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Abstract

The quantum model of computation not only o	ers entirely new

ways to manipulate information� but also allows information process�

ing tasks to be formulated in unconventional� genuine quantum me�
chanical terms
 We show that the task of distinguishing among en�

tangled quantum states combines entanglement and non�determinism

in a way that makes the quantum solution impossible to simulate on

any classical machine �even one equipped with the same measurement

capabilities as the quantum computational device�
 A new class of

information processing tasks is thus uncovered whose members are

readily carried out by a quantum computer� yet are impossible to per�

form on any classical machine �whether deterministic or probabilistic�


In the broad� unconventional context created by quantum mechanics�

the computational power of a quantum computer is therefore strictly

greater than that of a classical computer
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� Introduction

Is a quantum computer strictly more powerful than a classical one� Are there
information processing tasks for which only a machine based on quantum
mechanical principles is naturally suited� What are the limitations when
trying to simulate a quantum process on a classical computing machine�

These questions have concerned researchers in quantum computation
and quantum information theory ever since the �eld originated� Despite
the impressive advancements made in the quantum computation and quan�
tum information areas� the fundamental question about the relative power
of a quantum computer with respect to its classical counterpart is still not
fully answered� Perhaps this is partly due to the multitude of contexts �or
paradigms� in which such a question might be asked� Consequently� there
may not be a single answer�

In this paper� we analyze the relation between the quantum and the clas�
sical models of computation from the broad perspective o	ered by quantum
mechanics� Non�determinism and operating on entangled quantum states
can each be successfully simulated on a machine whose functioning obeys
the laws of classical physics� However� we show in this paper that there are
problems merging non�determinism and entanglement in such a way that
a solution based on classical means is no longer possible� Distinguishing
among entangled quantum states forms the basis for a whole class of prob�
lems requiring information manipulation that are only solvable by a machine
endowed with the power of quantum computing� This demonstrates that the
limitations of the classical model of computation are purely physical and a
computer operating through quantum means is strictly more powerful than
a conventional one�

In the following section we try to review and make explicit some of the
contexts in which the comparison between the classical and the quantum
computer took place� This will help emphasize the variety of angles under
which the problem can be attacked and also put our approach �given in
section 
� into perspective� The de�nition of the quantum distinguishability
problem� its e�cient quantum solution and the attempted classical solution
are also presented in section 
� Two examples of information processing
tasks based on the distinguishability of entangled quantum states are given
in section �� Section 
 o	ers some conclusions about the nature of the relation
between a quantum and a classical machine� in terms of their computational
powers�
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� A review of previous results

The �rst step towards an analytical investigation of the computational power
speci�c to a quantum mechanical device was the elaboration of a model that
should be abstracted away from any particular physical realization� The
breakthrough came when David Deutsch described the operation of a uni�
versal quantum computerQ� a model of computation inspired by the classical
Turing machine� but whose functioning obeys the principles of quantum me�
chanics� Even in this early paper ���� several features are identi�ed with
respect to which the Quantum Turing Machine is superior to any classical
device�

��� True randomness

The �rst example given is the generation of true random numbers� In par�
ticular� valid programs are shown to exist for Q that deal with arbitrary
irrational probabilities� a feature that the universal Turing machine T could
not truly match� It could only simulate such discrete �nite stochastic sys�
tems with arbitrary accuracy� provided it has access to a �random oracle��
which really cannot be implemented by classical means�

��� Entanglement

But the property of Q that cannot be even approximately simulated by any
classical system is the generation of entangled �or non�separable� states like

�p
�
�j�ij�i� j�ij�i�� ���

The strong correlations exhibited by the two qubits composing state ���
are only characteristic to the quantum resource known as entanglement� and
they are simply beyond the scope of any classical Turing machine� Bell�s
theorem ��� is a mathematical formulation of the fact that no classical system
can reproduce the statistical results obtained by measuring these two qubits�

��� Quantum speed�up

As another argument intended to prove the superior computational power of
the Quantum Turing Machine� Deutsch provides an example which demon�






strates how quantum parallelism can be used to speed up computation� Quan�
tum parallelism refers to the capability of a quantum computer to evaluate a
function f�x� for exponentially many di	erent values of x in the time it takes
a classical computer to evaluate the function for just one value� This is pos�
sible due to the quantum mechanical principle of the superposition of states�
Deutsch exploited this feature and devised an example in which quantum par�
allelism augmented with interference can �beat� a classical computer� Thus�
given a function f � f�� �g � f�� �g� he presented a quantum algorithm able
to compute f���� f��� in a single evaluation of the function f �

Later� Deutsch�s algorithm was generalized by Deutsch and Jozsa ����
who addressed the n�bit case by allowing the domain of f to be the set of
all integers in the interval ��� �n � ��� In just one evaluation of the function
f � the Deutsch�Jozsa algorithm is able to determine whether f is constant
or perfectly balanced �the latter property meaning that f maps exactly half
of the input values in the domain to the image �� and the other half to ���
Although the problem seems somewhat contrived� with no immediate prac�
tical applications� this was the �rst example in which the quantum computer
achieved an exponential speed�up over the classical one �note that a classical
Turing machine needs an exponential number of evaluations of f in order to
make the decision between constant and perfectly balanced��

The same superiority of the quantum computer was proved by Shor�s
factorization algorithm ����� only this time for a problem of huge practical
importance� Factoring large integers and computing discrete logarithms in
quantum polynomial time threatens the security of a large class of public�
key cryptographic systems in use today� For a classical computer these tasks
remain intractable� despite remarkable advances that could only bring their
running time to a sub�exponential level ����� So� in the context of essentially
speeding up the computation for some problems� we can a�rm that a quan�
tum computer is de�nitely more powerful than a classical one� However� we
should keep in mind that these problems can also be solved by the universal
Turing Machine� given enough time �even if this time is more than the age
of the Universe��

��� Quantum simulations

Another class of tasks at which quantum computers could naturally outper�
form any classical machine is simulating quantum mechanical systems occur�
ring in Nature� As the size �number of constituents� of a quantum system
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increases� the number of variables required to describe the state of the sys�
tem grows exponentially� So� in order to store the quantum state of a system
with n distinct components� a classical computer would need some cn bits
of memory� with the constant c depending upon the system being simulated
and the desired accuracy of the simulation� Furthermore� calculating its evo�
lution over time would require the manipulation of a huge matrix� involving
cn � cn bits� As Feynman noted in ���� ����� this is prohibitively ine�cient
for a simulator observing the laws of classical physics� On the other hand�
a machine that worked by quantum means would intrinsically make a much
more e�cient simulator� requiring only a linear number of qubits�

Following the same logic� it is not di�cult to envisage a classical Tur�
ing machine that simulates an arbitrary quantum circuit� if one does not
care about e�ciency� The simulation in �
� requires space� and therefore
time� exponential in the number of qubits in the quantum circuit� Bernstein
and Vazirani �
� have given a simulation that takes polynomial space� but
exponential time� The lack of an e�cient classical simulation of a quantum
computer induced the idea that a quantum computing machine may be inher�
ently faster and therefore strictly more powerful� However� any computation
a quantum computer can perform� by applying a series of unitary evolutions
to its quantum register� can be replicated �even if highly ine�ciently� by a
Deterministic Turing Machine �DTM�� Similarly� a Probabilistic Turing Ma�
chine �PTM� can simulate the inherent probabilistic nature of a quantum
measurement operation�

For the unacquainted reader� we state that when measuring a qubit
j�i � �j�i � �j�i with respect to the standard basis for quantum com�
putation fj�i� j�ig� we get either the result � with probability j�j�� or the
result � with probability j�j�� Furthermore� measurement alters the state of
a qubit� collapsing it from its superposition of j�i and j�i to the speci�c state
consistent with the result of the measurement� For example� if we observe j�i
to be in state j�i through measurement� then the post�measurement state of
the qubit will be j�i� and any subsequent measurements �in the same basis�
will yield � with probability ��

��� QTM versus DTM and PTM

The contest between the quantum and the classical computer can also be
judged from these two points of view� comparing the Quantum Turing Ma�
chine �QTM� with a DTM or a PTM� The Deutsch�Jozsa algorithm� for






instance� achieves an impressive speed�up over a DTM� but the problem is
also easy for a PTM� which can solve it very quickly with high probability�

The �rst hint that QTMs might be more powerful than PTMs was given
by Bernstein and Vazirani� who showed how to sample from the Fourier
spectrum of any Boolean function on n bits in polynomial time on a QTM �
��
No algorithmwas known to replicate this result on a PTM� Then� Berthiaume
and Brassard were able to construct an oracle� relative to which a decision
problem exists that could be solved with certainty in polynomial time in the
worst case on a quantum computer� but could not be solved classically in
probabilistic expected polynomial time� if errors were not tolerated ���� In
the same paper� they also show that there is a decision problem solvable in
exponential time on a QTM and in double exponential time on all but �nitely
many instances on any DTM� These two results� besides being a victory of
quantum computers over classical machines �deterministic or probabilistic�
also prove that the power of quantum computation cannot simply be ascribed
to the indeterminism inherent in quantum theory�

��� Quantum vs� classical complexity

The great hope for quantum computers at the inception of the quantum
paradigm of computation was that they would be able to make NP �complete
problems tractable� Relative to this criterion� we still don�t know whether a
quantum machine is more powerful than a classical one� in spite of Shor�s re�
sults concerning factorization and computing discrete logarithms� The trou�
ble is that neither of these two problems is known to be NP �complete� despite
the general belief that they are not in P � Furthermore� the current belief is
that a quadratic improvement in the running time may be the best we can
get out of a quantum computer in these kinds of tasks ��
��

The relative power of quantum computers with respect to classical ones
can also be couched in the relationships between classical and quantum com�
plexity classes� In this sense� the complexity classes BPP �Bounded error
Probability in Polynomial time� and its quantum analogue BQP have at�
tracted a lot of interest� Proving that BPP � BQP is regarded as proving
that quantum computers are strictly more powerful than classical computers�
This may be quite non�trivial to demonstrate� since BPP � BQP implies
that P is not equal to PSPACE� a result that many researchers have unsuc�
cessfully attempted to prove� However� if we adopt a non�classical approach
and allow the input to be described in non�classical terms �genuine quantum
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mechanical terms� in our case� then we can show that the set of problems
solvable e�ciently by a classical computer �deterministic or probabilistic� is
strictly included in the set of problems having an e�cient quantum solution�

��	 Super�Turing computations

We end this exposition of working hypotheses� when comparing quantum
and classical computers� with the most �exotic� cases� Some researchers
have shown that there are quantum processes which can be used to compute
the solution to Turing uncomputable �or undecidable� problems� Calude and
Pavlov ��� describe a mathematical quantum device that is able to determine
with a pre�established precision whether an arbitrary program halts or not�
Kieu ���� uses quantum adiabatic processes to provide a single� universal pro�
cedure� taking the form of a quantum algorithm that solves Hilbert�s tenth
problem �which has been shown to be equivalent to Turing�s halting problem��
The essence of these results is that there exist mathematical constructions�
built within the framework provided by the physical theory of quantum me�
chanics� which are powerful enough to tackle with success problems that have
been proved to be out of the capabilities of the Turing machine�

A few observations have to be made with respect to the features em�
powering these quantum �hypercomputers�� They manage to compute the
�uncomputable� by eluding in one way or another the �niteness condition

���� The method employed by Calude and Pavlov �a quadratic form of an
iterated map acting on randomly chosen vectors� the latter viewed as special
trajectories of two Markov processes working in two di	erent scales of time�
encodes the whole data into an in�nite superposition� Kieu too works with
a dimensionally in�nite Hilbert space in his quantum adiabatic algorithm�
However� he argues that the number of dimensions is only required to be
su�ciently large� but �nite�

Furthermore� an important common characteristic of both algorithms is
their probabilistic nature� The answer they give to a problem has only a
certain probability to be the correct one� This probability can be made arbi�
trarily close to �� but it can never reach � as long as the quantum procedure
is only allowed to run for a �nite amount of time� Finally� we note that
the models of computation capable of such performances are mathematical
objects with no constructive indications being o	ered to attempt the experi�
mental realization of such a machine �assuming this thing is possible�� From
this point of view� they can rather be characterized as quantum �hypercom�

�



puters�� as opposed to a �standard� quantum computer� capable of running
Shor�s algorithm� for example�

� Our approach

Let us now describe the terms under which we compare� in this paper� the
quantum computer with the classical computer� The quantum machine is
assumed to have a set of quantum gates that is universal for quantum com�
putation �although for our purposes the controlled�NOT and Hadamard gates
will su�ce�� together with the ability to perform single�qubit measurements
in the standard computational basis fj�i� j�ig� This description corresponds
to a standard quantum computer that can have various physical realizations�

On the other hand� the classical computer in consideration is a conven�
tional computing device whose capabilities match those of the Universal Tur�
ing Machine� Due to the nature of the problems addressed in this paper� the
classical computing machine is augmented with the same measurement capa�
bilities as the quantum computer� After all� quantum measurements in the
standard computational basis are just a means of acquiring classical infor�
mation �about quantum states��

In the context delimited by these speci�cations� we can identify a whole
class of information processing tasks which clearly separate the quantum
computer from its classical counterpart in terms of computability�

��� Quantum distinguishability

At the heart of this class of problems is the task of distinguishing among
entangled quantum states� The general formulation of the problem is given
in the following� Suppose we have a quantum system composed of n qubits
whose state is not known exactly� What we know with certainty is that the
system can be described by one of the following �n entangled states�

�p
�
�j��� � � ��i � j��� � � ��i��

�p
�
�j��� � � ��i � j��� � � ��i��
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��� ���

�p
�
�j��� � � ��i � j��� � � ��i��

The challenge for the two candidate computers is to correctly identify the
state of the system resorting to all their measurement and computational
abilities� Alternatively� the problem can also be formulated as a function
computation �evaluation�� with the unknown quantum state as the input and
the corresponding index �between � and �n � �� as the output� We have to
say from the very beginning that this function is computable� The �n states
in ��� are perfectly distinguishable since they form an orthonormal basis for
the state space corresponding to the n�qubit system� Note� in particular�
that the case n � � corresponds to the distinguishability of the four Bell �or
EPR� states� which is the key feature in achieving superdense coding ����

The immediate� theoretical solution to this problem is to perform a single
joint measurement of the whole system by de�ning each of the �n states that
are to be distinguished to be a projector associated with the measurement
operation� Although mathematically this is a perfectly valid solution� it is
very di�cult in practice to perform such a joint measurement� even for the
simplest case involving only two qubits ��
�� Furthermore� as it was shown in
����� if a joint measurement of all qubits in the system is not feasible� then no
solution is better than measuring each qubit individually� one after the other�
Of course� in this way we will not be able to distinguish between quantum
states that di	er only through a relative phase factor� like �p

�
�j��� � � ��i �

j��� � � ��i� and �p
�
�j��� � � ��i � j��� � � ��i�� for example� But note that this

is the best that can be achieved� given the measurement capabilities of both
the classical and quantum computer�

However� if we resort to their processing capabilities� the situation changes�
Unitary operators preserve inner products� so any unitary evolution of the
system described by ��� will necessarily transform it into another orthonor�
mal basis set� Therefore� a unitary transformation must exist that will allow
a subsequent measurement in the standard computational basis without any
loss of information� The following result shows that such a transformation
not only exists� but that in fact it can be implemented e�ciently�

Theorem � The transformation between the following two orthonormal ba�

sis sets for the state space spanned by n qubits�
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Figure �� Quantum circuit for Theorem ��
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�
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��� �
�

�p
�
�j��� � � ��i� j��� � � ��i� 	� j��� � � ��i�

�p
�
�j��� � � ��i � j��� � � ��i� 	� j��� � � ��i�

can be realized by a quantum circuit comprising only a linear number of

controlled�NOT and Hadamard gates�

Proof

It is easy to check that the circuit depicted in Figure � performs the required
quantum transformation for the case n � �� The generalization to an ar�
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bitrary number of qubits is straightforward� In the general case the circuit
consists of �n � � controlled�NOT gates and one Hadamard gate� Due to
its symmetric nature� the same quantum circuit can also perform the inverse
transformation� from the normal computational basis set to the entangled
basis set� �

By applying the transformation realized by this circuit� the quantum
computer can disentangle the qubits composing the system and thus make
the act of measuring each qubit entirely independent of the other qubits� This
will ensure obtaining the correct answer to the distinguishability problem
���� of the time� In other words� the function is e�ciently computable �in
quantum linear time� by a quantum computer�

Can the classical computer replicate the operations performed by the
quantum machine� We know that a classical computer cam simulate �even if
ine�ciently� the continuous evolution of a closed quantum system �viewed as
a quantum computation in the case of an ensemble of qubits�� So� whatever
unitary operation is invoked by the quantum computer� it can certainly be
simulated mathematically on a Turing machine� The di	erence resides in
the way the two machines handle the uncertainty inherent in the input� The
quantum computer has the ability to transcend this uncertainty about the
quantum state of the input system by acting directly on the input in a way
that is speci�c to the physical support employed to encode or describe the
input� The classical computer� on the other hand� lacks the ability to process
the information at its original physical level� thus making any simulation at
another level futile exactly because of the uncertainty in the input�

We have to emphasize that had the input state been perfectly determined�
then any transformation applied to it� even though quantum mechanical
in nature� could have been perfectly simulated using the classical means
available to a Turing machine� However� in our case� the classical computer
does not have a description of the input in classical terms and can only try
to obtain one through direct measurement� This will in turn collapse the
entanglement in the input state� leaving the classical computer with only
a 
�� probability of correctly identifying the original quantum state� This
means that the problem cannot be solved classically� not even by a PTM�
There is no way to improve the 
�� error rate of the classical approach to
distinguish among the �n states�

So this problem tells us that what draws the separation line between a
quantum and a classical computer� in terms of computational power� is not
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the ability to extract information from a quantum system through measure�
ments� but the ability to process information at the physical level used to
represent it� For the distinguishability problem discussed� this is the only
way to deal with the non�determinism introduced by entanglement�

� Some consequences

Distinguishing among entangled quantum states forms the basic building
block for a series of information processing tasks that can only be accom�
plished by a quantum computer� Here are two such examples�

��� Conveying quantum information through a classi�

cal channel

The �rst one addresses the problem of transmitting unknown quantum in�
formation through a classical channel� In the general case� when we have no
knowledge whatsoever about the quantum state to be transmitted� the task
is obviously impossible� It requires a classical description of the quantum
state� which cannot be obtained since a quantum measurement would ruin
the original state and cloning an unknown quantum state was proven to be
impossible�

Quantum teleportation actually requires the existence of a classical chan�
nel between the source and the destination� so it could be interpreted as
the transmission of an unknown quantum state through a classical channel�
There is an important point to make� however� Quantum teleportation refers
only to a single qubit and requires an EPR state to be shared by the sender
and the receiver prior to the teleportation� This entangled pair of qubits is
actually a resource that will be consumed in the process� The same argument
can be formulated in the case of another task that is not possible through
classical means� namely� superdense coding� Unlike these remarkable appli�
cations of entanglement as a physical resource� the information processing
tasks investigated in this paper do not assume the creation and distribution
of entanglement in order to be completed�

After this necessary clari�cation� we note that the problem investigated
in our �rst example is unsolvable �in its most general formulation� by both
our classical and quantum computers� However� if we restrict the unknown
quantum state to be a member of the set ���� then the task is only out of
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the capabilities of the classical machine� The quantum computer can still
use the circuit in Figure � to obtain a �label� of the original quantum state
in classical terms� which can be subsequently transmitted via the classical
channel� At the other end� the same quantum circuit can reconstruct the
original quantum state� based on the classical information received�

��� Protecting quantum information from classical at�

tacks

The second example is taken from the �eld of cryptography and gives a more
plastic representation of the physical limitations of a classical computer to
process information� A simple protocol may be devised to enable the trans�
mission of information through a quantum channel� without any possibility of
eavesdropping from a third party resorting only to the computational power
of a classical computer� For this purpose� each pair of qubits transmitted
through the channel encodes one bit of information in the following way�
�p
�
�j��i � j��i� and �p

�
�j��i � j��i� represent a � bit� while �p

�
�j��i � j��i�

and �p
�
�j��i � j��i� represent the bit �� No single�qubit measurements are

better than just �ipping a coin in order to guess the bit transmitted� so no
information whatsoever can be gained by the classical machine�

The quantum computer would be in the same situation if it would re�
sort only to its measurement abilities� However� the quantum computer can
�rst �evolve� the Bell basis into the normal computational basis �using the
quantum circuit from Figure � for the case n � �� and then identify the bit
transmitted by reading the measurement outcome for the �rst qubit� Note
that this protocol can be generalized to �beat� any classical computer en�
dowed with �nite measuring capabilities� If the classical computer is able to
perform a joint measurement of k qubits �where k is unbounded� but �nite�
then it su�ces to encode a bit of information into the relative phase of an
entangled quantum state comprising k � � qubits� In this way� the informa�
tion conveyed through the quantum channel is safely kept out of reach for
the classical computer� due to its limitations in processing information at the
very physical level chosen to embody it�
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� Conclusions

When he devised the Quantum Turing Machine as the �rst abstract model
of quantum computation� David Deutsch already pointed to some features
that set it apart from the classical Turing machine� intrinsic genuine non�
determinism and entanglement� Naturally� these features have created a lot
of speculations about the superiority of the quantum computer in terms of
computability and complexity� Consequently� the computational powers of
the quantum and classical machine have been evaluated and compared in a
variety of contexts�

This paper shows that there is a whole class of information processing
tasks relative to which a clear separation line exists between quantum com�
puters and classical computers with respect to their computational powers�
The set of problems solvable by classical means is therefore strictly smaller
than the set of functions computable through quantum means� At the heart
of this separation lies a problem �namely� distinguishing among entangled
quantum states� that combines uncertainty and entanglement in a way that
renders a classical simulation of the quantum solution impossible� Otherwise�
taken separately� uncertainty can be dealt with �through measurements� in
the absence of entanglement� while entanglement� as a particular case of su�
perposition� can be simulated by a classical machine for the purpose of com�
putation �due to the linearity of the unitary operators describing quantum
transformations��

While quantum measurements are certainly required to distinguish among
di	erent quantum states� this is most emphatically not what gives the Quan�
tum Turing Machine the advantage over the classical Turing machine� Also�
this superiority is not due to some theoretical property speci�c to �hyper�
computers�� which breaks in one way or another the �niteness condition by
implicitly assuming some form of unlimited computational resources� It is
also not a matter of complexity� the ability to solve problems much faster
than it is possible classically� This paper shows that quantum computers are
better than classical ones �whether deterministic or probabilistic� in terms
of computability �function evaluation� due to the power conferred to their
computations by the way they represent information at the physical level�

Classical physics is just a particular� trivial case of quantum mechanics�
Sometimes� information encoded in genuine quantum mechanical terms can�
not be successfully manipulated unless the computing device has the power
to process this information directly at the physical level used to represent
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it� The properties of the physical level chosen to embody information in
a computational model ultimately determine its computational capabilities
and power� The limitations of the classical Turing machine are therefore
purely physical� So� is a machine that computes following the principles of
quantum mechanics really more powerful than a computing device designed
in accord with classical physics� We think that the answer is de�nitely af�
�rmative� And the di	erence is made by those problems� de�ned in purely
quantum mechanical terms� whose quantum solutions are impossible to be
simulated classically�
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