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Abstract

The handling of search patterns for data access is critical to XML processing. Most efforts to
integrate XML processing into general-purpose programming languages add different features to
existing languages for different kinds of patterns, or even create completely new languages. The
resulting languages only work for certain kinds of patterns and are hard to extend to others in a
well typed manner. This poses burdens for both language designers and programmers, and restricts
XML applications. In this paper we present an alternative approach that handles many kinds of
patterns within the same framework. The key idea is to express complex patterns by pattern
structures in one general-purpose programming language based on the pattern calculus. With this
approach, adding a new kind of patterns is just a matter of programming, not language design;
programs can be highly parametric over well-typed complex patterns.
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1 Introduction

A basic operation in XML data processing is to locate data items by their position in a structured
context, usually described by a pattern or sequence of patterns. In some situations search patterns
can be as simple as matching a single type of element, for example in the search for all population
items in a geographical dataset. In many other situations search patterns are more complex, but
complex patterns can usually be decomposed into simpler ones. For example, the search for complex
pattern “population of individual cities in Canada” includes searches for a ‘country’ element whose
‘country-name’ element has the value “Canada”, with ‘city’ elements and ‘population’ elements
under it.

There are two ways to compose simpler patterns into more complex ones, reflecting the two
different kinds of relationships between elements in an XML structure. The first are vertical pat-
terns, such as in the search for the population of cities of Canada. Such patterns match structural
relationships of XML elements from different hierarchical levels. Location paths expressed in the
popular XPath [8] language fall in this category.

The second are horizontal patterns, for example, in the search for cities having child elements
for cityname, population, either timezone or continent, and zero or more running-through rivers,
i.e., the pattern [cityname, population, timezone—continent, river*]. Such a pattern is to match
the appearance of sibling elements on the same level of an XML hierarchy.

Vertical and horizontal patterns can be mixed into even more complex search patterns. For
example, the search pattern “contact phone numbers of cityhalls of Canadian cities having child
elements for cityname, population and zero or more running-through rivers” is a combination of
vertical and horizontal patterns.

There are three approaches to expressing and executing such queries. The first uses untyped rep-
resentations of XML data and low-level string-based programming. Each new query/transformation
requires generating completely different code. The second uses special-purpose query languages.
XML data is still viewed as untyped, but the language provides primitives to express many of the
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relationships between XML data elements. The third tries to integrate XML queries and transfor-
mations into a general-purpose programming language. XML data is represented by a typed data
structure, and query and transformation programs are also typesafe. None of these approaches has
been completely successful: the first is fully expressive, but too cumbersome for practical use; the
others all express some kinds of queries naturally, but cannot (or cannot easily) express other kinds
of queries.

XML query languages are special-purpose languages, similar to SQL in relational data pro-
cessing. Such languages are usually untyped, descriptive, and have limited programming power.
Because direct description of a pattern is always straightforward, it is not difficult to define (or
extend) a query language to describe queries with new kinds of patterns as needed, although query
languages so far focus primarily on vertical patterns. However, because there is no underlying
paradigm relating the form of a query to the form of the implementation needed to handle it,
implementation of new forms of queries requires designing new algorithms. Furthermore, type
checking is limited, and static type checking impossible. Often the results of an XML query are
used by other software systems. Conveying these results to other systems usually requires format
conversion (often via low-level string representations) creating performance bottlenecks.

These problems suggest extending general-purpose programming languages so that XML data
and XML queries can be handled in native mode. This removes the transformation bottleneck,
allows static typing of programs, reduces runtime overhead and reduces the risk of catastrophic
failure or unintended information leakage.

However, incorporating XML into a programming language is not an easy task. Typical efforts
extend an existing general-purpose programming language, or create a new one, with special kinds
of types for XML data. Careful design, formal proof of language soundness, and change to the
compiler are required. As a result, adding a new kind of pattern to the language is expensive, both
for language designers and programmers. It has also proven difficult to design queries that are
expressive enough within the type systems of conventional functional or object-oriented languages.

