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Abstract

The role played by parallelism in the theory of computation de-

pends on the particular paradigm or computational environment con-

sidered, but its importance has been con�rmed with the emergence of

each novel computing technology. In this paper we study the implica-

tions of parallelism in quantum information theory and show that a

parallel approach can make the di�erence between success and failure

when trying to distinguish between (entangled) quantum states. A

(perhaps surprising) consequence of this fact is the impossibility of

constructing a Universal Computer.

1 Introduction

Parallel computing was originally motivated by the need to speed up com-

putation, especially for those tasks whose sequential running time is pro-

�This research was supported by the Natural Sciences and Engineering Research Coun-

cil of Canada.
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hibitively long. This traditional view of the role played by parallelism in

computation has since evolved dramatically, with implications almost im-

possible to foresee when the �eld originated.

We know today that there are tasks and computational paradigms for

which a parallel approach o�ers much more than just a faster solution [4]. A

real-time environment, constraining the input data provided and the output

produced at various moments in time, can have drastic e�ects on the quality

of the solution obtained for a certain problem, unless parallelism is employed

[13, 14, 15, 16]. A general framework is developed in [2] to show how a

superlinear (with respect to the number of processors employed in the parallel

approach) improvement in the quality of the solution computed to a real-time

problem can be obtained.

In other cases, a sequential machine fails to tackle a certain task alto-

gether, and parallelism is the only hope to see that task accomplished. Ex-

amples of this kind include measuring the parameters of a dynamical system

[1, 7] or setting them in such a way as to avoid pushing the system into a

chaotic behavior [6]. Also, some geometric transformations can only be per-

formed successfully if we act simultaneously on a certain number of objects

[3].

Progress in science and technology in
uences the way computations are

carried and the emergence of novel computational environments and paradigms

continually broadens the applicability and importance of parallelism. In this

paper we exhibit an example of a problem from quantum information theory

that clearly emphasizes the role of parallelism in this relatively new �eld of

computation governed by the principles of quantum mechanics. The example

we present also reinforces the argument developed in [5] demonstrating the

infeasibility of a Universal Computer.

The remainder of the paper is organized as follows. The next section is in-

tended to make the reader familiar with the fundamental notions of quantum

computation. Section 3 introduces the problem of distinguishing quantum

states and analyzes the instance de�ned by the four Bell states. A gener-

alization to an arbitrary number of qubits entangled together is developed

in section 4. Section 5 discusses the relevance of the problem investigated,

in the context of Universal Computation. The contributions of this paper,

stressing the importance of parallelism in general and for the concept of a

Universal Computer in particular, are summarized in the last section.
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2 Fundamentals of quantum computation and

quantum information

This section introduces the basic elements of quantum computation and

quantum information to the extent needed for a clear exposition of the main

ideas presented in this paper.

Quantum information theory was developed much in analogy with clas-

sical information theory, enlarging the scope of the latter. Thus, quantum

information theory deals with all the static resources and dynamical processes

investigated by classical information theory, as well as additional static and

dynamic elements that are speci�c to quantum mechanics.

2.1 The qubit

Probably, the most fundamental quantum resource manipulated by quantum

information theory is the quantum analogue of the classical bit, called the

qubit.

Though it may have various physical realizations, as a mathematical ob-

ject the qubit is a unit vector in a two-dimensional state space, for which

a particular orthonormal basis, denoted by fj0i; j1ig has been �xed. The

two basis vectors j0i and j1i must be orthogonal (i.e. their inner product

is zero) and normalized (i.e. of unit length each), hence the orthonormality

requirement. The basis vectors correspond to the two possible values a clas-

sical bit can take. However, unlike classical bits, a qubit can also take many

other values. In general, an arbitrary qubit j i can be written as a linear

combination of the computational basis states:

j i = �j0i+ �j1i; (1)

where � and � are complex numbers such that j�j2 + j�j2 = 1 (the normal-

ization condition ensuring that j i is a unit vector). In order to describe the

state of a qubit or ensemble of qubits in a compact way, we have adopted here

the well-established bra/ket notation introduced by Dirac [10]. According to

his conventional notation, kets like jxi are simply column vectors, typically

used to describe quantum states. Similarly, the matching bra hxj is a row

vector denoting the conjugate transpose of jxi. Thus, the ket j i in equation

(1) is just a short notation for the complex column vector
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while its corresponding bra h j denotes the row vector [�� ��]; where �� and

�� are the complex conjugates of the complex numbers � and �, respectively.

