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Abstract

We investigate factorizations of regular languages in terms of prime languages.
A language is said to be strongly prime decomposable if any way of factorizing the
language yields a prime decomposition in a finite number of steps. We give a charac-
terization of the strongly prime decomposable regular languages and using the char-
acterization we show that every regular language over a unary alphabet has a prime
decomposition. We show that there exist co-context-free languages that do no have

prime decompositions.
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1 Introduction

A language is said to be prime [11, 12] if it cannot be written as a catenation of two languages
neither one of which is the singleton language consisting of the empty word. A prime
decomposition of a language is a factorization where all the components are prime languages.
The original work on prime decompositions concentrated mainly on finite languages [11].
Factorizations of prefix-free or infix-free regular languages into prime components that in
turn are required to be prefix-free or infix-free, respectively, are considered in [2, 5].

Any finite language always has a prime decomposition, although it need not be unique [11,
12]. Work on factorizations of finite languages leads to nontrivial questions concerning
commutativity. Recent work in this direction and more references can be found e.g. in [9].

Generally the decomposition of a language can be chosen in very different ways and it
turns out to be somewhat difficult to find languages without any prime decompositions.
We give a construction of a nonregular language that provably does not have any prime
decomposition.

We consider also a stronger factorization property that requires that any refinement of a
decomposition of the language leads to a prime decomposition in a finite number of steps. We
call such languages strongly prime decomposable. We give necessary and sufficient conditions
for a regular language to be strongly prime decomposable. The characterization establishes
that the property is decidable for regular languages.

Using the characterization of the strongly prime decomposable languages we show that
every regular language over a unary alphabet has a prime decomposition. As a by-product of
the proof we establish the existence of prime decompositions for context-free languages over
arbitrary alphabets where, roughly speaking, the set of “short words” of the corresponding
length set is not closed under any multiple of the cycle of the length set.

The main open question remaining is whether all regular languages have prime decom-

positions.

2 Language decompositions

Let ¥ be a finite alphabet. A language is any subset of ¥*. The length of a word w € ¥*
is |w|. The catenation of languages L; and Ly over ¥ is Ly - Ly = {w € ¥* | (Fu; € L;,i =
1,2) w = uyuy}. For all unexplained notions in language theory we refer the reader e.g. to
(8, 13, 14].

We say that a language L has a non-trivial decomposition if we can write L = A - B

where A, B # {c}. In the following, unless otherwise mentioned, by a decomposition or a



factorization of a language we always mean a non-trivial decomposition.

A language L # {e} is said to be prime if L has no decompositions. For a given regular
language L it is decidable whether or not L has a decomposition [10, 11], i.e., whether or
not L is prime. More generally, the regular language decomposition problem is decidable for

all operations defined by letter-bounded regular sets of trajectories [4].
Definition 2.1 [11] A prime decomposition of a language L is a factorization

L=Li-... Ly, (1)
where each of the languages L;, 1 =1,...,m, 1s prime.

A finite language clearly always has a prime decomposition. On the other hand, a prime
decomposition need not be unique even for finite languages [11]. Any prefix-free regular
language has a unique decomposition in terms of prime languages if it is additionally required
that the components are regular and prefix-free [2, 6]. Interestingly, the analogous property

does not hold for decompositions of infix-free regular languages [5].

Example 2.1 Let H C ¥", n > 1, be a set of words of length n. We show that H* has the
following prime decomposition

o

H*=({e}UH)- (UH""U{e}) (2)

i=1
Since the equality obviously holds, it is sufficient to verify that the two factors on the right
side are prime.

In any decomposition {¢} U H = AB both of the sets A and B must contain €. Then the
equality can hold only if one of A and B contains all words of H and the other set is {¢},
that is, {¢} U H has only trivial decompositions.

In order to see that the second language on the right side of (2) is prime, assume that

we can write

U H? ' Ufe} = AB (3)

i=1
for some A, B C ¥*. Again ¢ has to be in both A and B. Thus A or B cannot contain
any nonempty words shorter than n and all words of H must be in A or B. If both A
and B contain words of H then AB would have some word of length 2n. We assume that
H C A, the other possibility being symmetric. Again all words of H?® must be in A or B,
and similarly as above we see that the only possibility is that H®> C A since otherwise the

catenation of A and B would have some word of length 4n. By induction it follows that
A=, H* ' U{e} and B = {e}.



It seems that earlier work [11] did not expect that the Kleene-star of languages as in
Example 2.1 could have prime decompositions. In fact, we do not know any regular language
L such that L provably has no prime decompositions. In Section 4 we show that every regular
language over a unary alphabet has a prime decomposition.