In this paper we present an approach that can handle a rich set of patterns within a single
language, in a well-typed manner. The key idea is to define pattern structures, which are used to
express complex patterns and are first-class typed objects within the programming language bondi1.
bondi supports the pattern calculus and treats structures and patterns as first-class objects.

We have shown, in an earlier report [16], that treating structures and patterns as first-class
objects, the same as other programming entities, enables natural expression of search patterns as
pattern structures, and such expression makes programming for XML data simple and well typed.

In this paper we show that:

• Existing approaches for XML processing only handle limited kinds of search patterns, with
either poor extensibility to other kinds of patterns or poor type-safety.

• The expression of search patterns as pattern structures is general enough to accommodate all
kinds of patterns in XML processing in a native and well-typed manner.

1bondi is pronounced Bond-eye and is the name of a famous beach in Sydney.
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• The approach is fully extensible. Adding a new kind of pattern to XML processing is a
programming task, rather than one of language design.

The organization of the rest of the paper is as follows. Section 2 reviews related work. Section 2.1
briefly reviews existing languages for XML processing, demonstrating their poor extensibility for
patterns and poor type-safety; Section 2.2 reviews bondi the general-purpose language used for
our approach, and pattern structures, which we introduced in earlier work. Section 3 presents the
use of pattern structures for various kinds of search patterns, and demonstrates how easy it is to
include a new kind of patterns into XML processing. Three important and interesting kinds of
patterns are used for the demonstration: vertical patterns in the style of XPath in Section 3.1;
vertical patterns in the style of regular expressions in Section 3.2; and horizontal patterns in the
style of regular expressions in Section 3.3. We draw some conclusions in Section 4.

2 Related Work

2.1 Existing Approaches for XML Processing:

Poor Extensibility and Poor Type Safety

In the early years of XML, untyped special-purpose XML query languages such as Lorel [1], YATL
[9], XML-QL [10], XQL [17] and XSLT [7] were invented to handle query and transformation of
XML data. They are more or less capable of handling vertical patterns, such as the patterns of
XPath [8] style and patterns with self-nested elements. Expressing some simple cases of horizontal
patterns is also possible, although it is not the focus of these languages. However, these languages
are typically untyped, handling both tag names and element content on as low a level as strings.
They have very limited programming power, and are unable to express sophisticated computations
using XML data.

In many settings, the queries and their results must be passed to other application programs at
runtime. These other programs are usually developed in general-purpose programming languages.
Data is usually passed in a low-level format such as a string for flexibility and generality. Use of
such low-level formats means that the programs on both ends must transform data; the data must
be type-checked at runtime at the destination; and the input/output performance of most systems
is orders of magnitude below memory copy. The extra costs of communication between front- and
back-end processes has been called the impedance mismatch problem.

In recent years, attempts have been made to merge XML processing into general-purpose pro-
gramming languages, but only with a focus on specific kinds of patterns that cannot be extended
easily in a type-safe way. Typical approaches use special types to represent XML data and special
expressions for specific search patterns in addition to regular programming language features. The
most recent efforts include XJ [14], XQuery [4, 6] and Cω [11] focusing on vertical patterns, and
XDuce[15] and CDuce[23] focusing on horizontal patterns.

XJ [14] is an extension of Java, a general-purpose programming language, with XML data
types and XPath expressions, capable of handling vertical patterns conforming to XPath 1.0 [8].
It treats XML element types as regular Java classes, and uses special strings containing XPath
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expressions for search patterns. Static typing of these XML types and embedded pattern strings
against XML schemas is enforced by a special type checker. Since this type checking is against
XML schema types, not native Java types, pattern expressions are not necessarily safe in Java.
Further, the special type checking requires that schemas for XML data are always available and
trustworthy, which is unrealistic in many situations. Because search patterns are just strings, there
is the potential to include patterns other than XPath expressions, but only in a untyped way, or
at best typed against XML schemas, not Java.

