
Programming with Heterogeneous Structures:

Manipulating XML data using bondi

F.Y. Huang C. B. Jay D.B. Skillicorn

March 2005
External Technical Report

ISSN-0836-0227-
2005-494

School of Computing
Queen’s University

Kingston, Ontario, Canada K7L 3N6

Document prepared March 11, 2005
Copyright c©2005 F.Y. Huang and C.B. Jay and D.B. Skillicorn

Abstract

Manipulating semistructured data, such as XML, does not fit well within conventional programming
languages. A typical manipulation requires finding all occurrences of a structure whose context may be
different in different places, and both aspects cause difficulty. Most approaches to these problems of
data access are addressed by special-purpose languages which then pass their results to other, general-
purpose languages, creating the impedance mismatch problem. Alternative approaches add a few new
means of data access to existing languages without being able to achieve the desired expressive power.
We show how an existing programming language, bondi, can be used as is to handle XML data, since
data access patterns, called signposts, are first-class expressions which can be passed as parameters to
functions.

Programming with Heterogeneous Structures:
Manipulating XML data using bondi

F.Y. Huang and C.B. Jay and D.B. Skillicorn

Abstract: Manipulating semistructured data, such as XML, does not fit well within conventional pro-
gramming languages. A typical manipulation requires finding all occurrences of a structure whose
context may be different in different places, and both aspects cause difficulty. Most approaches to these
problems of data access are addressed by special-purpose languages which then pass their results to
other, general-purpose languages, creating the impedance mismatch problem. Alternative approaches
add a few new means of data access to existing languages without being able to achieve the desired
expressive power. We show how an existing programming language, bondi, can be used as is to handle
XML data, since data access patterns, called signposts, are first-class expressions which can be passed
as parameters to functions.

1 Introduction

Semistructured data, such as XML, pose a problem for general-purpose programming languages.
A typical manipulation of such data consists of a search for all occurrences of a pattern, extraction
of the occurrences and some part of their context, changes to these extracted data structures, and
their replacement in the entire structure. General-purpose programming languages have trouble
typing such programs because the target pattern can occur in different contexts; and they also have
trouble expressing the implied universal quantifier in the search.

These difficulties led to the design of special-purpose query languages, emerging both from the
database community and the structured text community. The problem with using a special-purpose
language for manipulating XML is that it creates an interface between data extraction and data use.
For example, in a typical web environment, the data itself is in a back-end system and the results
of the data query/transformation must be passed to a front-end system for further processing. The
existence of a boundary requires a common format, usually quite a low-level one such as a string,
by which the back-end and front-end communicate. This requires extra programming effort, and
potentially performance penalties as well. This has been called the impedance mismatch problem.

There is an obvious benefit to extending general-purpose programming languages so that they
can handle XML manipulation in native mode. Doing so reduces or eliminates the impedance
mismatch problem, since computations at the browser, front-end, and back-end can all be done
in the same language environment. Because such languages are typed, there is less overhead at
runtime (for dynamic type checking) and a reduced chance of catastrophic failure or unintended
leakage of information. Also, because of the expressive power of such languages, programs may be
smaller and more modular, making them cheaper and easier to build and maintain.

Extending general-purpose languages to include XML manipulation directly has proven difficult,
although a number of languages have made some progress towards this goal. Here we show that
the bondi1 language, in which data structures and patterns are treated as of equal importance to
functions, allows XML manipulation to be expressed in a natural way, and without any extensions
to the language.

The contribution of this paper is:
1bondi is pronounced Bond-eye and is the name of a famous beach in Sydney.

1

• to show that the ability to handle structures and patterns in the same way as other pro-
gramming entities is the key to manipulating XML in an effective, but also properly typed
way;

• to show that this increase in expressiveness comes with greater simplicity, rather than greater
complexity;

Rather than aggregate the features found in the existing wide variety of XML query and trans-
formation languages, bondi treats structures and structure-matching patterns as first-class objects.
Hence, control flow can be determined by data structures, not just values; and structures and pat-
terns can be passed as parameters. This respect for the data creates new power for programming
with heterogeneous structures in XML data.

