
TechnicalReportNo. 2005-499

SchedulingAlgorithmsfor Real-TimeSystems

ArezouMohammadiandSelimG. Akl

Schoolof Computing
Queen’s University
Kingston,Ontario
CanadaK7L 3N6

E-mail:
�
arezou, akl � @cs.queensu.ca

July15,2005

Abstract

Theproblemof real-timeschedulingspansa broadspectrumof algorithmsfrom sim-
ple uniprocessorto highly sophisticatedmultiprocessorschedulingalgorithms. In this
paper, we study the characteristicsand constraintsof real-time taskswhich shouldbe
scheduledto beexecuted.Analysismethodsandtheconceptof optimality criteria,which
leadsto designappropriateschedulingalgorithms,will alsobeaddressed.Then,we study
real-timeschedulingalgorithmsfor uniprocessorsystems,which canbedivided into two
major classes:off-line andon-line. On-line algorithmsarepartitionedinto eitherstatic
or dynamic-prioritybasedalgorithms. We discussboth preemptive andnon-preemptive
static-priority basedalgorithms. For dynamic-prioritybasedalgorithms,we study the
two subsets;namely, planningbasedandbesteffort schedulingalgorithms.Someof the
uniprocessorschedulingalgorithmsareillustratedby examplesin the Appendix. Multi-
processorschedulingalgorithmsis anotherclassof real-timeschedulingalgorithmswhich
is discussedin thepaperaswell. We alsodescribetechniquesto dealwith aperiodicand
sporadictasks,precedenceconstraints,andpriority inversion.

�
Thiswork wassupportedby theNaturalSciencesandEngineeringResearchCouncilof Canada.

1 Real-Time Systems

1.1 Intr oduction

In the physical world, the purposeof a real-timesystemis to have a physical effect within a
chosentime-frame.Typically, a real-timesystemconsistsof a controllingsystem(computer)
anda controlledsystem(environment).Thecontrollingsysteminteractswith its environment
basedoninformationavailableabouttheenvironment.Onareal-timecomputer, whichcontrols
a device or process,sensorswill provide readingsat periodicintervalsandthecomputermust
respondby sendingsignalsto actuators. Theremay be unexpectedor irregular eventsand
thesemustalsoreceive a response.In all cases,therewill bea time boundwithin which the
responseshouldbedelivered.Theability of thecomputerto meetthesedemandsdependsonits
capacityto performthenecessarycomputationsin thegiventime. If a numberof eventsoccur
closetogether, the computerwill needto schedulethe computationsso that eachresponseis
provided within the requiredtime bounds. It may be that, even so, the systemis unableto
meetall thepossibleunexpecteddemands.In this casewe saythatthesystemlackssufficient
resources;a systemwith unlimitedresourcesandcapableof processingat infinite speedcould
satisfyany suchtiming constraint.Failureto meetthetiming constraintfor aresponsecanhave
differentconsequences;theremaybenoeffectatall, or theeffectsmaybeminoror correctable,
or theresultsmaybecatastrophic.Eachtaskoccurringin a real-timesystemhassometiming
properties.Thesetiming propertiesshouldbeconsideredwhenschedulingtasksonareal-time
system.Thetiming propertiesof agiventaskreferto thefollowing items[30, 33, 59,21]:

� Releasetime(or readytime): Timeatwhich thetaskis readyfor processing.

� Deadline: Time by which executionof the taskshouldbe completed,after the task is
released.

� Minimumdelay: Minimum amountof time thatmustelapsebeforetheexecutionof the
taskis started,afterthetaskis released.

� Maximumdelay: Maximumpermittedamountof time thatelapsesbeforetheexecution
of thetaskis started,afterthetaskis released.

� Worst caseexecutiontime: Maximumtime taken to completethe task,after the taskis
released.The worst caseexecutiontime is alsoreferredto asthe worst caseresponse
time.

� Runtime: Timetakenwithout interruptionto completethetask,afterthetaskis released.

� Weight(or priority): Relativeurgency of thetask.

2

Real-timesystemsspanabroadspectrumof complexity from verysimplemicro-controllers
to highly sophisticated,complex anddistributedsystems.Someexamplesof real-timesystems
includeprocesscontrol systems,flight control systems,flexible manufacturingapplications,
robotics,intelligenthighwaysystems,andhighspeedandmultimediacommunicationsystems
[30, 33,59, 26,12, 5, 21, 47].

Theobjectiveof acomputercontrollermightbeto commandtherobotsto movepartsfrom
machinesto conveyors in somerequiredfashionwithout colliding with otherobjects. If the
computercontrolling a robot doesnot commandit to stop or turn in time, the robot might
collidewith anotherobjecton thefactoryfloor.

A real-timesystemwill usuallyhave to meetmany demandswithin a limited time. The
importanceof thedemandsmay vary with their nature(e.g. a safety-relateddemandmay be
moreimportantthana simpledata-loggingdemand)or with thetime availablefor a response.
Sotheallocationof thesystemresourcesneedsto beplannedsothatall demandsaremetby the
time of their respective deadlines.This is usuallydoneusinga schedulerwhich implementsa
schedulingpolicy thatdetermineshow theresourcesof thesystemareallocatedto theprogram.
Schedulingpoliciescanbeanalyzedmathematicallysotheprecisionof theformalspecification
andprogramdevelopmentstagescanbecomplementedby a mathematicaltiming analysisof
theprogramproperties[30, 59,12].

With largeandvariableprocessingloads,it maybenecessaryto have morethanonepro-
cessorin thesystem.If taskshavedependencies,calculatingtaskcompletiontimesonamulti-
processorsystemis inherentlymoredifficult thanonasingle-processorsystem.

Thenatureof theapplicationmayrequiredistributedcomputing,with nodesconnectedby
communicationlines. Theproblemof finding completiontimesis thenevenmoredifficult, as
communicationbetweentaskscannow takevaryingtimes[59].

1.2 Real-Time Systems

In thissectionwepresentaformaldefinitionof real-timesystems.As wementionedin Section
1.1, real-timesystemsare definedas thosesystemsin which the correctnessof the system
dependsnotonly on thelogical resultof computation,but alsoon thetimeatwhich theresults
areproduced. If the timing constraintsof the systemarenot met, systemfailure is said to
haveoccurred.Hence,it is essentialthatthetiming constraintsof thesystemareguaranteedto
bemet. Guaranteeingtiming behavior requiresthat thesystembepredictable. Predictability
meansthatwhena taskis activatedit shouldbepossibleto determineits completiontimewith
certainty. It is alsodesirablethatthesystemattaina high degreeof utilization while satisfying
thetiming constraintsof thesystem[59, 33,30, 12,5].

It is imperative thatthestateof theenvironment,asreceivedby thecontrollingsystem,be
consistentwith the actualstateof the environment. Otherwise,the effectsof the controlling

3

systems’activities may be disastrous.Therefore,periodicmonitoringof the environmentas
well astimely processingof thesensedinformationis necessary[59, 30].

A real-timeapplicationis normallycomposedof multiple taskswith differentlevelsof crit-
icality. Althoughmissingdeadlinesis not desirablein a real-timesystem,soft real-timetasks
couldmisssomedeadlinesandthesystemcouldstill work correctly. However, missingsome
deadlinesfor soft real-timetaskswill leadto payingpenalties.On theotherhand,hard real-
timetaskscannotmissany deadline,otherwise,undesirableor fatalresultswill beproducedin
thesystem.Thereexistsanothergroupof real-timetasks,namelyfirm real-timetasks, which
aresuchthatthesoonerthey finish theircomputationsbeforetheirdeadlines,themorerewards
they gain [30, 59, 33].

Wecanformally definea real-timesystemasfollows.
Considera systemconsistingof a setof tasks,�����	��
�������	������������� , wherethe worst case

executiontime of eachtask ������� is ��� . Thesystemis saidto bereal-timeif thereexistsat
leastonetask��� �!� , which falls into oneof thefollowing categories:

(1) Task��� is ahard real-time task.Thatis, theexecutionof thetask�	� shouldbecompleted
by agivendeadline"#� ; i.e., �$�&%'"#� .

(2) Task��� is asoft real-time task.Thatis, thelaterthetask��� finishesits computationafter
agivendeadline" � , themorepenaltyit pays.A penaltyfunction (*)+� �-, is definedfor the
task.If �$�.%/"#� , thepenaltyfunction (*)+��� , is zero.Otherwise(*)+��� ,1032 . Thevalueof
(4)5��� , is anincreasingfunctionof ���768"#� .

(3) Task ��� is a firm real-time task. That is, theearlierthe task �	� finishesits computation
beforeagivendeadline"#� , themorerewardsit gains.A rewardfunction 9:)+��� , is defined
for the task. If ���1;<"#� , thereward function 94)+��� , is zero. Otherwise9:)+��� ,=0>2 . The
valueof 9:)5�	� , is anincreasingfunctionof "#�?6@��� .

Thesetof real-timetasks�A�/�	��
���	�B�	�����������C� canbea combinationof hard,firm, andsoft
real-timetasks.

Let �ED bethesetof all soft real-timetasksin � ; i.e., �FD*�3�	��DHG
����DHG �B�����������	D�G IJ� with ��DHG � �!� .
Thepenaltyfunctionof thesystemis denotedby (*)+� , , where

(*)5� , �
I
�LK7
 (*)5�	D�G � ,

Let �FM be the set of all firm real-timetasksin � ; i.e., �FMN� �	��MOG
����MOG ���	����������MOG PQ� with
��MOG � �!� . Therewardfunctionof thesystemis denotedby 9:)+� , , where

9:)+� , �
P
�RK7
 9:)5��MCG � ,

4

1.3 ProblemsThat SeemReal-Time but Ar eNot

Sometimestheconceptof real-timeis misunderstood.Thefollowing casesaregivento clarify
this [69, 70].

� Onewill occasionallyseereferencesto “real-time” systemswhenwhat is meantis “on-
line”, or “an interactive systemwith betterresponsetime thanwhat we usedto have”.
This is not alwayscorrect.For instance,a systeminteractingwith a humanandwaiting
for a person’s responseis not real-time.This is becausethesystemis interactingwith a
humanwho cantoleratehundredsof millisecondsof delayswithout a problem.In other
words,sincenodeadlineis givenfor any task,it is nota real-timesystem.

A real-life exampleis standingin a line waiting for thecheckout in a grocerystore. If
the line cangrow longerand longerwithout bound,the checkout processis not real-
time. But, if the lengthof the line is bounded,customersshouldbe served andoutput
asrapidly, on average,asthey arrive into theline. Thegrocermustlosebusinessor pay
a penaltyif the line grows longerthanthedeterminedbound.In this casethesystemis
real-time.Thedeadlineof checkout processdependson themaximumlengthgivenfor
theline andtheaverageservingtime for eachcostumer.

� In digital signalprocessing(DSP),if a processrequires2.01secondsto analyzeor pro-
cess2.00secondsof sound,it is not real-time. If it takes1.99seconds,it is (or canbe
madeinto) a real-timeDSPprocess.

� Onewill alsoseereferencesto real-timesystemswhenwhat is meantis just “f ast”. It
might beworth pointingout that“real-time” is not necessarilysynonymouswith “f ast”.
For exampleconsidera robot thathasto pick up somethingfrom a conveyor belt. The
objectis moving, andtherobothasa smallwindow of time to pick it up. If therobot is
late,theobjectwon’t bethereanymore,andthusthejob will havebeendoneincorrectly,
even thoughtherobotwent to the right place. If the robot is too early there,theobject
won’t bethereyet,andtherobotmayblock it.

1.4 Real-Time Scheduling

For a givensetof jobs, thegeneralschedulingproblemasksfor anorderaccordingto which
thejobsareto beexecutedsuchthatvariousconstraintsaresatisfied.Typically, a job is charac-
terizedby its executiontime, readytime, deadline,andresourcerequirements.Theexecution
of a job mayor maynot be interrupted(preemptive or non-preemptive scheduling).Over the
setof jobs, thereis a precedencerelationwhich constrainstheorderof execution. Specially,
the executionof a job cannotbegin until the executionof all its predecessors(accordingto

5

the precedencerelation) is completed. The systemon which the jobs are to be executedis
characterizedby theamountsof resourcesavailable[22, 59,30, 32,27, 12].

Thefollowing goalsshouldbeconsideredin schedulinga real-timesystem:[30, 32, 27].

� Meetingthetiming constraintsof thesystem

� Preventingsimultaneousaccessto sharedresourcesanddevices

� Attaining a high degreeof utilization while satisfyingthetiming constraintsof thesys-
tem;however this is notaprimarydriver.

� Reducingthecostof context switchescausedby preemption

� Reducingthe communicationcost in real-timedistributedsystems;we shouldfind the
optimalwayto decomposethereal-timeapplicationinto smallerportionsin orderto have
theminimumcommunicationcostbetweenmutualportions(eachportionis assignedto
acomputer).

In addition,thefollowing itemsaredesiredin advancedreal-timesystems:

� Consideringa combinationof hard,firm, andsoft real-timeactivities,which impliesthe
possibilityof applyingdynamicschedulingpoliciesthatrespecttheoptimality criteria.

� Taskschedulingfor a real-timesystemwhosebehavior is dynamicallyadaptive, recon-
figurable,reflexiveandintelligent.

� Coveringreliability, security, andsafety.

Basically, theschedulingproblemis to determinea schedulefor theexecutionof the jobs
sothatthey areall completedbeforetheoverall deadline[22, 59,30, 32,27, 12].

Given a real-timesystem,the appropriateschedulingapproachshouldbe designedbased
on the propertiesof thesystemandthe tasksoccurringin it. Thesepropertiesareasfollows
[22, 59,30, 32]:

� Soft/Hard/Firm real-time tasks

Thereal-timetasksareclassifiedashard,softandfirm real-timetasks.This is described
in Section1.2.

� Periodic/Aperiodic/Sporadic tasks

Periodictasksarereal-timetaskswhich areactivated(released)regularly at fixed rates
(periods). Normally, periodic taskshave constraintswhich indicatesthat instancesof
themmustexecuteonceperperiod (.

6

Aperiodictasksarereal-timetaskswhichareactivatedirregularlyat someunknown and
possiblyunboundedrate.Thetime constraintis usuallyadeadline" .

Sporadictasksare real-time taskswhich are activated irregularly with someknown
boundedrate.Theboundedrateis characterizedby a minimuminter-arrival period,that
is, a minimuminterval of time betweentwo successive activations.Thetime constraints
is usuallyadeadline" .