XQuery [4, 6] is designed to be a language for XML processing analogous to SQL for relational
database processing. It aggregates lots of features from older XML query languages and SQL, while
its data model and type system fully conform to XML [5] and XML Schema [12] specifications. It
is a superset of XPath 2.0 [3], making XPath expressions native, and so fully capable of handling
vertical patterns of XPath form. XQuery is designed as a query language although equipped
with some basic functional programming features. When XQuery is not used in a user-interactive
setting, its expressions are supposed to be embedded in host programs in other languages to perform
the queries, especially when sophisticated processing, beyond XQuery’s limited power, is needed.
Although XQuery is a strongly typed language and an implementation can optionally type-check
pattern expressions against XML schemas, the impedance mismatch and static typing problem
still exists, just as for XJ. The only advantage over XJ is that, in the absence of XML schemas,
XQuery expressions can still be type-checked to some extent based on the type information in the
expressions themselves.

Cω [11] is intended to extend C#, another general-purpose programming language, with native
types that support both object-oriented, relational and semi-structured data models, so that it can
unify the processing of three kinds of data. It introduces three kinds of types: stream, anonymous
struct and choice, roughly equivalent to list, heterogeneous tuple and sum types in functional lan-
guages. Vertical pattern city/population can be expressed as city.population where city is a
class holding an anonymous struct and population is a component of that struct. To accommodate
XPath-style patterns, Cω also introduces filter expressions such as country[name=="Canada"], and
transitive query expressions such as country...city for cities appearing at arbitrary depth below
countries. So in terms of patterns in XML processing, its expressiveness is roughly equivalent to
XPath 1.0 [8] without backward axes. In contrast to XJ and XQuery, pattern expressions in Cω are
native, consisting of identifiers all having native types, and can be well typed in Cω itself. There is
no impedance mismatching problem since everything can be handled in one language. However, if
one needed to handle other kinds of patterns, for example XPath with backward axes, self-nested
structures or horizontal patterns, new features would have to be added to the language; The type
system would have to be modified; so would the compiler.

XDuce [15] and CDuce [23] are functional programming languages with regular expression types
added to general-purpose functional language features. Regular expressions are used to define XML
elements, and horizontal patterns to match the elements. XML data and patterns can be well typed
natively and handled inside the one language. However, vertical patterns are not easy to express
in these languages without significant extensions.
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2.2 bondi and Pattern Structures

bondi[18] is a general-purpose functional programming language designed to allow many forms of
genericity, not specifically for XML processing. Instead of aggregating features for XML data or
XML data structures found in the existing wide variety of XML query and transformation languages,
bondi has a very general extension to regular functional language features. The extension is based
on a sound theory, the pattern calculus [19–21], which allows a very general form of pattern matching
without requiring the pattern cases be the same type, and treats data structures and structure-
matching patterns as first-class objects with equal importance to data and functions. Hence, in
bondi, control flow can be determined by structures, not just values; and structures and patterns
are natively well typed, can be passed around as parameters, and be used for programming using
generalized pattern matching.

Treating data structures and structure-matching patterns as first-class objects in bondi cre-
ates new power for programming and opens the opportunity for us to represent complex pat-
terns for XML processing in a well-typed way and to design highly parametric programs over
these typed patterns. In an earlier report [16], we presented the idea of declaring a pattern
structure called signPosts in bondi. This is used to express certain kind of complex vertical
patterns in a well-typed way and pass them around as parameters for XML processing. The
signPosts structure is capable of expressing a useful subset of XPath patterns, for example lo-
cation path country[name=="Canada"]//city//population. Programming for XML processing
with signPosts patterns is simple and highly modular. It is based on pattern-matching of the
cases of signPosts constructors.