Equation (1) re
ects the fundamental di�erence distinguishing quantum

bits from classical ones and is a direct application of the quantum principle

of superposition of states. The qubit j i is in a superposition of j0i and j1i,
a state in which it is not possible to say that the qubit is de�nitely in the

state j0i, or de�nitely in the state j1i.
For a single qubit, there is a very intuitive geometric representation of its

state as a point on a sphere. Taking � = ei
 cos(�=2) and � = ei
ei' sin(�=2)

in equation (1), we can rewrite the state of qubit j i as

j i = ei
(cos
�

2
j0i+ ei' sin

�

2
j1i); (2)

where �, ' and 
 are real numbers. Note that this is always possible since

j�j2+ j�j2 = 1. Also, because a global phase factor like ei
 has no observable

e�ects (i.e. it does not in
uence the statistics of measurement predicted for

qubit j i), we can e�ectively ignore it. Consequently, the pair (�; ') uniquely
identi�es a point (cos' sin �; sin' sin �; cos �) on a unit three-dimensional

sphere called the Bloch sphere [19, 17].

Figure 1 depicts four possible states of a qubit using the Bloch sphere

representation. Note that the states corresponding to the points on the

equatorial circle have all equal contributions of 0-ness and 1-ness. What

distinguishes them is the phase. For example, the two states displayed above,

1=
p
2(j0i+ j1i) and 1=

p
2(j0i� j1i) are the same up to a relative phase shift

of �, because the j0i amplitudes are identical and the j1i amplitudes di�er

only by a relative phase factor of ei� = �1.

2.2 Measurements

We now turn our attention to the amount of information that can be stored

in a qubit and, respectively, retrieved from a qubit. Since any point on the

Bloch sphere can be characterized by a pair of real-valued parameters taking

continuous values, it follows that, theoretically, a qubit could hold an in�nite

amount of information. As it turns out, however, we cannot extract more
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Figure 1: The Bloch sphere representation of a qubit.

information from such a qubit than we are able to extract from a classical

bit. The reason is that we have to measure the qubit in order to determine

in which state it is. Yet, according to a fundamental postulate of quantum

mechanics (Postulate 3 in [17]), the amount of information that can be gained

about a quantum state through measurement is restricted. Thus, when we

measure a qubit j i = �j0i + �j1i with respect to the standard basis for

quantum computation fj0i; j1ig, we get either the result 0 with probability

j�j2, or the result 1 with probability j�j2. The condition that the probabilities
must sum to one corresponds geometrically to the requirement that the qubit

state be normalized to length 1, that is the inner product

h j i = [�� ��] �
"
�

�

#
= ��� + ���

equals 1.

Furthermore, measurement alters the state of a qubit, collapsing it from

its superposition of j0i and j1i to the speci�c state consistent with the result

of the measurement. For example, if we observe j i to be in state j0i through
measurement, then the post-measurement state of the qubit will be j0i, and
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any subsequent measurements (in the same basis) will yield 0 with probability

1.

Naturally, measurements in bases other than the computational basis are

always possible, but this will not help us in determining � and � from a

single measurement. In general, measurement of a state transforms the state

into one of the measuring device's associated basis vectors. The probability

that the state is measured as basis vector jui is the square of the norm of the

amplitude of the component of the original state in the direction of the basis

vector jui. Unless the basis is explicitly stated, we will always assume that

a measurement is performed with respect to the standard basis for quantum

computation.

