
On the
Semantics of UML State Machines:

Categorization and Comparison

Technical Report 2005-501

Michelle L. Crane and Juergen Dingel
School of Computing
Queen’s University

Kingston, Ontario, Canada
crane@cs.queensu.ca

dingel@cs.queensu.ca

Abstract

Within Model Driven Development (MDD), state machines are a common mechanism for
modelling behaviour. The development of a formal semantics for UML state machines con-
tinues to be a very active and important area of research, because the development of inter-
operating MDD tools requires a precise, unambiguous, yet readable account of the meaning
of the diagrams. This paper is the result of a comparative literature survey on approaches
to formally capture the semantics of UML state machines; it categorizes and compares 26
different approaches. As a primary categorization, we use the underlying formalism of the
approaches, e.g., mathematical models, rewriting systems and translation approaches. We
also compare the approaches along several secondary dimensions, such as coverage of state
machine features, analysis and tool support. The purpose of this paper is to provide an
overview of the state of the art in the field and to identify open questions and promising
topics for future research.

i

Contents

Abstract i

Table of Contents ii

List of Tables iii

List of Figures iii

1 Introduction 1

2 Related Work 2

3 Categorization of Semantic Approaches 3
3.1 Mathematical Models . 3
3.2 Rewriting Systems . 4
3.3 Translation Approaches . 5
3.4 Overlap in Reference Set . 6

4 Comparison of Semantic Approaches 7
4.1 UML Coverage . 8
4.2 Analysis . 12
4.3 Tool Support . 13

5 Future Work and Conclusions 14

References 16

Appendices 24

A Overlap (Detailed) 24

B Details on Approaches 26

ii

List of Tables

1 Categorization of semantic approach references 6
2 Sub-category coverage of UML features . 10
3 Tool support for analyis . 13
4 Legend mapping alphabetic references to numeric references 25
5 UML state machine characteristic coverage legend 26

List of Figures

1 Primary categorization of semantic approaches for UML state machines . . . 3
2 Overlap between primary sub-categories . 6
3 UML state machine features . 9
4 Histogram showing which versions of UML are supported 12
5 Overlap between primary sub-categories (more detailed) 24

iii

1 Introduction

Model Driven Development (MDD) is a software development process that has been gaining
in popularity. MDD focuses on the models of a software system, which are transformed into
code. Within MDD, state machines are a common mechanism for modelling the behaviour of
model elements. The Unified Modeling Language (UML) has become the de facto industry
standard for general purpose modelling. UML is a visual modelling language with many
diagram types. One of these, UML statechart diagrams, can be used to model intra-object
behaviour, i.e., how individual model elements behave.

A common criticism of UML is that its semantics, especially with respect to behaviour,
are inadequate. The UML 2.0 standard [63] contains much detailed prose about semantics;
however, it does not adopt a formal notation to achieve a higher level of precision and clarity.
Nonetheless, it is recognized that a formal, unambiguous, yet readable account of UML’s
semantics would be very beneficial for UML and MDD by, for instance, highlighting problems
in the standard and enabling the development of powerful and interoperable analysis and
transformation tools for UML models.

There exists much published research relating specifically to semantic approaches applied
to UML in general and to state machines in particular. However, there has been little work
published on the categorization or comparison of these approaches. The wide variety of
approaches (using, for instance, Petri nets, labeled transition systems, concurrent regular
expressions, rewriting, and specification languages such as Z) complicates this task, but also
makes it all the more useful.

Providing an adequate, yet readable, formal account of UML represents a substantial
challenge to the formal methods and semantics research communities and brings up several
questions such as: ‘Which formalisms are most suitable to handle feature X in diagram type
Y?’ ‘Which formalisms support abstraction, analysis, and automation?’ ‘Which formalism is
most accessible to average users?’ This paper attempts to provide a somewhat comprehensive
and comparative overview of the state of the art in formalizing the behaviour of UML state
machines. Its goal is to facilitate future research on this topic by providing a starting point
and by formulating some useful observations and open questions.

Under the aegis of the UML 2.0 Semantics Project,1 this paper provides a categoriza-
tion and comparison of 26 different approaches to the semantics of state machines. The
approaches are grouped into primary categories, based on their underlying formalism. These
groups of approaches are then compared against several secondary dimensions. The purpose
of this paper is to provide a useful starting point with respect to learning about the semantics
of state machines. Readers will be able to focus on a particular formalism, analysis goal,
or state machine feature and determine which approaches, or types of approach, are most
suitable to their needs.

This paper assumes familiarity with UML state machines and their features. Moreover,
it will not provide any technical details on the surveyed formalisms themselves. Readers are

1http://www.cs.queensu.ca/stl/internal/uml2

1

encouraged to consult [63] for details about UML state machines and the referenced papers2

for more information on the approaches.
This paper is organized as follows: Section 2 briefly discusses related work and why

the semantics of classical statecharts cannot necessarily be applied to UML state machines.
Section 3 divides the surveyed approaches into three primary categories. Section 4 then
compares the semantic approaches along several secondary dimensions. Section 5 discusses
conclusions and future work.

2 Related Work

UML statechart diagrams are an object-oriented variant of classical statecharts, which have
evolved over the years since Harel first introduced the formalism [32]. Although much re-
search has been devoted to the semantics of classical statecharts ([34],[55], and [68] among
many others), these approaches cannot be simply applied to the semantics of UML statechart
diagrams. Even though the step semantics of classical statecharts has evolved from a ‘current
step’ to ‘next step’ philosophy,3 there are other factors which make the two statechart for-
malisms less than perfectly compatible with each other. For instance, the run-to-completion
assumption of UML states that an event can only be dispatched when the processing of the
previous event has been completed [63]; classical statecharts still allow simultaneous process-
ing of events. As another example, the implicit priority system between the two formalisms
is inverted. In UML, the priority of conflicting transitions is determined by the source of
the transitions and is ‘bottom-up’. In classical statecharts, priority is determined by the
overall scope of the transitions and is ‘top-down’. These and other syntactic and semantic
differences between the two formalisms are detailed in [22]. Due to these differences, exist-
ing semantic approaches for classical statecharts are not directly applicable to UML state
machines.

As stated earlier, there are few, if any, publications devoted to the categorization and/or
comparison of state machine semantic approaches. However, most research contains a ‘re-
lated work’ section, and several of these publications have been particularly useful. For
instance, [23] provides an orthogonal division of related work, including categories such as
‘level of UML coverage’ and ‘loose’ vs. ‘precise’ semantics. [37] discusses semantic ap-
proaches for UML as a whole, with categories such as ‘naive set-theoretic’, ‘meta-modelling’
and ‘translation’. [5] offers three categories of approach for applying a mathematical ba-
sis to object-oriented (OO) models: ‘supplemental’ (replacing informal notation with for-
mal); ‘OO-extension’ (extending existing formal method to object-orientation); and ‘method-
integration’ (integrating OO notation with appropriate formalism). Finally, as one of the

2In the main body of this paper, we have limited the number of references per approach to two; more
references are listed in Appendix B.

3Initial versions of the semantics allowed changes that occurred in a given step to take effect in the
same step; Harel subsequently changed this so that changes did not take effect until the next step [33].
This removed many of the paradoxes (such as instantaneous states and self-triggering transitions) discussed
in [82].

2

more recent publications, [40] provides an excellent overview of many different approaches.

3 Categorization of Semantic Approaches

The state machine formalizations can be distinguished in many different ways: mathemat-
ical vs. non-mathematical, textual vs. graphical, theoretical vs. practical application, etc.
Inspired by comparative surveys of semantics for programming languages, our initial inten-
tion was to categorize the approaches based on the type of semantics, e.g., denotational,
operational or axiomatic; however, it turned out that an overwhelming majority of the ap-
proaches we surveyed (24/26) were operational in nature. We have therefore chosen to use
the underlying formalism of the approaches as a primary dimension, with other interesting
dimensions to be used for comparison in Section 4. There are three broad categories of
underlying formalism, each with several sub-categories, as shown in Figure 1.

Model
Checking
Language

Specification
Language Other

Abstract
State

Machines

Transition
Systems Petri Nets Other

Graph
Rewriting

Term
Rewriting

Translation Approaches

Semantic Approaches

Mathematical Models Rewriting Systems

Figure 1: Primary categorization of semantic approaches for UML state machines

3.1 Mathematical Models

This category comprises semantic approaches which are based directly on standard mathe-
matical concepts and notations. The advantage of using a mathematical notation is that it
encourages precision and attention to detail, making it more likely that the resulting seman-
tics is complete and unambiguous. In principle at least, the notation should be accessible
to anybody with a standard mathematical background. However, it appears that most ap-
proaches in this category “fail to provide a high level of abstraction that can be properly
understood” [79] by users. In other words, the user is often expected to digest a prohibiting
amount of detail and notation.

Transition Systems In general, a transition system is a graph in which nodes represent
states and edges represent transitions between them. There are different flavours of
transition system, including Labeled Transition System (LTS), Kripke structure and
Symbolic Transition System.

3

Abstract State Machines An Abstract State Machine (ASM) basically consists of a set
of states and an iteratively applied update rule [41] and can be used, for instance,
for the operational description of algorithms [40]. Although ASMs can be considered
transition systems [12], we have kept the two formalisms separate, as in [79]. The
syntax of ASMs is reminiscent of a simple imperative programming language which
makes them quite accessible to users with a programming background. Analysis of
ASMs is also possible with tool support.

Petri Nets Petri nets are a well-studied and intuitive formalism that is both graphical and
mathematical. They consist of places, transitions, and arcs connecting them. Flow
through nets makes use of the concept of tokens. The execution of a Petri net involves
the firing of enabled transitions; tokens on places ‘before’ the transition are consumed
and tokens on places ‘after’ the transition are created. Numerous editing and analysis
tools are available and various extensions for different domains such as Generalized
Stochastic Petri Nets for performance analysis [59] exist.

Other Mathematical This sub-category holds other mathematical approaches which do
not make use of transition systems, ASMs or Petri nets. Example approaches include
coalgebraic representations and basic sets-and-relations formalisms.