The following section will show that we can declare pattern structures in a similar way for any
kind of complex patterns, and use them for XML processing, without any change to bondi.

3 Pattern Structures in bondi for Complex Patterns

We have shown in our earlier report [16] that a pattern structure, signPosts, can be declared in
the general-purpose functional programming language bondi to express certain complex patterns
and pass them around as parameters in a well-typed manner. The report also serves as a quick
introduction to the bondi syntax.

In contrast to other existing XML processing approaches that only focus on some kinds of
patterns and are hard to extend to others, our approach of using pattern structures is fully extensible
to any pattern. In this section, we show that we can handle different kinds of patterns in a similar
way to signPosts, using the same idea of declaring pattern structures in bondi and using them for
XML processing. These extensions do not require any changes to the bondi language itself. Our
demonstration focuses on patterns that have been considered in other existing languages for XML
processing, including vertical patterns in XPath style, vertical patterns in regular-expression style
and horizontal patterns in regular-expression style, but our approach is obviously applicable to any
other kinds of patterns.
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3.1 Vertical Patterns in XPath Style

The specification of a location path in XPath 1.0 [8] covers a wide range of vertical patterns. A
location path expression consists of a sequence of location steps delimited by “/”. Each step may
contain three kinds of components:

Step ::= AxisName::NodeTest [Predicate]∗

Each kind of component can be represented in bondi by a pattern structure, and so can the
location steps and location path expressions. In this section, we show how to declare pattern
structures for them and program with these structures. We only consider XML elements, leaving
out attributes, namespaces, comments, processing instructions etc. which are either irrelevant to
the issue or transformable to elements.

3.1.1 Declaring the Pattern Structures for XPath Patterns

Axes can be represented by constant constructors of type axis, as follows:

datatype axis = | Child

| Descendant

| DescendantOrSelf

| Following

| FollowingSibling

| Parent

| Ancestor

| AncestorOrSelf

| Preceding

| PrecedingSibling

| Self;;

A node test can be a test for a node name or a node type. Since we only consider XML elements,
a node type test is not necessary. A node name test can be against the wildcard “*” or a specific
(element) name:

datatype nametest a b = | NodeName of lin(a->b)

| Any;;

Notice the unusual lin(a->b), which represents a “linear function type a->b”. It is the form of
types for singular high-order patterns in bondi. More details can be found in [16, 19]. When a
structure declaration contains singular pattern types, it is no longer a data structure but a pattern
structure.

The specification of predicate expressions in XPath 1.0 [8] is very general. We limit the cases
we consider for clarity, by restricting each expression to contain at most one location path and no
library function calls. So expressions like [sales/price ∗ inventory/quantity > 350.0], [sales/price <

9.0 | inventory/quantity > 30] and [position() = 2] are excluded.
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A typical predicate expression is of the form [sales/price < 9.0]. This is the same as detourPath
in the definition of signPosts [16], except that each stage of the path here is a (more expressive)
step rather than a singular pattern of type lin(a->b). Formally, we declare a recursive pattern
structure:

datatype predicate (a1,a2) (b1,b2) =

| PredGoal of step (a1,a2) (b1,b2) and (a1->bool)

| PredStage of step a1 b1 and predicate a2 b2;;

where step is another pattern structure we will declare shortly. To represent a list of (zero or
more) predicates in a well-typed way, we declare:

datatype predlist (a1,a2) (b1,b2) =

| NilPred (* for empty list *)
| ConsPred of predicate a1 b1 and predlist a2 b2;;

Now we are ready to declare the pattern structure for location steps:

datatype step (a1,a2) (b1,b2) =

| Step of axis and nametest a1 b1 and predlist a2 b2;;

and that for location paths:

datatype locpath

at a b c =

| PathGoal of step (c,a) b

at (a1,a2) (b1,b2) c =

| PathStage of step a1 b1 and locpath a2 b2 c;;

In the declaration of locpath, an extra parameter type c is used to expose the content type of
the element of the final step of a location path, enabling general programming of any computation
with such a path as parameter. This is the same idea as in signPosts [16], except that a locpath

uses step rather than singular pattern of type lin(a->b) for each stage of the path. This decla-
ration does not handle absolute paths, but it is natural to keep track of current node in functional
programming so relative paths are expressive enough in most cases.