An aperiodictaskhasa deadlineby which it muststartor finish, or it mayhave a con-
strainton bothstartandfinish times.In thecaseof a periodictask,a periodmeansonce
perperiod (or exactly (unitsapart.A majorityof sensoryprocessingis periodicin na-
ture.For example,aradarthattracksflightsproducesdataatafixedrate[32, 29,27, 12].

� Preemptive/Non-preemptive tasks

In somereal-timeschedulingalgorithms,a task can be preemptedif anothertask of
higherpriority becomesready. In contrast,theexecutionof anon-preemptivetaskshould
becompletedwithout interruption,onceit is started[32, 30,27, 12].

� Multiprocessor/Single processor systems

The numberof the availableprocessorsis oneof the main factorsin decidinghow to
schedulea real-timesystem.In multiprocessorreal-timesystems,theschedulingalgo-
rithmsshouldpreventsimultaneousaccessto sharedresourcesanddevices.Additionally,
thebeststrategy to reducethecommunicationcostshouldbeprovided[32, 27].

� Fixed/Dynamic priority tasks

In priority drivenscheduling,a priority is assignedto eachtask.Assigningthepriorities
canbedonestaticallyor dynamicallywhile thesystemis running[22, 59, 30,32, 12].

� Flexible/Static systems

Forschedulingareal-timesystem,weneedtohaveenoughinformation,suchasdeadline,
minimumdelay, maximumdelay, run-time,andworstcaseexecutiontime of eachtask.
A majority of systemsassumethat muchof this information is availablea priori and,
hence,arebasedon staticdesign.However, someof thereal-timesystemsaredesigned
to bedynamicandflexible [22, 59, 30,32, 12].

� Independent/Dependent tasks

Given a real-timesystem,a taskthat is going to startexecutionmay requireto receive
the informationprovidedby anothertaskof thesystem.Therefore,executionof a task
shouldbestartedafterfinishingtheexecutionof theothertask.This is theconceptof de-
pendency. Thedependenttasksusesharedmemoryor communicatedatato transferthe

7

informationgeneratedby onetaskandrequiredby theotherone.While wedecideabout
schedulingof a real-timesystemcontainingsomedependenttasks,we shouldconsider
theorderof thestartingandfinishingtime of thetasks[22, 59,30,32].

1.5 Overview

This paperis organizedasfollows.
Section2 containsa descriptionof the processof modelingreal-timeproblems,defining

their optimality criteria, andproviding the appropriateschedulingalgorithms.We alsostudy
thetwo mostpopularalgorithmsthatoptimally scheduleuniprocessorreal-timesystems.

In Section3, the real-timeschedulingalgorithmsare classified. We study off-line/on-
line schedulingalgorithmsfor uniprocessor/multiprocessorpreemptive/non-preemptive fixed-
priority/dynamic-prioritysystems.Wealsopresentsomealgorithmsasexamplesfor theclasses
of thealgorithms.

In Section4, we discusssometechniquesto dealwith precedenceconditions,priority in-
version,aperiodicandsporadictaskswhile schedulingreal-timesystems.

Finally, Section5 containsconclusionsandsomesuggestionsof openproblemsfor future
research.

In theAppendix,someof the real-timeschedulingalgorithmsareillustratedusingexam-
ples.

2 Methodsand Analysis

2.1 Moti vation

Oneconcernin theanalysisanddevelopmentof strategiesfor taskschedulingis thequestion
of predictabilityof thesystem’sbehavior. Theconceptof predictabilitywasdefinedin Section
1.2. If thereis nosufficientknowledgeto predictthesystem’sbehavior, especiallyif deadlines
have to bemet, theonly way to solve theproblemis to assumeupperboundson theprocess-
ing times. If all deadlinesaremet with respectto theseupperbounds,no deadlineswill be
exceededfor the real taskprocessingtimes. This approachis often usedin a broadclassof
computercontrol systemsworking in real-timeenvironments,wherea certainsetof control
programsmustbeprocessedbeforetaking thenext samplefrom thesamesensingdevice. In
the following sections,we studysomeof the methodsandtechniquesthat areusedto model
real-timeproblems,definetheir optimality criteria,andprovide theappropriateschedulingal-
gorithms[30, 32].

8

2.2 SchedulingModelsand ProblemComplexity

The schedulingproblemsconsideredin this paperare characterizedby a set of tasks � �
�	��
���	���	������������� and a set of processors (machines) ST� �	S.
U��S?���	��������SWVX� on which the tasks
areto be processed.Besidesprocessors,tasksmay requirecertainadditionalresources 9Y�
��9Z
��91�B�	�������	9�P[� duringtheirexecution.Scheduling,generallyspeaking,meanstheassignment
of processorsfrom S andresourcesfrom 9 to tasksfrom � in orderto completeall tasksunder
certainimposedconstraints.In classicalschedulingtheoryit is alsoassumedthateachtaskis
to beprocessedby atmostoneprocessorata timeandeachprocessoris capableof processing
atmostonetaskata time [27].

We begin with an analysisof processors,ST� �	S.
��S?�B����������S\VX� . Thereare threediffer-
ent typesof multiprocessorsystems:identical processors, uniform processors andunrelated
processors. They arediscussedin Section3.2.

By an additional resource we understanda “f acility”, besidesprocessors,for which the
taskscompete.

Let us now considerthe assumptionsassociatedwith the task set � . In general,a task
��� �!� is characterizedby thefollowing data.

� Releasetime 9�] ; if the readytimesarethe samefor all tasksfrom � , then 9�]*� 2 is
assumedfor all ^ .

� Completiontime �$]
� Deadline"#] ; usually, penaltyfunctionsaredefinedin accordancewith deadlines.

� Priority _.]
� Precedenceconstraints amongtasks. ���a` ��] meansthat the processingof ��� must

be completedbefore ��] canbe started. In otherwords,set � is partially orderedby a
precedencerelation ` . Thetasksin set � arecalleddependentif theorderof execution
of at leasttwo tasksin � is restrictedby their relation. Otherwise,the tasksarecalled
independent.

Thefollowing parameterscanbecalculatedfor eachtask ��] , ^b��c��	dH�	��������e processedin a
givenschedule:

� Flow time fE]1�3��]g689�] beingthesumof waitingandprocessingtimes

� Latenessh&]1�3��]g68"#]
� Tardinessij]1�lknmBo&����]g68"#]p� 2 �

9

Next, somedefinitionsconcerningschedulesandoptimalitycriteria arediscussed.
A scheduleis anassignmentof processorsfrom set S (andpossiblyresourcesfrom set 9)

to tasksfrom set� in time suchthatthefollowing conditionsaresatisfied:

� At every momenteachprocessoris assignedto at mostonetaskandeachtaskis pro-
cessedby atmostoneprocessor.

� Thetiming constraintsof tasksin set� areconsidered.

� If tasks��� and ��] , qr��^s� c	��d��	��������e are in relation ���t`���] , the processingof ��] is not
startedbefore��� hasbeencompleted.

� A scheduleis calledpreemptiveif eachtaskmaybepreemptedatany time andrestarted
laterat no cost,perhapson anotherprocessor. If preemptionis not allowedwe will call
theschedulenon-preemptive.

� Resourcesconstraintsaresatisfied.

Dependingon thetypeof applicationwe areconfrontedwith, differentperformancemea-
suresor optimalitycriteria areusedto evaluateschedules.Amongthemostcommonmeasures
in schedulingtheoryareschedulelength(makespan)�$V.u�vb�wknmBo&����]x� , andmeanflow time
f �
� �]K7
 fE] or meanweightedflow time fEyz�) �]K7
 fE]|{}] ,U~) �]K7
 {X] , . Minimizing
schedulinglengthis importantfrom theviewpoint of theownerof a setof processorsor ma-
chines,sinceit leadsto both, the maximizationof the processorutilization within makespan
��V.u�v , andtheminimizationof themaximumin-processtime of theschedulesetof tasks.The
meanflow timecriterion is importantfrom theuser’s viewpoint sinceits minimizationyields
a minimizationof themeanresponsetime andthemeanin-processtime of thescheduledtask
set.

In real-timeapplications,performancemeasuresareusedthat take latenessor tardinessof
tasksinto account. Examplesare the maximumlatenessh&V.u�v���knmBo&��h&��� , the numberof
tardy tasks�w� �]K7
 ��] , where ��]��>c , if ��] 0 "#] , and 2 otherwise,or theweightednumber
of tardy tasks ��y3� �]K7
 {X]x��] , the meantardinessi �
� �]K7
 it] or the meanweighted
tardinessi�y��T) �]K7
 {X]pit] ,~) �]�K7
 {X] , . Thesecriteria involving deadlinesareof greatim-
portancein many applications. Thesecriteria are also of significancein computercontrol
systemsworking in a real-timeenvironmentsincetheir minimizationleadsto theconstruction
of scheduleswith nolatetaskwheneversuchschedulesexist or if a taskis notfinishedontime,
theyetunprocessedpartof it contributesto theschedulevaluethathasto beminimized.

A schedulefor which the valueof a particularperformancemeasure� is at its minimum
will becalledoptimal, andthecorrespondingvalueof � will bedenotedby �$� .

Now we definea schedulingproblemasa setof parametersasdescribedabove, together
with anoptimally criterion.

10

The criteria mentionedabove arebasicin the sensethat they requirespecificapproaches
to the constructionof schedules.A schedulingalgorithmis an algorithmwhich constructsa
schedulefor agivenproblem.

Schedulingproblemsbelongto the broadclassof combinatorialsearch problems. Com-
binatorialsearchis amongthehardestof commoncomputationalproblems:thesolutiontime
cangrow exponentiallywith the sizeof the problem[67, 32, 27]. We aregiven a setof e
variableseachof which canbeassigned� possiblevalues.Theproblemis to find anassign-
ment for eachvariablethat togethersatisfy somespecifiedconstraints. Fundamentally, the
combinatorialsearchproblemconsistsof finding thosecombinationsof a discretesetof items
that satisfyspecifiedrequirements.The numberof possiblecombinationsto considergrows
veryrapidly (e.g.,exponentiallyor factorially)with thenumberof items,leadingto potentially
lengthy solution timesandseverely limiting the feasiblesizeof suchproblems. Becauseof
theexponentiallylargenumberof possibilitiesit appears(thoughno oneknows for sure)that
the time requiredto solve suchproblemsmustgrow exponentially, in the worst case.These
problemsform thewell-studiedclassof NP-hardproblems[27].

In general,we areinterestedin optimizationalgorithms,but becauseof the inherentcom-
plexity of many problemsof thattype,alsoapproximationor heuristicalgorithmsareapplied.
It is ratherobviousthatveryoftenthetimeavailablefor solvingparticularschedulingproblems
is seriouslylimited sothatonly low orderpolynomial-timealgorithmscanbeapplied[27].

2.3 A SimpleModel

Let us considera simple real-timesystemcontaininga periodic hard real-timetask which
shouldbeprocessedon oneprocessor[30]. Thetaskdoesnot requireany extra resource.The
priority of thetaskis fixed.

We definea simple real-timeprogramas follows: Program � receivesan event from a
sensorevery (unitsof time(i.e. theinter-arrival timeis (). A taskis definedastheprocessing
of an event. In the worst casethe taskrequires� units of computationtime. The execution
of the taskshouldbecompletedby " time unitsafter the taskstarts.If "��>� , thedeadline
cannotbemet. If (3��" , theprogrammuststill processeacheventin a time 0 (if noevents
areto belost. Thusthedeadlineis effectively boundedby (andweneedto handleonly those
caseswhere �'%'"�%w([59, 30, 32].

Now considera programwhich receiveseventsfrom two sensors.Inputs from Sensor1
comeevery (
 time unitsandeachneeds�
 time units for computation;eventsfrom Sensor
2 comeevery (\� time unitsandeachneeds�$� time units. Assumethedeadlinesarethesame
asthe periods,i.e. ($
 time units for Sensor1 and (\� time units for Sensor2. Underwhat
conditionswill thesedeadlinesbemet?

Moregenerally, if aprogramreceiveseventsfrom e suchdevices,how canit bedetermined

11

if thedeadlinefor eachdevicewill besatisfied?
Beforewe begin to analyzethis problem,we first expressour assumptionsasfollows. We

assumethatthereal-timeprogramconsistsof a numberof independenttasksthatdo not share
dataor communicatewith eachother. Also, we assumethateachtaskis periodicallyinvoked
by the occurrenceof a particularevent [30, 32]. The systemhasoneprocessor;the system
periodicallyreceiveseventsfrom the externalenvironmentandthesearenot buffered. Each
event is an invocationfor a particulartask. Note that eventsmay be periodicallyproduced
by the environmentor the systemmay have a timer that periodicallycreatesthe events. The
processoris idle whenit is notexecutinga task.

Let the tasksof program � be ��
���������	�B������������� . Let the inter-arrival timer, or period, for
invocationto task� � be (� andthecomputationtime for suchinvocationbe � � .

2.3.1 Schedulingfor the SimpleModel

Oneway to scheduletheprogramis to analyzeits tasksstaticallyanddeterminetheir timing
properties. Thesetimes can be usedto createa fixed scheduling table accordingto which
taskswill bedispatchedfor executionat run-time[22, 59, 30, 32, 27, 12]. Thus,theorderof
executionof tasksis fixedandit is assumedthattheir executiontimesarealsofixed.

Typically, if tasks�
 ��� � �	��������� � haveperiods(
 �	(� �	(� �	�������	(� , thetablemustcoverschedul-
ing for lengthof timeequalto theleastcommonmultipleof theperiods,i.e. ����kn��(g
U�	(\���	�������	(W�C� ,
asthatis thetime in whicheachtaskwill haveanintegralnumberof invocations.If any of the
(W� areco-primes,this lengthof time canbeextremelylargesowherepossibleit is advisable
to choosevaluesof (W� thataresmallmultiplesof a commonvalue. We definea hyper-period
astheperiodequalto theleastcommonmultipleof theperiods($
�	(W�B�	�������	(E� of the e periodic
tasks.

Staticschedulinghasthesignificantadvantagethattheorderof executionof tasksis deter-
minedoff-line (beforetheexecutionof theprogram),sotherun-timeschedulingoverheadscan
beverysmall.But it hassomemajordisadvantages.This is discussedin Section3.1.

