3.4 Synchronization

A synchronization connector allows two or more stores, which need not be in the
same workspace, to be mutually synchronized. The intuition is that if stores are
synchronized then they are intended to represent “the same object”. For example,
if there is a store representing a document in one workspace and a similar store in
another workspace that is synchronized with the first, then the two stores represent
the same document.2

A group of mutually synchronized stores is referred to as a synchronization group.
Within a synchronization group components converge to consistency (see Annex A)
and all message streams emitted from the components are consistent. More precisely,
the first condition means that at any time t1, there exists time t2 ≥ t1, such that if
the system is quiescent from t1, at t2 the synchronized components will be consistent.

Synchronization connectors have the following properties:
• A synchronization connector may connect any number of stores.
• The connected stores may be in different workspaces.
• The connected stores must be of the same concrete type.3

• Unlike call and subscription connectors, components do not explicitly commu-
nicate with one another over synchronization connectors. Rather, synchroniza-
tion connectors reflect the presence of mechanisms in the underlying runtime
system which keep components mutually consistent.

• As a notational convenience, we allow multiple point-to point synchronization
connector symbols to represent a single synchronization group. There is no
ambiguity in this representation since a store may be a member of at most
one synchronization group. Figure 3 illustrates semantically equivalent five
synchronization group depictions. The canonical depiction is shown at the
centre of the diagram.

• Synchronizations are undirected; that is, there is no concept of source and
target in synchronization groups.

• When a store s joins an existing synchronization group g and s is inconsistent
with g, it is s that is modified to bring about consistency.

2Note that this says nothing about the actual implementation of the document object or objects.

3In future versions of the Workspace Model, we hope to be able to relax this definition to some
form of type compatibility.

3. Conceptual Level Model Elements 11

a:

c:b:

a:

c:b:

a:

c:b:

a:

c:b:

a:

c:b:

Figure 3: Semantically equivalent synchronization group depictions, canonical description in the

centre.

3.4 Ports

Components may provide any number of ports, which represent attachment points
for connectors. Ports are created dynamically on component surfaces. If “static”
or “permanent” ports are required, they can be created at component instantiation
time and not destroyed. The kinds of ports a component may provide is constrained
by component kind; see section 3.5 for details. Further, it is possible to create a port
on a component that serves no useful purpose; it is up to the component designer
and run-time user to ensure that port creations are sensible.

For directional connectors (calls and subscriptions) there are separate source and
target ports. Communication is initiated at source ports and delivered to target
ports.

In the graphical representation of directional ports, source ports are shown with
the arrow pointing out of the component and target ports are shown with the arrow
pointing into the component.

3.4.1 Call Ports

A call source port may be attached to at most one outgoing connector. If a com-
ponent requires multiple references to similar objects — for example a set of shapes
in a drawing editor or a list of pages in a presentation editor — this is implemented
by creating one call source port for each reference.

A call target port may have any number of incoming connectors.
Each call port defines a vocabulary of calls that it supports — in effect, an

interface. If the vocabulary of the target port is not a superset of the vocabulary of
the source port, run-time errors (reported as exceptions or by some other means)
may result.

3. Conceptual Level Model Elements 12

3.4.2 Subscription Ports

A subscription source port may be attached to at most one outgoing connector.
Since subscription connectors are many-to-many, we expect that a single outgoing
subscription connector will suffice for many purposes. However, as with call source
ports a component that requires multiple outgoing subscription connectors (perhaps
to serve different groups of target components) may provide multiple subscription
source ports.

A subscription target port may have any number of incoming connectors.
Each subscription port defines a vocabulary of messages that it supports. Mes-

sages received at a target port which are not in that port’s vocabulary may be
ignored.

3.4.3 Synchronization Ports

A synchronization port may be attached to at most one subscription connector. The
vocabulary of a subscription port is implicitly defined by the type of the store on
which it is found. A store may provide no more than one synchronization port.

3.5 Components Redux

Now that we have defined connectors and ports, we return to the definition of the
three kinds of components: reactors, actors and stores. We also discuss people,
who play a role similar to that of an actor component in workspace architectural
descriptions.

3.5.1 Reactor

A reactor is a component that may store data, perform computation and act directly
on other components by means of calls. A reactor:

• must be passive and deterministic,
• may provide call source and target ports,
• may provide subscription source and target ports, and
• must not provide a synchronization port.
Physical objects that react to their environment are often modelled as reactors,

as are hardware components that generate messages only in response to external
action (such as keyboards or mice). Software components without their own threads
of control (such as the objects in most object-oriented languages) are also modelled
as reactors.

3.5.2 Actor

An actor is a component that may store data, perform computation, act directly on
other components and initiate activity in a workspace. An actor:

• may be active and non-deterministic,
• may provide call source and target ports,

3. Conceptual Level Model Elements 13

• may provide subscription source and target ports, and
• must not provide a synchronization port.
Hardware components that independently generate messages (e.g., cameras and

displays) or that behave in a non-deterministic manner according to the definition
of appendix A (e.g., clocks) are often modelled as actors. Software components with
internal threads of control (e.g., servers) are likewise modelled as actors.

3.5.3 Store

A store is a component that may store data and perform computation, but that
may not act directly on other components. In essence, stores are data storage end
points. In addition, stores may be sharable across workspaces; that is, they may be
synchronized with other stores. A store:

• must be passive and deterministic.
• may provide call target ports,
• must not provide call source ports,
• may provide subscription source and target ports, and
• may provide one synchronization port.
Physical objects which act principally as data stores (e.g., books and white-

boards) may be modelled as stores, as would the Model component in the Model-
View-Controller architecture [6] or the Abstraction component in the PAC architec-
ture [3]. A telephone call might be partially modelled as two synchronized stores,
one in the workspace of each call participant.

3.5.4 Person

In workspace architecture diagrams, people may be viewed as a particular kind
of component, similar in nature to actors. From this perspective, they have the
following characteristics:

• People may be active and non-deterministic.
• A person is assumed to have subscription source and target ports, able to

create messages (e.g., by physical movement) and receive messages (e.g., by
direct sensory perception). For example, a person may manipulate the location
of and click the buttons of a mouse, may draw on a whiteboard, or may
observe the contents of a display. All of these are modelled using subscription
connectors with appropriate vocabularies.

• A person provides neither call ports nor synchronization ports.

4. Conceptual Level Evolution Calculus 14

3.6 Attributes

Workspaces, connectors, components and ports may have arbitrary attributes asso-
ciated with them. For example, a workspace might have an owner attribute and a
component might have a name attribute. There are two kinds of attributes:
Observed. An observed attribute represents currently-observed state and may be

a dynamically computed value.
Intent. An intent attribute may be set to any one of its allowed values using the

appropriate evolution calculus operation.
Each intent attribute a has a corresponding observed attribute a′. Components

may have observed attributes that are not associated with intent attributes. For
instance, a connector might have a “lag” attribute that gives currently-observed
communication delay on the connector.

Attributes may be used to provide “implementation hints” to the underlying
runtime system. For example, a synchronization connector might be given an at-
tribute suggesting that a centralised implementation would be most appropriate.
See section B.5 for further discussion.

3.7 Relations Among Conceptual Level Elements

Conceptual level elements may be related to one another in several ways, which
are depicted in workspace diagrams using simple diagrammatic conventions. The
relations and diagrammatic conventions are described below.
Containment. Workspaces may contain nodes, components and connectors. If a

node, component or connector e is depicted inside the boundary of a workspace
w, then e is contained within w. The one exception to this rule is synchro-
nization connectors, which are not subject to the containment relation.