The declarations for predicate, predlist and step are mutually recursive, because they are
mutually recursive in XPath specification. Each step of a location path can contain a list of
predicates, and a predicate in turn can contain a location path which is a sequence of steps, just
like in the following XPath (abbreviated) location path for national population:

country[//city/cityname=”Kingston”]/population

3.1.2 Expressing XPath Patterns

XML elements can be represented using datatypes in bondi and element names become constructor
names. For example Country, City, CityName and Pop are constructors for the datatypes country,
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city, cityName and population. See Appendix A for declarations of these datatypes and their
data. We choose to declare a datatype for an XML element so that its constructor takes one
parameter, which is a tuple of XML elements representing children of the declared element. Given
all these, the predicate [//city/cityname=”Kingston”] in the location path for national population
can be encoded as:
let step4city = Step Descendent (NodeName City) NilPred;;

let step4cname = Step Child (NodeName CityName) NilPred;;

let (isKingston: string->bool) s = (s == "Kingston");;

let pred4cntry = PredStage step4city (PredGoal step4cname isKingston);;

and the whole location path for national population can be encoded as:
let step4cntry = Step Child (NodeName Country) (ConsPred pred4cntry NilPred);;

let step4pop = Step Child (NodeName Pop) NilPred;;

let poppath = PathStage step4cntry (PathGoal step4pop);;

3.1.3 Programming with XPath Patterns

With path patterns expressed using pattern structures, programming for XML processing is quite
straightforward and modular, and we can get highly parametric programs with well-typed complex
patterns as parameters. We demonstrate the design of a function updatepath that updates the
content of every XML element that matches a given XPath pattern, such as updating the population
of every city with name “kingston” under a country element. First we design some helper functions
for clarity.

Function checkstep takes three parameters s, f and x. It verifies, in a piece of XML data x,
whether there exists an element matching the pattern (a single location step) s, with the content
of this element satisfying a boolean function f. Let us start from the simple case, considering only
a descendant for the axis of a pattern step, and ignoring the possibility of a wildcard in the name
test:

let (checkstep: step (a1,a2) b -> (a1->bool) -> c -> bool) s f x =

match s with

| Step Descendant (NodeName N) pl ->

match x with (

| N z -> (checkpredlist pl z) && (f z)

| y z -> checkstep s f y || checkstep s f z)

| t -> false;;

Note the simplicity in the code for traversing the piece of XML data x (the inner pattern matching).
Only two cases are needed for the pattern matching, and they can be of different types. bondi is
the only language that allows such a general form of pattern matching. Also note that the pattern
t in the final case is like a wildcard that can match anything, catching objects that do not match
any preceding cases.

In function checkstep, another function checkpredlist is invoked, which we define as follows:
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let (checkpred: (predicate a b) -> c -> bool) p x =

match p with

| PredGoal s f -> checkstep s f x

| PredStage s sp -> checkstep s (checkpred sp) x;;

let (checkpredlist: (predlist a b) -> c -> bool) pl x =

match pl with

| NilPred -> true

| ConsPred p spl -> (checkpred p x) && (checkpredlist spl x);;

These two functions evaluate predicate p and predicate list pl respectively against a given piece of
XML data x. Note that the above three functions are mutual recursive. Using them, we can define
update functions with path patterns easily. Function updatestep updates elements that match a
simple pattern, a single location step. Again, for now we only consider a descendant for an axis in
a step:

let (updatestep: step (a1,a2) b -> (a1->a1) -> c -> c) s f x =

match s with

| Step Descendant (NodeName N) pl ->

match x with (

| N z -> if (checkpredlist pl z) then N (f z)

| y z -> (updatestep s f y) (updatestep s f z) )

| t -> x;;