3.2 Rewriting Systems

This category is geared towards pure rewriting systems, such as graph rewriting or term
rewriting. Rewriting systems can be considered as mathematical models [79] although we
have chosen to keep them as a separate category. A rewrite system typically consists of a set
of rewrite rules. Each rewrite rule consists of a left- and a right-hand side. The execution of a
rewrite system involves the repeated application of the rules to some ‘configuration’. In each
application, an occurrence of the left-hand side of a rule in the configuration is replaced by
the right-hand side. The execution terminates when no matching rule can be found anymore.
Rewrite systems are also well-studied and various kinds of tool support are available.

Graph Rewriting Graph rewriting (also called graph transformation) “provides a math-
ematically precise and visual specification technique by combining the advantages of
graphs and rules into a single computational paradigm” [79]. Graph rewriting ap-
proaches are a natural fit for state machines since there is no need to make the leap
from graphical notation to textual/mathematical formalism.

Term Rewriting Term rewriting is a similar concept to graph rewriting, except that the
rewrite rules are performed on terms rather than graphs. In the context of UML state
machines, a term represents a configuration (e.g., set of active states) and a rewrite rule
describes the relation between terms (e.g., transitions between state configurations).

4

3.3 Translation Approaches

This category contains approaches which rely on translating a UML state machine into
some other formal language, such as a specification language, the input language to a model
checker, or a programming language. Some of the approaches in this category can also
be classified as either mathematical models or rewriting systems. What distinguishes this
category from the other two is that these approaches are typically motivated not only by
a desire to formalize but also to analyze automatically, e.g., with model checking, theorem
proving, simulation, etc.

Model Checking Languages Model checking is a well-researched dynamic analysis method
in which systems are modelled as finite state models. Temporal logic can then be used
to define properties and the models are checked to verify whether these properties
hold. Approaches listed in this sub-category typically have model checking as their
final goal and they transform UML state machines into a language designed for such
analysis, such as SMV or PROMELA/SPIN. A disadvantage of this sub-category is
that the semantic model and the verification model are not the same, because model
checking languages are not truly formal languages [21, 75]. For example, an approach
may use LTS to define the semantic model and then translate that to PROMELA for
the validation model.

Specification Languages Several approaches attempt to inject formalism into UML state
machines by translating them into an already formalized specification language, such
as Z or PVS. Other specification languages that we have seen mention of include:
CASL [72], LOTOS [35], Object-Z [42], and RSL [58].

Other Translation This sub-category is a catch-all, currently containing one approach that
translates state machines to concurrent regular expressions ([39]) and two approaches
that translate state machines into axiomatic systems ([49] and [4]); these last two are
the only non-operational semantic approaches that we discovered.

We are restricting ourselves to these three sub-categories; however, other appropriate
sub-categories would be:

Programming Languages Approaches here would essentially generate code from UML
statechart diagrams. [74, 44] is an example of this category, translating to Java.

Internal Representations Although little published research exists for this sub-category,
it is nevertheless interesting. Here, approaches translate UML statechart diagrams to
internal representations of tools, such as Rose RT, Rhapsody, etc. These two last are
large, commercial, tools, but there exist many less well-known tools which allow for
code generation, simulation, and analysis of UML statechart diagrams.

5

3.4 Overlap in Reference Set

The primary categorization provided here is not orthogonal. For instance, graph rewriting
can be considered mathematically precise [79]. In addition, some approaches fit comfortably
into more than one category, especially since several make use of more than one underlying
formalism. Figure 2 shows the number of approaches in each sub-category and their overlaps.
These overlaps represent our current set of references; additional references may cause new
overlaps. Figure 5 in Appendix A shows a larger, more detailed, version of this overlap
diagram.

Figure 2: Overlap between primary sub-categories, based on current set of references. Each F represents
a surveyed approach

Our set of references contains 35 primary approach-specific publications, covering 26
separate semantic approaches to formalizing UML state machines. These references are
listed in Table 1, according to how they relate to the primary categorization. Note that
some approaches are listed more than once, reflecting the overlap between sub-categories as
shown in Figure 2. In addition to the primary publications (maximum of two per approach),
several approaches also have secondary references; these are included in the approach details
in Appendix B.

Table 1: Categorization of semantic approach references
Category/Sub-Category References (one approach per cell)

Mathematical Models
Abstract State Machines [12] [21][75] [40] [41]
Transition Systems [23] [26] [30][51] [47] [72][70] [83]
Petri Nets [8] [10][59] [43]
Other [15][14] [28] [57]

Rewriting Systems
Graph Rewriting [8] [25] [31][45] [79]
Term Rewriting [47] [53][54]

Translation Approaches
Specification Languages [5] [72] [85][84]
Model Checking Languages [21][75] [30][51] [47] [53][54] [74][44]
Other [4] [39] [49]

6

4 Comparison of Semantic Approaches

In addition to separating the semantic approaches along a primary dimension, i.e., underlying
formalism, we also compared the approaches along several secondary dimensions. Due to
space considerations, we will restrict ourselves to the following dimensions, which are of
particular relevance to MDD:

UML Coverage All of the approaches are geared towards UML state machines; however,
they vary widely as to which of the state machine features are actually covered.

Analysis Some approaches focus solely on providing a semantics for state machines; others
provide a semantics and then continue on with analysis, such as model checking.

Tool Support Many approaches make use of or refer to some type of tool support. Some
make use of pre-existing tools, e.g., for graph transformation or Petri net analysis,
while others include the development of specific tools.

Obviously, there are many other dimensions along which the approaches can be compared.
Additional dimensions of interest to MDD include:

Integration Some approaches focus specifically on statechart diagrams, while others are
geared towards UML models in general, with only minor attention being paid to the
state machines. Some of these approaches discuss model integration, i.e., how the
meaning of different diagrams can be combined; others examine the issue of semantics
for the entire set of diagrams from a higher level.

Multiple State Machines Most approaches dealt single state machines, i.e., no commu-
nication between objects was necessary. A very few approaches made use of commu-
nicating state machines, representing multiple objects.

Understandability In order for a user to fully make use of the benefits of a formalism,
they are often required to learn the intricacies of that formalism. For example, Z
specifications are all but incomprehensible to the novice user. Some approaches focus
on formalisms which are more accessible to novices, such as ASMs or graph grammars.
Other approaches use formalisms which require more expert knowledge, such as Z
specifications, transition systems or axiomatic systems.

Additional dimensions not specifically related to MDD requirements include:

Intermediate Formalism Several approaches made use of an intermediate formalism or
format, such as representing state machines as Extended Hierarchical Automata.

UML Version Which version of UML was used for an approach is relevant; various changes
to the UML standard over the years might make an older approach more or less suitable
with respect to the UML 2.0 specification.

7

Level of Detail Approaches can be compared in terms of how detailed their publications
are—detailed enough to reproduce the work or very high level.

Examples Some approaches made very good use of illustrative examples; others had no ex-
amples at all. A few approaches exclusively used examples to illustrate their approach;
others made use of examples in addition to a formal explanation.

Potential Impact This dimension simply refers to how well-cited a particular approach is.
For example, some approaches are obviously key works, as they are continually cited by
other authors, e.g., [51], [31] and [54]. A measure of popularity is no indication of the
overall quality or merit of a particular approach, but it can be a measure of acceptance
and impact within the community. In addition, the confidence in a particular approach
can be affected by where its references are published. For instance, an unpublished
manuscript may inspire less confidence than a publication in a well-known journal.

4.1 UML Coverage

The viability of a particular semantic approach should depend in part upon how well it
addresses the features of UML state machines. Figure 3 lists most of the features of UML
2.0 state machines. This list includes most of the features of behavioral state machines
according to [63] and gives a general idea of which features are best covered by our set
of semantic approaches. The following features are not included: submachines, entry/exit
pseudostates (submachines are syntactic sugar—they can be represented by replacing the
submachine state with the machine that it represents); terminate pseudostates (new to UML
2.0); object creation/destruction and state machine extension (more complicated issues and
not mentioned in many approaches); specific details with respect to event triggers, guards
or actions (approaches either do not mention these details, or impose various restrictions,
such as only call events, only signal events, only one event per transition, only one action
per transition, guards with no conditions dependent on attributes, etc.).

8

Figure 3: UML state machine features, ordered by coverage level. The features at the top are specifically
covered by all or a majority of approaches; those at the bottom are specifically covered by few
approaches. Most approaches are quite explicit with respect to which features they do or do not
cover (shown by the black and grey segments in the figure. However, some approaches are too
high-level or do not give enough detail (as shown by the white segments in the figure). Specific
coverage information for each approach is detailed in Appendix B

The following conclusions can be drawn from the information summarized in Figure 3:

• While all approaches support the concept of simple states and basic transitions with
some type of event trigger, not all approaches extend to more complicated transitions
containing guards and/or actions.

• Almost 70% of approaches allow for composite states, i.e., AND- and OR- states.
Interestingly enough, almost every approach which attempted to deal with OR- states
also dealt with AND- states.

9

• 15% of approaches did not allow for any composite states, negating the state machine
concepts of hierarchy and concurrency. Eliminating composite states also eliminates
support of interlevel transitions (transitions between levels in a state machine hierar-
chy), completion events/transitions (triggered when a composite state has completed
its execution) and history (only used with composite states).

• Almost 30% of approaches allowed for shallow and/or deep history; only one of these
approaches supported shallow history but not deep history.

• The features in the bottom half of Figure 3 can be seen to represent the more ‘compli-
cated’ features. Between 30% and 50% of approaches specifically do not support these
features. Another 30% to 40% do not provide enough detail to determine whether or
not they provide support; however, the probability is low. It should be noted that
while some approaches claim to cover a particular feature, close inspection of the pa-
pers often casts some doubt. This may be due to a lack of detail or clarity in the
description of the treatment of that feature. Consider, for instance, the discussion on
page 11 with respect to dynamic choice.