In schedulingterms,a priority is usually a positive integer representingthe urgency or
importanceassignedto an activity. By convention,the urgency is in inverseorderto the nu-
mericvalueof thepriority, andpriority 1 is thehighestlevel of priority. We shallassumehere
that a taskhasa single,fixed priority. We canconsiderthe following two simplescheduling
disciplines:

Non-preemptivepriority basedexecution:Whentheprocessoris idle, thereadytaskwith
thehighestpriority is chosenfor execution;oncechosen,a taskis run to completion.

Preemptivepriority basedexecution: Whenthe processoris idle, the readytaskwith the
highestpriority is chosenfor execution;at any time,executionof a taskcanbepreemptedif a
taskof higherpriority becomesready. Thus,atall timestheprocessoris eitheridle or executing
thereadytaskwith thehighestpriority.

12

Figure1: Prioritieswithoutpreemption

Priority Period Computationtime
��
 1 7 2
�	� 2 16 4
�	� 3 31 7

Table1: Thepriorities,repetitionperiodsandcomputationtimesof thetasks��
���	� and �	� for
Example2.1

Example 2.1 ([32]): Considera programwith 3 tasks��
U���	� and�	� , thathave thepriorities,
repetitionperiodsandcomputationtimesdefinedin Table1. Let thedeadline"#� for eachtask
��� be (E� . Assumethat thetasksarescheduledaccordingto priorities,with no pre-emption,as
shown in Figure1. Thearrows in thefigurerepresenttheinvocationtimesof thetasks.

If all threetaskshave invocationsat q�k � 2 , task �H
 will be chosenfor executionasit
hasthehighestpriority. Whenit hascompletedit execution,task �	� will beexecuteduntil its
completionat q�k � .

At that time, only task �	� is readyfor executionand it will executefrom q�k � to
q�k ��c , eventhoughaninvocationcomesfor task ��
 at q�k � . Sothereis just oneunit

of timefor task��
 to completeits computationrequirementof two unitsandits new invocation
will arrivebeforeprocessingof thepreviousinvocationis complete.

In somecases,the priorities allottedto taskscanbe usedto solve suchproblems;in this
case,thereis no allocationof priorities to tasksunderwhich task ��
 will meetits deadline.
If we keepdrawing the timing diagramrepresentedin Figure1, we canobserve thatbetween
q�k �>c and q�k � c (atwhich thenext invocationfor task�	� will arrive) theprocessoris

not alwaysbusyandtask ��� doesnot needto completeits executionuntil q�k � c . If there
weresomeway of makingthe processoravailable to tasks��
 and �	� whenneededandthen

13

returningit to task� � , they couldall meettheir deadlines.

Figure2: Prioritieswith preemption

This canbe doneusingpriorities with preemption:executionof task �	� will thenbe pre-
emptedat q�k � , allowing task��
 to completeits executionat q-k � (Figure2). Process
�	� is preemptedoncemoreby task ��
 at q-k �Yc andthis is followedby thenext execution
of task �	� from q�k ��c to q�k ��d 2 beforetask �	� completestherestof its executionat
q�k ��d?c .

2.4 Methodsof Analysis

Timing diagramsprovide a goodway to visualizeandeven to calculatethe timing properties
of simpleprograms.But they have obvious limits, not leastof which is thata very long time
might be requiredto reachthe point that a deadlineis missed.Checkingthe feasibility of a
uniprocessorperiodicreal-timeschedulingalgorithm,we needto keepdrawing sometiming
diagramsfor adurationthatis equalto theleastcommonmultipleof theperiods[30, 27].

A bettermethodof analysiswould be to derive conditionsto be satisfiedby the timing
propertiesof aprogramfor it to meetits deadlines.Let animplementationconsistof ahardware
platformandtheschedulerunderwhich theprogramis executed.An implementationis called
feasibleif every executionof theprogramwill meetall its deadlines.We shouldlook for the
conditionsthatarenecessaryto ensurethatan implementationis feasible.Theaim is to find
necessaryconditionsthatarealsosufficient, so that if they aresatisfied,an implementationis
guaranteedto befeasible[22, 59, 30,32, 27].

It is shown in [30, 32] how we canexaminethe conditionsthat arenecessaryso that we
make surethattheschedulingis feasible.We shouldfind theconditionto ensurethatthetotal
computationtime neededfor the task,andfor all thoseof higherpriority, is smallerthanthe
periodof eachtask. If we assumethat (W� ~ (W] , c�%/^�%/q�6�c , representsan integerdivision,

14

thenwecansaythatthereare (��~ (] invocationsfor task (] in thetime (� andeachinvocation
will needa computationtime of �$] . However, if (W� is not exactly divisible by (E] , theneither
(E� ~ (W] is anoverestimateof thenumberof invocationsor (W� ~ (W] is anunderestimate.We

avoid theapproximationresultingfrom integerdivisionby consideringaninterval � which is
the leastcommonmultipleof all periodsup to (E� :

���3����k�)-��(g
��(\���	��������(W��� ,
Therefore,asshown in [30, 32], wecanconcludethatthenecessaryconditionto makesure

thattheschedulingis feasibleis:

�
]K�
)J��]

� ~ (W]
] , %�c (1)

Since � is exactly divisible by all (E] , ^l��q , the numberof invocationsat any level ^
within � is exactly � ~] .

Equation(1) is the Load Relationandmustbe satisfiedby any feasibleimplementation.
However, this conditionaveragesthecomputationalrequirementsovereach�J�|k period.

Example 2.2 ([32]): Considera programwith two tasks��
 and �	� thathave thepriorities,
repetitionperiodsandcomputationtimesdefinedasfollows. Let thedeadline"�� for eachtask
� � beequalto (� .

Priority Period Computationtime
��
 1 12 5
�	� 2 4 2

Sincethecomputationtime of task �H
 exceedstheperiodof task ��� , theimplementationis
infeasible,thoughit doessatisfycondition(1).

Actually, condition(1) fails to take accountof an importantrequirementof any feasible
implementation.Not only theaverage loadmustbesmallerthan1 over theinterval � , but the
loadmustatall timesbesufficiently smallfor thedeadlinesto bemet.Moreprecisely, if atany
time thereare time units left for thenext deadlineat priority level q , thetotal computation
requirementat time for level q andall higherlevelsmustbesmallerthan . But while on the
onehandit is necessarythatatevery instantthereis sufficient computationtime remainingfor
all deadlinesto bemet,it is importantto rememberthatonceadeadlineat level q hasbeenmet
thereis no further needto make provision for computationat that level up to the endof the
currentperiod.

Basedon thepropertiesof thereal-timesystem,theparametersof thesystem,andtheal-
gorithmappliedfor scheduling,wecandeterminethesufficientconditionof thefeasibility test
of the schedulingalgorithm. The sufficient condition is obtainedby calculatingthe utiliza-
tion boundsassociatedwith schedulingalgorithm. For thesystemscontainingmorethanone

15

processor, we not only shoulddecideabouttheappropriateschedulingalgorithm,but we also
haveto specifytheallocationalgorithmwhichassignsthetasksto theavailableprocessors.For
multiprocessorreal-timesystems,calculatingtheutilization boundsassociatedwith (schedul-
ing algorithm,allocationalgorithm)pairsleadsusto achieving thesufficientconditionsof the
feasibility test,analogousto thoseknown for uniprocessors.This approachhasseveral inter-
estingfeatures:it allows usto carryout fastschedulabilitytestsandto qualify theinfluenceof
certainparameters,suchasthenumberof processors,onscheduling.For somealgorithms,this
boundconsidersnot only thenumberof processors,but alsothenumberof thetasksandtheir
sizes[22, 6, 23,30,32].

Let usstudytheaboveconceptsontheRate-Monotonicalgorithm(RM) andEarliestDead-
line Firstalgorithm(EDF) [32, 22,59, 30]. BoththeRM andEDFalgorithmsareoptimalreal-
time schedulingalgorithms.An optimalreal-timeschedulingalgorithmis onewhich mayfail
to meetadeadlineonly if nootherschedulingalgorithmcanmeetthedeadline.Thefollowing
assumptionsaremadefor boththeRM andEDF algorithms.

(a) No taskhasany nonpreemptablesectionandthecostof preemptionis negligible.

(b) Only processingrequirementsaresignificant;memory, I/O, andotherresourcerequire-
mentsarenegligible.

(c) All tasksareindependent;therearenoprecedenceconstraints.

2.5 RM Scheduling

TheRM schedulingalgorithmis oneof themostwidely studiedandusedin practice[22, 59,
30, 32, 27]. It is a uniprocessorstatic-prioritypreemptive scheme.For the RM scheduling
algorithm,in additionto assumptions(a) to (c), we assumethatall tasksareperiodicandthe
priority of task ��� is higher than the priority of task �] , where q��N^ . The RM scheduling
algorithm is an exampleof priority driven algorithmswith static priority assignmentin the
sensethat theprioritiesof all instancesareknown evenbeforetheir arrival. Theprioritiesof
all instancesof eachtaskarethe same.They aredeterminedonly by the periodof the task.
A periodictaskconsistsof an infinite sequenceof instanceswith periodicreadytimes,where
the deadlineof a requestcould be lessthan,greaterthan,or equalto the readytime of the
succeedinginstance.Furthermore,the executiontimesof all the instancesof a taskare the
same.A periodictask ��� is characterizedby threeparameters(E� , the periodof the instance,
��� , the executiontime, and "�� , the deadlineof the tasks.The utilization factorof a setof e
periodictasksis definedby ��LK�
 �$� ~ (W� , where(g
��(\�B����������(W� aretheperiodsand �}
�	�$�B�����������$�
aretheexecutiontimesof the e tasks.If ��LK7
 ��� ~ (W�&%@e})Jd
 � 6wc , , wheree is thenumberof
tasksto bescheduled,thentheRM algorithmwill scheduleall thetasksto meettheirrespective

16

deadlines.Note that this is a sufficient, but not a necessary, condition. That is, theremaybe
tasksetswith autilizationgreaterthane})Jd
 � 6'c , thatareschedulableby theRM algorithm.

A givensetof tasksis saidto beRM-schedulableif theRM algorithmproducesaschedule
that meetsall the deadlines. The sufficient and necessaryconditionsfor feasibility of RM
schedulingis studiedin [32] asfollows.

Givena setof e periodictasks��
���	���	����������� , whoseperiodsandexecutiontimesare (g
��(\���
��������(W� and �}
���g���	�������	��� , respectively, we supposetask ��� completesexecutingat . We con-
siderthefollowing notation:

�U) , �
�
]K7
 ��] (W] � 6 idle time

h&�U) , � �U) ,

h�� h&�U) ,
Task��� canbefeasiblyscheduledusingRM if andonly if h&�U) , %�c . In thiscase��
�������	�����������

arealsofeasiblyscheduled.

Thusfar, wehaveonly consideredperiodictasks.As definedin Section1.4,sporadictasks
arereleasedirregularly, often in responseto someevent in theoperatingenvironment.While
sporadictasksdonothave periodsassociatedwith them,theremustbesomemaximumrateat
which they canbe released.That is, we musthave someminimuminterarrival time between
the releasetime of successive iterationsof sporadictasks.Otherwise,thereis no limit to the
amountof workload that sporadictaskscan add to the systemand it will be impossibleto
guaranteethatdeadlinesaremet.Thedifferentapproachesto dealwith aperiodicandsporadic
tasksareoutlinedin Section4.1andSection4.2.

One drawback of the RM algorithm is that task priorities are definedby their periods.
Sometimes,we mustchangethe taskpriorities to ensurethatall critical tasksgetcompleted.
Supposethat we aregiven a setof taskscontainingtwo tasks�	� and ��] , where (W�=�T(E] , but
��] is a critical taskand ��� is a noncriticaltask. We checkthefeasibility of theRM scheduling
algorithmfor thetasks��
U���	�B������������� . Supposethat if we take theworst-caseexecutiontimesof
the tasks,we cannotguaranteetheschedulabilityof the tasks.However, in theaveragecase,
they areall RM-schedulable.Theproblemis how to arrangematterssothatall thecritical tasks
meettheirdeadlinesundertheRM algorithmevenin theworstcase,while thenoncriticaltasks,
suchas��� , meettheirdeadlinesin many othercases.Thesolutionis eitherof thefollowing two
methods.

� We lengthenthe periodof the noncritical task, i.e. �	� , by a factorof . The original
taskshouldalsobe replacedby tasks,eachphasedby the appropriateamount. The

17

parameter shouldbechosensuchthatwe obtain (� 0 (] (see[32, Example3.10] for
anexample).

� Wereducetheperiodof thecritical task,i.e. �] , by a factorof . Thenweshouldreplace
theoriginal taskby onewhose(bothworstcaseandaveragecase)executiontime is also
reducedby a factorof . Theparameter shouldbechosensuchthatweobtain (W� 0 (]
(see[32, Example3.10] for anexample).

So far, we have assumedthat the relative deadlineof a task is equalto its period. If we
relax this assumption,the RM algorithmis no longeran optimumstatic-priorityscheduling
algorithm. When "#��%�(E� , at mostone initiation of the sametaskcanbe alive at any one
time. However, when "#� 0 (E� , it is possiblefor multiple initiations of the sametaskto be
alivesimultaneously. For thelattercase,wehave to checkanumberof initiationsto obtainthe
worst-caseresponsetime. Therefore,checkingfor RM-schedulabilityfor thecase"#� 0 (W� is
muchharderthanfor thecase" � %�(� . Supposewe have a tasksetfor which thereexistsa
� suchthat "����3�.(E� , for eachtask ��� . In [32], thenecessaryandsufficient conditionfor the
tasksof thesetto beRM-schedulableis given.

TheRM algorithmtakes)) , � , time in theworstcase,where is thetotalnumber
of therequestsin eachhyper-periodof e periodictasksin thesystemand is thenumberof
aperiodictasks.

Two examplesscheduledby RM algorithmarepresentedin theAppendix.

2.6 EDF Scheduling

The EDF schedulingalgorithmis a priority driven algorithmin which higherpriority is as-
signedto therequestthathasearlierdeadline,anda higherpriority requestalwayspreemptsa
lowerpriority one[60, 22,59,30,32,27]. Thisschedulingalgorithmis anexampleof priority
drivenalgorithmswith dynamicpriority assignmentin thesensethat thepriority of a request
is assignedastherequestarrives.EDF is alsocalledthedeadline-monotonicschedulingalgo-
rithm. Supposeeachtime a new readytaskarrives,it is insertedinto a queueof readytasks,
sortedby theirdeadlines.If sortedlistsareused,theEDFalgorithmtakes)) , � , timein
theworstcase,where is thetotal numberof therequestsin eachhyper-periodof e periodic
tasksin thesystemand is thenumberof aperiodictasks.