Because bondi is a general-purpose language, XML applications can be seamlessly integrated
into other applications, including web and web service applications.

2 Related Work

In the early years of XML, due to the mismatch between XML types and types in programming
languages, special-purpose XML query languages such as Lorel [1], XML-QL [7] and XSLT [4] were
invented to handle query and transformation of XML data. They are typically untyped, handling
both tag names and element content on as low a level as strings. They have very limited expressive
power, and are unable to handle complex structures within XML data. In many settings, their
results must be passed to other application programs developed in general-purpose programming
languages. Using XPath [5], XSLT is able to search for hierarchical path patterns of arbitrary
depth. The other languages are quite restricted for expressing hierarchical search patterns.

In recent years, attempts have been made to merge XML processing into general-purpose pro-
gramming languages in two styles, object-oriented and functional. On the object-oriented side,
the newest proposals are XJ [9] based on Java and Cω[8] based on C#. They both attempt to
extend the base languages with datatypes matching the XML Schema types. On the functional
side, representatives are XQuery[3], XDuce[10] and CDuce[2]. XQuery uses XML Schema-like syn-
tax to define XML datatypes and uses XPath to express search patterns. XDuce and CDuce use
regular expression types. They all match XML Schema types very well. In these general-purpose
programming languages of both flavors, XML elements are first-class items and can be manipulated
freely, subject to the programming power of individual languages. However, none of them treat
structures of XML elements, and the patterns to match these structures, as first-class citizens,
losing the power to compute directly with them, e.g., passing them as parameters. Adding the
ability to handle a rich set of hierarchical path patterns to such languages has, so far, broken their
type systems. We will demonstrate this in Section 5 by comparing our bondi programs with CDuce
programs for an XML processing task.

3 Parameterizing Structures and Patterns

Programming (and maintenance) are simpler when programs are built so that as much of their
behavior is captured by parameters as possible. Often this has a secondary benefit because the
resulting program is simpler and easier to understand (many of the cases have become different
parameter choices). Programming languages that support the passing of functions as parameters

2

(higher-order functions) or use subtyping to pass objects of varying behavior are plentiful, but until
now there has not been general account of how to pass around information about the structure of
data within a typed programming language. The pattern calculus [12–14] achieves this within a
very general framework. It supports program re-use through five distinct forms of polymorphism
within a strongly-typed language. All such forms can simplify the task of manipulating XML data
but two of these, path and pattern polymorphism by parameterizing data structures and structure-
matching patterns, are particularly suited to describing XML access paths. The expressive power
of the pattern calculus is demonstrated in the new, general-purpose programming language bondi
[11]. This section introduces a sequence of examples requiring deep parameterization; encodes them
in bondi; and concludes with some additional possibilities.

3.1 A Motivating Scenario

Suppose we have a data repository containing geographical information and we want to carry out
the following operation: Add 5% to the population of all of Canadian cities. How could we express
such an operation?

The first way is what might be called assembly language programming: a specific program that
traverses the structure in the repository, finds all of the places where Canadian cities are present,
and then finds their population properties and adds 5% to them. The problem is that if we decide
to change the problem in any way we have to rewrite and recompile the program.

All high-level programming languages allow the amount by which the populations are to be
incremented to be extracted and expressed as a parameter. So we might write something like:

IncrementthePopulationsofCanadianCities(5)

This small change increases the generality of the program in the sense that we can make many
different changes without rewriting or recompiling the program. The program is generic with
respect to one argument.