In addition to examining how the approaches as a whole fared with respect to the cov-
erage of UML state machine features, we were also interested in how families of approaches
measured up. Instead of looking at all features however, we chose five of the more interest-
ing features. Table 2 displays the results of this comparison of primary sub-categories vs.
specific features. Four of the features are purely syntactic: composite states (OR- and/or
AND-states), history pseudostates (shallow and/or deep), junction (static choice) and choice
(dynamic choice). The fifth feature, priority, refers to whether or not the family of approaches
deals with the concept of the implicit priority scheme of UML state machines. In short, the
priority of conflicting transitions in UML state machines is determined by the source state
of the transition (bottom-up). On the other hand, the classical statecharts formalism uses a
top-down priority, based on the scope of the transition.

Table 2: Sub-category coverage of UML features

The following conclusions can be determined by the information summarized in Table 2:

• None of the Petri net approaches addresses any of these five features. Further exam-
ination of these approaches indicates that they are approaches which formalize UML

10

models as a whole, of which the state machines are but a small part. It might be the
case that researchers have simply not expanded the formalism to handle these more
interesting features. Consequently, the lack of coverage by these approaches does not
necessarily point to a fundamental limitation, but more likely to a conscious decision
by the authors to emphasize the treatment of different diagram types rather than all
state machine features.

• Neither graphical approaches, i.e., Petri nets and Graph Rewriting, seem particularly
suitable for modelling these specific features. However, intuition suggests that they
would be more suitable for modelling a visual language.

• While Petri net approaches provide the least amount of coverage, ASM approaches
provide the most, with at least some of the ASM approaches claiming to cover each of
these five features.

• Regardless of the type of approach used, dynamic choice is poorly addressed across
the board. Only two approaches actually claim to support choice. However, one
approach [40] does not allow for variables, which means that choice pseudostates are
no different from junction pseudostates. The other approach [39] claims to support
choice but there are not enough details to determine whether or not this choice is
actually static or dynamic.

• Junction is another feature which is not particularly well covered by any family of
approach. Many approaches do not refer to this feature at all. [12] and [54, 53] treat
junction as syntactic sugar. [72] models a restricted junction, i.e., a junction is used
to eliminate multiple transitions with the same trigger leaving one state. In addition,
two approaches ([54, 53] and [74, 44]) draw junction as a diamond, i.e., the symbol for
choice.4

• Priority is reasonably well covered, at least by most of the sub-categories. Two ap-
proaches ([26] and [30, 51]) make use of a parameterized priority scheme, which allows
for either a bottom-up or top-down priority.

• There is exactly one approach [40] which handles all five of these features; however, as
discussed above, the support for dynamic choice does not allow for variables. However,
this approach is one of only a handful which support a great majority of the state
machine features. In addition to [40], four other approaches cover a majority of the
features: [12] (Abstract State Machine, missing fork/join); [28] (Other Math, miss-
ing junction/choice); [53, 54] (Term Rewriting and Model Checking Language, missing
choice, junctions translated to simpler constructs); and [74, 44] (Model Checking Lan-
guage, missing internal transitions, choice, syntactic difference with junction).

4It should be noted that junction is represented by a filled circle. Up until UML 2.0, choice was repre-
sented by an empty circle; it is now represented by a diamond. The diamond is used in activity diagrams;
before UML 2.0, activity diagrams were considered a special type of statechart diagram.

11

Another way of looking at coverage is to consider the version of UML that approaches are
covering. The histogram in Figure 4 indicates that a majority of approaches refer to UML
1.3, i.e., around 1999-2000. Although there are only two approaches that cover UML 2.0
([28] and [85, 84]), many of the older approaches are still applicable because there have
been few significant changes to the syntax and semantics of state machines. Minor changes
include the replacement of ‘event’ by ‘event occurrence’ and ‘action’ by ‘behavior’. A few
new constructs have also been added, but they relate to the concept of sub-machines, which
are not normally considered by the semantic approaches. The essence of state machines has
remained unchanged.

Figure 4: Histogram showing which versions of UML are supported

4.2 Analysis

In our reference set of approaches, the following types of analysis for UML state machines
were discussed:

Syntax Checking Syntax checking can be performed against the UML meta-model, e.g.,
confirming that each transition has at least one source state and target state. Approach:
[75].

Well-Formedness Checking Well-formedness (also known as static semantics) checking
can be performed against the UML specification’s Object Constraint Language (OCL)
constraints, e.g., checking that transitions leaving pseudostates do not have triggers
(events). Approach: [75].

Consistency Checking There are several ways of checking consistency. It is possible to
check that a state machine satisfies assertions on its related class diagram, e.g., [4].

12

More common is consistency checking of a state machine against interaction diagrams,
e.g., [10] and [74, 44]. Another form of consistency checking is suggested by [49], where
the state machines of various interacting classes can be checked for consistency with
each other.

Model Checking Model checking is a dynamic analysis, performed on finite state models of
systems. In this context, it can be used to determine whether key properties (expressed
in temporal logic) hold for all executions of a particular state machine, e.g., liveness,
reachability, deadlock, fairness, etc. One advantage of model checking is its ability to
return a counter-example when a property is violated. Another advantage is the fact
that it is a mature field, with many well-designed tools. Approaches: [10], [30], [47],
[53, 54], [74, 44], [75].

Animation Although not a formal analysis method, animation (simulation, execution) of a
state machine can be used by the developer to ensure that a particular state machine
behaves as expected. Approaches: [4], [40].

4.3 Tool Support

Although it is possible to perform some analysis of state machines manually (e.g., syntax
checking), it is obviously much more convenient to automate analysis tasks. Several ap-
proaches make use of pre-existing tools, for instance, by extending or adapting a current
tool. Several other approaches design their own specific tools or toolsets.

Table 3 lists which tools have been used by which approaches, and for which types of
analysis. More information about how approaches uses these tools can be found in Appen-
dix B.

Table 3: Tool support for analysis. Some approaches adapt or extend a pre-existing tool, while others
create tools specific to their approach

Analysis Tool Based On/Using Approach
Editing Moses [27] [40]

JACK editor [13] [30]
F-Developer [4] [4]

Syntax (vs. metamodel) unnamed XASM [3] [75]
Well-formedness (vs. OCL) unnamed XASM [3] [75]
Consistency unnamed GreatSPN-to-PROD [24] [10]

HUGO [74] SPIN [36] [74, 44]
F-Verifier [4] HOL [2] [4]

Model checking unnamed SMV [56] [75]
unnamed SMV [56] [47]
unnamed PROD [78] [10]

JACK [13]/AMC [30]
HUGO [74] SPIN [36], UPPAAL [50] [74, 44]
vUML [54] SPIN [36] [54, 53]

Animation/Simulation Moses [27] [40]
F-Prototyper [4] ML [65] [4]

13

5 Future Work and Conclusions

This paper represents an attempt to categorize and compare the numerous approaches that
exist for formalizing UML state machines. By no means can it be considered a complete
overview; although we have made an attempt to cover a broad range of approaches, there
are simply too many approaches in the research literature to cover them all. Moreover, our
categorization is also not definitive. Alternative ways to group the approaches, perhaps using
different dimensions, are conceivable.

In addition to the conclusions already listed, we suggest that several other conclusions
can be drawn from this research:

• The translation of state machines to model checking languages is a popular approach.
In this case, the result may not be as formal as a purely mathematical approach, but
the end result is a system which can be analyzed automatically.

• Transition systems, and especially Abstract State Machines, are another popular for-
malism. These systems intuitively match the concept of state machines, i.e., states of
some sort with transitions between them.

• While all approaches handle the basic concept of states and transitions, very few ap-
proaches handle the entire range of UML state machine features. In fact, there exists
some doubt as to whether any one approach can formalize all of a state machine’s
features.

• Because UML is a visual notation, our original intuition was that graphical approaches,
i.e., graph rewriting and Petri nets, would prove to be most useful. However, neither of
these sub-categories fares well in terms of coverage with respect to UML state machine
features.

Apart from the above direct observations, there are a number of open research questions
and issues that can be distilled from the results of our study:

• Petri net approaches provide the least amount of coverage. Does this indicate an
inherent limitation in the formalism (doubtful) or have the current approaches simply
not taken the formalism as far as possible?

• Dynamic choice is the least covered state machine feature. Are there any approaches
that successfully cover dynamic choice? Is this because it is difficult to capture formally,
or because it is perceived as not interesting, i.e., infrequently used by modellers?

• As already mentioned, some of the state machine features are nothing more than syn-
tactic sugar; e.g., entry/exit actions could be replaced with actions along the incom-
ing/outgoing transitions (which would also eliminate the necessity for internal tran-
sitions). Exactly which features can be eliminated as syntactic sugar? What is the
“core” of the UML state machine?

14

• The integration of different models is a crucial research issue for MDD. However, it
currently seems poorly studied (with [15] as a notable exception). The question is,
once suitable semantics for the different diagram types in UML have been found,
how can they be integrated such that a single picture of the entire system emerges
that encompasses all the different views? Which formalisms lend themselves to such
an integration? How can the relationships between entities in different diagrams be
specified?

Acknowledgements

This research is supported by the Natural Sciences and Engineering Research Council of
Canada, Communications and Information Technology Ontario, and the IBM Centers for
Advanced Studies.

15

References

[1] Omega web site. http://www-omega.imag.fr/.

[2] University of Cambridge Computer Laboratory: The HOL System Description, revised
edition, 1991.

[3] M. Anlauff. XASM- an extensible, component-based abstract state machines language.
In Proceedings of Abstract State Machine Workshop, 2000.

[4] T. Aoki, T. Tateishi, and T. Katayama. An axiomatic formalization of UML models. In
Practical UML-Based Rigorous Development Methods - Countering or Integrating the
eXtremists. Workshop of the pUML-Group held together with UML 2001, volume P-7
of LNI, pages 13–28. German Informatics Society, 2001.

[5] D.B. Aredo. Semantics of UML statecharts in PVS. Research Report 299, Department
of Informatics, University of Oslo, 2000.

[6] ARTIS s.r.l. Artifex 3.1 - tutorial, 1994. Torino, Italy.

[7] L. Baresi, A. Orso, and M. Pezzè. Introducing formal methods in industrial practice. In
Proceedings of the 20th International Conference on Software Engineering, pages 55–66.
ACM Press, 1997.

[8] L. Baresi and M. Pezzè. On formalizing UML with high-level Petri nets. In Proceedings
of Concurrent Object-Oriented Programming and Petri Nets, volume 2001 of Lecture
Notes in Computer Science, pages 271–300. Springer, 2001.