For theEDFalgorithm,wemakeall theassumptionswemadefor theRM algorithm,except
thatthetasksdonothave to beperiodic.

EDF is an optimal uniprocessorschedulingalgorithm. That is, if EDF cannotfeasibly
schedulea tasksetonauniprocessor, thereis nootherschedulingalgorithmthatcan.Thiscan
beprovedby usinga timesliceswappingtechniques.Usingthis technique,we canshow that
any valid schedulefor any tasksetcanbetransformedinto avalid EDFschedule.

18

If all tasksare periodic and have relative deadlinesequal to their periods,they can be
feasiblyscheduledby EDF if andonly if

��LK7
 ��� ~ (W��%�c . Thereis no simpleschedulability
testcorrespondingto thecasewheretherelativedeadlinesdonotall equaltheperiods;in such
a case,we actuallyhave to developa scheduleusingtheEDF algorithmto seeif all deadlines
aremetover a given interval of time. The following is theschedulabilitytestfor EDF under
this case.

Define � ��RK7
 �$� ~ (W� , "#V.u�va�
 � �C��"#��� and (����J�|k�)-(g
U� ...�	(W� , , where ����k
standsfor leastcommonmultiple. Consider) , to be the sumof the executiontimesof all
taskswhoseabsolutedeadlinesaresmallerthan . A tasksetof e tasksis not EDF-feasibleif
andonly if

� ��c or

� thereexists � ��("�V&u�vH�

 � � �H(E�768"#����� suchthat) ,�0

Very little is known aboutalgorithmsthatproduceanoptimalsolution.This is dueto either
of thefollowing reasons.

� Somereal-timeschedulingproblemsareNP-complete.Therefore,wecannotsaywhether
thereis any polynomial time algorithm for the problems. For this group, we should
searchfor heuristicalgorithms. Given a heuristicalgorithm,we shouldinvestigatefor
the sufficient conditionsfor feasiblescheduling.The sufficient conditionsareusedto
determinewhethera giventasksetcanbescheduledfeasiblyby thealgorithmuponthe
availableprocessors.Many researcheshave alsofocusedon searchingfor heuristical-
gorithmswhoseresultsarecomparedto theoptimalresults.In fact,for problemsin this
classtheoptimalsolutioncannotbeobtainedin polynomialtime. Approximationalgo-
rithms arepolynomial time heuristicalgorithmswhoseperformanceis comparedwith
theoptimalperformance.

� As for the secondgroupof real-timeschedulingproblems,thereexists polynomialal-
gorithmswhich provide feasiblescheduleof any tasksetwhich satisfy somespecific
conditions.For exampleany setof periodictaskswhich satisfy ��LK7
 ��� ~ (W�&%�c is guar-
anteedto befeasiblyscheduledusingEDF. Recallthatanoptimalschedulingalgorithm
is onewhich mayfail to meeta deadlineonly if no otherschedulingalgorithmcanmeet
the deadline.Therefore,a feasibleschedulingalgorithmis optimal if thereis no other
feasiblealgorithmwith looserconditions.In orderto proveoptimalityof aschedulingal-
gorithm,thefeasibilityconditionsof thealgorithmmustbeknown. For examplethereis
nodynamic-priorityschedulingalgorithmthatcansuccessfullyscheduleasetof periodic
taskswhere ��LK�
 �$� ~ (W� 0 c . Therefore,EDF is anoptimalalgorithm.

19

Theoptimalalgorithmfor a real-timeschedulingproblemis notunique.For instance,in
additionto EDF algorithm,thereis anotheroptimal dynamic-priorityschedulingalgo-
rithm, which is the leastlaxity first (LLF) algorithm. The laxity of a processis defined
asthedeadlineminusremainingcomputationtime. In otherwords,thelaxity of a job is
themaximalamountof time that the job canwait andstill meetits deadline.Thealgo-
rithm givesthe highestpriority to the active job with the smallestlaxity. Thenthe job
with thehighestpriority is executed.While a processis executing,it canbepreempted
by anotherwhoselaxity hasdecreasedto below thatof therunningprocess.A problem
ariseswith this schemewhentwo processeshave similar laxities. Oneprocesswill run
for a shortwhile andthengetpreemptedby theotherandvice versa.Thus,many con-
text switchesoccur in the lifetime of the processes.The leastlaxity first algorithmis
anoptimalschedulingalgorithmfor systemswith periodicreal-timetasks[26, 68, 43].
If eachtime a new readytaskarrives, it is insertedinto a queueof readytasks,sorted
by their laxities. In this case,the worst casetime complexity of the LLF algorithmis
)) , � , , where is the total numberof the requestsin eachhyper-periodof e

periodictasksin thesystemand is thenumberof aperiodictasks.

TheEDF andLLF algorithmsareillustratedusingexamplesin theAppendix.

Althoughmany peoplehave workedon feasibility analysisof polynomialalgorithms,still
furtherinvestigationis required.Verificationof optimality of schedulingalgorithmsis another
subjectthatshouldbestudiedfurther.

3 SchedulingAlgorithms of Real-Time Systems

The goalsfor real-timeschedulingarecompletingtaskswithin specifictime constraintsand
preventingfromsimultaneousaccesstosharedresourcesanddevices[22, 30,32,27]. Although
systemresourceutilization is of interest,it is not a primarydriver. In fact,predictabilityand
temporalcorrectnessaretheprincipalconcerns.Thealgorithmsused,or proposedfor use,in
real-timeschedulingvary from relatively simpleto extremelycomplex.

Thetopicof real-timeschedulingalgorithmscanbestudiedfor eitheruniprocessoror mul-
tiprocessorsystems.Wefirst studyuniprocessorreal-timeschedulingalgorithms.

3.1 Unipr ocessorSchedulingAlgorithms

The set of uniprocessorreal-timeschedulingalgorithmsis divided into two major subsets,
namelyoff-line schedulingalgorithmsandon-lineschedulingalgorithms.

Off-line algorithms (Pre-run-time scheduling)generateschedulinginformationprior to
systemexecution[22, 59, 30, 32, 27, 60]. Theschedulinginformationis thenutilized by the

20

systemduring runtime. The EDF algorithmand the off-line algorithmprovided in [20] are
examplesof off-line schedulingalgorithms.

In systemsusingoff-line scheduling,thereis generally, if notalways,arequiredorderingof
theexecutionof processes.This canbeaccommodatedby usingprecedencerelationsthatare
enforcedduringoff-line scheduling.Preventingsimultaneousaccessto sharedresourcesand
devicesis anotherfunction that a priority basedpreemptive off-line algorithmmustenforce.
This can be accomplishedby defining which portion of a processcannotbe preemptedby
anothertask and then definingexclusionconstraintsandenforcingthem during the off-line
algorithm.In Section4.4,westudythemethodsthataddressthis problem.

Another goal that may be desiredfor off-line schedulesis reducingthe cost of context
switchescausedby preemption.This canbedoneby choosingalgorithmsthatdo not resultin
a largenumberof preemptions,suchastheEDF algorithm. It is alsodesirableto increasethe
chancesthat a feasibleschedulecanbe found. If the input to the chosenoff-line scheduling
algorithmis exactly theinput to thereal-timesystemandnotanapproximation,thenthemath-
ematicaloff-line algorithmsaremorelikely to find a feasibleschedule.In a predictableenvi-
ronment,thesealgorithmscanguaranteesystemperformance.Off-line algorithmsaregoodfor
applicationswhereall characteristicsareknown apriori andchangevery infrequently. A fairly
completecharacterizationof all processesinvolved, suchasexecutiontimes,deadlines,and
readytimesarerequiredfor off-line scheduling.Theoff-line algorithmsneedlargeamountof
off-line processingtime to producethefinal scheduleanddueto this they arequite inflexible.
Any changeto the systemprocessesrequiresstartingthe schedulingproblemover from the
beginning. In addition,thesealgorithmscannothandleanenvironmentthat is not completely
predictable.Althougha strict off-line schedulerhasno provision for handlingaperiodictasks,
it is possibleto translateanaperiodicprocessinto a periodicone,thusallowing aperiodicpro-
cessesto bescheduledusingoff-line scheduling.A majoradvantageof off-line schedulingis
significantreductionin run-timeresources,including processingtime, for scheduling.How-
ever, sinceit is inflexible,any changerequiresre-computingtheentireschedule[22,30, 32,27].

Therealadvantageof off-line schedulingis that in a predictableenvironmentit canguar-
anteesystemperformance.

On-line algorithms generateschedulinginformationwhile thesystemis running[22, 30,
32,27]. Theon-lineschedulersdonotassumeany knowledgeof processcharacteristicswhich
have not arrived yet. Thesealgorithmsrequirea large amountof run-timeprocessingtime.
However, if differentmodesor someform of errorhandlingis desired,multipleoff-line sched-
ulescanbecomputed,onefor eachalternatesituation.At run-time,a smallon-linescheduler
canchoosetheproperone.

Oneof thesevereproblemsthatcanoccurwith priority basedpreemptiveon-linealgorithms
is priority inversion [22, 32, 65]. This occurswhena lower priority taskis usinga resource
which is requiredby a higherpriority taskandthis causesblockingthehigherpriority taskby

21

thelowerpriority one.Methodsof copingwith this problemarediscussedin Section4.4.
The major advantageof on-line schedulingis that thereis no requirementto know tasks

characteristicsin advanceand they tend to be flexible and easily adaptableto environment
changes.However, thebasicassumptionthatthesystemhasno knowledgeof processcharac-
teristicsfor tasksthathavenotyetarrived,severelyrestrictsthepotentialfor thesystemto meet
timing andresourcesharingrequirements.If theschedulerdoesnothavesuchknowledge,it is
impossibleto guaranteethatsystemtiming constraintswill bemet. Despitethedisadvantages
of on-linescheduling,thismethodis usedfor schedulingof many real-timesystemsbecauseit
doeswork reasonablywell undermostcircumstancesandit is flexible.

On-line schedulingalgorithmscan be divided into Static-priority basedalgorithmsand
Dynamic-prioritybasedalgorithms,whicharediscussedasfollows.

� Static-priority basedalgorithms

Static-prioritybasedalgorithmsarerelatively simple to implementbut lack flexibility .
They arearguablythemostcommonin practiceandhavea fairly completetheory. They
work well with fixedperiodictasksbut do not handleaperiodictasksparticularlywell,
althoughtherearesomemethodsto adaptthealgorithmssothatthey canalsoeffectively
handleaperiodictasks.Staticpriority-basedschedulingalgorithmshave two disadvan-
tages,whichhavereceivedasignificantamountof study. Their low processorutilization
and poor handlingof aperiodicand soft-deadlinetaskshave promptedresearchersto
searchfor waysto combatthesedeficiencies[22].

On-line Static-priority basedalgorithmsmay be either preemptiveor non-preemptive
[35, 22, 32, 65, 3, 11, 10]. For example,the Rate-monotonicalgorithmandthe Rate-
monotonicdeferred server (DS) schedulingalgorithm are in the classof Preemptive
Static-prioritybasedalgorithms[22, 32]. The DS algorithmhasa time complexity in
)) , � , , where is the numberof active aperiodicrequestsand is the total

numberof therequestsin eachhyper-periodof e periodictasksin thesystem.

Many real-timesystemshave the characteristicin which the orderof taskexecutionis
known apriori andeachtaskmustcompletebeforeanothertaskcanstart.Thesesystems
can be schedulednon-preemptively. This schedulingtechnique,which is called non-
preemptivestatic-prioritybasedalgorithms,avoidstheoverheadassociatedwith multiple
context switchesper task. This propertyimprovesprocessorutilization. Additionally,
tasksareguaranteedof meetingexecutiondeadlines[22, 30, 32,27].

Thetwo following non-preemptivealgorithmsattemptto providehighprocessorutiliza-
tion while preservingtaskdeadlineguaranteesandsystemschedulability.

– Parametric dispatching algorithm ([25, 22]): This algorithm usesa calendarof
functions,which maintainsfor eachtask ��� two functions, q�eF� and mBo\� , de-

22

scribingtheupperandlower boundson allowablestarttimesfor the task. During
an off-line component,the timing constraintsbetweentasksareanalyzedto gen-
eratethe calendarof functions. Then,during systemexecution,theseboundsare
passedto dispatcherwhich thendetermineswhenwithin the window to startex-
ecutionof the task. This decisioncanbe basedon whetherthereareothernon-
real-timetaskswaiting to execute. The worst casetime complexities of the off-
line andon-linecomponentsof theParametricdispatchingalgorithmare)5e , and
)�) , �) ,�, , respectively, where e is the numberof periodic tasks,
is the total numberof the requestsof real-timetaskin eachhyper-periodof e

periodictasksin thesystem,and is thenumberof the requestsof non-real-time
tasks.

– Predictivealgorithm([52, 22]): This algorithmdependsuponknown a priori task
executionandarrival times. Whenit is time to schedulea taskfor execution,the
schedulernot only looks at the first taskin the readyqueue,but alsolooks at the
deadlinesfor tasksthat arepredictedto arrive prior to the first task’s completion.
If a later task is expectedto arrive with an earlierdeadlinethanthe currenttask,
theschedulermayinsertCPUidle time andwait for thependingarrival if this will
producea betterschedule.In particular, the insertionof idle time may keepthe
pendingtaskfrom missingits deadline.ThePredictivealgorithmtakes)+e � , time
in theworstcase,wheree is thenumberof tasks.

Thesealgorithmsbothhave drawbackswhenappliedto real-world systems.Both algo-
rithms requiresignificanta priori knowledgeof the systemtasks,both executiontimes
andordering.Therefore,they arequiterigid andinflexible.

� Dynamic-priority basedalgorithms

Dynamic-prioritybasedalgorithmsrequirea large amountof on-line resources.How-
ever, thisallows themto beextremelyflexible. Many dynamic-prioritybasedalgorithms
alsocontainan off-line component.This reducesthe amountof on-line resourcesre-
quiredwhile still retainingtheflexibility of a dynamicalgorithm.Therearetwo subsets
of dynamicalgorithms:planningbasedandbesteffort. They attemptto provide better
responseto aperiodictasksor soft taskswhile still meetingthetiming constraintsof the
hardperiodictasks.This is oftenaccomplishedby utilizationof spareprocessorcapacity
to servicesoft andaperiodictasks[22, 32, 27,26].

Planning BasedAlgorithms guaranteethat if a taskis acceptedfor execution,thetask
andall previoustasksacceptedby thealgorithmwill meettheir timeconstraints[22, 32].