Function updatepath updates elements that match a composite pattern, a location path:

let (updatepath: (locpath a b c) -> (c->c) -> d -> d) lp f x =

match lp with

| PathGoal s -> updatestep s f x

| PathStage s slp -> updatestep s (updatepath slp f) x;;

Similarly, we can define other functions that compute with locpath. For example, function
checkpath verifies that there exists one element matching a given path pattern, and that the
content of that element satisfies a given boolean function:

let (checkpath: (locpath a b c) -> (c->bool) -> d -> bool) lp f x =

match lp with

| PathGoal s -> checkstep s f x

| PathStage s slp -> checkstep s (checkpath slp f) x;;

3.1.4 Covering More Patterns

Adding more cases of patterns only incurs more programming work. For example, adding the other
axis cases can be done in a modular way, by adding cases to the pattern matching in the program
code. Let us consider child in addition to descendant as a demonstration. One more matching case
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needs to be added to checkstep and updatestep respectively; no changes to the other functions
are needed. Recall that multiple child elements are represented as one tuple (nested pairs of type
binprod, see Appendix A):

let (checkstep: step (a1,a2) b -> (a1->bool) -> c -> bool) s f x =

match s with

| Step Descendant (NodeName N) pl ->

... ...

| Step Child (NodeName N) pl ->

match x with (

| N z -> (checkpredlist pl z) && (f z)

| Pair y z -> checkstep s f y || checkstep s f z )

| t -> false;;

let (updatestep: step (a1,a2) b -> (a1->a1) -> c -> c) s f x =

match s with

| Step Descendant (NodeName N) pl ->

... ...

| Step Child (NodeName N) pl ->

match x with (

| N z -> if (checkpredlist pl z) then N (f z)

| Pair y z -> Pair (updatestep s f y) (updatestep s f z) )

| t -> x;;

Because of space limitations, we will not give an implementation for the full XPath specification,
but will only demonstrate the most common and straightforward forms. For axes, we have only
demonstrated with child and descendant; for node test, we have demonstrated with a test for a
specific element name under the default namespace, leaving out wildcard and node type tests;
for predicates, we consider only predicate expressions each containing at most one location path
and no function calls. XPath patterns with other features can be handled in a similar way, but
programming with them may require novel algorithms that are beyond the scope of this paper.
There is a rich literature on XPath evaluation algorithms, for example [2, 13, 22], and we expect
that most algorithms can be adapted to our approach, with a certain amount of programming work,
but without the need to change bondi.

3.2 Vertical Patterns in Regular-Expression Style

In this subsection we demonstrate an extension to the location path declared in previous subsection,
to accommodate vertical patterns of regular-expression style. This extension, although significant,
can be done by making locpath more sophisticated and modifying relevant functions. Once again,
only programming is required.

Although the XPath specification covers a wide range of vertical patterns, there remain many
vertical patterns outside the specification. Among them, vertical patterns of regular-expression
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style are the most interesting. XPath expressions only include the case of path concatenation,
not the cases of path alternation and Kleene star (alternation is only allowed for predicate expres-
sions). In practice, there are situations where patterns composed by alternation and Kleene star
are important. For example, a dealer may like to update both sales prices and purchase costs of
products by certain percentage due to inflation, requiring a path pattern like “sales/price | sup-
plier/cost”; a document analyzer may want to extract all titles of sections in papers, needing a
path pattern like “section∗/title”; sometimes the path to be nested is itself a composite pattern
already. Other languages are not able to accommodate these without requiring significant changes
to the languages’ type systems and so compilers. In bondi, all that is required is changing the
pattern structure locpath, adding a new helper structure regpath, and then updating the relevant
programs accordingly.