Many programming languages also allow us to make the operation that is to be done to the
populations of Canadian cities into a parameter as well. So we might write:

updateThePopulationsofCanadianCities(incrementby, 5)

Now it is trivial to decrement the populations instead.
The next level of generality is to make the parts of the structure where the function is applied

into a parameter as well. So we might write:

updateCanadianCities(Population, incrementby, 5)

Now it is trivial to increment (or decrement) cities’ areas instead of their populations. Most query
languages, either for databases or for semistructured data, are powerful enough to allow this kind of
programming, but many general-purpose languages have trouble because the contexts that define
the regions where the function is to be applied are constructed in different ways and look different
to the type system.

A further extension is to make the particular units within Canada that are being considered
into a parameter. So we might write:

updateCanadian(City ,Population, incrementby, 5)

3

Now the program is generic in the pattern that describes where the increment is to be applied
(cities above populations). It should work regardless of whether cities are immediately accessible
from countries, e.g. capitals such as Ottawa or Washington D.C., or accessed via intermediate layers
such as states or provinces.

Now let us parameterize on the country too:

update(CountryName == “Canada”,City ,Population, incrementby, 5)

The code involves a side-condition to check on a related structure.
Now we see that the parameters “Canada”, City and Population are all related and it is the

connections between them that define the real parameter of interest. So we could rewrite the code
as:

update(Canadian City Population)(incrementby, 5)

which has a (complex) pattern parameter, which we call a signpost. Now if we want to search
for more complicated structures within the geographical database, we don’t have to keep building
more complicated functions; rather, the complexity is expressed in the choice of signpost parameter
of the standard update function. This example shows the many levels of need for genericity in
processing semi-structured data. Most programming languages and query languages can satisfy
some of these needs, but the following subsection will show that bondi is the first to handle them
all in one language, and in a natural way.

3.2 Realization in bondi

This subsection encodes the examples above in bondi; they have all been executed and also appear
in the file “xmldata.bon” at the bondi web-site [11]. Language features will be explained as they
are used without attempting a full introduction here.

Define a datatype of populations by

datatype popul = Pop of float;; (* unit: thousand people *)

This declaration introduces both a new type popul and, a new term, its constructor Pop : float
-> popul. We can define a function for updating populations by a pattern-matching function

let (atPopIncrementByFivePercent: popul -> popul) x =
match x with
| Pop z -> Pop (z * 1.05);;

When applied to a term of the form Pop x it returns Pop (x*1.05). This function can be param-
eterized with respect to the action to be taken by defining

let (atPopApply: (float ->float) -> popul -> popul) f x =
match x with
| Pop z -> Pop (f z);;

let incrementByFivePercent x= x*1.05;;
let atPopIncrementByFivePercent = atPopApply incrementByFivePercent;;

4

Evaluation of the new version of atPopIncrementByFivePercent reduces to the old one by substi-
tuting for the variable f.

More generally, we can consider increasing populations stored in larger structures, e.g. lists,
defined by

datatype list a =
| Nil
| Cons of a and list a;;

This example defines a data type list which takes one parameter, a, which is the type of the list
elements. It has two constructors: Nil which builds an empty list and Cons which constructs a new
list from an element and a (sub)list. (Syntactic sugar: [x, y, z, ...] is equivalent to (Cons x
(Cons y (Cons z ...))) and [] to Nil for the empty list.).

The function

let (listMap: (a->b) -> list a -> list b) f x =
match x with
| Nil -> Nil
| Cons y z -> Cons (f y) (listMap f z);;

takes a function f as its first argument and then is defined by pattern-matching over the two list
constructors. For example, listMap incrementByFivePercent acts on lists of floats and listMap
atPopIncrementByFivePercent acts on lists of populations. This illustrates how listMap is poly-
morphic in the choice of types a and b that represent the list entries, i.e. listMap is data polymor-
phic.

Of course, populations may appear as data in all sorts of structures, not just lists. This situation
can be handled using a mapping function that is parametric in the choice of structure type as well
as in the choice of the data types, i.e.

map1: (a->b) -> c a -> c b

whose type includes a variable c representing the structure, e.g. list. The definition of map1 is
more complex than its type suggests as it relies on the theory of data structures developed in [13].