The planningbasedalgorithmsattemptto improve the responseandperformanceof a
systemto aperiodicandsoft real-timetaskswhile continuingto guaranteemeetingthe

23

deadlinesof the hard real-timetasks. The traditional way of handlingaperiodicand
soft real-timetasksin a systemthat containedperiodic taskswith harddeadlinesis to
allow theaperiodicor soft real-timetasksto run in thebackground.By this method,the
aperiodicor soft real-timetasksgetservedonly whentheprocessorhasnothingelseto
do. Theresultof thismethodis unpredictableandnormallyratherpoorresponseto these
tasks. The otherapproachusedwasto modelaperiodictasksasperiodic taskswith a
periodequalto theminimumtime betweentheir arrivalsandthenschedulethemusing
thesamealgorithmasfor therealperiodictasks.This tendedto beextremelywastefulof
CPUcyclesbecausetheminimumperiodbetweenarrivalsis usuallysignificantlysmaller
thanthe average.Many researchershave tried to countertheseproblemsby proposing
a varietyof approachesthatutilize spareprocessortime in a morestructuredform than
simplebackgroundprocessing[51, 55]. Someof thesealgorithmsattemptto identify and
capturespareprocessorcapacityanduseit to executeaperiodicandsoft real-timetasks.
Otherutilize a moredynamicschedulingmethodin which aperiodictasksareexecuted
insteadof ahigherpriority periodictask,whenthesystemcanconfirmthatdoingsowill
not jeopardizethetimely completionof theperiodictasks[41, 57,61].

Thegeneralmodelfor thesetypesof algorithmsis asystemwhereall periodictaskshave
harddeadlinesequalto theendof their period,their periodis constant,andtheir worsts
caseexecutiontimesareconstant.All aperiodictasksareassumedto have no deadlines
andtheir arrival or readytimesareunknown.

Planningbasedalgorithmstendto bequiteflexible in servicingaperiodictaskswhile still
maintainingthecompletionguaranteesfor hard-deadlinetasks.Most of thealgorithms
alsoprovide a form of guaranteefor aperiodictasks. They rejecta taskfor execution
if they cannotguaranteeits on-timecompletion.Most of theplanningbasedalgorithms
canprovide higherprocessorutilization thanstaticpriority-basedalgorithmwhile still
guaranteeingon-timecompletionof acceptedtasks.

The EarliestDeadlineFirst scheduling[37, 60, 32] is one of the first planningbased
algorithmsproposed.It providesthe basisfor many of the algorithmscurrentlybeing
studiedandused.TheLLF algorithmis anotherplanningbasedalgorithm.

The Dynamic Priority ExchangeServer, Dynamic SporadicServer, Total Bandwidth
Server, EarliestDeadlineLate Server, andImproved Priority ExchangeServer areex-
amplesof planningbasedalgorithms,which work underEDF scheduling. They are
discussedin Section4.2.

BestEffort Algorithms seekto provide thebestbenefitto theapplicationtasksin over-
loadconditions.TheBestEffort schedulingalgorithmsseekto provide thebestbenefit
to the applicationtasks. The bestbenefitthat canbe accruedby an applicationtaskis
basedon application-specifiedbenefitfunctionssuchasthe energy consumptionfunc-

24

tion [62, 48]. Moreprecisely, theobjectiveof thealgorithmsis to maximizetheaccrued
benefitratio, which is definedastheratio of total accruedbenefitto thesumof all task
benefits[36, 22,32].

Thereexist many besteffort real-timeschedulingalgorithms.Two of themostprominent
of themaretheDependentActivity SchedulingAlgorithm (DASA) [16] andtheLockes
BestEffort SchedulingAlgorithm (LBESA) [38]. DASA andLBESA areequivalentto
theEarliestDeadlineFirst (EDF) algorithmduringunderloadedconditions[16], where
EDF is optimalandguaranteesthatall deadlinesarealwayssatisfied.In theeventof an
overloadsituation,DASA andLBESA seekto maximizetheaggregatetaskbenefit.

TheDASA algorithmmakesschedulingdecisionsusingtheconceptof benefitdensities.
Thebenefitdensityof a taskis thebenefitaccruedperunit time by theexecutionof the
task.Theobjective of DASA is to computea schedulethatwill maximizetheaggregate
taskbenefit.Theaggregatetaskbenefitis thecumulative sumof thebenefitaccruedby
theexecutionof thetasks.Thus,sincetaskbenefitfunctionsarestep-benefitfunctions,a
schedulethatsatisfiesall deadlinesof all taskswill yield themaximumaggregatebenefit.

LBESA [38] is anotherbesteffort real-timeschedulingalgorithm.It is similar to DASA
in thatbothalgorithmsscheduletasksusingthenotionof benefitdensitiesandareequiv-
alent to EDF during underloadsituations. However, the algorithmsdiffer in the way
they rejecttasksduringoverloadsituations.In [16], it is shown thatDASA is generally
betterthanLBESA in termsof aggregateaccruedtaskbenefit. While DASA examines
tasksin thereadyqueuein decreasingorderof theirbenefitdensitiesfor determiningfea-
sibility, LBESA examinestasksin the increasingorderof taskdeadlines.Like DASA,
LBESA alsoinsertseachtaskinto atentativescheduleat its deadline-positionandchecks
thefeasibility of theschedule.Tasksaremaintainedin increasingdeadline-orderin the
tentativeschedule.If theinsertionof ataskinto thetentativescheduleresultsin aninfea-
sibleschedule,then,unlike DASA, LBESA removesthe leastbenefitdensitytaskfrom
thetentative schedule.LBESA continuouslyremovestheleastbenefitdensitytaskfrom
thetentativescheduleuntil thetentativeschedulebecomesfeasible.Onceall tasksin the
readyqueuehave beenexaminedanda feasibletentative scheduleis thusconstructed,
LBESA selectstheearliestdeadlinetaskfrom thetentativeschedule.

Both theDASA andLBESA algorithmstake)�) , � , time in theworstcase,where
is the total numberof the requestsin eachhyper-period of e periodic tasksin the

systemand is thenumberof aperiodictasks.

25

3.2 Multipr ocessorSchedulingAlgorithms

The schedulingof real-timesystemshasbeenmuchstudied,particularlyuponuniprocessor
platforms,thatis, uponmachinesin which thereis exactlyonesharedprocessoravailable,and
all the jobs in the systemarerequiredto executeon this singlesharedprocessor. In multi-
processorplatformsthereareseveralprocessorsavailableuponwhich thesejobsmayexecute.
ThePfari schedulingis oneof thefew known optimalmethodsfor schedulingtaskson multi-
processorsystems[7]. However, theoptimalassignmentof tasksto processorsis, in almostall
practicalcases,anNP-hardproblem[24, 44,35]. Therefore,wemustmakedowith heuristics.
The heuristicscannotguaranteethat an allocationwill be found that permitsall tasksto be
feasiblyscheduled.All thatwe canhopeis to allocatethetasks,checktheir feasibility, and,if
theallocationis not feasible,modify theallocationto try to renderits schedulefeasible.Sofar,
many heuristicmultiprocessorschedulingalgorithmshave beenprovided (see,for example,
[7, 46,42, 2, 4, 23, 6, 63, 34,28, 19,1, 32]).

Whencheckinganallocationfor feasibility, wemustaccountfor communicationcosts.For
example,supposethat task �	� cannotstartbeforereceiving theoutputof task ��
 . If bothtasks
areallocatedto thesameprocessor, thenthecommunicationcostis zero. If they areallocated
to separateprocessors,thecommunicationcostis positiveandmustbetakeninto accountwhile
checkingfor feasibility.

Thefollowing assumptionsmaybemadeto designamultiprocessorschedulingalgorithm:

� Jobpreemptionis permitted

That is, a job executingon a processormay be preemptedprior to completingexecu-
tion, andits executionmay be resumedlater. We may assumethat thereis no penalty
associatedwith suchpreemption.

� Jobmigration is permitted

That is, a job thathasbeenpreemptedon a particularprocessormay resumeexecution
on a differentprocessor. Onceagain,we mayassumethatthereis no penaltyassociated
with suchmigration.

� Jobparallelismis forbidden

Thatis, eachjob mayexecuteonatmostoneprocessoratany giveninstantin time.

Real-timeschedulingtheoristshave extensively studieduniprocessorreal-timeschedul-
ing algorithms. Recently, stepshave beentaken towardsobtaininga betterunderstandingof
multiprocessorsreal-timescheduling.Schedulingtheoristsdistinguishbetweenat leastthree
differentkindsof multiprocessormachines:

26

� Identicalparallel machines

Thesearemultiprocessorsin whichall theprocessorsareidentical,in thesensethatthey
have thesamecomputingpower.

� Uniformparallel machines

By contrast,eachprocessorin a uniform parallelmachineis characterizedby its own
computingcapacity, with the interpretationthat a job that executeson a processorof
computingcapacity for time units completes units of execution. Actually,
identicalparallelmachinesarea specialcaseof uniform parallelmachines,in which the
computingcapacitiesof all processorsareequal.

� Unrelatedparallel machines

In unrelatedparallelmachines,thereis an executionrate ��G] associatedwith eachjob-
processororderedpair) ����S\] , , with the interpretationthat job � completes) ��G] ,
unitsof executionby executingonprocessorS\] for time units.

Multiprocessorschedulingtechniquesfall into two generalcategory:

� Global SchedulingAlgorithms

Globalschedulingalgorithmsstorethe tasksthathave arrivedbut not finishedtheir ex-
ecutionin onequeuewhich is sharedamongall processors.Supposethereexist k pro-
cessors.At every momentthe k highestpriority tasksof the queueare selectedfor
executionon the k processorsusingpreemptionandmigrationif necessary[23, 32].

The focusedaddressingandbiddingalgorithm is anexampleof globalschedulingalgo-
rithms [32]. The main ideaof the algorithmis asfollows. Eachprocessormaintainsa
statustablethat indicateswhich tasksit hasalreadycommittedto run. In addition,each
processormaintainsa tableof thesurpluscomputationalcapacityat every otherproces-
sor in the system.The time axis is divided into windows, which areintervals of fixed
duration,andeachprocessorregularly sendsto its colleaguesthe fraction of the next
window thatis currentlyfree.

On theotherhand,anoverloadedprocessorchecksits surplusinformationandselectsa
processorthatseemsto bemostlikely to beableto successfullyexecutethat taskby its
deadline.It shipsthetasksout to thatprocessor, which is calledselectedtask.However,
thesurplusinformationmayhavebeenoutof dateandit is possiblethattheselectedpro-
cessorwill nothave thefreetime to executethetask.In orderto avoid thisproblem,and
in parallelwith sendingout thetaskto theselectedprocessor, theoriginatingprocessor
asksotherlightly loadedprocessorshow quickly they cansuccessfullyprocessthetask.

27

The repliesare sent to the selectedprocessor. If the selectedprocessoris unableto
processthe tasksuccessfully, it canreview the repliesto seewhich otherprocessoris
mostlikely to beableto doso,andtransfersthetaskto thatprocessor.

� Partitioning SchedulingAlgorithms

Partitioningschedulingalgorithmspartitionthesetof taskssuchthatall tasksin a parti-
tion areassignedto thesameprocessor. Tasksarenotallowedto migrate,hencethemul-
tiprocessorschedulingproblemis transformedto many uniprocessorschedulingprob-
lems[23, 32].

Thenext fit algorithmfor RM schedulingis a multiprocessorschedulingalgorithmthat
worksbasedonthepartitioningstrategy [32]. In thisalgorithm,wedefineasetof classes
of the tasks.The tasks,which arein thesameclass,areguaranteedto satisfytheRM-
schedulabilityononeprocessor. Weallocatetasksoneby oneto theappropriateproces-
sorclassuntil all the taskshave beenassigned.Then,with this assignment,we run the
RM schedulingalgorithmoneachprocessor.

Global strategies have several disadvantagesversuspartitioning strategies. Partitioning
usuallyhasa low schedulingoverheadcomparedto global scheduling,becausetasksdo not
needto migrateacrossprocessors.Furthermore,partitioning strategies reducea multipro-
cessorschedulingproblemto a setof uniprocessoronesand thenwell-known uniprocessor
schedulingalgorithmscanbeappliedto eachprocessor. However, partitioninghastwo nega-
tiveconsequences.First,findinganoptimalassignmentof tasksto processorsis abin-packing
problem,which is an NP-completeproblem. Thus, tasksareusuallypartitionedusingnon-
optimal heuristics. Second,asshown in [13], tasksystemsexist that areschedulableif and
only if tasksarenot partitioned.Still, partitioningapproachesarewidely usedby systemde-
signers.In additionto theaboveapproaches,wecanapplyhybrid partitioning/globalstrategies.
For instance,eachjob canbeassignedto asingleprocessor, while a taskis allowedto migrate.

4 Constraints of Real-Time Systems

Many industrialapplicationswith real-timedemandsarecomposedof tasksof varioustypes
andconstraints.Arrival patternsand importance,for example,determinewhethertasksare
periodic,aperiodic,or sporadic,andsoft, firm, or hard. Thecontrolling real-timesystemhas
to provide for acombinedsetof suchtasktypes.Thesameholdsfor thevariousconstraintson
tasks.In additionto basictemporalconstraints,suchasperiods,start-times,deadlines,andsyn-
chronizationdemandssuchasprecedence,or mutualexclusion,asystemhasto fulfill complex
applicationdemandswhichcannotbeexpresseddirectlywith basicconstraints.An examplefor
complex demandsis acontrolapplicationthatmayrequireconstraintson individual instances,

28

ratherthanperiods.Thesetof typesandconstraintsof tasksdeterminestheschedulingalgo-
rithm during systemdesign. Adding constraints,however, increasesschedulingoverheador
requiresthedevelopmentof new appropriateschedulingalgorithms.Consequently, a designer
givenanapplicationcomposedof mixedtasksandconstraintshasto choosewhichconstraints
to focuson in theselectionof aschedulingalgorithm;othershaveto beaccommodatedaswell
aspossible.

4.1 Schedulingof SporadicTasks

SporadicTasksarereleasedirregularly, oftenin responseto someevent in theoperatingenvi-
ronment.While sporadictasksdo not have periodsassociatedwith them,theremustbesome
maximumrateat which they canbereleased.That is, we musthave someminimuminterval
time betweenthe releaseof successive iterationsof sporadictasks.Someapproachesto deal
with sporadictasksareoutlinedasfollows [32].