Port Provision. Components provide ports. If a port p is depicted on the bound-
ary of a component c, then p is provided by c.

Attachment. Connectors may be attached to components at ports. If the end of
a connector k is shown touching a port p, then k is attached to p. In cases
where the meaning is clear, we frequently omit ports in workspace diagrams.
If a connector k is shown touching the boundary of a component c, then k is
attached to some (unseen) port p provided by c.

Anchorage. Components may be anchored to nodes. If a component c is shown
superimposed on a node n in a workspace diagram, then c is anchored to n.

4 Conceptual Level Evolution Calculus

The complete configuration of conceptual level workspace elements at any point in
time is referred to as a run time conceptual level architecture or simply architecture.
Architectures change over time as workspace elements are added to or removed from
them, or as the relationships between those elements are altered.

4. Conceptual Level Evolution Calculus 15

The evolution calculus is an algebra consisting of the universe of architectures
and allowed operations over architectures. In this section we define the conceptual
level of the evolution calculus. There is also an implementation level calculus, which
is defined in section 6.

Operations in the evolution calculus are specified in an algebraic style using a
diagrammatic notation. The specifications make use of the core and conceptual level
notation already introduced in figures 1 and 2, as well as a meta-notation which is
introduced in figure 4 and described in section 4.1.

Each operation in the calculus is of the form ω(A, p∗), where ω is the operation,
A is the current architecture, and p∗ is a list of parameters. The result of each
operation is a new architecture A′.

The effect of each operation ω(A, p∗) in the calculus is specified using one or
more diagram pairs, each consisting of left- and right-hand sides (see the evolution
specification element in figure 4). The left-hand side of the diagram represents a
pattern that must be matched in A for the operation to succeed. Essentially, it is a
precondition.

If the left-hand pattern can be matched for an operation ω(A, p∗), then the ar-
chitecture A′ resulting from ω(A, p∗) differs from A in exactly the same ways that
the left-hand side of the diagram differs from the right-hand side. Differences may
include the presence or absence of workspace elements as well as alterations in any
of the relations defined in section 3.7. Any workspace elements or relations not
explicitly depicted in the left-hand side are unchanged in A′. The one exception is
for operations which destroy components: if a component is destroyed, it is removed
from any relationships in which it previously participated even if that relationship
is not explicitly shown on the diagram. (For example, we can prove by structural
induction that the node shown on the left side of figure 6 (b) is necessarily con-
tained in a workspace; after the node is destroyed it no longer participates in the
containment relation.)

Some operations are specified by multiple diagram pairs (e.g., createCallSource
in figure 8). An operation ω(A, p∗) that can be matched against any one of its
corresponding diagrams will complete.

If no pattern corresponding to an operation can be matched, then the operation
is an identity on the architecture, that is, ω(A, p∗) = A.

4.1 Meta-Notation and Pattern Matches

The meta-notation used in evolution calculus definitions is shown in figure 4. The
meta-notation includes a template for evolution calculus specifications, a set of
generic workspace element symbols, a means of identifying particular workspace
elements, symbols for cardinality constraints, and symbols representing component
state.

As discussed in the previous section, an operation ω(A, p∗) is specified by one or
more diagrams, which take the form of the evolution specification of figure 4. The
left hand side of the diagram (labelled A) represents a precondition which must be
matched in A for the operation to succeed.

4. Conceptual Level Evolution Calculus 16

n unique identifier 0 exactly zero

?

+

*

zero or one

one or more

zero or more

CardinalityIdentifiers

component

Generic Elements

port

connector

operation(A)A

Evolution Specification

Figure 4: Meta-notation used in evolution calculus diagrams.

For a pattern to match, all elements shown in the left-hand side of the diagram
must be present in A, with the identifiers and cardinalities given, and taking part
in any relations depicted in the diagram (see section 3.7).

Each workspace element in an architecture has a unique identifier. These are
used in evolution calculus operation signatures to specify the operation’s target(s).

Where an operation will result in creation of a new workspace element, that
element’s identifier forms part of the operations signature and the identifier must
not be in use in A. This ensures that an identifier identifies at most one workspace
element.

Cardinality constraints on pattern matches are given using standard symbols
borrowed from regular expression languages, enclosed in squares. Where a cardinal-
ity symbol is shown on an element that participates in one or more relations with
other elements, a match requires that there be that many elements participating in
the given relation. Relations bind tighter than cardinality constraints. An element
with no cardinality symbol must have a cardinality of exactly one.

The “exactly zero” cardinality allows a match only where there are exactly zero
of the indicated elements in any depicted relations. For example, the left hand side
of figure 5(a) will match if A includes a workspace w which contains exactly zero
components, zero nodes, zero call connectors and zero subscription connectors.

All cardinality indicators are greedy ; that is, if an appropriate match is found
then the match includes all matching elements.

In the following sections we define the effects of the conceptual level evolution
calculus operations using our diagrammatic notation. Each diagram is accompanied
by explanatory text intended as an aid to its interpretation. Uses of the meta-
notation are explained in the description of the diagram in which they first appear.

4. Conceptual Level Evolution Calculus 17

createWorkspace(A, w)A

(a)

destroy(A, w)A

(b)

w

0

0 0

w

0

Figure 5: Conceptual level operations on workspaces.

4.2 Workspaces

Figure 5 (a). It is always possible to create a new workspace. (The left-hand side
of the diagram is empty indicating the null precondition). New workspaces are
initially empty. (This is implied by the fact that the only change between the two
sides of the diagram is the appearance of workspace w; no other relationships in the
architecture, including workspace containment, are changed.)
Figure 5 (b). A workspace may be destroyed only if it is empty. (The zero cardinal-
ity indicator on the node, component and connector symbols matches in a greedy
fashion within the scope of any represented relations, here containment within the
workspace w.)

4.3 Nodes

Figure 6 (a). A node may always be created within an existing workspace. The
created node is contained in the workspace and initially has no components anchored
to it. Anchoring is defined in section 4.6.
Figure 6 (b). A node with no anchored components may be destroyed.
Figure 6 (c). A node with no anchored components may be moved into a particular
workspace. This moves it out of the workspace in which it had previously been
contained. An attempt to move a node into the workspace in which it is already
contained will fail to match the left hand side of the diagram (which shows two
distinct workspaces, w and an anonymous one); however, it will still have the desired
(null) effect.

4.4 Components

Figure 7 (a), (b) and (c). A component may be created within a workspace. A
newly-created component has no ports and is neither attached to any connector nor
anchored to any node.

4. Conceptual Level Evolution Calculus 18

moveNode(A, n, w)A

(c)

createNode(A, w, n)A

(a)

destroy(A, n)A

(b)

ww n

w

n

0

w

n

0

n

0

Figure 6: Conceptual level operations on nodes.

Figure 7 (d). A component may be destroyed, provided none of its ports are attached
to any connectors (see section 4.7). Destroying a component also destroys all ports
present on its interface (see section 4.5).
Figure 7 (e). A component may be moved from one workspace to another, provided
none of its ports are attached to call or subscription connectors. Such a move leaves
synchronization connectors attached and has no effect on ports. For clarity, ports
are not shown in this figure.