2.3 Putting qubits together

Let us examine now more complex quantum systems, composed of multiple

qubits. In classical physics, individual two-dimensional state spaces of n

particles combine through the Cartesian product to form a vector space of

2n dimensions, representing the state space of the ensemble of n particles.

However, this is not how a quantum system can be described in terms of its

components. Quantum states combine through the tensor product to give a

resulting state space of 2n dimensions, for a system of n qubits.

For a system of two qubits, each with basis fj0i; j1ig, the resulting state
space is the set of normalized vectors in the four dimensional space spanned

by basis vectors fj0i
j0i; j0i
j1i; j1i
j0i; j1i
j1ig, where jxi
jyi denotes
the tensor product between column vectors jxi and jyi. For example,

j0i 
 j1i =
"
1

0

#


"
0

1

#
=

2
6664
1� 0

1� 1

0� 0

0� 1

3
7775 =

2
6664
0

1

0

0

3
7775 :

It is customary to write the basis in the more compact notation fj00i; j01i; j10i;
j11ig. This generalizes in the obvious way to an n-qubit system with 2n basis

vectors.

2.4 Entanglement

Similar to single qubits, multiple-qubit systems can also be in a superposition

state. The vector
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j	i = 1

2
(j00i+ j01i+ j10i+ j11i) (3)

describes a superposition state of a two-qubit system in which all four compo-

nents (corresponding to the four basis vectors) have equal amplitudes. What

about the two qubits composing the system? Can we characterize their states

individually? If we rewrite equation (3) in order to express j	i as the tensor
product

j	i = (
1p
2
j0i+ 1p

2
j1i)
 (

1p
2
j0i+ 1p

2
j1i) (4)

then we can legitimately assert that each of the component qubits is also in a

superposition state, perfectly balanced between j0i and j1i. Now let us drop

the two middle terms in equation (3) and consider the superposition state

described by

j�i = 1p
2
j00i+ 1p

2
j11i (5)

In this case it is no longer possible to �nd complex numbers �, �, 
 and �

such that

(�j0i+ �j1i)
 (
j0i+ �j1i) =
= �
j00i+ ��j01i+ �
j10i+ ��j11i
=

1p
2
j00i+ 1p

2
j11i (6)

The state of the system cannot be decomposed into a product of the states of

the constituents. Even though the state of the system is well de�ned (through

the state vector j�i), neither of the two component qubits is in a well-de�ned

state. This is again in contrast to classical systems, whose states can always

be broken down into the individual states of their components. Furthermore,

if we try to measure the two qubits, the superposition will collapse into one

of the two basis vectors contributing to the superposition, and the outcomes

of the two measurements will always coincide. In other words, if one of the

qubits is found to be in state j0i, then the second one will necessarily be

in the same state, while a state j1i observed through measurement will be
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shared by both qubits. Therefore, we say that the two qubits are entangled1

and j�i describes an entangled state of the system.

Entanglement de�nes the strong correlations exhibited by two or more

particles when they are measured, and which cannot be explained by classical

means. This does not imply that entangled particles will always be observed

in the same state, as entangled states like

1p
2
j01i � 1p

2
j10i (7)

prove it. In this last example, a measurement will always reveal the two

qubits to be in opposite states (when one is 0 the other is 1 and vice-versa).

States like these or the one in equation (5) are known as Bell states or EPR

pairs after some of the people [11, 8] who pointed out their strange properties.

In some sense, we can say that superposition encompasses entanglement,

since entanglement can be viewed as a special case of superposition. It is

also interesting to make an analogy between entanglement and the concept

of primality from number theory. Indeed, an entangled state of the system

corresponds to a prime number, since it cannot be factored or decomposed

as a product of subsystem states.