� Thefirst methodis to simplyconsidersporadictasksasperiodictaskswith aperiodequal
to theirminimuminterarrival time.

� Theotherapproachis to definea fictitious periodictaskof highestpriority andof some
chosenfictitious executionperiod. During thetime that this taskis scheduledto run on
theprocessor, theprocessoris availableto run any sporadictasksthatmaybeawaiting
service.Outsidethis time,theprocessorattendsto theperiodictasks.Thismethodis the
simplestapproachfor theproblem.

� TheDeferredServeris anotherapproach,whichwasteslessbandwidth.Here,whenever
theprocessoris scheduledto runsporadictasksandfindsnosuchtasksawaitingservice,
it startsexecutingthe periodic tasksin order of priority. However, if a sporadictask
arrives,it preemptstheperiodictaskandcanoccupy a total time up to thetime allotted
for sporadictasks.

4.2 Schedulingof Aperiodic Tasks

Real-timeschedulingalgorithmsthatdealwith a combinationof mixedsetsof periodicreal-
timetasksandaperiodictaskshavebeenstudiedextensively [55, 66,60,53,54]. Theobjective
is to reducetheaverageresponsetime of aperiodicrequestswithout compromisingthedead-
linesof theperiodictasks.Severalapproachesfor servicingaperiodicrequestsarediscussed
asfollows.

A BackgroundServerexecutesat low priority, andmakesuseof any extra CPU cycles,
withoutany guaranteethatit everexecutes.BackgroundServer for aperiodicrequestsexecutes
whenever theprocessoris idle (i.e. not executingany periodictasksandno periodictasksare

29

pending).If theloadof theperiodictasksetis high,thenutilization left for backgroundservice
is low, andbackgroundserviceopportunitiesarerelatively infrequent.

ThePolling Serverexecutesasa high-priority periodictask,andevery cycle checksif an
eventneedsto beprocessed.If not,it goesto sleepuntil its next cycleandits reservedexecution
time for thatcycle is lost,evenif anaperiodiceventarrivesonly ashorttimeafter. This results
in poor aperiodicresponsetime. Polling consistsof creatinga periodic task for servicing
aperiodicrequests.At regular intervals, the polling task is startedandservicesany pending
aperiodicrequests.However, if no aperiodicrequestsarepending,the polling tasksuspends
itself until its next periodandthetimeoriginally allocatedfor aperiodicserviceis notpreserved
for aperiodicexecutionbut is insteadusedby periodictasks.Notethat if anaperiodicrequest
occursjust after thepolling taskhassuspended,thentheaperiodicrequestmustwait until the
beginningof thenext polling taskperiodor until backgroundprocessingresumesbeforebeing
serviced.Eventhoughpolling tasksandbackgroundprocessingcanprovide time for servicing
aperiodicrequests,they have thedrawbackthat theaveragewait andresponsetimesfor these
algorithmscanbelong,especiallyfor backgroundprocessing.

Thepurposeof thePriority Exchange andDeferrableServers is to improve theaperiodic
responsetime by preservingexecutiontime until required.Takingadvantageof the fact that,
typically, thereis no benefitin early completionof the periodictasks,the DeferrableServer
algorithmassignshigherpriority to aperiodictasksup until thepoint wheretheperiodictasks
would start to miss their deadlines.Guaranteedalert-classaperiodicserviceandgreatly re-
ducedresponsetimesfor soft deadlineaperiodictasksareimportantfeaturesof theDeferrable
Serveralgorithm,andbothareobtainedwith theharddeadlinesof theperiodictasksstill being
guaranteed.

ThePriority Exchangeserver allows for betterCPUutilization,but is muchmorecomplex
to implementthantheDeferrableServer.

ThePriority Exchangetechniqueaddsto the tasksetanaperiodicserver thatservicesthe
aperiodicrequestsasthey arrive. The aperiodicserver hasthe highestpriority andexecutes
whenan aperiodictaskarrives. Whenthereareno aperiodictasksto service,the server ex-
changesits priority with thetaskof next highestpriority to allow it to execute.

TheSporadic Serveris basedon theDeferrableServer; but provideswith lesscomplexity
the sameschedulableutilization asthe Priority Exchangeserver. Similarly to otherservers,
thismethodis characterizedby aperiod (D andacapacity� D , which is preservedfor possible
aperiodicrequests.Unlike otherserver algorithms,however, thecapacityis not replenishedat
its full valueat thebeginningof eachserver period,but only whenit hasbeenconsumed.The
timesat which thereplenishmentsoccurarechosenaccordingto a replenishmentrule, which
allowsthesystemto achievefull processorutilization. TheSporadicServerhasafixedpriority
chosenaccordingto the RateMonotonicalgorithm,that is, accordingto its period (WD . The
SporadicServer algorithmimprovesresponsetimesfor soft-deadlineaperiodictasksandcan

30

guaranteeharddeadlinesfor bothperiodicandaperiodictasks.
The above aperiodicserversaredesignedto operatein conjunctionwith the RateMono-

tonic algorithm[66, 60]. We discusssomeotherserversthatcanoperatein conjunctionwith
deadline-basedschedulingalgorithms,suchasEarliestDeadlineFirst,asfollows.

The DynamicPriority Exchange server is an aperiodicservicetechnique,which can be
viewedasanextensionto thePriority Exchangeserver, adaptedto work with deadline-based
schedulingalgorithms. The main ideaof the algorithmis to let the server tradeits run-time
with therun-timeof lowerpriority tasksin casetherearenoaperiodicrequestspending.In this
way, theserver run-timeis only exchangedwith periodictasks,but never wastedunlessthere
areidle times. It is simply preserved,even if at a lower priority, andit canbe later reclaimed
whenaperiodicrequestsenterthesystem[60, 55,56].

TheDynamicSporadicServeris anotheraperiodicservicestrategy, whichextendstheSpo-
radicServer to work underdynamicEDFscheduler. Themaindifferencebetweentheclassical
SporadicServer and its dynamicversionconsistsin the way the priority is assignedto the
server. DynamicSporadicServer hasa dynamicpriority assignedthrougha suitabledeadline.
Themethodsof deadlineassignmentandcapacityreplenishmentaredescribedin [60, 55,56].

Looking at thecharacteristicsof SporadicServer, we canrealizethatwhentheserver has
a long period,theexecutionof theaperiodicrequestscanbedelayedsignificantly, andthis is
regardlessof theaperiodicexecutiontimes. Therearetwo possibleapproachesto reducethe
aperiodicresponsetimes. The first is to usea SporadicServer with a shorterperiod. This
solution,however, increasestherun-timeoverheadof thealgorithmbecause,to keeptheserver
utilization constant,the capacityhasto be reducedproportionally, but this causesmore fre-
quentreplenishmentandincreasesthenumberof context switcheswith periodictasks[60]. A
secondapproachis to assigna possibleearlierdeadlineto eachaperiodicrequest.Theassign-
mentmustbe donein sucha way that the overall processorutilization of the aperiodicload
never exceedsa specifiedmaximumvalue D . This is themainideabehindanotheraperiodic
servicemechanism,whichis theTotal BandwidthServer[55, 56]. TheTotalBandwidthServer
is ableto provide goodaperiodicresponsivenesswith extremesimplicity. However, a better
performancecanstill beachievedthroughmorecomplex algorithms.This is possiblebecause,
whentherequestsarrive,theactiveperiodicinstancesmayhaveenoughslacktimeto besafely
preempted.Usingtheavailableslackof periodictasksfor advancingtheexecutionof aperiodic
requestsis thebasicprincipleadoptedby theEarliestDeadlineLateServer[55, 56,60]. The
basicideabehindthe EarliestDeadlineLate Server is to postponethe executionof periodic
tasksaslong aspossibleandusethe idle timesof periodicscheduleto executeaperiodicre-
questssooner. It is provedthattheEarliestDeadlineLateServeris optimal,thatis, theresponse
timesof aperiodicrequestsunderthisalgorithmarethebestachievable[60].

Although optimal, the EarliestDeadlineLate Server hastoo much overheadto be con-
sideredpractical. However, its main ideacanbe usefully adoptedto develop a lesscomplex

31

algorithmwhich still maintainsa nearlyoptimalbehavior. Theexpensive computationof the
idle timescanbeavoidedby usingthemechanismof priority exchange.With this mechanism
the systemcaneasilykeeptrack of the time advancedto periodictasksandpossiblyreclaim
it at theright priority level. The idle time of theEarliestDeadlineLatealgorithmcanbepre-
computedoff-line andtheserver canusethemto scheduleaperiodicrequests,whenthereare
any, or to advancetheexecutionof periodictasks.In thelattercase,thepre-computedidle time
canbesavedasaperiodiccapacity. Whenanaperiodicrequestarrives,theschedulergivesthe
highestpriority to theaperiodicrequestif all of theperiodictaskscanwait while still meeting
their deadlines.The ideadescribedabove is usedby the algorithmcalled ImprovedPriority
Exchange [55, 56,60]. Therearetwo mainadvantagesto this approach.First,a far moreeffi-
cientreplenishmentpolicy is achievedfor theserver. Second,theresultingserver is no longer
periodicandit canalwaysrunat thehighestpriority in thesystem.

In this section,we introduceda setof mostpopularalgorithmsthatprovide goodresponse
time to aperiodictasksin real-timesystems.The algorithmsdiffer in their performanceand
implementationcomplexity.

4.3 Precedenceand ExclusionConditions

Supposewehaveasetof tasks� �3�	��
�������	������������� . For eachtask��� wearegiventheworst-case
executiontime �$� , thedeadline"�� , andthe releasetime 9�� . We say ��� precedes��] if ��� is in
theprecedencesetof ��] , thatis, �] needstheoutputof ��� andwecannotstartexecuting��] until
��� hasfinishedexecuting.Task ��� excludes��] if ��� is not allowedto preempt��] . Thesentence
“ � � preempts�] ” is trueif whenever � � is readyto run and �] is currentlyrunning,�] is always
preemptedby �	� . Somerelationsbetweena given pair of distinct tasksareinconsistentwith
someotherrelations.For example,we cannothave both“ ��� precedes��] ” and“ ��] precedes��� ”.
Also, �	� cannotprecede��] when��] preempts��� . Thereareafew moreexamplesof inconsistent
relations.

Having a setof real-timetaskswith someprecedenceandexclusionconditions,we should
provideaschedulingalgorithmsuchthatnotonly all deadlinescanbemet,but alsoprecedence
and exclusion conditionscan be handledsuccessfully. This schedulingproblemis an NP-
completeproblem[32]. Someheuristicalgorithmshave beenprovided for the problemin
[32, 49,39, 31,17, 58].

Generally, theinputof any schedulingproblemwith precedenceconstraintsconsistsof aset
of real-timetasksanda precedencegraph,wherea deadline,a releasetime andanexecution
time is specifiedfor eachtask. Sometimesthe releasetime of a job may be later than that
of its successors,or its deadlinemay be earlierthanthat specifiedfor its predecessors.This
conditionmakesno sense.Therefore,we shouldderive an effective releasetime or effective
deadlineconsistentwith all precedenceconstraints,andscheduleusingthat[45]. Weapplythe

32

following methodin orderto achieveaneffective releasetime:

� If a job hasnopredecessors,its effective releasetime is its releasetime.

� If it haspredecessors,its effective releasetime is the maximumof its releasetime and
theeffective releasetimesof its predecessors.

An effectivedeadlinecanbefoundasfollows.

� If a job hasnosuccessors,its effectivedeadlineis its deadline.

� It if hassuccessors,its effectivedeadlineis theminimumof its deadlineandtheeffective
deadlineof its successors.

On theotherhand,anexclusionrelationbetweena givenpair of taskscanbereducedto a
combinationof preemptionandprecedencerelation[32].

4.4 Priority Inversion

In apreemptivepriority basedreal-timesystem,sometimestasksmayneedto accessresources
thatcannotbeshared.For example,a taskmaybewriting to a block in memory. Until this is
completed,no othertaskcanaccessthatblock, eitherfor readingor for writing. Themethod
of ensuringexclusive accessis to guardthecritical sectionswith binarysemaphores.Whena
taskseeksto enteracritical section,it checksif thecorrespondingsemaphoreis locked. If it is,
thetaskis stoppedandcannotproceedfurtheruntil thatsemaphoreis unlocked. If it is not, the
tasklocksthesemaphoreandentersthecritical section.Whena taskexits thecritical section,
it unlocksthecorrespondingsemaphore[32, 50, 22].

The following examplerepresentsan undesiredbehavior of the above method. Consider
tasks��
 , �	� , and�	� , listedin descendingorderof priority, whichshareaprocessor. Thereexists
a critical section that is usedby both ��
 and �	� . It is possiblefor ��
 to issuea requestfor
thecritical section whenit is lockedby �	� . Meanwhile�	� maypreempt�	� . This meansthat
� � which is of lower priority than �
 , is ableto delay �
 indirectly. Whena lower priority task
locksa critical sectionsharedwith thehigherpriority task,thepriority inheritanceprotocol is
usedto preventa mediumpriority taskfrom preemptingthelower priority task.Considertwo
tasks��� and ��] , where��� ��] , which needa critical section . Task ��] inheritsthepriority of
��� aslong asit blocks ��� . When ��] exits thecritical sectionthatcausedtheblock, it revertsto
thepriority it hadwhenit enteredthatsection.

AlthoughthePriority InheritanceProtocolpreventsunboundedblockingof ahigherpriority
taskby a lowerpriority task,it doesnotguaranteethatmutualdeadlockswill notoccur. It also
suffersfrom thepossibilityof chainedblocking, which happensbecausea high priority taskis

33

likely to beblockedwhenever it wantsto enteracritical section.If thetaskhasseveralcritical
sections,it canbeblockedfor aconsiderableamountof time [22].

The Priority Ceiling Protocol is anotherprotocol that canbe usedto prevent a medium
priority taskfrom preemptingthelower priority task[32, 60,15,14, 37,50]. Also, underthis
protocol,deadlockscannotoccuranda taskcanbe blockedat mostonceby a lower priority
task. In this protocol, when a task tries to hold a resource,the resourceis madeavailable
only if the resourceis free,andonly if the priority of the taskis greaterthanor equalto the
currenthighestpriority ceiling in the system. Sucha rule cancauseearly blockingsin the
sensethat a taskcanbe blocked even if the resourceit wantsto accessis free. This access
ruleguaranteesthatany possiblefuturetaskis blockedatmostonceby thelowerpriority task,
which is currentlyholdinga resource,andfor a durationof at most , where is definedas
thegreatestexecutiontime of any critical sectionusedby thelowerpriority task[32, 60].