4.5 Ports

Ports may be created on component boundaries. The kind of the component con-
strains the kinds of ports that may be created on it. Ports are always unattached
when created. Attachment is defined in section 4.8.
Figure 8 (a) and (b). Call source ports may be created only on actors and reactors.
Figure 8 (c), (d) and (e). Call targets ports and subscription source and target
ports may be created on any component.
Figure 8 (f). Synchronization source ports may be created only on stores. A store
may provide a maximum of one synchronization port.
Figure 8 (g). A port may be destroyed only if it is not attached to any connector.

4.6 Components and Nodes

Software components need not be associated with particular nodes at the conceptual
level of the workspace calculus. However, it frequently makes sense to associate
hardware components with particular nodes, e.g., to indicate that a particular mouse
is attached to a particular computer. It may also make sense to associate software
components to particular nodes, e.g., for performance reasons or to ensure that

4. Conceptual Level Evolution Calculus 19

createStore(A, t, w, c)A

(a)

w w

:t
c

createReactor(A, t, w, c)A

(b)

w w

:t

createActor(A, t, w, c)A

(c)

w w

:t

c

c

destroy(A, c)A

(d)

moveComponent(A, c, w)A

(e)

? ?
c c

w w0 0

00

c 0*

Figure 7: Conceptual level operations on components.

certain information is present on a laptop that is about to be disconnected from a
network.
Figure 9 (a). A components may be anchored to a node that is contained within the
same workspace, as long as it is not already anchored to another node. Anchoring
a component has no effect on ports or connectors.
Figure 9 (b). A component that is anchored to a node may be floated off it. Floating
a component leaves it in the same workspace. Floating a component has no effect
on ports or connectors.

4.7 Connectors

Figure 10 (a) and (b). Call and subscription connectors may be created within
workspaces. Newly created connectors are not initially attached to ports.
Figure 10 (c). Synchronization connectors are not subject to workspace containment

4. Conceptual Level Evolution Calculus 20

createCallSource(A, c, p)A

(a)

c

p

c

createCallSource(A, c, p)A

(b)

c c

p

createCallTarget(A, c, p)A

(c)

c

p

c

createSubscrSource(A, c, p)A

(d)

cc

p

createSubscrTarget(A, c, p)A

(e)

cc

p

destroy(A, p)A

(g)

p

createSyncPort(A, c, p)A

(f)

c

p

c

0

0

Figure 8: Port creation and destruction.

anchor(A, c, n)A

(a)

c

0n n

c

float(A, c)A

(b)

cc

Figure 9: Anchoring and floating components.

and may simply be created.
Figure 10 (d), (e) and (f). Connectors which are not attached to ports may be
destroyed. See section 4.8 for the definitions of attachment and detachment.

4. Conceptual Level Evolution Calculus 21

createSubscription(A, w, k)A

(b)

w w
k

createCall(A, w, k)A

(a)

w w
k

createSyncGroup(A, k)A

(c)

k

destroy(A, k)A

(d)

k0 0

destroy(A, k)A

(e)

k0 0

destroy(A, k)A

(f)

k0

Figure 10: Conceptual level operations on connectors.

4.8 Connectors and Ports

Connectors may be attached to, and detached from, corresponding ports. Call
and subscription connectors may be attached only to ports in the same workspace;
synchronization connectors are not restricted by workspace boundaries. Since ports
are always on components, we occasionally refer to connectors as being attached to
components where this does not result in a loss of clarity.
Figure 11 (a). A call connector with an unattached source end may be attached to
a call source port that is also unattached.
Figure 11 (b). A call connector with an unattached target end may be attached to
a call target port, regardless of any other connectors attached to that port. (This
allows a call target port to have multiple incoming connectors.)
Figure 11 (c). A subscription connector may be attached to a subscription source
port that is not attached to any other subscription connector. This allows a sub-
scription connector to be attached to multiple source ports.
Figure 11 (d). A subscription connector may be attached to a subscription tar-
get port, regardless of any other connectors attached to that port. This allows a
subscription connector to be attached to multiple target ports, and a subscription
target port to accept multiple incoming connectors.
Figure 11 (e). A synchronization connector that is not attached to any ports may

4. Conceptual Level Evolution Calculus 22

attach(A, k, p)A

(a)

attach(A, k, p)A

(b)

p

attach(A, k, p)A

(c)

p

attach(A, k, p)A

(d)

attach(A, k, p)A

(e)
k k

p
0

p

attach(A, k, p)A

(f)

:t

k

0
p

:t +

:t
p

:tk

0
p

k0

k
p

k
p

k
0

k

k

p p

k

k

0
p

0

Figure 11: Attaching connectors to ports.

be attached to an unattached synchronization port.
Figure 11 (f). A synchronization connector that is already attached to one or more
components may be attached to a free synchronization port on another component,
provided that all attached components are of the same type (here indicated by t).
Figure 12 (a) through (e). Any attached connector/port pair may be detached.

4.9 People

As discussed in section 3.5.4, a person may provide subscription source and tar-
get ports which may be attached to subscription connectors. These represent the
person’s ability to perceive the environment and supply input to the system.

4. Conceptual Level Evolution Calculus 23

detach(A, k, p)A

(a)

k
p

detach(A, k, p)A

(b)

p

k

detach(A, k, p)A

(c)

k

p

detach(A, k, p)A

(d)

p

k

detach(A, k, p)A

(e)

k

p

k

p

p
k

k

p

p

k

k

p

Figure 12: Detaching connectors from ports.

4.10 Attribute Modification

As discussed in section 3.6, any workspace element may have arbitrary attributes
associated with it. The attributes are not normally shown in the architectural
diagrams in this specification. The list of these attributes and values of the intent
attributes may be modified at run time.

The operation for setting the value of an attribute is:
setAttribute : A × e × string × value → A
The effect of this operation on an architecture in A is to set the value of an

intent attribute, named by the string, on an element from e to the given value. The
value may be of any type.

Some attributes, such as a component’s type, are immutable. An attempt to
modify an immutable attribute will fail.

Attributes may also be deleted. The operation to delete an attribute is:
delAttribute : A × e × string → A

4.11 Conceptual Level Reflection Operations

In order to request any of the operations specified in the preceding section, the user
or component must be able to specify the parameters that appear in each opera-

4. Conceptual Level Evolution Calculus 24

tion’s signature (e.g., component or connector identifiers). It is therefore a practical
necessity that the system provide reflection operations allowing the discovery of
workspaces, nodes, components, ports and connectors of interest. For example, if
two users decide to work together on a document, at least one of them will need a
mechanism for determining the identity of an attached synchronization connector
that would support the required sharing. For such operations to be useful, user or
system provision of attributes like names of components and owners of workspaces
will likely be essential.

Strictly speaking, the reflection operations do not form part of the evolution
calculus, since they do not result in evolution. However, since reflection operations
appear to be a practical necessity for the effective use of evolution operations, a
minimal list of the required reflection operations is given here.

The signature of each operation is provided. In the signatures, A is the set
of architectures, e of workspace element identifiers, w of workspace identifiers, n
of node identifiers, c of component identifiers, k of connector identifiers, p of port
identifiers, “string” of character strings and “value” of arbitrary values.