3 Quantum distinguishability

We introduce the problem of distinguishing quantum states through a

metaphor involving two prototypical characters, named Alice and Bob. Sup-

pose we have a �xed set of quantum states described using the usual Dirac

notation j	ii (1 � i � n) known to both Alice and Bob. Alice randomly

chooses a state from the set and prepares a qubit (or set of qubits) in that

particular state. She then gives the qubit(s) to Bob who is free to investigate

(measure) them in any way he likes. His task is to identify the index i of the

state characterizing the qubit(s) Alice has given him.

The only case in which a set of quantum states can be reliably (that

is, 100% of the time) distinguished from one another is if they are pairwise

orthogonal. For example, the four states j00i, j01i, j10i and j11i form an

orthonormal basis (each vector is a unit vector and distinct vectors have a

zero inner product) for the state space spanned by two qubits. Consequently,

they can be reliably distinguished by an appropriate measurement. In this

1It was Schr�odinger who actually named the phenomenon entanglement in 1935 [18].
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case, we can simply measure each qubit (sequentially) in the computational

basis (de�ned by the basis vectors j0i and j1i).
On the other hand, it is impossible to reliably distinguish j0i from 1p

2
j0i+

1p
2
j1i. While the �rst state will consistently yield a 0 upon measurement, the

second state also has a 50% chance to be observed as a 0. It is this component

in the direction of the basis vector j0i which is present in both quantum states

that prevents us from distinguishing them reliably. If the vectors describing

the quantum states would be orthogonal, then a measurement basis would

exist with respect to which the quantum states share no common components.

Consider now the case in which we try to distinguish between the four

Bell states
1p
2
j00i+ 1p

2
j11i, 1p

2
j00i � 1p

2
j11i, 1p

2
j01i+ 1p

2
j10i, 1p

2
j01i � 1p

2
j10i.

No sequential approach (that is, measuring the qubits one after the other)

will be of any help here, regardless of the basis in which the measurements are

performed. By measuring the two qubits, in sequence, in the computational

basis, Bob can distinguish the states 1p
2
(j00i�j11i) from 1p

2
(j01i�j10i). He

does this by checking if the outcomes of the two measurements are the same

or not. But this kind of measurement makes it impossible to di�erentiate

between 1p
2
(j00i+ j11i) and 1p

2
(j00i � j11i), or between 1p

2
(j01i+ j10i) and

1p
2
(j01i � j10i).
Alternatively, Bob can decide to perform his measurements in a di�erent

basis, like (j+i; j�i), where the basis vectors are

j+i = 1p
2
j0i+ 1p

2
j1i;

j�i = 1p
2
j0i � 1p

2
j1i:

Due to the fact that

j00i+ j11ip
2

=
j++i+ j � �ip

2

and

j00i � j11ip
2

=
j+�i + j � +ip

2
;

Bob can now reliably distinguish the quantum state 1p
2
(j00i + j11i) from

1p
2
(j00i � j11i). Indeed, if the two qubits yield identical outcomes when
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measured in this new basis, then we can assert with certainty that the state

was not 1p
2
(j00i � j11i). Similarly, if the measurement outcomes for the

qubits are di�erent, the original state could not have been 1p
2
(j00i + j11i).

Unfortunately, in this new setup, the quantum states 1p
2
(j00i + j11i) and

1p
2
(j01i+j10i) become indistinguishable and the same is true about 1p

2
(j00i�

j11i) and 1p
2
(j01i � j10i).

The computational bases (j0i; j1i) and (j+i; j�i) are, respectively, the
two extremities of an (theoretically) in�nite number of choices for the basis

relative to which the quantum measurements are to be performed. But even

though the separation line between the four Bell states will drift with the

choice of the basis vectors, the two extreme cases discussed above o�er the

best possible distinguishability.