[9] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre, H. Rueß, J. Rushby, V. Rusu,
H. Säıdi, N. Shankar, E. Singerman, and A. Tiwari. An overview of SAL. In Proceedings
of the 5th NASA Langley Formal Methods Workshop, pages 187–196, 2000.

[10] S. Bernardi, S. Donatelli, and J. Merseguer. From UML sequence diagrams and state-
charts to analysable Petri net models. In Proceedings of the 3rd International Workshop
on Software and Performance (WOSP’02), pages 35–45. ACM Press, 2002.

[11] R.V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison
Wesley, 2000.

[12] E. Börger, A. Cavarra, and E. Riccobene. Modeling the dynamics of UML state ma-
chines. In Proceedings of the International Workshop on Abstract State Machines, The-
ory and Applications, volume 1912 of Lecture Notes in Computer Science, pages 223–241.
Springer, 2000.

[13] A. Bouali, S. Gnesi, and S. Larosa. The integration project for the JACK environment,
Bull. EATCS, 54:207–223, 1994. http://rep1.iei.pi.cnr.it/projects/JACK (The
Home Page of JACK).

16

[14] R. Breu, R. Grosu, F. Huber, B. Rumpe, and W. Schwerin. Systems, views and models
of UML. In The Unified Modeling Language, Technical Aspects and Applications, pages
93–109. Physica Verlag, 1998.

[15] R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Rumpe, and V. Thurner.
Towards a formalization of the Unified Modeling Language. In Proceedings of the 11th
European Conference on Object-Oriented Programming (ECOOP’97), volume 1241 of
Lecture Notes in Computer Science, pages 344–366. Springer, 1997.

[16] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T.F. Gritzner, and R. We-
ber. The design of distributed systems - an introduction to FOCUS.
Technical Report SFB 342/2/92 A, Technische Universität München, 1993.
http://www4.informatik.tu-muenchen.de/reports/TUM-I9202.ps.gz.

[17] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN-1.7 - graphical
editor and analyzer for timed and stochastic Petri nets. Performance Evaluation, 24(1-
2):47–68, 1995.

[18] S. Christensen, J.B. Joergensen, and L.M. Kristensen. Design/CPN - a computer tool
for coloured Petri nets. Lecture Notes in Computer Science, 1217, 1997.

[19] G. Ciardo, J. Muppala, and K. Trivedi. SPNP: Stochastic Petri net package. In Proceed-
ings of the 3rd International Workshop on Petri Nets and Performance, pages 142–151,
1989.

[20] K. Compton, Y. Gurevich, J. Huggins, and W. Shen. An automatic verification tool for
UML. Technical Report CSE-TR-423-00, University of Michigan, 2000.

[21] K. Compton, J.K. Huggins, and W. Shen. A semantic model for the state machine in the
Unified Modeling Language. In Dynamic Behaviour in UML Models: Semantic Ques-
tions, Workshop Proceedings, UML 2000 Workshop. Ludwig-Maximilians-Universität
München, Institut für Informatik, 2000.

[22] M.L. Crane and J. Dingel. UML vs. Classical vs. Rhapsody statecharts: Not all models
are created equal. In Proceedings of the 8th International Conference on Model Driven
Engineering Languages and Systems (MoDELS/UML 2005) (to appear), 2005.

[23] W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: A formal
semantics of concurrency and communication in real-time UML. In Formal Methods
for Components and Objects, volume 2852 of Lecture Notes in Computer Science, pages
71–98. Springer, 2003.

[24] S. Donatelli and L. Ferro. Validation of GSPN and SWN models through the PROD
tool. In Proceedings of the 12th International Conference on Modeling Techniques and
Tools, volume 2324 of Lecture Notes in Computer Science. Springer, 2002.

17

[25] G. Engels, J.H. Hausmann, R. Heckel, and S. Sauer. Dynamic meta modeling: A graph-
ical approach to the operational semantics of behavioral diagrams in UML. In Proceed-
ings of the 3rd International Conference on the Unified Modeling Language (UML 2000),
volume 1939 of Lecture Notes in Computer Science, pages 323–337. Springer, 2000.

[26] R. Eshuis and R. Wieringa. Requirements-level semantics for UML statecharts. In
Proceedings of Formal Methods for Open Object-Based Distributed Systems FMOODS,
pages 121–145. Kluwer Academic Publishers, 2000.

[27] R. Esser and J.W. Janneck. Moses: A tool suite for visual modeling of discrete-event
systems. In Symposia on Human-Centric Computing, pages 272–279. IEEE Computer
Society, 2001.

[28] H. Fecher, M. Kyas, and J. Schönborn. Semantic issues in UML 2.0 state machines.
Technical Report 0507, Christian-Albrechts-Universität zu Kiel, 2005.

[29] V.K. Garg and M.T. Ragunath. Concurrent regular expressions and their relationship
to Petri nets. Theoretical Computer Science, 96:285–304, 1992.

[30] S. Gnesi, D. Latella, and M. Massink. Modular semantics for a UML statecharts dia-
grams kernel and its extension to multicharts and branching time model-checking. The
Journal of Logic and Algebraic Programming, 51:43–75, 2002.

[31] M. Gogolla and F. Parisi-Presicce. State diagrams in UML: A formal semantics us-
ing graph transformations. In Proceedings of the Workshop on Precise Semantics for
Modelling Techniques (PSMT’98), pages 55–72. Technische Universität München, TUM-
I9803, 1998.

[32] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, 1987.

[33] D. Harel. Some thoughts on statecharts, 13 years later. In Proceedings of the 9th
International Conference on Computer Aided Verification (CAV’97), volume 1254 of
Lecture Notes in Computer Science, pages 226–231. Springer, 1997.

[34] D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: the STATEMATE
Approach. McGraw-Hill, 1998.

[35] Bogumila Hnatkowska and Zbigniew Huzar. Transformation of dynamic aspects of
UML models into LOTOS behaviour expressions. International Journal of Applied
Mathematics and Computer Science, 11(2):537–556, 2001.

[36] G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, 1997.

18

[37] H. Hussmann. Loose semantics for UML, OCL. In Proceedings of the 6th World Con-
ference on Integrated Design and Process Technology (IDPT 2002). Society for Design
and Process Science, 2002.

[38] J.W. Janneck and P.W. Kutter. Mapping automata - simple abstract state machines.
Technical Report 49, Computer Engineering and Networks Laboratory, ETH Zurich,
1998.

[39] S. Jansamak and A. Surarerks. Formalization of UML statechart models using con-
current regular expressions. In Proceedings of the 27th Australasian Computer Science
Conference (ACSC 2004), volume 26 of CRPIT, pages 83–88. Australian Computer
Society, 2004.

[40] Y. Jin, R. Esser, and J.W. Janneck. A method for describing the syntax and semantics
of UML statecharts. Software and Systems Modeling, 3(2):150–163, 2004.

[41] J. Jürjens. A UML statecharts semantics with message-passing. In Proceedings of the
2002 ACM Symposium on Applied Computing (SAC’02), pages 1009–1013. ACM Press,
2002.

[42] S-K. Kim and D. Carrington. A formal metamodeling approach to a transformation
between the UML state machine and object-Z. In Proceedings of the International
Conference on Formal Engineering Methods, volume 2495 of Lecture Notes in Computer
Science, pages 548–560. Springer, 2002.

[43] P. King and R. Pooley. Using UML to derive stochastic Petri net models. In Proceed-
ings of the 15th UK Performance Engineering Workshop (UKPEW’99), pages 45–56.
Department of Computer Science, The University of Bristol, 1999.

[44] A. Knapp and S. Merz. Model checking and code generation for UML state machines
and collaborations. In Proceeding of the 5th Workshop on Tools for System Design and
Verification (FM-TOOLS 2002), Report 2002-11. Institut für Informatik, Universität
Augsburg, 2002.

[45] S. Kuske. A formal semantics of UML state machines based on structured graph trans-
formation. In Proceedings of the 4th International Conference on the Unifed Modeling
Language (UML 2001), volume 2185 of Lecture Notes in Computer Science, pages 241–
256. Springer, 2001.

[46] S. Kuske, M. Gogolla, R. Kollmann, and H.-J. Kreowski. An integrated semantics for
UML class, object and state diagrams based on graph transformation. In Proceedings
of the 3rd International Conference on Integrated Formal Methods (IFM 2002), volume
2335 of Lecture Notes in Computer Science, pages 11–28. Springer, 2002.

[47] G. Kwon. Rewrite rules and operational semantics for model checking UML state-
charts. In Proceedings of the 3rd International Conference on the Unified Modeling

19

Language (UML 2000), volume 1939 of Lecture Notes in Computer Science, pages 528–
540. Springer, 2000.

[48] K. Lano. Logical specification of reactive and real-time systems. Journal of Logic and
Computation, 8(5):679–711, 1998.

[49] K. Lano, J. Bicarregui, and A. Evans. Structured axiomatic semantics for UML models.
In Rigorous Object-Oriented Methods (ROOM 2000). Electronic Workshops in Comput-
ing (eWiC), 2000.

[50] K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[51] D. Latella, I. Majzik, and M. Massink. Automatic verification of UML statechart di-
agrams using the SPIN model-checker. Formal Aspects of Computing, 11(6):637–664,
1999.

[52] D. Latella, I. Majzik, and M. Massink. Towards a formal operational semantics of UML
statechart diagrams. In Proceedings of the 3rd International Conference on Formal
Methods for Open Object-Based Distributed Systems (FMOODS’99), pages 331–347.
Kluwer, 1999.

[53] J. Lilius and I. Porres Paltor. Formalising UML state machines for model checking. In
Proceedings of The Unified Modeling Languge (UML’99), volume 1723 of Lecture Notes
in Computer Science, pages 430–445. Springer, 1999.

[54] J. Lilius and I. Porres Paltor. vUML: A tool for verifying UML models. In Proceedings of
the 14th IEEE International Conference on Automated Software Engineering (ASE’99),
pages 255–258. IEEE Computer Society, 1999.