• Given the identity of any workspace element (workspace, node, component,
port, or connector), returns the names of its attributes.
getAttributes : A × e → P(string)

• Given the identity of any workspace element and the name of one of its at-
tributes, returns the appropriate intended or observed attribute value.
getIntendedV alue : A × e × string → value
getObservedV alue : A × e × string → value

• Returns the identities of all workspaces in the current architecture.
getWorkspaces : A → P(w)

• Returns the identities of all synchronization connectors in the current archi-
tecture.
getSynchronizations : A → P(s)

• Given the identity of a workspace, returns the identity of all nodes found
within it.
getNodes : A × w → P(n)

• Given the identity of a workspace, returns the identity of all components found
within it.
getComponents : A × w → P(c)

• Given the identity of a workspace, returns the identities of all connectors found
within it.
getConnectors : A × w → P(k)

• Given the identity of a node, returns the identity of all components anchored
to it.
getAnchored : A × n → P(c)

• Given the identity of a component, returns the identities of all its ports.
getPorts : A × c → P(p)

5. Implementation Level Model Elements 25

Components Connectors

Ports

reactor

actor

local

remote

local

remote

Figure 13: Implementation level notation.

• Given the identity of a port, returns the identity of its providing component.
getProvidingComponent : A × p → c

• Given the identity of a port, returns the identity of all attached connectors.
getAttachedConnectors : A × p → P(k)

• Given the identity of a connector, returns the identities of all attached ports.
getAttachedPorts : A × k → P(p)

Reflection operations are also required at the implementation level and to map
between the implementation level and the conceptual level. These operations are
defined in sections 6.4 and 7.7, respectively.

5 Implementation Level Model Elements

Configurations of components, connectors and ports at the conceptual level are
refined into corresponding configurations of lower level components, connectors and
ports constituting an actual implementation.

In this section we introduce the components, connectors and ports that make up
the implementation level. The evolution calculus operations for the implementation
level are defined in section 6. In section 7 we present the refinements that map from
the conceptual level to the implementation level.

The implementation level notation is summarised in figure 13. It includes two
kinds of components, analogous to the reactor and actor components of the concep-
tual level. It also includes local connectors, corresponding to in-process procedure
calls or method invocations, and remote connectors, corresponding to inter-process
messages. As at the conceptual level, there are source and target ports supporting
each kind of connector.

5.1 Implementation Components

Conceptual level components are implemented by configurations of implementation
level components and connectors. In diagrams, implementation level components
are shown shaded to distinguish them from conceptual level components. At the
implementation level there are no stores. The two implementation level component
types are:

5. Implementation Level Model Elements 26

Implementation Reactor. Implementation level reactors must be passive and de-
terministic. An implementation reactor may provide local and remote source
and target ports. The implementation of a conceptual level reactor or store
will include an implementation level reactor plus other components and con-
nectors.

Implementation Actor. As at the conceptual level, implementation level actors
may be active and non-deterministic. An implementation actor may provide
local and remote source and target ports. The implementation of a conceptual
level actor will include an implementation level actor plus other components
and connectors.

5.2 Connectors

Conceptual level connectors are implemented by configurations of implementation
level connectors and components. The two implementation level connector types
are:
Local. A local connector enables local procedure calls or method invocations as

defined in most imperative programming languages. The call may include
parameters, may produce a return value, and transfers the thread of control to
the called component (i.e., the calling component blocks until the call returns).
A single local connector is sufficient to implement a request call. The call is
made in the direction of the arrow and the return value goes in the opposite
direction.

Remote. A remote connector provides inter-nodal messaging. The message sender
does not block on a reply. Where a request-reply protocol is required (e.g., for
implementing remote calls), or where guaranteed message delivery is required,
this must be implemented by the components at either end of the connector
(see the transceiver component in section 5.4.1). A remote connector may be
used from one node to itself.
A request or request update call will require two remote connectors, one to
make the request and the other to return the result.

5.3 Ports

The implementation level provides two kinds of ports, corresponding to its two kinds
of connectors. Each kind of port has source and target ends. As at the conceptual
level, a source port is shown with its arrow pointing out of the host component and
a target port is shown with its arrow pointing into the target component.

A source port will normally correspond to a syntactic construct, visible within
the containing component’s code, that allows procedure calls or method invocations
to be made on it. This will typically be a named variable or an element of a list or
array.

A target port will normally correspond to a callable interface on the containing
component.

5. Implementation Level Model Elements 27

message

broadcaster

transceiver

concurrency control/

consistency

maintenance

cache

mirror cache

channel

endpoint

transmitter
receiver

n

n
channel

Figure 14: Implementation level infrastructure components.

5.4 Infrastructure Components

The implementation level of the Workspace Model includes a number of components
with specialised functions, which are used in the implementation of conceptual level
constructs. These are referred to as infrastructure components and must be included
in any implementation of the Workspace Model. The infrastructure components are
illustrated in figure 14 and defined in the remainder of this section.

5.4.1 Transmitters, Receivers and Transceivers

Transmitter-receiver pairs and transceiver pairs provide bridges between local con-
nectors and remote connectors. Where a conceptual level connector must be im-
plemented across node boundaries, these pairs will be inserted into the connector
implementation to provide the required communication means.

Transmitter-receiver pairs are used to implement one-way reliable messaging,
as would be needed to implement pure update call connectors and subscription
connectors. A transmitter provides one remote source port and a receiver provides
one remote target port.

Transceiver pairs are used to implement reliable request-reply protocols, as would
be needed for request and request-update call connectors. A transceiver provides a
remote source port and a remote target port.

5.4.2 Channel

In implementing groupware it is frequently necessary for a group of endpoint com-
ponents to communicate with one another. While it is possible to connect n com-
ponents using n(n − 1) transceiver pairs, it is often simpler to consider these com-
munication paths as channels [2]. Messages sent into a channel at any one of its
endpoints are received at all other endpoints.

5. Implementation Level Model Elements 28

Figure 14 shows conceptual level channels and implementation level channel end-
points. The conceptual level channels appear only in the refinements of subscription
connectors and synchronization groups specified in section 7 and are not intended
to be used directly at the conceptual level. They are ultimately refined into channel
endpoints.

Channels and channel endpoints are identified by a channel designator, shown
as n in figure 14. In workspace diagrams, any two channel endpoints with the same
name represent endpoints on the same channel.

As a minimum, channels must implement local FIFO ordering of messages. That
is, messages originating at a given source must be delivered to all targets in the
order sent. Messages originating at different sources may be interleaved differently
at different targets.

For some applications, causal or total ordering may be preferred. Where this is
the case, it may be necessary to specify a particular channel implementation. See
appendix B.

Message broadcasters are used in the implementation of subscription connectors.
They accept messages as inputs and broadcast them to one or more subscribers.

A message broadcaster is an actor and delivers messages in its own thread or
threads of control. It therefore acts as a bridge between synchronous calls on its in-
put side and asynchronous message delivery on its output side. The implementation
of message broadcasters may make use of a multicast messaging layer or of shared
channels.

5.4.3 Concurrency Control and Consistency Maintenance

The simplest workspace components are coded for use in a single-threaded envi-
ronment with no replication, however they are normally used in a multi-threaded
environment and stores may be replicated in support of synchronization. The con-
currency control and consistency maintenance (CCCM) component is responsible
for resolving concurrency control issues and for maintaining replica consistency.

CCCM components implement the concurrency control policies necessary for
the use of single threaded components in a multi-threaded environment. They also
provide for synchronization of replica stores and for cache invalidation (see sec-
tion 5.4.4).