Intuitively, this is due to the entanglement exhibited between the two

qubits in all four states. As soon as the �rst qubit is measured (regardless

of the basis), the superposition describing the entangled state collapses to

the speci�c state consistent with the measurement result. In this process,

some of the information originally encapsulated in the entangled state is

irremediably lost. Consequently, measuring the second qubit cannot give a

complete separation of the four EPR states. But the Bell states do form

an orthonormal basis, which means that (at least theoretically) they can

be distinguished by an appropriate quantum measurement. However, this

measurement must be a joint measurement of both qubits simultaneously, in

order to achieve the desired distinguishability. Not surprisingly, this is very

di�cult to accomplish in practice.

The distinguishability of the four Bell (or EPR) states is the key feature in

achieving superdense coding [9]. However, in the experimental demonstration

of this protocol [12] two of the possibilities cannot be distinguished from one

another, precisely because of the di�culties associated with implementing a

joint measurement.

4 Generalization

A more compact representation of the Bell basis is through a square matrix

where each column is a vector describing one of the Bell states:
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1p
2

0
BBB@

1 0 0 1

0 1 1 0

0 1 �1 0

1 0 0 �1

1
CCCA

The elements of each column are the amplitudes or proportions in which

the computational basis states j00i, j01i, j10i and j11i are present in the

respective EPR state.

This scenario can be extended to ensembles of more than two qubits. The

following matrix describes eight di�erent entangled states that cannot be

reliably distinguished unless a joint measurement of all three qubits involved

is performed:

1p
2

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 1 �1 0 0 0

0 0 1 0 0 �1 0 0

0 1 0 0 0 0 �1 0

1 0 0 0 0 0 0 �1

1
CCCCCCCCCCCCCA

In general, for a quantum system composed of n qubits, one can de�ne

the following 2n entangled states of the system:

1p
2
(j000 � � �0i � j111 � � �1i)

1p
2
(j000 � � �1i � j111 � � �0i)

...

1p
2
(j011 � � �1i � j100 � � �0i)

These vectors form an orthonormal basis for the state space corresponding

to the n-qubit system. The only chance to di�erentiate among these 2n states

using quantum measurement(s) is to observe the n qubits simultaneously,

that is, perform a single joint measurement of the entire system. In the
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given context, joint is really just a synonym for parallel. Indeed, the device in

charge of performing the joint measurement must posses the ability to \read"

the information stored in each qubit, in parallel, in a perfectly synchronized

manner. In this sense, at an abstract level, the measuring apparatus can be

viewed as having n probes. With all probes operating in parallel, each probe

can \peek" inside the state of one qubit, in a perfectly synchronous operation.

The information gathered by the n probes is seen by the measuring device

as a single, indivisible chunk of data, which is then interpreted to give one

the 2n entangled states as the measurement outcome.

>From a mathematical (theoretical) point of view, such a measurement

operator can be easily constructed by de�ning each of the 2n states that

are to be distinguished to be a projector associated with the measurement

operation. We are well aware though, that a physical realization of this

mathematical construction is extremely di�cult, if not impossible to achieve

in practice, with today's technology. The experimental demonstration of the

superdense coding protocol mentioned at the end of previous section clearly

shows this di�culty (for just two qubits!). Yet, if there is any hope to see

a joint measurement performed in the future, then only a device operating

in a parallel synchronous fashion on all n qubits (as explained above) would

succeed.

It is perhaps worth emphasizing that if such a measurement cannot be ap-

plied then the desired distinguishability can no longer be achieved regardless

of how many other measuring operations we are allowed to perform. In other

words, even an in�nite sequence of measurements touching at most n � 1

qubits at the same time cannot equal a single joint measurement involving

all n qubits.

Furthermore, with respect to the particular distinguishability problem

that we have to solve, a single joint measurement capable of observing n� 1

qubits simultaneously o�ers no advantage whatsoever over a sequence of

n� 1 consecutive single qubit measurements. This is due to the fact that an

entangled state like

1p
2
(j000 � � �0i+ j111 � � �1i)

cannot be decomposed neither as a product of n � 1 individual states nor

as a product of two states (one describing a single qubit and the other de-

scribing the subsystem composed of the remaining n� 1 qubits). Any other

intermediate decomposition is also impossible.
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5 Universal Computation

Finally, we relate the example presented in this paper with the hypothetical

notion of a Universal Computer, as de�ned in [5]. Such a machine must be

able to follow (execute) the steps of any program made up of basic input,

output, arithmetic and logical operations. It must also have a means of

communicating with the outside world at any time during a computation,

either for receiving input or producing output. The program, the input, the

output and all intermediate results are stored in (and can be retrieved from)

a memory which is generously allowed to be unlimited.