Even map1, however, is not flexible enough for our purposes, since a typical database is not going
to have type (c popul) since there is no reason to single out populations for special treatment
while ignoring, say, city names and areas.

Instead, let us define a function that acts on populations wherever they occur, by

let (updatePops: (float->float) -> a -> a) f x =
match x with
| Pop z -> Pop (f z)
| y z -> (updatePops f y) (updatePops f z)
| z -> z;;

The first case is the same as atPop but the second and third cases cause the action to be propagated
to all parts of the data structure. That is, the pattern y z matches against any compound data
structure, and causes both parts of the compound to be updated, while the final case is used
to terminate at atoms of data. For example, updatePops incrementByFivePercent [Pop x1,
Pop x2] evaluates to [Pop x1*1.05,Pop x2*1.05]; but updatePops incrementByFivePercent

5

([Pop x1],Pop x2) evaluates to ([Pop x1*1.05],Pop x2*1.05) even though the populations
appear on different levels of the data structure. Thus updatePops is path polymorphic.

Examining the program above, it is clear that the constructor Pop is playing a completely
passive role, and so is ripe for parameterization. Define

let (update: lin(a->b) -> (a->a) -> c -> c) \P f x =
match x with
| P z -> P (f z)
| y z -> (update P f y) (update P f z)
| z -> z;;

so that updatePop is now given by update Pop. The program update arises naturally from our
earlier examples, but has a number of unusual technical features. First some conventions: capital-
ized variables such as P are always free unless explicitly bound as in \P (to be thought of as λP).
Thus, the pattern P z contains a free variable P and a binding variable z. Evaluation of update
Pop will substitute Pop for P so that the pattern above becomes Pop z. That is, update is pattern
polymorphic since it takes a parameter used to build patterns.

Some care is required when substituting into patterns, so such variables are required to be
linear as indicated by the linear type lin(a->b). Linear terms are explained in detail in [12].
For this paper, we will pretend that all linear terms are constructors though there are important
alternatives.

Similarly, we can define a function check that simply checks that some property holds for some
argument of the given constructor, by:

let (check: lin(a->b) -> (a->bool) -> c -> bool) \P f x =
match x with
| P z -> f z
| y z -> (check P f y) || (check P f z)
| z -> False;;

where True, False are two constant constructors of type bool as usual and || is logical-or.
Suppose now that the goal is to update the populations of only cities, while leaving other pop-

ulations unchanged. For example, consider geographical data having datatypes of cities, provinces
and countries given by the declarations

datatype cityname = CityName of string;;
datatype river = River of string;;
datatype city = City of cityname * popul * list river;;

datatype provname = ProvName of string;;
datatype province = Prov of provname * popul * list city;;

datatype countryname = CountryName of string;;
datatype country = Country of countryname * popul * list province;;

Here * represents product type, the usual functional programming convention for pairing data
items. Now applying update Pop f will act on both the city, province and country populations
indiscriminately. However, the function update City (update Pop f) gives the desired behavior.

6

Although correct, this is not quite satisfactory, since it requires two updates. More complicated
access patterns typical of XML might require three or more updates, and there is still the challenge
of checking side-conditions, e.g. that the city is in Canada.

The solution is to construct an abstract type that represents all of the information about how
to access the data items. In simple cases this will be given by a complete hierarchical path, but in
general the access information will be partial. For example, it is not necessary to know everything
above a city to update its population. Hence, let us call such partial descriptions of paths signposts
since they guide the way to target data items.