CCCMs may implement a range of concurrency control policies (e.g., uncon-
strained, simple locking, transactional locking, optimistic, etc.) and a range of con-
sistency maintenance algorithms (locking, two phase commit, distributed operation
transform [4], Oreste [5], etc.)

5.4.4 Cache and Mirror Cache

Where calls with return values (requests) are implemented using transceivers and
synchronous messages, caches can be used to reduce latency by eliminating unnec-
essary communication on the network. Caching is implemented using cache and
mirror cache components.

5. Implementation Level Model Elements 29

Cache. A cache will be found at the source end of the call. Its function is to store
the responses to requests. In addition to incoming and outgoing call ports,
caches also provide an incoming subscription port to allow cache invalidation
and update messages to be received and acted on.
Caches may be either simple or prefetch. On receipt of a cache invalidation
message a simple cache will discard any corresponding cache entries; however,
a prefetch cache may initiate requests to determine appropriate new values for
those entries.

Mirror cache. Also called cache controller. A mirror cache will be found at the
target end of a call. Its role is to keep track of what entries the correspond-
ing cache is currently maintaining and to invalidate or update the cache as
necessary.
The mirror cache provides an incoming local port which is used by the con-
nected CCCM to provide cache invalidation messages when the state of the
target changes. It also provides an outgoing (conceptual level) update port
which is used pass cache invalidations on to its cache component, as appropri-
ate.
Mirror caches may be simple or presend. Based on the messages received from
the CCCM component the mirror cache computes what invalid entries its
corresponding cache is holding and then either transmits the minimum inval-
idation messages (simple cache), or computes new values by making requests
of the target component and transmits update messages (presend cache). In-
validations and updates are transmitted on the outgoing update port.

Pure updates have no return values and therefore need not be cached. Request-
updates are assumed to modify the call target and so cannot reliably be cached.
Since a request-update connector may contain both requests and updates it may be
necessary to provide selective caching in such cases. The architectural employment
of cache and mirror cache components is defined in section 7.3.

5.5 Relations Among Implementation Level Elements

As at the conceptual level, implementation level elements may be related to one
another in several ways, which are depicted in workspace diagrams. The relations
and diagrammatic conventions are described below.

Note that the sets of implementation level workspace elements are identified
by capital letters to distinguish them from the sets of conceptual level workspace
elements.
Instantiation. Implementation level components are instantiated on nodes. If an

implementation level component C is shown superimposed on a node n, then
C is instantiated on n.

Port Provision. Implementation level components provide ports. If a port P is
depicted on the boundary of a component C, then P is provided by C.

Connection. Implementation level connectors connect ports. If the end of a con-
nector K is shown touching two ports P1 and P2, then K connects P1 and

6. Implementation Level Evolution Calculus 30

P2. For visual clarity we frequently omit ports in workspace diagrams. If a
connector K is shown touching two components C1 and C2 then K connects
two unseen ports P1 provided by C1 and P2 provided by C2.

6 Implementation Level Evolution Calculus

Just as for the conceptual level, implementation level operations are defined by
an evolution calculus. The semantics of the implementation level calculus opera-
tions are specified in this section, using the meta-notation introduced in figure 4 on
page 16.

6.1 Components

The allowed operations on implementation level components are defined in figure 15.
Figure 15 (a). A component may be instantiated on a node. Newly instantiated
components are not connected to other components.
Figure 15 (b). A component may be destroyed. In contrast to the conceptual level,
where a component must first have all attached connectors removed before it is
destroyed, destroying an implementation level component also destroys all attached
connectors. This is because implementation level connectors are not truly first-class
workspace objects. See section 5.2 for further discussion.
Figure 15 (c). A component may be moved from its current node to another node.
All attached connectors will be destroyed by the move. The component’s state will
be observationally equivalent after the move (this is not explicitly represented on the
diagram.) An attempt to move a component onto the node on which it is currently
instantiated will have no effect; such an attempt will fail to match the left-hand side
of this diagram.
Figure 15 (d) and (e). Components may be copied, either onto a new node (d) or
onto the node on which the original is instantiated (e). As with moves, a copy of
a component must be observationally equivalent to the original. Initially, a copied
component will be unconnected. The original component is unaffected.

6.2 Ports

Remote ports are found only on transmitters, receivers and transceivers (see sec-
tion 5.4.1 and figure 14) and are considered integral to those components; hence,
there are no operations to create them or destroy them.
Figure 16 (a) and (b). Local source and target ports may be created on component
boundaries. Created ports are initially unconnected.
Figure 16 (c) and (d). Local source and target ports may be destroyed. At the
implementation level, connectors are second-class objects and may not exist inde-
pendently of ports. Therefore destroying an implementation level port also destroys
any connectors for which the port was either a source or a target.

6. Implementation Level Evolution Calculus 31

move(A, c, n)A

(c)

instantiate(A, t, n, c)A

(a)

n n

:t
c

destroy(A, c)A

(b)

c

* *

* *

n n

cc

* *

* *

copy(A, c, n, d)A

(d)

c

n

c

n

d

copy(A, c, n, d)A

(e)

n

c

n

dc

Figure 15: Operations on implementation level components.

createLocalSource(A, c, p)A

(a)

createLocalTarget(A, c, p)A

(b)

c c

p

c c

p

destroy(A, p)A

(c)

destroy(A, p)A

(d)

p

p

?

*

Figure 16: Operations on implementation level ports.

6. Implementation Level Evolution Calculus 32

connect(A, p, q)A

(a)

0
p

q q

p

connect(A, p, q)A

(b)

p
0

q q

p

disconnect(A, p)A

(c)

p p

disconnect(A, p)A

(d)

p p

Figure 17: Implementation level port connection and disconnection.

6.3 Connect and Disconnect

Figure 17 (a) and (b). An unconnected local source port may be connected to a
local target port. An unconnected remote source port may be connected to a remote
target port. Connecting two ports implicitly creates a connector of the appropriate
type.
Figure 17 (c) and (d). Two connected ports may be disconnected. This action
implicitly destroys the connector. Note that since source ports may have only one
outgoing connector we can specify the connector to remove by means of the source
port’s identity.

6.4 Implementation Level Reflection Operations

The implementation level requires a set of reflection operations similar to those for
the conceptual level introduced in section 4.11 on page 23. As in that section, we
here describe a minimum set.

As noted in section 3.7, upper case letters are used to identify the sets of
implementation-level workspace element identifiers in the signatures that follow.

The conceptual level reflection operations getAttributes, getIntendedV alue,
getObservedV alue, getPorts and getProvidingComponent defined in section 4.11
are also defined at the implementation level, with the substitution of upper case
letters for lower case letters in their signatures.

In addition, the following operations are unique to the implementation level:

7. Refinements from the Conceptual to the Implementation Level 33

Refinement Specification

Figure 18: The schema used for refinement rules.

• Return the identities of all implementation level components.
getImplComponents : A → P(C)

• Given the identity of a node, return the identities of all components instanti-
ated on it.
getInstantiated : A × n → P(C)

• Given the identity of a port, return all connected ports.
getConnectedPorts : A × P → P(P)

7 Refinements from the Conceptual to the Implementation Level

A key concept in the Workspace Model is that conceptual level architectures are
realized by corresponding implementation level architectures. By design, the model
provides multiple possible implementations for any but the simplest conceptual level
architectures. The process of deriving an implementation level architecture from a
conceptual level architecture is called “refinement” and is the subject of this section.