[55] A. Maggiolo-Schettini and A. Peron. A graph rewriting framework for statecharts se-
mantics. In Proceedings of the International Conference on Graph Grammars (GRA-
GRA), volume 1996 of Lecture Notes in Computer Science, pages 107–121. Springer,
1996.

[56] K. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem.
Kluwer Academic, 1993.

[57] S. Meng, Z. Naixiao, and L.S. Barbosa. On semantics and refinement of UML stat-
echarts: a coalgebraic view. In Proceedings of the 2nd International Conference on
Software Engineering and Formal Methods (SEFM 2004), pages 164–173. IEEE Com-
puter Society, 2004.

[58] Sun Meng, Zhang Naixiao, and Bernhard K. Aichernig. The formal foundations in RSL
for UML statechart diagrams. Technical Report 299, The United Nations University
International Institute for Software Technology (UNU/IIST), 2004.

20

[59] J. Merseguer, J. Campos, S. Bernardi, and S. Donatelli. A compostional semantics
for UML state machines aimed at performance evaluation. In Proceedings of the 6th
International Workshop on Discrete Event Systems, pages 295–302. IEEE Computer
Society Press, 2002.

[60] E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical automata as model for statecharts.
In Proceedings of the Asian Computing Science Conference (ASIAN ’97), volume 1345
of Lecture Notes in Computer Science, pages 181–196. Springer, 1997.

[61] P.D. Mosses. CoFI: The common framework initiative for algebraic specification and de-
velopment. In Proceedings of TAPSOFT ’97, volume 1214 of Lecture Notes in Computer
Science. Springer, 1997.

[62] OMG. OMG UML specification. Technical Report ad/99-06-08, Object Management
Group, 1997. Version 1.3.

[63] OMG. UML 2.0 superstructure specification. Technical Report ptc/04-10-02, Object
Management Group, 2004.

[64] S. Owre, N. Shankar, J. Rushby, and D.W. Stringer-Calvert. PVS language reference,
version 2.3. Technical report, Computer Science Laboratory, 1999.

[65] L.C. Paulson. ML for the Working Programmer. Cambridge University Press, 1996.

[66] M. Pezzè. Cabernet: A customizable environment for the specification ande analysis
of real-time systems. Technical report, Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Italy, 1994.

[67] G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, Aarhus University, Computer Science Department, 1981.

[68] A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. In Pro-
ceedings of the International Conference on Theoretical Aspects of Computer Software
(TACS’91), volume 526 of Lecture Notes in Computer Science, pages 244–264. Springer,
1991.

[69] G. Reggio. An “extreme” approach to metamodelling. Technical report, DISI, Università
di Genova, Italy, 2002.

[70] G. Reggio. Metamodelling behavioural aspects: the case of the UML state machines
(complete version). Technical report, DISI - Università di Genova, Italy, 2002.

[71] G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. A CASL formal definition of
UML active classes and associated state machines. Technical Report DISI-TR-99-16,
DISI-Università di Genova, Italy, 1999.

21

[72] G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML active classes
and associated state machines - a lightweight formal approach. In Proceedings of Fun-
damental Approaches to Software Engineering (FASE 2000), volume 1783 of Lecture
Notes in Computer Science, pages 127–146. Springer, 2000.

[73] J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249:3–80, 2000.

[74] T. Schäfer, A. Knapp, and S. Merz. Model checking UML state machines and collabora-
tions. In Electronic Notes in Theoretical Computer Science, volume 55. Elsevier, 2001.
Issue 3.

[75] W. Shen, K. Compton, and J. K. Huggins. A toolset for supporting UML static and dy-
namic model checking. In Proceedings of the 26th International Computer Software and
Applications Conference (COMPSAC 2002), pages 147–152. IEEE Computer Society,
2002.

[76] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series
in Computer Science, 2nd edition, 1992.

[77] I. Traoré. An outline of PVS semantics for UML statecharts. Journal of Universal
Computer Science, 6(11):1088–1108, 2000.

[78] K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo. PROD reference manual.
Techical Report Series B, Number 13, Helsinki University of Technology, 1995.

[79] D. Varró. A formal semantics of UML Statecharts by model transition systems. In
Proceeding of the 1st International Conference on Graph Transformation (ICGT 2002),
volume 2505 of Lecture Notes in Computer Science, pages 378–392. Springer, 2002.

[80] D. Varró. Towards symbolic analysis of visual modelling languages. In Proceedings of
the International Workshop on Graph Transformation and Visual Modelling Techniques,
volume 72 of Electronic Notes in Theoretical Computer Science, pages 57–70. Elsevier,
2002.

[81] D. Varró, G. Varró, and A. Pataricza. Designing the automatic transformation of visual
languages. Science of Computer Programming, 44(2):205–227, 2002.

[82] M. von der Beeck. A comparison of statecharts variants. In Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT’94), volume 863 of Lecture Notes in
Computer Science, pages 128–148. Springer, 1994.

[83] M. von der Beeck. A structured operational semantics for UML-statecharts. Software
and Systems Modeling, 1(2):130–141, 2002.

22

[84] X. Zhan and H. Miao. An approach to formalizing the semantics of UML statecharts.
In Proceeding of the 23rd International Conference on Conceptual Modeling (ER 2004),
volume 3288 of Lecture Notes in Computer Science, pages 753–765. Springer, 2004.

[85] X. Zhan, H. Miao, and L. Liu. Formalizing the semantics of UML statecharts with
Z. In Proceedings of the 4th International Conference on Computer and Information
Technology (CIT ’04), pages 1116–1121. IEEE Computer Society, 2004.

23

A Overlap (Detailed)

Similar to Figure 2, Figure 5 shows the overlap between primary sub-categories; however,
this figure notes exactly which references populate which overlapping sections. This overlap
diagram also contains more information, such as a ‘Translation to: Programming Language’
primary sub-category, as well as a ‘Meta-Modelling’ secondary dimensions. Alphabetized
references are used in the figure; their correspondence with the numerical references used in
this document is listed in Table 4.

Figure 5: Overlap between primary sub-categories, based on current set of references. Approaches are indi-
cated with alphabetic references; Table 4 shows the mapping between these alphabetic references
and the numeric references used elsewhere in this document

24

Table 4: Legend mapping alphabetic references to numeric references
Alphabetic Numeric Alphabetic Numeric

[Are00][Tra00] [5][77] [JEJ04] [40]
[ATK01] [4] [JS04] [39]
[BCR00] [12] [Jur02] [41]
[BDM02][MCBD02] [10][59] [KP99] [43]
[BHH+97][BGH+98] [15][14] [Kwo00] [47]
[BP01] [8] [LBE00] [49]
[CHS00][CGHS00][SCH02] [21][20][75] [LP99a][LP99b] [54][53]
[DJPV03] [23] [RACH00][Reg02] [72][70]
[EHHS00] [25] [SKM01][KM02] [74][44]
[EW00] [26] [SZB04] [57]
[FKS05] [28] [Var02] [79]
[GLM02][LMM99a][LMM99b] [30][51][52] [vdB02] [83]
[GPP98][Kus01][KGKK02] [31][45][46] [ZML04][ZM04] [85][84]

25

B Details on Approaches

The material presented thus far is a high-level compilation of details gleaned from the pub-
lications for each approach. This appendix presents each approach in more detail, providing
a brief summary of the approach, as well as a detailed examination of how each approach
handles the UML state machine characteristics listed in Figure 3. The legend in Table 5
explains the symbols used to describe how well each characteristic is supported.

Table 5: UML state machine characteristic coverage legend
Symbol Description
 supported, with little or no difference from UML 2.0 specification
¯ supported, with considerable difference from UML 2.0 specification
⊗ definitely not supported (direct evidence)
® presumably not supported (indirect evidence)
unknown; not enough evidence to determine

The following points should be noted:

1. The level of coverage has been determined based on the information in the cited refer-
ences. Where more than one reference is provided, the ‘best’ coverage level is used.

2. The provided information includes the following:

• List of publications: the first one or two publications are primary references and
have been used in the categorization and comparison presented in the main doc-
ument. Supporting, or secondary, publications are listed in italics.

• Brief summary: a high-level synopsis of the approach is presented; readers are
encouraged to consult the cited publications for more information.

• Coverage table: the level of coverage for each UML state machine characteristic
is presented.

3. Support (), or partial support (¯), was either explicitly noted in the publication, or
implicitly derived from provided examples.

4. Definite lack of support (⊗) was explicitly noted in the publication.

5. Assumed lack of support (®) was derived from information in the publication. This
determination is subjective and is based on the author’s opinion at the time of reading.

6. A lack of information (#) does not imply that the characteristic is not covered; it
simply means that there is insufficient evidence in the publication to make a determi-
nation. Several publications are written at such a high level that absolutely no coverage
information could be inferred.

26

An Axiomatic Formalization of UML Models [4]
T. Aoki and T. Tateishi and T. Katayama

This approach suggests that some ambiguity in UML models is caused by the fact that
multiple models (i.e., diagrams) are built to describe a single system. The authors recom-
mend an axiomatic approach that allows them to check consistency between diagrams, for
instance, between a class diagram and a statechart diagram. Specifically, they make use of a
distinct unification step in the analysis phase where a class diagram and statechart diagram
are linked with a unification mapping. The behaviour of the state machine can be checked
against assertions on the class diagram using a “typical invariant assertion method” [4]. A
system called F-Developer provides support to automatically generate the axiomatic system.

States
entry/exit actions #
internal transitions #
sequential (OR) #
orthogonal (AND) #
do-activity #
deferred events #

Pseuodstates
initial #
final #
fork/join #
history (shallow & deep) #
junction #
choice #

Transitions
event trigger
guard condition
action (behavior) ¯ only one action per transition but can cause several events to occur
priority scheme #
interlevel transitions #

Miscellaneous
completion event/transition #

27

Semantics of UML Statecharts in PVS [5]
D.B. Aredo

An outline of PVS semantics for UML statecharts [77]
I. Traoré

This approach provides a general schema for translating UML state machines into PVS-SL,
the specification language of the PVS [64] framework. The translation takes into account
the abstract syntax of state machines, as well as their well-formedness constraints. The
advantage of using the PVS framework is that it includes tools for rigorous analysis of
PVS specifications, including type checking, theorem proving, and even model checking.
Although short, this paper suggests a PVS-SL specification of a reasonable subset of state
machine features and introduces the concepts of formalizing the semantics of these machines.