For the purposes of this paper, let us consider three sorts of signposts. It will be easy to add
more sorts as required, such as support of XPath-like patterns and regular expression patterns, and
we will demonstrate further in a follow-up paper. A goal is a constructor whose argument is the
pattern of the target item of interest. A stage is a constructor which constructs a signpost from a
leading pattern of the path and the rest of the path. A detour is a path that has a side-path with
a filtering condition to check before continuing on the main path. Thus we obtain

datatype signPosts
at a b c =
| Goal of lin(c -> b)
at (a1,a2) (b1,b2) c =
| Stage of lin (a1 -> b1) and signPosts a2 b2 c
| Detour of detourPath a1 b1 and signPosts a2 b2 c;;

Here detourPath is a helper structure to represent a filtering condition in a signPosts:

datatype detourPath
at a b =
| DetourGoal of lin(a->b) and (a->bool)
at (a1,a2) (b1,b2) =
| DetourStage of lin(a1->b1) and detourPath a2 b2;;

For example, to search for all populations with the partial path (...country...city...popul),
the compound pattern can be encoded as:

let popPath1 = Stage Country (Stage City (Goal Pop));;

and to search for all populations of Canadian cities, we use Detour:

let dpath = DetourGoal CountryName (equal "Canada");;
let popPath2 = Stage Country (Detour dpath (Stage City (Goal Pop)));;

Now check can be modified to act on detourPath and update on signposts as follows.

let (checkd: (detourPath a b) -> c -> bool) d x =
match d with
| DetourGoal \P f -> check P f x
| DetourStage \P dp1 -> check P (checkd dp1) x;;

7

let (updates: (signPosts a b c) -> (c->c) -> d -> d) s f x =
match s with
| Goal \P -> update P f x
| Stage \P s1 -> update P (updates s1 f) x
| Detour dp1 s1 ->

if (checkd dp1 x) (* the detour *)
then updates s1 f x

else x;;

Notice that function updates invokes the simple version update for single patterns. It uses pattern
matching to explore the structure of a given path pattern, that is, signPosts. If the path pattern
is a single pattern, update is invoked directly. If the path pattern is a Stage, update is used to
search for the preceding single pattern then, from the matching points, the search for the rest of
the path pattern continues. checkd also acts in a similar way.

If the path pattern given to function updates is a Detour, the function checks whether the
detour path found a match and if the content of the match satisfies the carried boolean function.
If so, the function goes back to the starting point and continue the search for the rest of the main
path pattern. If the detour does not get a match or the carried boolean function fails, the function
returns unchanged data. Now it is straightforward to increment all populations of all Canadian
cities, if data is the data repository containing geographical information:

updates popPath2 incrementByFivePercent data

Note that this executes independently of the presence of provinces. To process semi-structured
data with our approach, full knowledge of the data schema is not required. This is especially useful
for applications using data in an exploratory style.

3.3 Folding

Given bondi’s support for parameterization over data structures and data access patterns, we can
design other general functions in much the same way as map1, update and updates.

A function foldleft1 can be defined [13], similar to map1, as:

foldleft1: (a->b->a) -> a -> c b -> a

It traverses a homomorphic structure of type (c b), applying a given function to the values of type
b it finds to modify the given value of type a. For example, given a definition of integer addition
function add, the application foldleft1 add 0 AListOfInt produces the sum of all integers as a
list of type (list int).

In the same way that update handles target patterns appearing in various contexts in arbitrary
heterogeneous data structure, a generalized foldleftp in bondi can be defined for heterogeneous
data structures using three-case pattern matching:

let (foldleftp: lin(a->b) -> (c->a->c) -> c -> d -> c) \P f x w =
match w with
| P z -> f x z
| y z -> foldleftp P f (foldleftp P f x y) z
| z -> x;;

8

A more sophisticated version that folds elements satisfying a path pattern (signPosts) looks
like this:

let (foldlefts: (signPosts a b c) -> (d->c->d) -> d -> e -> d) s f x w =
match s with
| Goal \P -> foldleftp P f x w
| Stage \P s1 -> foldleftp P (foldlefts s1 f) x w
| Detour dp1 s1 ->

if (checkd dp1 w)
then foldlefts s1 f x w

else x;;

Many more subtle operations can be expressed using foldleftp and foldlefts, for example
selecting a set of elements satisfying a signPosts, and returning them within a new structure.
Parameter f must then be a function that collects a matching element into the new structure. We
call it an accumulating function.