The allowed refinements are presented in the form of a graph grammar consisting
of pattern matches and replacement patterns. This grammar defines the total space
of allowable implementations for any given conceptual level architecture.

In principle, for a conceptual level architecture A we begin by finding a match
m between A’s structure and the left-hand side of some refinement rule. We then
replace m by the implementation specified on the right-hand side of that rule. This
gives us a partially-refined architecture A′. We repeat the process until no concep-
tual level elements remain in the architecture.

The refinement rules use the meta-notation and pattern match rules introduced
in section 4.1 on page 15. Refinements rules are written in the refinement schema
illustrated in figure 18. The squiggly arrow means “may be refined to” or “may be
implemented as”.

Each of the sections that follow has one or more associated figures defining a set
of related refinement rules. For greater clarity, each refinement rule is also described
in the section’s text.

7.1 Components

The main refinements for components are illustrated in figure 19. Stores which are
part of synchronization groups may also be implemented according to the refine-
ments presented in section 7.5.

7. Refinements from the Conceptual to the Implementation Level 34

(b)

:t’

(a)

:t

0

* *

* *

?
* *

* *

?

(c)

?
?

:t’

* *

0 :t

* *

Figure 19: Refinements of components.

Figure 19(a). A conceptual level component which is not anchored to any node may
be implemented on any node in its workspace.
Figure 19(b). A conceptual level component of type t which is anchored to a node
may be implemented on that node. The implementation will include a compo-
nent of corresponding type t′ plus a concurrency-control consistency maintenance
component. Any synchronization port and all incoming call and subscription ports
appear on the CCCM component and any outgoing connectors are routed from the
component of type t′. Ports are not yet refined to the implementation level.
Figure 19(c). This is a simplification of case (b) for a conceptual level component
that is not a member of a synchronization group and that has not more than one
incoming connector (call or subscription). In this case the CCCM component is not
required, since replica consistency maintenance is not an issue and there will never
be more than one thread entering the component.

7.2 Ports

The refinements for subscriptions and synchronizations ultimately convert ports
attached to these connector types to call ports (see sections 7.4 and 7.5), so only
refinements for call ports and unconnected ports are necessary.
Figure 20(a) and (b). Call ports refine to single local source ports, either source or
target as appropriate.
Figure 20(c). Any port which is not attached to a connector need not be imple-
mented.

7. Refinements from the Conceptual to the Implementation Level 35

(a)

(b)

(c)

0

Figure 20: Refinements of ports

7.3 Calls

Figure 21(a). Calls between ports on the same node may be implemented directly
by local connectors.4

Figure 21(b). Calls between any two ports, whether or not on the same node, may
be implemented by inserting transceivers in the call path to mediate the inter-nodal
communication.The fact that the connectors from the ports to the transceivers are
local connectors implies that each transceiver must be on the same node as its
associated port. There may be an unnecessary performance penalty incurred by
this approach where the ports are in fact on the same node.
Figure 21(c). Pure updates may be implemented using a transmitter-receiver pair
rather than transceivers, since no return value is required.
Figure 21(d). Call paths may include caches in order to reduce unnecessary network
latency. The intended operation of a cached call path is as follows:

• When a request is initiated at the call source connector, the call goes first to
the cache. If a result value corresponding to the request is cached, the value
is returned immediately.

• If the result is not currently cached, the call proceeds through the transceivers,
mirror cache, CCCM, and ultimately to the target component.

• The result is returned via the reverse path. The mirror cache, which is on the
same node as the target, caches a copy of the request-result pair, as does the
cache.

• Any updates to the target component are detected by the CCCM. The CCCM
computes a conservative characterisation of what cached results would be in-
validated by the update. For more precise characterisations, the application
programmer could provide a specialised CCCM. However, in the worst case,
the CCCM can conservatively declare all cached results from that component
to be invalid.

4In this figure, and in several that follow, the components on which the illustrated ports would
appear have been suppressed; the directionality of the ports may be inferred from the attached
connectors. Similarly, the port depictions for the infrastructure components have been suppressed
to reduce visual clutter, without loss of information.

7. Refinements from the Conceptual to the Implementation Level 36

(b)

(a)

(d)

(e)

0

(f)

0

!

(c)

Figure 21: Refinements for call connectors.

• The CCCM calls the mirror cache via the local connector to inform it of the
cache invalidation. The mirror cache then determines exactly which of the
currently-cached entries are invalid and both removes them from its cache
mirror and advises the cache of the invalidation by means of the update con-
nector.

Pure updates are not cached since they return no result. Request-updates are
likewise not cached, since the result returned by a request-update is not necessarily
valid after the update completes. Finally, requests made of actors cannot safely be
cached because of actors’ inherent non-determinism.
Figure 21(e) and (f). Call connectors that are unattached at either end are not
implemented.

7. Refinements from the Conceptual to the Implementation Level 37

(a)

(b)

!

!

(c)

!

(d)

!

(e)

!

(f)

!

Figure 22: Refinements for subscriptions.

7.4 Subscriptions

7.4.1 People and Subscriptions

At the conceptual level, people may act as the source and target of subscription con-
nectors. These connectors represent people’s provision of input using (for example)
voice, keyboards and mice, as well as people’s attention to audible, visible or other
signals. Hence, these connections are inherently conceptual.

For this reason, subscription connections to and from people are not refined and
are not the subject of the refinement rules in this section.

7. Refinements from the Conceptual to the Implementation Level 38

(a)

*

*

0 0

*

*

n

!

!

(b)

0

Figure 23: Further refinements for subscriptions.

7.4.2 Refinable Subscription Connections

Since subscriptions have an asynchronous semantics, at least one message broad-
caster is required in any implementation of a synchronization connector with one or
more attached source ports.

The refinements in figure 22 allow such connectors to be implemented using
anywhere from a single message broadcaster to an independent message broadcaster
for each connected port.
Figure 22(a). A subscription source port attached to a subscription connector may
be refined to a call port attached to a message broadcaster via an update connector.
The message broadcaster then becomes a source for the subscription connector. Any
other ports attached to the subscription connector are unaffected.
Figure 22(b). This is the analogue of (a) for a target port.
Figure 22(c). A subscription source port attached to a subscription connector which
already has a message broadcaster as a source may be refined to a call port attached
to that message broadcaster by an update connector.
Figure 22(d). This is the analogue of (c) for a target port.
Figure 22(e). A subscription source port attached to a subscription connector which
already has a message broadcaster as a target may be refined to a call port attached
to that message broadcaster by an update connector. The message broadcaster must
then be attached to the subscription connector as a source.
Figure 23(f). This is the analogue of (e) for a target port.
Figure 23(a). Where a set of message broadcasters is attached to a subscription
connector and that connector has no other sources and targets, the connector may
be implemented using a channel (with some channel designator n which is not cur-
rently used in A) connected to the message broadcasters by update connectors. The
implementation of channels is defined in section 7.6.

Note that an individual message broadcaster may be both a source and target
in this refinement.
Figure 22(b). A subscription connector with no sources need not be implemented.

7. Refinements from the Conceptual to the Implementation Level 39

(a)

* *

* *

*

(c)

0?

(b)

*0
*n

* *

*

!

!

Figure 24: Refinements for synchronizations.