Next we show that there exist nonregular languages without any prime decompositions.
Let ¥ = {a,b}. We define H; C ¥* as follows:

Hy = {a"b"a™b” - --a'b% | k> 0,1 <4 <ip <...<i}
Lemma 2.1 The language Hy does not have any prime decomposition.

Proof. Consider an arbitrary decomposition of Hy,
Hy=1Ly-...- Ly, (4)

m > 1. For the sake of contradiction assume that (4) is a prime decomposition.

By the maximal ab-prefix, mab-prefiz, (respectively, mab-suffix) of a word w we mean
the longest prefix (respectively, longest suffix) of w that is in a*b*.

Consider a fixed i € {1,...,m}. We claim that if the mab-prefix of some word in L; is

of a form

then all words in L, must have the same mab-prefix a’b*. Note that if L; has two words u,,
uy where the mab-prefix u,,, of u; is as in (5) and the mab-prefix of u, is distinct from tuy,,,
then for any fixed v € L, ---L;_; and w € L;;1 - -- L, only one of the words vu,;w and vusw
can be in Hy.

Now if all words in L; have the same mab-prefix as in (7) (which is not the empty word
since j # k) we get a decomposition for L; by factoring out the common prefix.

Since L; is prime, the above means that we need to consider only the case where the mab-
prefix of all words in L;, i = 1,...,m, is of a form a/0’, j > 1. (Note that in this case the mab-
prefixes need not be identical, e.g., it is possible that L; = {a’V o/ T/ a/ V7, a? 1B/ £}.)
With a completely symmetric argument we see that the same property holds for mab-suffixes.

By a balanced word we mean a word of the form a/b’, 5 > 0. From the above we can
conclude that for all i € {1,...,m},

the mab-prefix and the mab-suffix of any word in L; is balanced. (6)
Thus all words occurring in L;, 1 <7 < m, are of the form
w; = aFLiphi L gkripni 0 < k< <Ky, r > 0. (7)

4



Now if we consider an arbitrary word w;,; = aFvi+1pFriti ... ghsitiphsivt € [, | the equation
k,; < ki1 has to hold since otherwise w;w;;1 cannot occur as a subword of a word in Hy.

Now the equation (4) implies that, for all # = 1,...m — 1, there exist integers M; and
N; (M; =1, N; = M;,; — 1) such that L; consists of exactly all the words as in (7) where
M; < ky; and k,; < N;, and L, consists of all words as in (7) where k1; > Ny, 1.

It follows that (4) is not a prime decomposition since, for example,
Lm — {8 aNm—1+1bNm—1+1} A

where A consists of all words as in (7) where ky; > N,,_; + 1. This concludes the proof. O

The language H; used in Lemma 2.1 is not context-free but its complement is context-
free. It should be noted that Lemma 2.1 does not require any assumptions concerning the
component languages, that is, H; doesn’t have a prime decomposition even if the components
could be non-recursively enumerable languages.

We conclude with the following question.

Open problem 2.1 Does there exist a contexrt-free (or even a regular) language L such that

L has no prime decomposition.

3 Strong prime decomposition property

In the previous section we saw (in Example 2.1) that regular languages can have artificial
prime decompositions even if the natural way of decomposing the language does not result

in a prime decomposition, i.e., the components could always be factorized further.

Example 3.1 Let L = ¢ + a?a*. We note that L = L- L or L = (¢ + a?) - L so obviously
L has many different factorizations with arbitrarily many components. However, L has also

the following prime decomposition
(e + a*)(e + a®) s—i-U )

Note that the last component is an instance of the left side of (3) that was shown to be

prime in Example 2.1.

Here we consider a stronger version of the prime decomposition property that prevents

situations as in Example 3.1.



Definition 3.1 Let L C ¥*. The index of a non-trivial decomposition of L,
L=L,-...-L, (8)

is m. The decomposition index of L is the mazrimum index of any non-trivial decomposition

of L if the mazimum exists. Otherwise, we say that the decomposition index of L is infinite.

If a language L has a finite decomposition index, we say that L is strongly prime decom-
posable. When L is strongly prime decomposable, any way of iteratively decomposing L has
to stop after a finite number of steps, i.e., the refinement of any decomposition results in a
prime decomposition in a finite number of steps.

Clearly all finite languages are strongly prime decomposable since the decomposition in-
dex of a finite language L is at most the length of the longest word in L. The language L
considered in Example 3.1 has a prime decomposition but it is not strongly prime decom-
posable.