Defining such highly-parametric functions in bondi simply by pattern matching over signPosts
allows us to perform a large class of XML search and transformation operations within a general-
purpose programming environment easily, especially when there is no precise knowledge about an
XML data structure.

4 Using bondi for XML Processing

Several papers have summarized “standard” XML query operations, for example [6]. A large class
of essential operations can be handled in bondi by simply defining a few pattern structures and
highly-parametric functions.

First let us define two simple helper functions, to search in a list and insert into a list without
duplication:

let (listSearch: list a -> a -> bool) x y
match x with
|Nil -> False
|Cons z w -> (y==z) || (search w y);;

let (listInsert: list a -> a -> list a) x y =
match x with
| Nil -> Cons y Nil
| Cons z w -> if (listSearch (Cons z w) y)

then (Cons z w)
else Cons y (Cons z w);;

In all the following subsections, we will use variable data to represent a data repository con-
taining geographical information.

4.1 Search, Filtering and Extraction

Extracting information from XML data based on a search pattern and a filter is the most common
kind of XML query. For example, we may want a list of names of cities whose population is bigger

9

than 300 (in units of thousands). This query will consist of three components: the pattern to search
for: ...city...cityname; the data filter: population > 300; and the way to construct the result.
The search pattern is easy to describe by a signPosts, and the filter is a boolean function carried
by a Detour pattern. When this detour is absent, the operation becomes “select the names of all
cities”. Combining matching items into a final result is a foldlefts operation in bondi: how the
matching items are accumulated is just a matter of the design of the accumulating function that is
being passed as parameter. If the result is to be a list of city names, i.e., of type list cityname,
the accumulating function is a slightly-modified version of listInsert:

let (elemInsert: lin(a->b) -> list b -> a ->list b) \P x y = listInsert x (P y);;
let dpath = DetourGoal Pop (greaterThan 300.0);;
let namePath = Stage City (Detour dpath (Goal CityName));;

let result = foldlefts namePath (elemInsert CityName) Nil data;;

Here foldlefts searches for all city names matching namePath, and applies the accumulating
function elemInsert to them, i.e., inserts them into a list.

4.2 Extraction while Preserving Structural Relations

When the matching elements are originally in some structural relation and the extraction result
must preserve that relation, we need a little more effort. For example, suppose each city has some
River elements that represent the rivers running through that city. If we want lists of rivers, to
be grouped by the names of the countries the rivers run through, i.e., if the result is a list of type
list (countryname, list river), we need to apply folding three times. Let (x, y) be syntactic
sugar for Pair x y where Pair is the constructor of type pair.

type resultType1 = list (countryname, list river);; (* type synonym *)

let (acceptor: a -> a -> a) x y = y;;

let (collectRivers1: resultType1 -> a -> resultType1) x y =
let riverList = (foldleftp River (elemInsert River) [] y)

and name = (foldleftp CountryName acceptor "null" y)
in

(listInsert x (CountryName name, riverList));;

let result = foldleftp Country collectRivers1 [] data;;

The idea is to fold the content of all Country elements, one by one. The accumulating function
collectRivers1 takes the content of a Country element, uses one folding to get the country name,
another folding to collect all River elements in the country, then composes a pair with the two
pieces of information and inserts it into the result list.

4.3 Extraction with Flattening

In contrast to the previous subsection, the parts of the structure that are matched sometimes
need to be restructured. One simple restructuring is flattening. For example, in the previous

10

example, rather than grouping rivers with country names, we may want the result type to be list
(countryname, river). A slight change to the accumulating function will do.

type resultType2 = list (countryname, river);; (* type synonym *)

let (collectRivers2: resultType2 -> a -> resultType2) x y =
let (insertPair: resultType2 -> string -> resultType2) u v =

(let name = (foldleftp CountryName acceptor "null" y)
in (listInsert u (CountryName name, River v)))

in (foldleftp River insertPair x y);;

let result = foldleftp Country collectRivers2 [] data;;

Again, we fold the content of all Country elements, and the accumulating function collectRivers2
takes the content of a Country element, and collects the country name and all rivers as before. The
difference is that each time collectRivers2 finds a river, it uses the country name it collects to
compose a pair and insert it into the result immediately.