To make this Universal Computer a \realistic" model of computation,

it is subjected to the �niteness condition: In one step, requiring one time

unit, the Universal Computer can execute a �nite and �xed number of basic

operations. It is precisely this limitation (quite natural and reasonable) that

makes the Universal Computer a utopian concept. Speci�cally, three classes

of computable functions F are described in [5], which cannot be computed

by any machine obeying the �niteness condition.

One of these classes of problems involves measuring a set of interacting

variables. Formally, suppose there are n variables x0, x1, � � �, xn�1. These

variables may represent the parameters of a physical or biological system.

The dependence of each variable on all others induces the system to con-

tinually evolve until a state of equilibrium may eventually be reached. In

the absence of any external perturbations, the system can remain in a stable

state inde�nitely. We can model the interdependence between the n variables

through a set of functions, as follows:

x0(t+ 1) = f0(x0(t); x1(t); : : : ; xn�1(t))

x1(t+ 1) = f1(x0(t); x1(t); : : : ; xn�1(t))

(8)

...

xn�1(t+ 1) = fn�1(x0(t); x1(t); : : : ; xn�1(t))

This system of equations describes the evolution of the system from state

(x0(t); x1(t); : : : ; xn�1(t)) to state (x0(t + 1); x1(t + 1); : : : ; xn�1(t + 1)), one

13



time unit later. In the case where the system has reached equilibrium, its

parameters will not change over time. It is important to emphasize that, in

most cases, the dynamics of the system are very complex, so the mathemat-

ical description of functions f0; f1; : : : ; fn�1 is either not known to us or we

only have rough approximations for them.

Assuming the system is in an equilibrium state, our task is to measure

its parameters in order to compute a function F , possibly a global prop-

erty of the system at equilibrium. In other words, we need the values of

x0(�); x1(�); : : : ; xn�1(�) at moment � , when the system is in a stable state,

in order to compute

F(x0(�); x1(�); : : : ; xn�1(�)):

We can obtain the value of x0(�), for instance
2, by measuring the respec-

tive parameter at time � . Although we can acquire the value of x0(�) easily

in this way, the consequences for the entire system can be dramatic. Un-

fortunately, any measurement is an external perturbation for the system,

and in the process, the parameter subjected to measurement will be a�ected

unpredictably.

Thus, the measurement operation will change the state of the system

from (x0(�); x1(�); : : : ; xn�1(�)) to (x0
0
(�); x1(�); : : : ; xn�1(�)), where x

0
0
(�)

denotes the value of variable x0 after measurement. Since the measure-

ment process has a non-deterministic e�ect upon the variable being mea-

sured, we cannot estimate x0
0
(�) in any way. Note also that the transition

from (x0(�); x1(�); : : : ; xn�1(�)) (that is, the state before measurement) to

(x0
0
(�); x1(�); : : : ; xn�1(�)) (that is, the state after measurement) does not

correspond to the normal evolution of the system according to its dynamics

described by functions fi, 0 � i < n.