The pattern regpath represents regular expressions of location steps, without exposing the
content type of the final step. So it cannot be used for a complete path pattern but only for
a partial one without a final step. Constructors RegGoal, RegKstar, RegStage and RegAlter

represent single step, Kleene star of a partial path, path concatenation, and path alternation
respectively:

datatype regpath

at a b =

| RegGoal of step a b

| RegKstar of regpath a b

at (a1,a2)(b1,b2)

| RegStage of regpath a1 b1 and regpath a2 b2

| RegAlter of regpath a1 b1 and regpath a2 b2

For a path pattern with a final step, we want the content type of the final step to be unique for
programming convenience. Hence we do not include the case of path alternation (with two possible
final steps), and the case of zero occurrence for Kleene star (with empty final step):

datatype locpath

at a b c =

| PathGoal of step (c,a) b

| PathPlus of locpath a b c (* representing r+; the final step can’t be empty *)
at (a1,a2) (b1,b2) c =

| PathStage of regpath a1 b1 and locpath a2 b2 c;;

Programs that use locpath also need to be updated. For example, the function checkpath can
be modified as:

let (checkpath: (locpath a b c) -> (c->bool) -> d -> bool) lp f x =

match lp with

| PathGoal s -> checkstep s f x

| PathPlus s -> checkstep s f x || checkstep s (checkpath lp f) x

| PathStage (RegGoal s) slp -> checkstep s (checkpath slp f) x
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| PathStage (RegKStar r) slp ->

checkpath slp f x || checkpath (PathStage r lp) f x

| PathStage (RegStage r1 r2) slp ->

checkpath (PathStage r1 (PathStage r2 slp))

| PathStage (RegAlter r1 r2) slp ->

checkpath (PathStage r1 slp) || checkpath (PathStage r2 slp);;

3.3 Horizontal Patterns in Regular-Expression Style

In contrast to vertical patterns that match hierarchical data structures, a horizontal pattern matches
the appearance of sibling elements on the same hierarchical level under one parent element. For
example, city[cityname, population, river∗] is a horizontal pattern. New languages have been
created to specifically handle XML processing with horizontal patterns of regular-expression style
[15, 23]. Regular-expression types are introduced in those approaches, incurring a significant amount
of work for type-system correctness and compiler implementation. These languages are not able to
handle vertical patterns, and there is no easy way to extend them to do so.

In this subsection, we show that horizontal patterns can be handled using a pattern structure
in bondi again without the need to change the language or create a new one. For demonstration,
we consider four cases of horizontal regular expression: singular patterns, Kleene star of singular
patterns, pattern concatenation, and pattern alternation.

datatype regexp

at a b =

| Single of lin(a->b)

| Kstar of lin(a->b)

at (a1,a2)(b1,b2)

| Concat of regexp a1 b1 and regexp a2 b2

| Altern of regexp a1 b1 and regexp a2 b2;;

Treating such regular expressions as horizontal patterns, we can design a program localmatch

to check the existence of such patterns in a given tuple of XML elements and stop immediately
at the first mismatch. Recall that multiple children of one element are represented as a tuple of
elements, which is a nested pairs of type binprod in bondi.

let (localmatch: regexp a b -> binprod(c,d) -> bool) r x =

match r with

| Single P -> (

match x with

| Pair (P y) z -> true

| P z -> true

| z -> false )

| Kstar P -> (

match x with
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| Pair (P y) z -> localmatch (Kstar P) z

| z -> true )

| Concat (Single P) r2 -> (

match x with

| Pair (P y) z -> localmatch r2 z

| z -> false )

| Concat (Kstar P) r2 -> (

match x with

| Pair (P y) z -> localmatch r z

| z -> match r2 z )

| Concat (Concat r3 r4) r2 -> localmatch (Concat r3 (Concat r4 r2))

| Concat (Altern r3 r4) r2 ->

localmatch (Concat r3 r2) || localmatch (Concat r4 r2))

| Altern r1 r2 -> (localmatch r1 x) || (localmatch r2 x);;