4.4 Extraction with Complex Restructuring

Sometimes the query result may have to be restructured in more complex ways than flattening.
For example, starting from the example of Subsection 4.2, rather than preserving the structural
relations between country names and rivers, we may want to group each river with all the names
of countries the river runs through, e.g.:

type pairentry = (river, list countryname);; (* type synonym *)
datatype resultentry = ResultEntry of pairentry;;
type resultType3 = list resultentry;; (* type synonym *)

Instead of simply inserting matches into the result, extra effort is needed to check the existence of
the matches in the intermediate result before insertion:

let (updateResult:string -> resultType3 -> string -> resultType3) n x r =
if check River ((==) r) x

let (insertCountry: pairentry -> pairentry) y =
(match y with
| (r1, nameList) ->

(if r1 == r)
then (r1, elemInsert CountryName nameList n)

else (r1, nameList))
in (update ResultEntry insertCountry x)

else
(listInsert x (ResultEntry (River r, [(CountryName n)])));;

Given country name n to insert into the group of river name r in the intermediate result x, function
updateResult inspects the intermediate result and inserts it accordingly. If the river name r has
appeared in the intermediate result, it finds the ResultEntry element with river name r, and
inserts country name n into it; otherwise, it inserts a whole new ResultEntry into the result for
river r.

11

let (collectRiver3: resultType3 -> a -> resultType3) x y =
let name = foldleftp CountryName acceptor "null" y
in (foldleftp River (updateResult name) x y);;

let result = foldleftp Country collectRivers3 [] data;;

All of the accumulating functions presented so far hardcode the target patterns, Country,
CountryName, CityName, etc. Given bondi’s support for pattern parameters, it is not difficult to
make all these patterns into parameters so that the accumulating functions, and hence the queries,
are fully parametric. The algorithms for the queries can be formalized as library components of
bondi, so that XML users can directly use them by simply supplying query parameters, just as in
other query languages.

4.5 Indexing and Sorting

Indexing and sorting are the strength of general-purpose programming languages. This is also the
case for bondi.

When the order in which XML elements appear matters, it is easy for a bondi program to
capture that order information from the traversal order. For example, function foldleftp always
traverses from left to right. When we use it to extract XML elements, as in the previous subsections,
a counter variable accompanying the accumulating function can capture the order information of
the extracted elements.

If we want the elements in an extraction result to be sorted, we do not need to modify the
accumulating algorithms. Note that all accumulating functions presented so far use some version of
insertion functions implemented using listInsert. A small change to listInsert gives a version
that produces sorted results.

Extending signposts to handle regular expressions, including cases where the regular language
features are applied down the branches, and also across siblings, is straightforward as well, but we
will not discuss it further here.

5 Comparison with XML Processing in CDuce

CDuce is a general-purpose functional language with regular-expression types that match XML
Schema types well. For example, CDuce can define types that correspond to the geographical
datatypes defined in Section 3:

type Country = <country>[Name Population (Province)*]
type Province = <prov>[Name Population (City)*]
type City = <city>[Name Population (River)*]
type Name = <name>[String]
type Population = <pop>[Int]
type River = <river>[String]

XML elements are first-class items and can be manipulated freely. Because XML elements are
defined by regular-expression types, CDuce is quite powerful at matching horizontal patterns in
standard pattern-matching functions, for example:

12

let cityHasRivers: (City -> Bool) x =
match x with
|<city> [Name Population] -> False
|<city> [*] -> True