However, because the equilibrium state was perturbed by the measure-

ment operation, the system will react with a series of state transformations,

governed by equations (8). Thus, at each time step after � , the parameters

of the system will evolve either towards a new equilibrium state or maybe

fall into a chaotic behavior. In any case, at time � + 1, all n variables have

acquired new values, according to the expressions of functions fi:

x0(� + 1) = f0(x
0
0
(�); x1(�); : : : ; xn�1(�))

2The choice of x0 here is arbitrary. The argument remains the same regardless of which

of the n parameters we choose to measure �rst.
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x1(� + 1) = f1(x
0
0
(�); x1(�); : : : ; xn�1(�))

(9)

...

xn�1(� + 1) = fn�1(x
0
0
(�); x1(�); : : : ; xn�1(�))

Consequently, unless we are able to measure all n variables, in parallel, at

time � , some of the values composing the equilibrium state

(x0(�); x1(�); : : : ; xn�1(�))

will be lost without any possibility of recovery.

The �niteness condition restricts in this case the number of variables

that can be measured in parallel. So, if the Universal Computer is able to

measure n variables in parallel (that is, during one step), where n can be

arbitrarily large, but �nite, then the Universal Computer will fail to solve

the same problem for a system involving n+1 variables. In other words, the

Universal Computer cannot simulate a computation that is perfectly possible

for another machine. However, it is exactly the principle of simulation that

lies at the heart of universality.

Choosing a machine endowed with n + 1 probes (and therefore capable

of measuring n + 1 variables in parallel) as the Universal Computer is not

a solution. By an adversary argument, we can construct an instance of the

above problem, only this time involving n+2 parameters to be measured, and

the Universal Computer will fail once again to compute the required function

F , although it can be trivially computed by a machine with n + 2 probes.

This argument is valid for any given Universal Computer, having a �xed

(and �nite) number of probes and therefore a limited degree of parallelism

to tackle such inherently parallel tasks.

Coming back to the example presented in this paper, it is easy to see that

a device capable of measuring at most n qubits simultaneously (where n is a

�xed, �nite number) will fail to solve the distinguishability problem for n+1

qubits. Our example, taken from the quantum information area is similar in

nature with the interacting variables example described in [5] and supports

the idea formulated therein about the impossibility of realizing the concept of
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a Universal Computer. In the case that we have described, interdependence

between variables takes the form of entanglement between qubits, the phe-

nomenon ultimately responsible for making a parallel approach imperative.

6 Conclusion

We have exhibited an example of a task which cannot be successfully com-

pleted unless a parallel approach is employed. The task is to distinguish

between the elements of a set of quantum states, using any quantum mea-

surements that can be theoretically applied. There are no restrictions con-

cerning the number of measurements allowed or the time when the task has

to be completed. We have shown that there exists a set of entangled states,

forming an orthonormal basis in the state space spanned by n qubits, for

which only a joint measurement (in that respective basis) of all the qubits

composing the system can achieve perfect distinguishability. An important

characteristic of the task is that if the degree of parallelism necessary to suc-

cessfully solve the problem is not available, then the solution is no better

than a purely sequential approach. Such inherently parallel tasks have been

shown to exist in a variety of environments, namely, real-time systems [4],

dynamical systems [1, 7, 6] and geometric problems [3].

In this paper, we have shown that parallelism is equally important for

yet another computational paradigm, essentially di�erent from the classical

theory of computation, namely quantum computation and quantum informa-

tion. It is important to note that we refer here to the common understanding

of the term parallelism and not to quantum parallelism. The latter syntagm

is used to denote the ability to perform a certain computation simultaneously

on all terms of a quantum superposition, regardless of the number of qubits

composing the quantum register whose state is described by that superposi-

tion. As opposed to this interpretation, we refer to parallelism as the ability

to act simultaneously on a certain number of qubits. Thus, we can rightfully

assert that parallelism transcends the laws of physics and represents a fun-

damental aspect of computation, regardless of the particular physical way

chosen to embody information.

The second contribution of the paper addresses the notion of a Univer-

sal Computer obeying the �niteness condition [5]. Distinguishing between

entangled quantum states is, conceptually, a quantum example of measur-

ing interdependent variables. This problem, arising in quantum information
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theory, strengthens the conclusion that there is no �nite3 computing device

(conventional or unconventional) upon which the attribute universal can be

bestowed.
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