ThePriority Ceiling Emulation, which is a combinationof thetwo previousmethods,has
beenintroducedto avoid chainedblockingandmutualdeadlocks.With this method,thepri-
ority of a low priority taskis raisedhigh enoughto prevent it beingpreemptedby a medium
priority task. To accomplishthis, the highestpriority of any taskthat will lock a resourceis
kept asan attribute of that resource.Whenever a task is grantedaccessto that resource,its
priority is temporarilyraisedto themaximumpriority associatedwith theresource.Whenthe
taskhasfinishedwith theresource,thetaskis returnedto its originalpriority.

5 Conclusionsand OpenProblems

5.1 Summary and Conclusions

A real time systemis a systemthat mustsatisfyexplicit boundedresponse-timeconstraints,
otherwiserisk severeconsequencesincluding failure. Failurehappenswhena systemcannot
satisfyoneor moreof therequirementslaid out in theformal systemspecification.

For agivensetof tasksthegeneralschedulingproblemasksfor anorderaccordingto which
thetasksareto beexecutedsuchthatvariousconstraintsaresatisfied.For a givensetof real-
timetasks,weareaskedto deviseafeasibleallocation/schedule.Thereleasetime,thedeadline
andtheexecutiontime of the tasksaresomeof theparametersthat shouldbeconsideredfor
scheduling.Thedeadlinemaybehard,soft or firm. Otherissuesto beconsideredareasfol-
lows. Sometimes,a resourcemustbeexclusively heldby a task. Tasksmayhave precedence
constraints.A taskmaybeperiodic,aperiodic,or sporadic.Theschedulemaybepreemptive
or non-preemptive. Lesscritical tasksmustbeallowedto bepreemptedby highercritical ones
whenit is necessaryto meetdeadlines.For thereal-timesystemsin which tasksarrive exten-
sively we have to usemorethanoneprocessorto guaranteethat tasksarefeasiblyscheduled.
Therefore,thenumberof availableprocessorsis anotherparameterto consider. Theavailable

34

processorsmaybeidentical,uniformor unrelated.

Figure3: Real-timeschedulingalgorithms

In this paper, the conceptof real-timesystemsand the characteristicsof real-timetasks
aredescribed.Also, the conceptof utilization boundandoptimality criteria, which leadsto
designappropriateschedulingalgorithms,areaddressed.The techniquesto handleaperiodic
andperiodic tasks,precedenceconstraints,andpriority inversionareexplained. Scheduling
of real-timesystemsis categorizedanda descriptionfor eachclassof algorithmsis provided.
Also, somealgorithmsarepresentedto clarify the differentclassesof algorithms. For real-
time multiprocessorsystems,we discussthe main strategies,namelypartitioningandglobal
strategies,to allocate/schedulethe real-timetasksuponthe processors.The differentclasses
of thereal-timeschedulingalgorithmsstudiedin this paperaresummarizedin Figure3. The
techniquesstudiedin Chapter4 canbeadoptedto many algorithmsin variousclassesof real-
time schedulingalgorithms. Someof the uniprocessorreal-timeschedulingalgorithmsare
illustratedusingexamplesin theAppendix.

35

Schedulingalgorithmsfor real-timesystemshave beenstudiedextensively. This paper
doesnotcoverall theexistingreal-timeschedulingalgorithms.Wehavenotdiscussedsubjects
suchasfault-tolerantreal-timeschedulingalgorithmsandschedulingof rewardfunctions[32].
Also, we have not mentionedtime complexity issuesand many major theoremsabout the
feasibility andoptimality conditionsof thereal-timeschedulingalgorithms.Thereexist many
approximationalgorithmsfor real-timesystems(see,for example,[64, 8, 9, 18, 40]) thatwe
did not have an opportunityto discussin this paper. We tried to presentthe main ideasand
classesof real-timescheduling.This paperis organizedsuchthata computerscientistwho is
not familiarwith real-timescheduling,canobtainenoughknowledgeaboutthisareato beable
to analyzeandcategorizeany real-timeschedulingproblem.

5.2 OpenProblems

As we mentionedearlier, therearetwo main strategiesto dealwith multiprocessorschedul-
ing problems:partitioningstrategy andglobalstrategy, eachof which hasits advantagesand
disadvantages.Real-timeschedulingproblemsfor multiprocessorsystemshave mostly been
studiedfor simplesystemmodels.Little work hasbeendoneonmorecomplex systems.In this
section,we provide a list of multiprocessorreal-timeschedulingproblemsthatrequirefurther
research.For eachproblem,schedulingalgorithmsareto bedevelopedthatmayfall into either
of theabove strategies. In addition,designinga suitablehybrid partitioning/globalscheduling
algorithm,onecantakeadvantageof bothmethods.Providing suitablehybrid schedulingalgo-
rithmsthatyield thebestsolutionsfor eachof thefollowing problemsis oneof theinteresting
areasof research.

A list of openproblemsfor multiprocessorreal-timeschedulingis asfollows.
Considera setof hard,soft, andfirm real-timetasks,�A�/�	��
�������	������������� , wheretheworst

caseexecutiontime of eachtask��� �!� is ��� .

(1) If the real-timetasksarehard,periodic,preemptive andhave fixedpriorities, thenfind
theminimumnumberof theprocessorsrequiredto guaranteethatall deadlinesaremet.
Someheuristicalgorithmshave alreadybeenproposed,however we believe betteralgo-
rithmswith improvedperformancecanbedeveloped.

(2) Supposein asystemconsistingof k identicalprocessors,real-timetasksarepreemptive
and have fixed priorities. Hard real-timetasksare periodic. Communicationcost is
negligible. Find a schedulethatminimizesmeanresponsetime while guaranteeingthat
all deadlinesaremet.

(3) Supposethereexist k identicalprocessors,real-timetasksarepreemptiveandhavefixed
priorities,a penaltyfunction (4)5��� , is assignedto eachsoft real-timetask,anda reward

36

function 9:)5� �-, is determinedfor eachfirm real-timetask.Communicationcostis negli-
gible. Findaschedulethatguaranteesall deadlinesaremetand is minimized.

(4) Considerthe conditionsof problem(3), exceptthat communicationcost is non-trivial.
Give a schedulethatminimizethecommunicationcost. Minimizing thenumberof mi-
grationsis oneway to reducethecommunicationcost.

(5) Supposethereexist k identicalprocessors,real-timetasksareaperiodic,preemptive,
andhave fixed priorities. Communicationcost is negligible. Find a schedulethat not
only guaranteesthatall deadlinesaremet,but alsominimizesmeanresponsetime. Find
theutilizationboundof thealgorithm.

(6) Considerthe conditionsof problem(5), except that tasksarenon-preemptive. Find a
schedulethat not only guaranteesthat all deadlinesaremet, but alsominimizesmean
responsetime. Find theutilizationboundof thealgorithm.

(7) Solve all of the previous problems,i.e, problems(1)-(6), whenthe tasksaredynamic
priority tasks.

(8) Solve all of the previous problems,i.e, problems(1)-(7), whenthe processorsareuni-
form.

Wemayapplyeitherof thefollowing approachesto solveeachof theaboveproblems:

� Thevastmajority of theoptimizationallocating/schedulingproblemson real-timesys-
temswith more thantwo processorsareNP-hard. In thosecaseswherethe problems
listedaboveareNP-hard,oneof thefollowing approachescouldbeused.

(a) SincetheproblemisNP-hard,oneshouldstrivetoobtainapolynomial-timeguaranteed-
approximationalgorithm. Indeed,for someschedulingproblems,a heuristicalgo-
rithm may be found that runs in polynomial time in the sizeof the problemand
deliversanapproximatesolutionwhoseratio to theoptimalsolutionis guaranteed
to benolargerthanagivenconstantor acertainfunctionof thesizeof theproblem.
However, for mostNP-hardproblemsguaranteeingsuchan approximatesolution
is itself anNP-completeproblem. In this case,theamountof improvementof the
heuristicalgorithmwith respectto theexisting algorithmsshouldbemeasuredvia
simulation.

A challengingproblemin real-timesystemstheory is calculatingthe utilization
boundsassociatedwith eachallocation/schedulealgorithm. The obtainedutiliza-
tion boundallows not only to testthe schedulabilityof any given tasksetfor the

37

schedulingalgorithm,but also it allows to quantify the effect of certainparame-
terssuchasthenumberof theprocessors,thesizeof thetasks,andthenumberof
preemptionson schedulability. Calculationof utilization boundsof multiprocessor
schedulingfor real-timesystemsis oneof themajorresearchdirectionsthatshould
befurtherinvestigated.

(b) If wereducetheschedulingprobleminto aknown NP-completeproblem , suchas
bin-packingor discreteknapsackproblem,the existing approximationalgorithms
for problem canbeappliedto theschedulingproblem.

� Considereachof theaforementionedproblems.Thesecondpossibility is developinga
polynomialtime algorithmthat providesan optimal feasibleschedulefor the problem.
The optimality of the algorithmshouldbe proved. We mustprove that the algorithm
mayfail to meetadeadlineonly if nootherschedulingalgorithmcanmeetthedeadline.
In order to prove optimality, we needto have the utilization boundsassociatedwith
thealgorithm. Theutilization boundsenableanadmissioncontrollerto decidewhether
an incoming task can meet its deadlinebasedon utilization-relatedmetrics. In fact,
the utilization boundsexpressthe sufficient conditionsrequiredfor feasibility of the
algorithm.

38

References

[1] B. AnderssonandJ. Jonsson,“The Utilization Boundsof Partitioned and Pfair Static-
Priority Schedulingon Multiprocessors are 50 percent,” 15thEuromicroConferenceon
Real-TimeSystems(ECRTS’03),Porto,Portugal, July02-04,2003.

[2] J. AndersonandA. Srinivasan,“Early releasefair scheduling,” In Proceedingsof the
EuroMicroConferenceonReal-TimeSystems,IEEEComputerSocietyPress,pp.35-43,
Stockholm,Sweden,June2000.

[3] N. Audsley, A. Burns, M. Richardson,K. W. Tindell, and A. J. Wellings, “Applying
new schedulingtheory to static priority preemptivescheduling,” SoftwareEngineering
Journal,pp.284-292,1983.

[4] H. Aydin, P. Mejia-Alvarez,R. Melhem,andD. Mosse,“Optimal reward-basedschedul-
ing of periodic real-timetasks,” In Proceedingsof the Real-Time SystemsSymposium,
IEEEComputerSocietyPress,Phoenix,AZ, December, 1999.

[5] J. W. de Bakker, C. Huizing, W. P. de Roever and G. Rozenberg, “Real-Time: Thory
in Practice,” Preceedingsof REX Workshop,Mook, The Netherlands,Springer-Verlag
company, June3-7,1991.

[6] J.M. Bans,A. Arenas,andJ.Labarta,“Ef ficientSchemeto AllocateSoft-AperiodicTasks
in MultiprocessorHard Real-TimeSystems,” PDPTA 2002,pp.809-815.

[7] S. Baruah,N. Cohen,G. Plaxton,andD. Varvel, “Pr oportionateprogress:A notionof
fairnessin resourceallocation,” Algorithmica, Volume15,Number6,pp.600-625,June,
1996.

[8] P. BermanandB. DasGupta,“Improvementsin ThroughputMaximizationfor Real-Time
Scheduling,” Departmentof ComputerScience,YaleUniversity, New Haven,CT 06511,
January31,2000.

[9] S. A. Brandt, “PerformanceAnalysisof DynamicSoft Real-Time Systems,” The 20th
IEEE InternationalPerformance,Computing,andCommunicationsConference(IPCCC
2001),April, 2001.

[10] A. Burns, “Pr eemptivepriority basedscheduling: An appropriate engineeringap-
proach,” TechnicalReport,YCS-93-214,Departmentof ComputerScience,university
of York, UK, 1993.

[11] A. Burns,“Schedulinghard real-timesystems:A review,” SoftwareEngineeringJournal,
Number5, May, 1991.

39

[12] G.C.Buttazzo,“Har d Real-TimeComputingSystems:predictableschedulingalgorithms
andapplications,” Springercompany, 2005.

[13] J.Carpenter, S.Funk,P. Holman,A. Srinivasan,J.Anderson,andS.Baruah,“A Catego-
rization of Real-timeMultiprocessorSchedulingProblemsand Algorithms,” Handbook
of Scheduling:Algorithms,Models,andPerformanceAnalysis,Editedby J. Y. Leung,
Publishedby CRCPress,BocaRaton,FL, USA, 2004.

[14] M. ChenandK. Lin, “A Priority CeilingProtocolfor Multiple-InstanceResources,” Proc.
of theReal-TimeSystemsSymposium,1991.

[15] M. ChenandK. Lin, “Dynamic Priority Ceiling: A ConcurrencyControl Protocol for
Real-TimeSystems,” Real-TimeSystemsJournal2, 1990.

[16] R. K. Clark, “SchedulingDependentReal-Time Activities,” PhD dissertation,Carnegie
Mellon Univ., 1990.

[17] L. Cucu, R. Kocik and Y. Sorel, “Real-time schedulingfor systemswith precedence,
periodicityandlatencyconstraints,” RTS EmbeddedSystems2002,Paris,26-28March,
2002.

[18] B. Dasguptaand M. A. Palis, “Online Real-Time PreemptiveSchedulingof Jobs with
Deadlineson Multiple Machines,” Journalof Scheduling,Volume4, Number6, pp.297-
312,November, 2001.

[19] D. A. El-Kebbe,“Real-Time Hybrid TaskSchedulingUpon MultiprocessorProduction
Stages,” InternationalParallelandDistributedProcessingSymposium(IPDPS’03),Nice,
France,22-26April, 2003.

[20] G. Fohler, T. Lennvall, andG. Buttazzo,“ImprovedHandlingof SoftAperiodicTasksin
Offline ScheduledReal-Time SystemsusingTotal BandwidthServer,” In Proceedingsof
the8th IEEE InternationalConferenceon Emerging TechnologiesandFactoryAutoma-
tion, Nice,France,October, 2001.

[21] W. Fornaciari, P. di Milano, “Real Time Operating SystemsScheduling Lecturer,”
www.eletelet.polimipolimi.it/ fornaciait/ fornacia.

[22] K. Frazer, “Real-timeOperatingSystemSchedulingAlgorithms,” , 1997.