The first pattern matches cities without rivers, and the second matches any other cities. As
a functional language, CDuce allows higher-order functions. We can write a CDuce version of
updatePop with the same functionality as the bondi version in Section 3. Suppose we already have
a CDuce function f (Int->Int) to update one integer:

let updatePop (f: (Int->Int)) (x: < >[*]) :< >[*] =
let [y] =

xtransform [x] with
<pop>[(z & Int)] -> [<pop>[(f z)]]

in y

This function traverses the whole structure of x using the macro iterative operator xtransform,
matches any <pop>[Int] and update it using function f. However, when the task becomes a more
general update function for any pattern and any f, like the bondi version in Subsection 3, CDuce
reaches its limit. A CDuce version of update might look like:

let update (a: Atom) (f: T->T) (x: < >[*]): < >[*] =
let [y] =

xtransform [x] with
z & <(b)>[(z & T)] ->

if (a = b) then [<(b)>[(f z)]] else [z]
in y;;

But this program is not well-typed because the type of contents of <(a)>[...] elements may not
match the argument type of function f, so that the evaluation of (f z) could fail. The difficulty
comes from the inability to treat patterns as first-class values and pass them as parameters.

Further, since patterns are not first-class items, there is no way to define pattern-parametric
structures like signPosts. When searching for a complex pattern (Rivers in a Country whose
Name is Canada), a CDuce program has to hardcode all the subpatterns to reflect their structural
relation, and cannot treat them as a single parameter.

6 Conclusion

The strongly-typed general-purpose programming language bondi allows structures and patterns
in data to be treated as first-class objects. This makes it straightforward to define data-access
patterns, signPosts, that can describe in a very general way path patterns in semistructured data
such as XML. These signposts can also be passed freely within programs, allowing a natural style
for search, extraction, modification, and restructuring of complex data. The ability to manipulate
XML in a general-purpose language with well-typing makes it easy to integrate back-end data-
access programming with front-end user-interface programming within a single system. It thus
represents the first steps to solving the impedance mismatch problem.

13

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel Query Language
for Semistructured Data. Int. J. on Digital Libraries, 1(1):68–88, 1997.

[2] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric general-purpose language.
In Proceedings of the ACM International Conference on Functional Programming, 2003.

[3] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Simeon. XQuery 1.0:
An XML Query Language - W3C Working Draft, October 2004.

[4] J. Clark. XSL Transformation(XSLT): Version 1.0 - W3C Recommendation, November 1999.

[5] J. Clark and S. DeRose. XML Path Language (XPath): Version 1.0 - W3C Recommendation,
November 1999.

[6] S. Cluet, A. Deutsch, D. Florescu, A. Levy, D. Maier, J. McHugh, J. Robie, D. Suciu, and
J. Widom. XML query languages: Experiences and exemplars. 1999. Communication to W3C,
www-db.research.bell-labs.com/user/simeon/xquery.ps.

[7] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for XML.
Computer Networks, 31(11–16):1155–1169, 1999.

[8] E. Meijer and W. Schulte and G. Bierman. Unifying Tables, Objects and Documents. In Proc.
DP-COOL 2003, Uppsala, Sweden, August 2003.

[9] M. Harren, B. Raghavachari, O. Shmueli, M. Burke, V. Sarkar, and R. Bordawekar. XJ:
Integration of XML Processing into Java, 2003. Technical Report rc23007, IBM Research.

[10] H. Hosoya and B.C. Pierce. XDuce: A statically typed XML processing language. ACM
Transactions on Internet Technology, 3(2):117–148, May 2003.

[11] C. B. Jay. bondi web-page, 2004. www-staff.it.uts.edu.au/∼cbj/bondi.

[12] C. B. Jay. Higher-order patterns, 2004. www-staff.it.uts.edu.au/∼cbj/Publications/
higher order patterns.pdf.

[13] C. B. Jay. The pattern calculus. ACM Trans. Program. Lang. Syst., 26(6):911–937, 2004.

[14] C. B. Jay. Unfiable subtyping, 2004. www-staff.it.uts.edu.au/∼cbj/Publications/
unifable subtyping.pdf.

14