7.5 Synchronization

The refinements for synchronization allow for any combination of centralised and
replicated state within a synchronization group.
Figure 24(a). A store which is synchronized with an already-implemented compo-
nent (see section 7.1) may be refined by simply moving its subscription and call ports
to the implemented component. As in component refinement, call and subscription
target ports are attached to the CCCM component and subscription source ports
are attached to the component implementation. (Recall that stores may not have
outgoing call ports.)

In effect, this is a centralised implementation, since it refines two or more con-
ceptual level stores into a single store implementation.
Figure 24(b). A group of store implementations which are mutually synchronized
(here represented by their CCCM components) may be implemented by attaching
each of them to a new channel with some new channel designator n.

In effect, this is a replicated implementation, wherein the CCCM components are
responsible for enacting replication protocols adequate to ensure store consistency.
Figure 24(c). A synchronization group with zero or one connected ports need not
be implemented. If it had one connected port, that port need not be implemented
either.

7.6 Channels

In figures 23 and 24, conceptual level channels were introduced to handle the n-way
communication required between subscription ports and between CCCM compo-
nents. This section presents the refinements that transform conceptual level chan-

7. Refinements from the Conceptual to the Implementation Level 40

(a)

n n

n

(b)

n n

n

(c)

n n

nn

(d)

n n

nn

(e)

n
0 0

!

!

!
!

!

!

!

!

Figure 25: Refinements for channels.

nels to channel implementations.
Figure 25(a) and (b). A call connection from a component c to a conceptual level
channel designated n may be refined to a connection to a channel implementation for
n, where the new channel implementation is on the same node as c. The conceptual
level channel is otherwise unaffected.
Figure 25(c) and (d). If a component c is connected to a conceptual level channel
designated n and a channel implementation for n already exists, then the connec-
tion from c to the channel may be refined as a connection from c to the channel
implementation.
Figure 25(e). A conceptual level channel with no attached connectors is not imple-
mented.

These refinements allow connected channels to be implemented using any num-
ber of channel implementations between one and the number of connections from
components to the channel. So, a fully centralised implementation (where all com-
ponents are connected to a central channel implementation) is allowed, as is a fully

References 41

distributed implementation.

7.7 Inter-level Reflection Operations

Supporting dynamic evolution at run-time requires a mechanism for relating the cur-
rent conceptual level architecture to the current implementation level architecture.
The following reflection operations are therefore provided:

• Given the identity of a conceptual level element, return the identities of all
implementation-level elements that form part of its implementation.
getImplementation : A × e → P(E)

• Given the identify of an implementation level element, return the identities of
all conceptual level elements for which it forms part of the implementation.
getConceptual : A × E → P(e)

Acknowledgements

Len Bass, Larry Constantine, Emannuel Dubois, Phil Gray, Rick Kazman, Laurence
Nigay, Len Terpstra, Leon Watts and James Wu all provided valuable suggestions
at various points during the Model’s development. Later stages of the development
were done in close collaboration with Chris Wolfe. Of course, any deficiencies in
this specification are the fault of the authors alone.

References

[1] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss tolerant architecture
and protocol for wide area group communication. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks (FTCS-30, DCCA-8,
New York, NY), June 2000. Also available from www.spread.org.

[2] K.P. Birman. The process group approach to reliable distributed computing.
Communications of the ACM, 36(12):37–53,103, December 1993.

[3] J. Coutaz. PAC, an object oriented model for dialog design. In Proc. IN-
TERACT’87, pages 431–436. Elsevier Science Publishers B. V. (North-Holland),
1987.

[4] C.A. Ellis and S.J. Gibbs. Concurrency control in groupware systems. In Pro-
ceedings of the ACM Conference on the Management of Data (SIGMOD ’89,
Seattle, WA, USA, May 2–4), pages 399–407. ACM Press, 1989.

[5] A. Karsenty and M. Beaudouin-Lafon. An algorithm for distributed groupware
applications. In Proc. 13th International Conference on Distributed Computing
Systems (ICDCS), pages 195–202, 1993.

[6] G.E. Krasner and S.T. Pope. A cookbook for using the Model-View-Controller
user interface paradigm in Smalltalk-80. Journal of Object-Oriented Program-
ming, 1(3):26–49, August/September 1988.

References 42

[7] W.G. Phillips. Architectures for synchronous groupware. Technical Report 1999-
425, Queen’s University, Kingston, Ontario, Canada, May 1999. Available from
www.cs.queensu.ca.

[8] W.G. Phillips and T.C.N. Graham. Workspaces: A multi-level architectural style
for synchronous groupware. In Proceedings of the Tenth International Workshop
on Design, Specification and Verification of Interactive Systems (DSV-IS ’03),
number 2844 in LNCS, pages 92–106. Springer-Verlag, 2003. ISBN 3-540-20159-
9.

A. Definitions 43

A Definitions

Side-effect free. A call or message a on a component C is side-effect free iff for
any parameters p∗, request d, parameters q∗ and deterministic component D,
C.a(p); y=D.d(q) and y=D.d(q) result in y taking on the same value (assuming
the system is otherwise quiescent). The intuition is that C.a(p) only returns
values; it does not change any state in the system either directly or indirectly.
Side-effect free calls are referred to as requests. Side-effect bearing calls with no
return value are referred to as updates. Other calls are referred to as request-
updates. Side-effect free calls are by definition also referentially transparent.

Passive/active. A component C is passive iff whenever the system quiescent, C
does not initiate communication; i.e., C does not make any calls (section 3.3.2)
and C does not send any messages. The intuition is that C only reacts to
communication performed by others; C does not initiate communication; C
does not have its own thread of control. Components that are not passive are
called active.

Deterministic/non-deterministic. A component C is deterministic iff whenever
C is in state s, and some call or message a(p∗) is applied to C, there is
some unique r returned by a and the component enters some unique state s′.
The intuition is that the component does not consult any external sources of
information, such as random number generators, files whose values are non-
deterministically determined, the system clock, etc. Components that are not
deterministic are called non-deterministic. Active components are always non-
deterministic.

Consistent. Two components are consistent at some time t if they meet some
application-specific definition of consistency. The strongest form of consis-
tency (called strong consistency) is observational equivalence, meaning that
any method called on either component would give the same result. (Con-
sistency is therefore a notion that can be sensibly applied to deterministic
components only.) Weaker notions of consistency can be applied; e.g., weakly
FIFO queues may be considered to be consistent even if they do not con-
tain the same contents. Some definitions of consistency may therefore require
knowledge of the past.
Two message streams are consistent if they meet some application-specific def-
inition of consistency. Strong consistency over message streams means that the
message stream traces contain identical messages in the same order. Weaker
forms of consistency may involve (for example) one message stream collapsing
messages into a shorter, semantically equivalent sequence, or message streams
differing in the order in which messages are announced.

B. Implementation Considerations 44

B Implementation Considerations

This appendix documents a number of implementation considerations that were
identified during the creation of the specification. It does not form part of the
specification proper.

B.1 Component Implementations

For components, the Workspace client programmer is responsible for providing im-
plementation definitions (e.g., class definitions with the desired semantics) for part
of the required implementation. For connectors and ports, the Workspace runtime
system provides one or more default implementations.

B.2 Unique Identifiers

In the definition of the evolution calculus in sections 4 and 6, unique identifiers were
provided externally with each operation. In implementations of the Workspace
Model we expect that globally unique identifiers would be provided automatically
by the run-time system.