States
entry/exit actions
internal transitions ⊗ according to author, should be able to extend
sequential (OR)
orthogonal (AND)
do-activity
deferred events

Pseuodstates
initial
final
fork/join
history (shallow & deep)
junction
choice

Transitions
event trigger
guard condition
action (behavior)
priority scheme ⊗ according to author, should be able to extend
interlevel transitions ⊗ according to author, should be able to extend

Miscellaneous
completion event/transition

28

On Formalizing UML with High-Level Petri Nets [8]
L. Baresi and M. Pezzè

[8] extends the research in [7] by modifying the Customized Rules Approach to an object
oriented notation, specifically UML. The concept of customized rules is that users ascribe
desired semantics in a familiar notation and benefit from a formal simulation and analysis
engine, which they do not necessarily need to master. The paper illustrates through an ex-
ample the automatic mapping from a UML model (of which statecharts are simply one part)
to high-level Petri nets. Because UML is a graphical notation, graph grammars are employed
to define its syntax and semantics. With respect to state machines, state are modeled as
Petri net places, while transitions are modeled as Petri net transitions. The paper contains a
detailed example based on the dining philosopher’s problem; it is modeled by various UML
diagrams and then mapped to a high-level Petri net. Various tools for Petri nets can be
used for execution [18, 6] and analysis and model checking [18, 66]. The analyses that can
be performed on these Petri nets include: absence of deadlocks, boundedness, mutual exclu-
sion, fairness, net execution, reachability, and model checking. Ultimately, the user decides
what properties are desirable for the UML specification. These properties are then defined
in terms of the Petri net. The net is then analyzed and the results are translated back to
UML notation for the user to examine.

Note: article too high level to determine any coverage information.

States
entry/exit actions #
internal transitions #
sequential (OR) #
orthogonal (AND) #
do-activity #
deferred events #

Pseuodstates
initial #
final #
fork/join #
history (shallow & deep) #
junction #
choice #

Transitions
event trigger #
guard condition #
action (behavior) #
priority scheme #
interlevel transitions #

Miscellaneous
completion event/transition #

29

From UML Sequence Diagrams and Statecharts to Analysable Petri Net
Models

[10]

S. Bernardi and S. Donatelli and J. Merseguer
A Compositional Semantics for UML State Machines Aimed at Perfor-
mance Evaluation

[59]

J. Merseguer and J. Campos and S. Bernardi and S. Donatelli

This approach transforms state machines into General Stochastic Petri Nets (GSPNs) [59]
and sequence diagrams into labeled GSPNs (LGSPNs) [10]. It then combines these into an
analyzable GSPN that includes the behaviour of the state machines and their interactions
based on the sequence diagrams [10]. This GSPN can be analyzed for correctness (e.g.,
determine if there is a sequence such that the state machine can complete execution) and
performance analysis, based on the specific system being modelled (e.g., time to reseat after
a fault occurs). The following tools are used for this approach: GreatSPN is a tool for
modelling, validating and performance evaluation of distributed systems using Generalized
Stochastic Petri Nets [17]. The PROD [78] model checker is a reachability analyzer/model
checker for Predicate/Transition nets. Finally, the GreatSPN-to-PROD tool [24] translates
GSPNs into high-level Petri nets that are the input of the PROD checker.

States
entry/exit actions
internal transitions
sequential (OR) ⊗
orthogonal (AND) ⊗
do-activity
deferred events

Pseuodstates
initial
final
fork/join ⊗
history (shallow & deep) ⊗
junction ⊗
choice ⊗

Transitions
event trigger
guard condition ⊗ only static analysis, so don’t need to evaluate guards
action (behavior)
priority scheme #
interlevel transitions ⊗ since no composite states

Miscellaneous
completion event/transition ⊗

30

Modeling the Dynamics of UML State Machines [12]
E. Börger and A. Cavarra and E. Riccobene

This approach makes use of Abstract State Machines (ASMs) to represent state machines
and takes a very detailed look at the more complicated parts of UML state machines, such
as the event handling, run-to-completion step, internal (do-) activities, etc. Its best con-
tributions are its attempts at making explicit the various ‘semantic variation points’ in the
UML standard, as well as a detailed explanation on representing state machines as ASMs.

States
entry/exit actions
internal transitions
sequential (OR)
orthogonal (AND)
do-activity
deferred events

Pseuodstates
initial
final
fork/join ⊗ can be defined in terms of more basic constructs; allow only incoming

(outgoing) transitions that end (start) on the boundary
history (shallow & deep)
junction
choice #

Transitions
event trigger
guard condition
action (behavior)
priority scheme
interlevel transitions

Miscellaneous
completion event/transition

31

Systems, Views and Models of UML [14]
R. Breu and R. Grosu and F. Huber and B. Rumpe and W. Schwerin

Towards a Formalization of the Unified Modeling Langauge [15]
R. Breu and U. Hinkel and C. Hofmann and C. Klein and B. Paech and B. Rumpe

and V. Thurner

This approach looks at the whole of UML, using a mathematical formalism based on the
theory of streams and stream processing functions [16]. In order to adapt this technique
to object-orientation, the authors augment the framework with system models [15]. This
approach presents a very high view of the formalism of UML and does not offer many spe-
cific details. It is included here mainly because of its ancestral relation to the system model
prepared as part of the UML 2 Semantics Project.

Note: article too high level to determine any coverage information.

States
entry/exit actions #
internal transitions #
sequential (OR) #
orthogonal (AND) #
do-activity #
deferred events #

Pseuodstates
initial #
final #
fork/join #
history (shallow & deep) #
junction #
choice #

Transitions
event trigger #
guard condition #
action (behavior) #
priority scheme #
interlevel transitions #

Miscellaneous
completion event/transition #

32

A Semantic Model for the State Machine in the Unified Modeling Lan-
guage

[21]

K. Compton and J. Huggins and W. Shen
A Toolset for Supporting UML Static and Dynamic Model Checking [75]

W. Shen and K. Compton and J. Huggins
An Automatic Verification Tool for UML [20]

K. Compton and Y. Gurevich and J. Huggins and W. Shen

[21] presents an Abstract State Machine (ASM) model of the UML state machine, which
is used by [75] to conduct both static and dynamic analysis of state machines. The latter
publication discussions a prototype toolset based on XASM [3], an extensible ASM. This
toolset can be used to perform well-formedness checking. In addition, the toolset can be
used to convert a state machine into an ASM specification and then perform model checking
(based on the SMV [56] model checker). One of the most interesting aspects of this approach
is that it makes use of the XMI format so that the toolset is compatible with commercial
UML CASE tools.

States
entry/exit actions
internal transitions ⊗
sequential (OR)
orthogonal (AND)
do-activity
deferred events ®

Pseuodstates
initial
final #
fork/join ®
history (shallow & deep) ®
junction ®
choice ®

Transitions
event trigger
guard condition
action (behavior) ® discusses only exit and entry actions along a transition
priority scheme
interlevel transitions

Miscellaneous
completion event/transition

33

Understanding UML: A Formal Semantics of Concurrency and Commu-
nication in Real-Time UML

[23]

W. Damm and B. Josko and A. Pneuli and A. Votintseva

This approach defines semantics for a specific subset of UML geared towards real-time con-
cepts, such as dynamic object creation/destruction, dynamically changing communication
topologies, etc. [23]. The semantics for this ‘kernel language’ associates each model with a
symbolic transition system. Although the article is quite detailed with respect to its ap-
proach, it is also quite useful in terms of its ‘related works’ section, which contains several
orthogonal ways of categorizing semantics approaches. Another significant contribution to
this work is its commercial viability; the Omega project builds on the semantic foundations
in this paper; its goal is to “provide formal foundations, methods and tools for formal spec-
ifications and verification of real-time systems within UML” [1]

Note: article too high level to determine any coverage information.

States
entry/exit actions #
internal transitions #
sequential (OR) #
orthogonal (AND) #
do-activity #
deferred events #

Pseuodstates
initial #
final #
fork/join #
history (shallow & deep) #
junction #
choice #

Transitions
event trigger #
guard condition #
action (behavior) #
priority scheme #
interlevel transitions #

Miscellaneous
completion event/transition #

34

Dynamic Meta Modeling: A Graphical Approach to the Operational Se-
mantics of Behavioral Diagrams in UML

[25]

G. Engels and J.H. Hausmann and R. Heckel and S. Sauer

The authors pursue a metamodelling approach, where the static meta model (based on class
diagrams) is extended by a dynamic model specified with a basic form of collaboration dia-
grams. The collaboration diagrams are used to specify the operational semantics of the state
machines. By using diagrams with which the user is already familiar, this approach can be
considered more accessible. These collaboration diagrams are “formalized as graph trans-
formation rules for specifying the operational semantics” [25]. The use of graph rewriting
allows for a mathematical rigorous, yet more user-friendly, formal semantics. Although the
paper provides a detailed explanation, along with excellent examples, the approach covers a
very basic subset of UML state machines.

States
entry/exit actions #
internal transitions #
sequential (OR) ⊗ composite states not considered
orthogonal (AND) ⊗ composite states not considered
do-activity #
deferred events #

Pseuodstates pseudostates not considered
initial #
final #
fork/join ⊗
history (shallow & deep) ⊗
junction ⊗
choice ⊗

Transitions
event trigger ¯ call events only
guard condition ⊗
action (behavior) ¯ call actions only
priority scheme #
interlevel transitions ⊗

Miscellaneous
completion event/transition ® assume no, since only call events considered

35

Requirements-level Semantics for UML Statecharts [26]
R. Eshuis and R. Wieringa

This approach makes use of Labeled Transition Systems (LTSs)/Kripke structures to define
a formal semantics for UML state machines. This is the only approach in our reference
set that specifically focuses on requirements-level vs. implementation level semantics. This
focus enables the authors to make certain assumptions about the system being modelled,
for instance, perfect technology, instantaneous (lossless) communication, etc. However, they
also make the assumption that the system reacts to all events in put as opposed to reacting
to one event; this assumption seems to defy the UML run-to-completion assumption. In
addition, this approach also allows for instantaneous states, which also does not conform to
the UML specification. That said, the greatest contribution of this article may be the fact
that they do distinguish between the concept of requirements-level vs. implementation-level
semantics. The latter requires the assumptions of imperfect technology, non-instantaneous
(lossy) communication, actions taking time and limited concurrency [26]; these concepts
represent the future of research in this field. Very few of the approaches survey handle
any of these assumptions, let alone all of them. It could be said that the assumptions of
implementation-level semantics represent what needs to be researched in this field.