[23] S.Funk,J.Goossens,andS.Baruah,“On-line SchedulingonUniformMultiprocessors,”
, 22ndIEEEReal-TimeSystemsSymposium(RTSS’01),pp.183-192,London,England,
December, 2001.

40

[24] M. Garey, D. Johnson,“Complexity Resultsfor MultiprocessorSchedulingunder Re-
sourceConstraints,” SICOMP, Volume4, Number4, pp.397-411,1975.

[25] R. Gerber, S. Hong and M. Saksena,, “GuaranteeingReal-Time Requirementswith
Resource-BasedCalibrationofPeriodic Processes,” IEEE Transactionson SoftwareEn-
gineering,Volume21,Number7, July, 1995.

[26] J. GoossensandP. Richard,“Overview of real-timeschedulingproblems,” Euro Work-
shoponProjectManagementandScheduling,2004.

[27] W. A. HalangandA. D. Stoyenko, “Real TimeComputing,” NATO ASI Series,SeriesF:
ComputerandSystemsSciences,Volume127,Springer-Verlagcompany, 1994.

[28] P. HolmanandJ. H. Anderson,“Using Supertasksto Improve ProcessorUtilization in
MultiprocessorReal-TimeSystems,” 15thEuromicroConferenceon Real-Time Systems
(ECRTS’03),Porto,Portugal, 2-4July, 2003.

[29] D. Isovic and G. Fohler, “Ef ficient Scheduling of Sporadic, Aperiodic and Periodic
Taskswith Complex Constraints,” In Proceedingsof the21stIEEE RTSS,Florida,USA,
November, 2000.

[30] M. Joseph,“Real-timeSystems:Specification,VerificationandAnalysis,” PrenticeHall,
1996.

[31] S. Kodase,S. Wang,Z. Gu andK. G. Shin, “ Improving Scalabilityof TaskAllocation
andSchedulingin Large DistributedReal-TimeSystemsUsingSharedBuffers,” The9th
IEEEReal-TimeandEmbeddedTechnologyandApplicationsSymposium,pp.181-188,
2003.

[32] C. M. KrishnaandK. G. Shin,“Real-TimeSystems,” MIT PressandMcGraw-Hill Com-
pany, 1997.

[33] P. A. Laplante,“Real-timeSystemsDesignandAnalysis,AnEngineerHandbook,” IEEE
ComputerSociety, IEEEPress,1993.

[34] S. Lauzacand R. Melhem, “An Improved Rate-MonotonicAdmissionControl and Its
Applications,” IEEE Transactionson Computers,Volume52, Number3, pp. 337-350,
March,2003.

[35] J.Y.-T. LeungandJ.Whitehead,“On thecomplexity of fixedpriority schedulingof peri-
odic real-timetasks,” PerformanceEvaluation,Volume2, pp.237-250,1982.

[36] P. Li and B. Ravindran, “F ast, Best-Effort Real-Time Scheduling Algorithms,” IEEE
TransactionsonComputers,Volume53,Number9, pp.1159-1175,September, 2004.

41

[37] C. L. Liu and J. W. Layland, “SchedulingAlgorithmsfor Multiprogrammingin Hard
Real-TimeEnvironment,” Journalof theACM , Volume20,Number1, pp.46-61,1973.

[38] C. D. Locke,“Best-Effort DecisionMakingfor Real-TimeScheduling,” PhDdissertation,
CarnegieMellon University, 1986.

[39] J. Luo andN. K. Jha,“Power-consciousJoint Schedulingof Periodic TaskGraphsand
AperiodicTasksin DistributedReal-timeEmbeddedSystems,” Proceedingsof ICCAD,
pp.357364,November, 2000.

[40] G. ManimaranandC. S. RamMurthy, “An EfficientDynamicSchedulingAlgorithmfor
MultiprocessorReal-TimeSystems,” IEEE TransactionParallelandDistributedSystems,
Volume9, Number3, pp.312-319,March,1998.

[41] F. W. Miller, “the Performanceof a Mixed Priority Real-Time SchedulingAlgorithm,”
OperatingSystemReview, Volume26,Number4, pp.5-13,October, 1992.

[42] M. Moir andS. Ramamurthy, “Pfair schedulingof fixedand migrating taskson multi-
ple resources,” In Proceedingsof the Real-Time SystemsSymposium,IEEE Computer
SocietyPress,Phoenix,AZ, December, 1999.

[43] A. K. Mok, “FundamentalDesignProblemsof DistributedSystemsfor the Hard Real-
TimeEnvironment,” TechnicalReport,MassachusettsInstituteof Technology, June,1983.

[44] A. K. Mok, “FundamentalDesignProblemsof DistributedSystemsfor the Hard Real-
Time Environment,” Ph.D. thesis.Departmentof ElectronicEngineeringandComputer
Sciences,Mass.Inst.Technol.,CambridgeMA, May, 1983.

[45] C.Perkins,“CourseNotes:Overview of Real-TimeScheduling, Real-TimeandEmbedded
Systems(M) Lecture3,” Universityof Glasgow, Departmentof ComputingScience2004-
2005AcademicYear.

[46] C. A. Phillips, C. Stein, E. Torng, and J. Wein, “Optimal time-critical schedulingvia
resourceaugmentation,” In Proceedingsof theTwenty-NinthAnnualACM Symposium
onTheoryof Computing,pp.140-149,El Paso,Texas,4-6May, 1997.

[47] S. Schneider, “ConcurrentandReal-timesystems,TheCSPApproach,” JohnWiley and
SonsLTD, 2000.

[48] G. Quan,L. Niu, J.P. Davis, “PowerAware Schedulingfor Real-TimeSystemswith (k ;
)-Guarantee,” CNDS,2004.

42

[49] , K. SandstrmandC. Norstrm, “ Managing Complex Temporal Requirementsin Real-
Time Control Systems,” The 9th IEEE Conferenceon Engineeringof Computer-Based
Systems,pp.81-84,Sweden,2002.

[50] L. Sha,R. RajkumarandJ.P. Lehoczky, “Priority InheritanceProtocol; an Approach to
Real-Time Synchronization,” IEEE Transactionson Computers,Volume39, Number9,
1990.

[51] K. G. ShinandY. Chang,“A Reservation-BasedAlgorithmfor schedulingBothPeriodic
andAperiodicReal-TimeTasks,” IEEE Transactionson Computers,Volume44,Number
12,pp.1405-1419,December, 1995.

[52] H. Singh,“SchedulingTechniquesfor real-timeapplicationsconsistingof periodic task
sets,” In Proceedingsof theIEEE Workshopon Real-Time Applications,pp.12-15, 21-
22July, 1994.

[53] B. Sprunt,“Aperiodic TaskSchedulingfor Real-TimeSystems,” Ph.D.Thesis,Department
of ElectricalandComputerEngineeringCarnegieMellon University, August,1990.

[54] B. Sprunt,J. Lehoczky, andL. Sha,“Exploiting UnusedPeriodic Time For Aperiodic
ServiceUsing the ExtendedPriority Exchange Algorithm,” In Proceedingsof the 9th
Real-TimeSystemsSymposium,pp.251-258.IEEE,Huntsville,AL, December, 1988.

[55] M. Spuri and G. C. Buttazzo, “Ef ficient Aperiodic Serviceunder Earliest Deadline
Scheduling,” In ProceedingsIEEE Real-Time SystemsSymposium,pp. 2-11,SanJuan,
PuertoRice,7-9December, 1994.

[56] M. Spuri andG. Buttazzo,“SchedulingAperiodicTasksin DynamicPriority Systems,”
TheJournalof Real-TimeSystems.

[57] M. Spuri,G. Buttazzo,ndF. Sensini,“RobustAperiodicSchedulingunderDynamicPri-
ority Systems,” In ProceedingsIEEE Real-Time SystemsSymposium,pp.210-219,Pisa,
Italy, 5-9December, 1995.

[58] M. SpuriandJ.A. Stankovic, “How to IntegratePrecedenceConstraintsandSharedRe-
sourcesin Real-TimeScheduling,” IEEETransactionsonComputers,Volume43,Number
12,pp.1407-1412,December, 1994.

[59] J.A. Stankovic andK. Ramamritham,, “Tutorial Hard Real-TimeSystems,” IEEECom-
puterSocietyPress,1988.

43

[60] J. A. Stankovic, M. Spuri, K. Ramamritham,andG. C. Buttazzo,“Deadline Schedul-
ing for Real-TimeSystems,EDF andrelatedalgorithms,” Kluwer AcademiaPublishers,
1998.

[61] T. Tia, J.W. Liu, andM. Shankar, “Algorithms andOptimalityof SchedulingSoftAperi-
odic Requestin FixedPriority PreemptiveSystems,” TheJournalof Real-Time Systems,
Volume10,Number1, pp.23-43,January, 1996.

[62] J. Wang, B. Ravindran, and T. Martin, “A Power-Aware, Best-Effort Real-Time Task
SchedulingAlgorithm,” IEEE Workshopon SoftwareTechnologiesfor FutureEmbed-
dedSystemsp. 21.

[63] Z. XiangbinandT. Shiliang,“An improveddynamicschedulingalgorithmfor multipro-
cessorreal-timesystems,” PDCAT’2003.In Proceedingsof theFourthInternationalCon-
ferenceonPublication,pp.710-714,27-29August,2003.

[64] M. Xiong, K.-Y. LamandB. Liang, “Quality of ServiceGauranteefor Temporal Consis-
tencyof Real-TimeObjects,” The24thIEEEReal-timeSystemSymposium(RTSS2003),
Cancun,Mexico, December, 2003.

[65] http://www.netrino.com/Publications/Glossary/PriorityInversion.html

[66] http://www.ee.umd.edu/serts/bib/thesis/dstewart2.pdf

[67] http://www-2.cs.cmu.edu/afs/cs/project/jair/pub/volume4/hogg96a-html/node2.html

[68] http://www.cs.pitt.edu/melhem/courses/3530/L1.pdf

[69] http://www.omimo.be/encyc/publications/faq/rtfaq.htm

[70] http://c2.com./cgi/wiki?RealTime

44

Appendix: Examples

In this chapterwe presentthe timing diagramsof the schedulesprovided by somereal-time
schedulingalgorithms,namelytheearliestdeadlinefirst (EDF), therate-monotonic(RM), and
theleastlaxity first (LLF) algorithms,on two givensetsof tasks.

Period Computationtime First invocationtime Deadline
��
 2 0.5 0 2
�	� 6 2 1 6
�	� 10 1.8 3 10

Table2: Therepetitionperiods,computationtimes,anddeadlinesof thetasks��
���	� and�	� for
ExampleA.1

Figure4: Thetiming diagramof task��
 definedin Table2, beforescheduling

Figure5: Thetiming diagramof task�	� definedin Table2, beforescheduling

Example A.1: Considera systemconsistingof threetasks ��
���	� and �	� , that have the
repetitionperiods,computationtimes,thefirst invocationtimesanddeadlinesdefinedin Table
2. Thedeadline"#� of eachtask �	� is (W� andtasksarepreemptive. Figures4, 5 and6 present
thetiming diagramof eachtask�H
 , ��� and�	� , respectively, beforescheduling.

� Earliestdeadlinefirst algorithm

45

Figure6: Thetiming diagramof task�	� definedin Table2, beforescheduling

Figure7: Thetiming diagramof thescheduleprovidedby any of theearliestdeadlinefirst, rate
monotonic,leastlaxity first algorithmson thetaskssetdefinedin Table2

Figure7 presentsa portionof the timing diagramof thescheduleprovidedby theEDF
algorithmonthetaskssetdefinedin Table2. Betweentime interval 0 and17weobserve
thatnodeadlineis missed.

� Ratemonotonicalgorithm

As shown in Figure7, if we schedulethetaskssetby theRM algorithm,no deadlineis
missedbetweentime interval 0 and17.

� Leastlaxity first algorithm

Similar to the previous two schedulingalgorithms,the leastlaxity first algorithmpro-
vides a schedulesuchthat all deadlinesare met betweentime interval 0 and 17 (see
Figure7).

For ExampleA.1, the timing diagramsof the schedulesprovided by the earliestdeadline
first, ratemonotonic,andleastlaxity first algorithmshappento be the same,asindicatedin
Figure7.

46

Period Computationtime First invocationtime Deadline
��
 2 0.5 0 2
�	� 6 4 1 6
�	� 3 1.8 3 10

Table3: Therepetitionperiods,computationtimesanddeadlinesof thetasks��
���	� and �	� for
ExampleA.2

Figure8: Thetiming diagramof task��
 definedin Table3, beforescheduling

Figure9: Thetiming diagramof task�	� definedin Table3, beforescheduling

Figure10: Thetiming diagramof task��� definedin Table3, beforescheduling

Example A.2: Considera systemconsistingof threetasks ��
���	� and �	� , that have the
repetitionperiods,computationtimes, first invocationtimes and deadlinesdefinedin Table
3. The tasksarepreemptive. The timing diagramsin Figures8, 9 and10 presentthe timing
diagramof eachtask��
 , �	� and�	� , respectively, beforescheduling.

47

� Earliestdeadlinefirst algorithm

As presentedin Figure 11, the uniprocessorreal-timesystemconsistingof the tasks
setdefinedin Table3 is not EDF-schedulable,becausewhile the executionof the first
invocationof the task �	� is not finishedyet, the new invocationof the taskarrives. In
otherwords,anoverrunconditionhappens.

Figure11: Thetiming diagramof thescheduleprovidedby theearliestdeadlinealgorithmon
thetaskssetdefinedin Table3

� Ratemonotonicalgorithm

As shown in Figure 12, the uniprocessorreal-timesystemconsistingof the tasksset
definedin Table3 is not RM-schedulable.The reasonis that the deadlineof the first
invocationof thetask�	� is missed.Theexecutionof thefirst invocationis requiredto be
finishedby time 6, but theschedulecouldnotmake it.

� Leastlaxity first algorithm

Figure13 presentsa portionof thetiming diagramof thescheduleprovidedby theleast
laxity first algorithmon the taskssetdefinedin Table3. As shown in the figure, the
deadlineof the third invocationof the task ��
 can not be met. we concludethat the
uniprocessorreal-timesystemconsistingof the taskssetdefinedin Table3 is not LLF-
schedulable.

48

Figure12: The timing diagramof thescheduleprovidedby the ratemonotonicalgorithmon
thetaskssetdefinedin Table3

Figure13: Thetiming diagramof thescheduleprovidedby the leastlaxity first algorithmon
thetaskssetdefinedin Table3

49