B.3 Failure Reports

Operation requests in the evolution calculus may fail, resulting in an identity on
the architecture (see section 4). In this case, a failure report will be provided to
the operation’s requester. The exact form of the failure report is system-specific,
however failure reports should be in the form of a exceptions in systems that support
them.

B.4 Custom Implementations of Infrastructure Components

Implementations of the Workspace Model should also allow client programmers to
provide their own infrastructure component implementations (see section 5.4) in
order to provide specialised services or to improve performance by making use of
application-specific semantics.

B.5 Attributes as Implementation Hints

A developer may wish to provide implementation hints to the run-time system.
For example, the developer may desire that a particular synchronization group be
implemented by replication and that another be implemented by locking.

This information may be communicated to the run time system via attributes
set on conceptual level workspace elements. In the example above, the synchroniza-
tion group might have a desiredImplementation attribute, the value of which was a
reference to a specialised CCCM component that implemented the desired synchro-
nization strategy. Implementation hints would also be used to request the use of
custom implementations of infrastructure components, as discussed in the previous
section.

B. Implementation Considerations 45

Details of this approach will be determined based on implementation experience.

B.6 Convenience Operations

The conceptual and implementation level evolution calculi may be thought of as
“assembly languages” for operations on architectures. We expect that actual im-
plementations will define convenience operations that are compositions of evolution
calculus operations. For instance, at the conceptual level it might be reasonable to
have a convenience operation connect(porta, portb) which implicitly creates a con-
nector of the appropriate kind and attaches it to the named ports. In our own
implementation we intend to let experience guide the selection of such operations.

Likewise, the reflection operations described in sections 4.11, 6 and 7.7 constitute
only a minimal set and would likely be cumbersome to use. We anticipate that any
implementation of the workspace architecture would provide convenience reflection
operators, or perhaps a general query facility.

B.7 Port Creation and Use

The object requesting the creation of a port is responsible for binding the port to
appropriate code (e.g., a syntactic variable) within the component. Ports not bound
to code are effectively useless. Any calls or messages originating from the bound
code point must be within the defined vocabulary for that port, otherwise a run-time
exception or equivalent will be raised. Likewise, at the target end, if a component
does not support a method the vocabulary of an attached call port, that method
may also result in a run-time exception or equivalent.

B.8 Channels

The channel construct discussed in section 5.4.2 may be implemented using a cen-
tralised message router, a distributed group communication service such as Spread [1],
or by any other appropriate means.

Implementation using a group communication service is an appropriate design
strategy since this allows the Workspace toolkit developer to abstract the network,
provide for efficient message delivery, provide ordering and reliability guarantees for
the messages transmitted, and enforce appropriate distributed system semantics for
group joining and leaving, and response to partial failure.

Where channels are expected to provide a particular message ordering policy
(local FIFO, causal, total, etc.) this would be specified via an implementation hint
(see section B.5) on the conceptual-level subscription or synchronization connector.

B.9 Implementing Refinement

The refinements presented in section 7 define a space of allowable implementations
for any conceptual architecture but give no guidance as to which implementation
would be most appropriate for a given situation.

B. Implementation Considerations 46

In practice we expect run-time systems to derive implementations dynamically
and incrementally, in response to changes in either the conceptual level architecture
or the available implementation resources. The derived implementation architec-
tures must correspond to allowed refinements in accordance with the rules specified
in this section.

As a long-term goal, the Workspace run-time system is intended to offer fully au-
tomatic, dynamic adjustment of the implementation level architecture in response
to changing user needs, user mobility, and the characteristics of available input,
output, computational and storage devices and their interconnections. In the short
term, the run-time system will be based on simple heuristics and may require man-
ual intervention in order to achieve optimal performance (for some definition of
“optimal”).

B.10 Concurrency Control Issues

In multi-user interactive systems, concurrency control is required at a number of
levels.

Interactive systems should not behave in ways that violate either semantic con-
sistency or user expectations. For example, in a drawing editor the system should
not allow two users to concurrently move a single object in different directions.
This kind of concurrently control is specific to the interface and underlying data,
and must necessarily be addressed by the developer of the interface. In this example,
the developer might provide a mechanism requiring a user to acquire an exclusive
“move lock” on an object before being allowed to move it.

At an intermediate level, the system should support transactions (multi-valued
sequences of requests and updates) on the level of atomic user actions in the interface.

At the lowest level, it is necessary that mutually incompatible method invoca-
tions not be active within a single component, as this could lead to invalid component
state. In the example above, ensuring that two users not simultaneously acquire a
move lock requires that multiple threads not have conflicting access to the lock vari-
able. One approach would be to require the component developer to specify resource
locking strategies in the component code itself, as is commonly done in Java using
the synchronized keyword.

	Title Page
	Abstract
	Contents
	List of Figures
	1 Introduction and Rationale
	1.1 This is a Specification
	1.2 A Note About Terminology
	1.3 Organisation

	2 Core Model Elements
	2.1 Person
	2.2 Computational Node

	3 Conceptual Level Model Elements
	3.1 Workspace
	3.2 Components
	3.3 Connectors
	3.3.1 Values Passed By Workspace Connectors
	3.3.2 Call
	3.3.3 Subscription
	3.3.4 Synchronization

	3.4 Ports
	3.4.1 Call Ports
	3.4.2 Subscription Ports
	3.4.3 Synchronization Ports

	3.5 Components Redux
	3.5.1 Reactor
	3.5.2 Actor
	3.5.3 Store
	3.5.4 Person

	3.7 Relations Among Conceptual Level Elements
	3.6 Attributes
	3.7 Relations Among Conceptual Level Elements

	4 Conceptual Level Evolution Calculus
	4.1 Meta-Notation and Pattern Matches
	4.2 Workspaces
	4.3 Nodes
	4.4 Components
	4.5 Ports
	4.6 Components and Nodes
	4.7 Connectors
	4.8 Connectors and Ports
	4.9 People
	4.10 Attribute Modification
	4.11 Conceptual Level Reflection Operations

	5 Implementation Level Model Elements
	5.1 Implementation Components
	5.2 Connectors
	5.3 Ports
	5.4 Infrastructure Components
	5.4.1 Transmitters, Receivers and Transceivers
	5.4.2 Channel
	5.4.3 Concurrency Control and Consistency Maintenance
	5.4.4 Cache and Mirror Cache

	5.5 Relations Among Implementation Level Elements

	6 Implementation Level Evolution Calculus
	6.1 Components
	6.2 Ports
	6.3 Connect and Disconnect
	6.4 Implementation Level Reflection Operations

	7 Refinements from the Conceptual to the Implementation Level
	7.1 Components
	7.2 Ports
	7.3 Calls
	7.4 Subscriptions
	7.4.1 People and Subscriptions
	7.4.2 Refinable Subscription Connections

	7.5 Synchronization
	7.6 Channels
	7.7 Inter-level Reflection Operations

	Acknowledgements
	References
	A Definitions
	B Implementation Considerations
	B.1 Component Implementations
	B.2 Unique Identifiers
	B.3 Failure Reports
	B.4 Custom Implementations of Infrastructure Components
	B.5 Attributes as Implementation Hints
	B.6 Convenience Operations
	B.7 Port Creation and Use
	B.8 Channels
	B.9 Implementing Refinement
	B.10 Concurrency Control Issues