States
entry/exit actions
internal transitions #
sequential (OR)
orthogonal (AND)
do-activity ⊗ according to authors, omitted to simplify; could be added
deferred events ⊗ according to authors, omitted to simplify; could be added

Pseuodstates
initial
final
fork/join #
history (shallow & deep) ⊗ according to authors, omitted to simplify; could be added
junction #
choice ⊗ according to authors, omitted to simplify; could be added

Transitions
event trigger
guard condition
action (behavior)
priority scheme
interlevel transitions

Miscellaneous
completion event/transition

36

Semantic Issues in UML 2.0 State Machines [28]
H. Fecher and M. Kyas and J. Shönborn

This paper presents a very detailed examination of a pre-release version of the UML 2.0
specification of state machines. State machines are basically defined in terms of sets and
relations and most features are considered. The major contribution of this work is that
through such a detailed examination of the specification, they are able to ask interesting
questions. For example, they propose several state machines with conflicting transitions for
which it is unclear how to assign priority using the current specification.

States
entry/exit actions
internal transitions
sequential (OR)
orthogonal (AND)
do-activity
deferred events

Pseuodstates
initial
final
fork/join
history (shallow & deep)
junction ⊗
choice ® no mention, but assume no since junction not supported

Transitions
event trigger
guard condition
action (behavior)
priority scheme
interlevel transitions

Miscellaneous
completion event/transition ⊗

37

Modular Semantics for a UML Statechart Diagrams Kernel and its Ex-
tension to Multicharts and Branching Time Model-checking

[30]

S. Gnesi and D. Latella and M. Massink
Towards a Formal Operational Semantics of UML Statechart Diagrams [52]

D. Latella and I. Majzik and M. Massink
Automatic Verification of a Behavioural Subset of UML Statechart Di-
agrams Using the SPIN Model-checker

[51]

D. Latella and I. Majzik and M. Massink

This approach makes use of slightly modified Extended Hierarchical Automata (EHA) as
an intermediate model, which is then transformed into Kripke structures for the semantic
model of a subset of UML state machines. The approach is similar to one for classical stat-
echarts [60] but takes into account the different priority scheme for UML state machines.
The resulting semantics has only three rules (progress, composition and stuttering), which
simplifies the correctness proofs of these rules [51]. [30] continues the work in [51], expand-
ing on the kernel, extending it to include multiple state machines, which are modelled by a
Labeled Transition System (LTS). [30] also introduces the JACK [13] environment, which
can be used to edit the specifications (LTS expressed in the FC2 format) as well as model
check them with the included AMC model checker.

States
entry/exit actions ⊗ abstracted away
internal transitions ⊗ irrelevant when no entry/exit actions
sequential (OR)
orthogonal (AND)
do-activity ⊗
deferred events ⊗

Pseuodstates
initial
final #
fork/join
history (shallow & deep) ⊗
junction ⊗ no branch transitions
choice ⊗ no branch transitions

Transitions
event trigger
guard condition
action (behavior)
priority scheme
interlevel transitions

Miscellaneous
completion event/transition #

38

State Diagrams in UML: A Formal Semantics using Graph Transforma-
tions

[31]

M. Gogolla and F. Parisi Presicce
A Formal Semantics of UML State Machines Based on Structured Graph
Transformation

[45]

S. Kuske
An Integrated Semantics for UML Class, Object and State Diagrams
Based on Graph Transformaiton

[46]

S. Kuske and M. Gogolla and R. Kollmann and H.-J. Kreowski

[31] discusses how the inherent hierarchy in state machines can be normalized into flattened
graphs with the use of graph transformation rules. The technique is quite intuitive, especially
as the user does not need to know any underlying mathematical formalism. [45] continues
by applying graph transformation techniques to define a formal semantics of the state ma-
chines. System configurations are represented as graphs and firing of transitions in the state
machine correspond to the application of graph transformation rules [45].

States
entry/exit actions #
internal transitions #
sequential (OR)
orthogonal (AND)
do-activity ⊗ according to authors, left out for space
deferred events ⊗ according to authors, left out for space

Pseuodstates
initial
final
fork/join #
history (shallow & deep) ⊗ according to authors, should be able to extend
junction #
choice #

Transitions
event trigger
guard condition ⊗ according to authors, left out for space
action (behavior) ⊗ according to authors, left out for space
priority scheme
interlevel transitions

Miscellaneous
completion event/transition #

39

Formalization of UML Statechart Models Using Concurrent Regular Ex-
pressions

[39]

S. Jansamak and A. Surarerks

This approach provides transformation rules for formalizing state machines as Concurrent
Regular Expressions (CREs) [29]. CREs are regular expressions with the addition of sev-
eral operators: interleaving, alpha-closure, synchronous composition and renaming. Once a
model’s state machines are expressed as CREs, simple “inconsistency checking” [39] can be
performed, i.e., state machines of different (interacting) objects can be checked to ensure
there exists no inconsistency between them.

States
entry/exit actions ®
internal transitions ®
sequential (OR)
orthogonal (AND)
do-activity ®
deferred events ®

Pseuodstates
initial
final #
fork/join
history (shallow & deep) #
junction #
choice not enough details to confirm dynamic choice

Transitions
event trigger
guard condition
action (behavior)
priority scheme ⊗
interlevel transitions

Miscellaneous
completion event/transition #

40

A Method for Describing the Syntax and Semantics of UML Statecharts [40]
Y. Jin and R. Esser and J.W. Janneck

Although an Abstract State Machine (ASM) approach, [40] deliberately separates the syntax
and semantics of state machines. The syntax is represented by the Graph Type Definition
Language (GTDL), which is a small domain-specific language and part of the Moses tool
suite [27]. Well-formedness rules are represented as predicates over the abstract syntax of
these graphs. The semantics is then represented as Object Mapping Automata (OMA) [38],
which are a specialized version of ASMs. The Moses tools suite allows users to edit, simulate
and automatically analyze such a system [40].

States
entry/exit actions
internal transitions
sequential (OR)
orthogonal (AND)
do-activity
deferred events

Pseuodstates
initial
final
fork/join
history (shallow & deep)
junction
choice ¯ no variables, so not really dynamic choice

Transitions
event trigger
guard condition
action (behavior)
priority scheme
interlevel transitions

Miscellaneous
completion event/transition

41

A UML Statecharts Semantics with Message-passing [41]
J. Jürjens

This approach makes use of Abstract State Machines (ASMs) to give a formal semantics
of UML state machines; its major contribution is that state machines may communicate
through message passing. The paper is quite short, but covers a good subset of UML state
machine characteristics. It is expected that future work will continue to move towards ex-
ecutable UML modelling, i.e., allowing whole systems, rather than single diagrams, to be
modelled [41].

States
entry/exit actions
internal transitions
sequential (OR)
orthogonal (AND)
do-activity
deferred events ⊗ according to author, should be able to extend

Pseuodstates
initial
final
fork/join ® transitions cannot cross borders
history (shallow & deep) ⊗ according to author, should be able to extend
junction ® only one target or source
choice ® only one target or source

Transitions
event trigger ¯ only one trigger
guard condition
action (behavior) ¯ only one action
priority scheme #
interlevel transitions ⊗

Miscellaneous
completion event/transition

42

Using UML to Derive Stochastic Petri Net Models [43]
P. King and R. Pooley

The goal of [43] is to conduct performance analysis using stochastic Petri nets to represent a
UML model (of which the statechart is just one part) of a particular example. They map the
UML model to a variant of stochastic Petri nets, based on the Stochastic Petri Net Package
(SPNP) tool [19]. The sample model has a very simple state machine and it is unknown
whether or not this method can be scaled to cover more state machine characteristics. The
performance analysis is specific to the example presented, e.g., throughput on a two-phase
protocol.

Note: article too high level to determine much coverage information.

States
entry/exit actions ®
internal transitions ®
sequential (OR) ®
orthogonal (AND) ®
do-activity ®
deferred events ®

Pseuodstates
initial
final
fork/join #
history (shallow & deep) #
junction #
choice #

Transitions
event trigger
guard condition ®
action (behavior)
priority scheme #
interlevel transitions #

Miscellaneous
completion event/transition #

43

Model Checking and Code Generation for UML State Machines and Col-
laborations

[44]

A. Knapp and S. Merz
Model Checking UML State Machines and Collaborations [74]

T. Schäfer and A. Knapp and S. Merz

This approach showcases HUGO [74], a novel tool for state machines, which allows anima-
tion, model checking and the generation of Java code. Instead of model checking against
properties expressed in temporal logic (which requires knowledge of the underlying model
checker [44]), HUGO’s model checking checks state machines against interaction diagrams.
This results in a consistency check of state machines against specifications expressed as col-
laboration or sequence diagrams [44]. Other model checking is also possible, such as checking
for the absence of deadlock, as well as more complicated properties expressed in temporal
logic. HUGO makes use of the SPIN [36] model checker and its PROMELA input language,
although it also has a back end for the real-time model checker UPPAAL [50]. In addition,
state machines can be transformed into Java code, with a separate object being created
for each state in the machine. One of the more interesting things about this approach is
that it does not seem to rely on a mathematical formalism; states are modeled by individ-
ual PROMELA processes, with additional processes created to dispatch events and handle
transitions [74]. This approach also manages to cover most of the UML state machine char-
acteristics, with the exception of internal transitions, deferred events, and choice.