In this function, pattern matching against data structures is simple, no more than three cases most
of the time. Pattern matching against the pattern structure exhausts the cases of constructors. A
more useful function globalsearch checks the existence of a regular horizontal pattern in an entire
piece of arbitrary XML data. It can be defined using localmatch:

let (globalsearch : regexp a b -> c -> bool) r x =

match r with

| Pair y z -> if (localmatch r (Pair y z)) then true

else (globalsearch r y) || (globalsearch r z)

| y z -> if (localmatch r (Pair y z)) then true

else (globalsearch r y) || (globalsearch r z)

| z -> false;;

4 Conclusion

We have shown how to use pattern structures to represent complex patterns in XML data pro-
cessing, enabling these patterns be treated as freely as data structures. They can be constructed,
pattern matched, destroyed, traversed at runtime, and passed around as values, making program-
ming with them very flexible and simple. They carry all necessary type information, enabling static
type verification for the programs that use them.

We have also shown that this approach is applicable for a richer set of patterns than other
XML query and transformation languages. In other languages, adding the ability to recognize new
patterns required extending the type system, and hence altering the compiler. In our approach,
adding the ability to recognize new patterns requires declaring new pattern structures and related
helper functions, or perhaps simply modifying existing ones. Increasing expressive power is achieved
by programming, not by language extension, one of the goals of generic programming.

This approach is made possible by the pattern calculus which elevates data structures and
patterns to the level of first-order objects, the same as data values and functions. This gives more
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freedom to programming while preserving typing. What we have explored here, XML query and
transformation, is just one of the many opportunities this new programming power opens to us.
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A Example XML Data in bondi Format

We show here a concrete example of XML data in bondi format. Some of the datatypes and data
are used in the demonstration in Section 3.

Datatype definitions give some possible datatypes for geographical data. Precise knowledge of
the data schema is not required at the time of programming or of data processing.
datatype population = Pop of float;; (* unit: thousands *)
datatype cityname = CityName of string;;

datatype river = River of string;;

datatype city = City of cityname * population * list river;;

datatype provname = ProvName of string;;

datatype province = Prov of provname * population * list city;;

datatype countryname = CountryName of string;;
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datatype country = Country of countryname * population * list province;;

datatype world = World of list country;;

Note that constructor City takes only one parameter, which is a tuple of data of three types.
Tuple is a shorthand form for nested pairs in bondi (also in many other functional languages):
tuple (a,b,c) of type x*y*z is equivalent to Pair (Pair a b) c, where x*y is the infix form of
binary product type binprod (x,y), and (a,b) is the infix form of Pair a b:
datatype binprod (x,y) = Pair of x and y;;

The following are the concrete data for the datatypes declared above:
let r1 = River "Niagara River";;

let r2 = River "St. Lawrence River";;

let r3 = River "Great Cataraqui River";;

let cityn1 = CityName "Montreal";;

let cityn2 = CityName "Kingston";;

let cityn3 = CityName "Niagara";;

let pop1 = Pop 3610.0;;

let pop2 = Pop 150.0;;

let pop3 = Pop 390.0;;

let montreal = City (cityn1, pop1, [r2]);;

let kingston = City (cityn2, pop2, [r2, r3]);;

let niagara = City (cityn3, pop3, [r1]);;

let pn1 = ProvName "Ontario";;

let pn2 = ProvName "Quebec";;

let pop5 = Pop 12390.0;;

let pop6 = Pop 7540.0;;

let ontario = Prov (pn1, pop5, [kingston, niagara]);;

let quebec = Prov (pn2, pop6, [montreal]);;

let cn1 = CountryName "Canada";;

let pop8 = Pop 31940.0;;

let canada = Country (cn1, pop8, [ontario, quebec]);;

let data = World [ canada ];;
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