States
entry/exit actions
internal transitions # according to authors, not required for model checker
sequential (OR)
orthogonal (AND)
do-activity
deferred events #

Pseuodstates
initial
final
fork/join
history (shallow & deep)
junction ¯ drawn with diamond
choice # according to authors, implementation is obvious

Transitions
event trigger
guard condition
action (behavior)
priority scheme
interlevel transitions

Miscellaneous
completion event/transition

44

Rewrite Rules and Operational Semantics for Model Checking UML Stat-
echarts

[47]

G. Kwon

This approach makes use of a conditional term rewriting system and Kripke structures in
order to translate state machines into the SMV [56] input language. Sets of active states are
translated into terms and transition labels are translated into conditional rewrite rules [47].
The semantics for the conditional term rewriting are based on Kripke structures and these
semantics are then translated into the SMV model checker’s input language. This approach
has some support for composite states but does not permit the “clean structure of hierarchy”
to be violated by interlevel transitions [47].

States
entry/exit actions #
internal transitions #
sequential (OR)
orthogonal (AND)
do-activity #
deferred events #

Pseuodstates
initial
final #
fork/join #
history (shallow & deep) no mention of deep history
junction #
choice #

Transitions
event trigger
guard condition
action (behavior)
priority scheme
interlevel transitions

Miscellaneous
completion event/transition #

45

Structured Axiomatic Semantics for UML Models [49]
K. Lano and J. Bicarregui and A. Evans

This approach examines UML as a whole, representing UML models as “theories in extended
first -order set theory” [49]. These theories, expressed in Real-time Action Logic (RAL) [48]
can be used to represent classes, instances, associations, etc. State machines are formalized
as extensions of the theories for classes. The approach is quite detailed, formalizing key parts
of the UML, e.g., classes from the Core package. The most interesting contribution is the
concept of reductive transformations, which are essentially algorithms which can be used to
eliminate both nesting (OR-states) and concurrency (AND-states).

States
entry/exit actions reductive transformation to remove
internal transitions #
sequential (OR) reductive transformation to remove
orthogonal (AND) reductive transformation to remove
do-activity #
deferred events ⊗

Pseuodstates
initial #
final #
fork/join #
history (shallow & deep) ⊗
junction #
choice #

Transitions
event trigger #
guard condition ¯ no conditions dependent on attributes
action (behavior) #
priority scheme #
interlevel transitions #

Miscellaneous
completion event/transition #

46

The Semantics of UML State Machines [53]
J. Lilius and I. Porres Paltor

vUML: a Tool for Verifying UML Models [54]
J. Lilius and I. Porres Paltor

This approach is a two-phased approach. The first phase consists of formalizing the struc-
ture of UML state machines, while the second focuses on the formalization of the operational
semantics of state machines. The authors make use of a term rewriting system, where terms
represent active state configurations with transitions mapping between these terms. For the
formalization in the second phase the execution of a state machine is described in terms of
a hypothetical machine with an event queue, event dispatch mechanism and event proces-
sor [53]. Each object in the UML model executes a run-to-completion algorithm. Not only
does this approach cover most of the UML state machine characteristics, but it is also very
nicely supported by the vUML tool [54]. vUML is a tool for model checking state machines;
its appeal is that it can model check the same model that is being used to analyze, design,
document and implement the target software system [53]. The tool is not used to model
check a single state machine; rather, it can be used to model check the interactions between
state machines, as defined in collaboration diagrams.

States
entry/exit actions
internal transitions
sequential (OR)
orthogonal (AND)
do-activity
deferred events

Pseuodstates
initial
final
fork/join
history (shallow & deep)
junction ¯ don’t deal with directly but translate into simpler; drawn as diamond
choice #

Transitions
event trigger
guard condition
action (behavior)
priority scheme
interlevel transitions

Miscellaneous
completion event/transition

47

Analysing UML Active Classes and Associated State Machines - A Light-
weight Formal Approach

[72]

G. Reggio and E. Astesiano and C. Choppy and H. Hussmann
Metamodelling Behavioural Aspects: the Case of the UML State Ma-
chines (Complete Version)

[70]

G. Reggio

[72] works towards a formalization of state machines of active classes by making use of La-
beled Transition Systems (LTS) and conditional algebraic specifications written in the Com-
mon Algebraic Specification Language (CASL), which is part of the CoFI initiative [61]. The
state machines considered are relatively primitive, with no AND-states and few pseudostates;
however, the greatest contribution of this work could be considered the detailed examination
of the UML 1.3 specification [62]. The paper raises several interesting questions, especially
regarding the destruction of objects, how threads are used, etc. [70] continues the research
into active classes by defining the LTS in an object-oriented way, i.e., with metamodelling.
The approach, called ‘Extreme Metamodelling’ [69], makes use of GML as a “visual OO
notation for presenting metamodels” [70]. Based on the previous work in [72, 71], meta-
modelling state machines is simply a matter of metamodelling the LTS used to define their
semantics.

States
entry/exit actions ⊗ translate to actions along incoming/outgoing transitions
internal transitions ⊗ irrelevant when no entry/exit actions
sequential (OR)
orthogonal (AND) ⊗
do-activity ⊗
deferred events

Pseuodstates
initial ¯ only one initial state in entire machine
final ¯ only one final state in entire machine
fork/join ⊗
history (shallow & deep) ⊗ according to authors, should be able to extend
junction ¯ restricted: only used to eliminate multiple transitions with the same

trigger leaving a state
choice ⊗

Transitions
event trigger
guard condition
action (behavior)
priority scheme ® not mentioned
interlevel transitions

Miscellaneous
completion event/transition ⊗ since assumption that all state machines eventually reach a solitary

final state

48

On Semantics and Refinement of UML Statecharts: A Coalgebraic View [57]
S. Meng and Z. Naixiao and L.S. Barbosa

This approach discusses UML state machines represented as coalgebras. In fact, the authors
make use of the claim that Labeled Transition Systems (LTS) can be naturally represented
as coalgebras [73]. They do this by building on the work of [52] and presenting a coalge-
braic representation of statecharts which supports that paper’s operational semantics. The
main contribution of this approach is the discussion of equivalence between statecharts and
refinement of statecharts. They provide a mathematical look at equivalence and refinement,
including several refinement laws.

Note: this approach builds directly on [52], so assume the same level of coverage.

States
entry/exit actions ⊗ abstracted away
internal transitions ⊗ irrelevant when no entry/exit actions
sequential (OR)
orthogonal (AND)
do-activity ⊗
deferred events ⊗

Pseuodstates
initial
final #
fork/join
history (shallow & deep) ⊗
junction ⊗ no branch transitions
choice ⊗ no branch transitions

Transitions
event trigger
guard condition
action (behavior)
priority scheme
interlevel transitions

Miscellaneous
completion event/transition #

49

A Formal Semantics of UML Statecharts by Model Transition Systems [79]
D. Varró

This approach combines both metamodelling and graph transformation techniques to for-
mally define the dynamic behaviour of UML state machines. The approach makes use of
Extended Hierarchical Automata (EHA) as discussed in [51], but only as an “alternate struc-
tural representation” of state machines. The intermediate syntax is actually not required;
the underlying formalism using dynamic attributes and relations manipulated by graph pro-
ductions could be applied directly to the UML metamodel of statecharts. However, the
addition of this intermediate step allows flexibility, e.g., the semantics could be applied to
state machine variants, such as classical statecharts. The main contribution of this approach
is that it keeps the syntactic and well-formedness concepts in the metamodel, while the dy-
namic semantics are specified by graph transformation rules [79]. In other work by the same
author, the results were tested within the VIATRA tool [81]. In addition, the semantics
were transformed [80] into SAL specifications [9] which could be used for various verification
techniques, including model checking.

States
entry/exit actions ®
internal transitions ®
sequential (OR)
orthogonal (AND)
do-activity ®
deferred events ⊗ according to authors, omitted for space reasons

Pseuodstates
initial
final ®
fork/join ®
history (shallow & deep) ⊗ according to authors, omitted for space reasons
junction ®
choice ®

Transitions
event trigger
guard condition
action (behavior)
priority scheme
interlevel transitions

Miscellaneous
completion event/transition #

50

A Structured Operational Semantics for UML-statecharts [83]
M. von der Beeck

[83] makes use of a term syntax as an intermediate formalism, which the author claims is
“more similar” to the original UML state machine syntax than the Extended Hierarchical Au-
tomata (EHA) used by some other approaches. The semantics is defined in two phases: first,
an auxiliary semantics is defined which deals only with the processing of single events [83].
This first phase is inspired by Plotkin’s Structured Operational Semantics (SOS) [67] ap-
proach and essentially maps the syntax terms to sets of Labeled Transition Systems (LTS).
The second phase uses the auxiliary semantics to create a semantics dealing with sequences
of events; this phase makes use of Kripke structures, which are appropriate for modeling the
concept that the output of one step serves as part of the input of the next step [83].

States
entry/exit actions
internal transitions #
sequential (OR)
orthogonal (AND)
do-activity ⊗
deferred events ⊗

Pseuodstates
initial ⊗
final ⊗
fork/join ⊗ no branching
history (shallow & deep)
junction ⊗
choice ⊗

Transitions
event trigger ¯ no time or change events
guard condition ⊗
action (behavior)
priority scheme
interlevel transitions

Miscellaneous
completion event/transition ⊗

51

An Approach to Formalizing the Semantics of UML Statecharts [84]
X. Zhan and H. Miao

Formalizing the Semantics of UML Statecharts with Z [85]
X. Zhan and H. Miao and L. Liu

This approach formalizes UML state machines in Z [76]. [85] introduces Z-schemas for state
machines, including requirements with respect to well-formedness, compound transitions,
priority among conflicting transitions, etc. [84] extends this work, adding discussions about
how to generate test cases (for a class) from a UML state machine that makes use of hierarchy
(OR-states) and concurrency (AND-states). The authors demonstrate how to translate state
machines into FREE [11] models, which essentially move actions out of states. According
to [11], models which follow the FREE conventions are testable.

States
entry/exit actions #
internal transitions #
sequential (OR)
orthogonal (AND)
do-activity #
deferred events #

Pseuodstates
initial
final
fork/join #
history (shallow & deep) #
junction #
choice #

Transitions
event trigger
guard condition
action (behavior) ¯ only generation of events
priority scheme #
interlevel transitions

Miscellaneous
completion event/transition #

52