For presenting a characterization of the strongly prime decomposable regular languages
we recall some notation and a result from [11, 12]. Let A = (@, %, §, qo, @#) be a deterministic
finite automaton (DFA). For a subset P C ) we define the languages

R ={w € X" | d(q,w) € P},

Rf = ﬂ{w € X |d(p,w) € Qr}.

peEP

Proposition 3.1 [11] Let A = (Q, %, 9, g, Qr) be the minimal DFA for a language L and

assume that we can write L = LiLy. Then
L= RFRY,
where P C @ is defined by
P={peQ| (3Bwe L) d(g,w) =p}.
Furthermore, we know that L; C RY, i =1,2.

Theorem 3.1 A reqular language L is not strongly prime decomposable if and only if there

exist reqular languages Hy, Hy, Hs, where Hy contains some non-empty word such that

L = Hl(HQ)*Hg. (9)



Proof. The “if”-direction follows from the observation that, for any k& > 1, the equation (9)

gives for L a decomposition of index at least k:
L = H,(HyU {e})" 'H; H;. (10)

(The index of the decomposition (10) is between k and k + 2 depending on whether or not
H, or Hj are the trivial language {¢}.)

Next we prove the “only-if”-direction. Let A = (@, %, 0, go, @) be the minimal DFA for
L. Since L is not strongly prime decomposable, we can write

L:LlLQ'...'Lm,

where m =29/ +2 and L; # {e}, i =1,..., m. Furthermore, by [11] (Proposition 3.1 above)
we know that the languages L; can be chosen to be regular.
Define

P={peQ|(FwelL...- L) §q,w) =p},

1=1,...m — 1. By Proposition 3.1,
L=RR}, i=1,...,m—1. (11)

Here Rf", 7 =1,2, is as defined in Proposition 3.1.
Since m — 1 > 219l there exist j,k € {1,...,m — 1}, j < k, such that

P; = P.
This means that for all p € P; and w € Ljq -...- Ly we have
5(p,w) € Py (= Pp).
Thus (11) implies that for all r > 1,
Ry (Ljt1 ...  Ly)"Ry’ C L.

Consequently, L = Rfj (Ljg1---- -Lk)*R;)j and Lj;q-...- Ly is not empty or {¢} since j < k.
O

It is known that primality is decidable for regular languages [11]. Using Theorem 3.1 we
see that also the strong prime decomposition property is decidable for regular languages.

Corollary 3.1 Given a regular language L it is decidable whether or not L is strongly prime
decomposable.



Proof. Given a minimal DFA for L, Proposition 3.1 allows us to find all decompositions of
L into three regular components L; - Ly - L3. To check whether a decomposition is of the
form (9), we just need to verify that Ly # {¢} and that the minimal DFA for L, has exactly
one accepting state that is also the start state. O

The algorithm given by Corollary 3.1 is extremely inefficient since it relies on an exhaus-
tive search of all subsets of the state set of the minimal DFA for L. It is probable that
an efficient (e.g. a polynomial time) algorithm cannot be found since there is no known

polynomial time algorithm even to test primality of a regular language [11].

4 Unary regular languages

We want to show that every regular language over a unary alphabet has a prime decomposi-
tion. First we recall some terminology concerning regular languages over a unary alphabet.
A standard reference is [1], and references to more recent work on unary regular languages
can be found e.g. in [3, 7].

A DFA A with a unary input alphabet can be divided into a tail which has the states
that are not reachable from themselves with any non-empty word, and the cycle consisting
of the remaining states of A. Naturally, A has no cycle if the language recognized by it is
finite. If A is minimal, it is additionally required that all states are pairwise inequivalent. If
the tail of A accepts words a’!, ...a’7-! and the length of the cycle of A is m, the language

accepted by A is denoted by a regular expression
At dm d (@ L a ) (a™) (12)

0< <. iifpi1 <74, 0< i1 < ... <ty <m, 1,8 > 0. We use the names “tail” and

“cycle” also when referring to the corresponding parts of a regular expression as in (12).

Lemma 4.1 Let L C {a}* be any unary language. Then L* is the union of a finite language
and a linear language, that is, L* = F U {a*? | 1 > 0} where p > 0 and F C {a}* is finite.
Furthermore, p divides the length of any word in F.

Proof. If L is empty or L = {e}, the property holds by choosing FF = () and p = 0.
Otherwise, if p is the greatest common divisor of the lengths of all words in L, there exists
M, > 1 such that for all n > M,, a™ € L if and only if n is a multiple of p. We can choose
F as the set of all words in L of length at most M,. The length of any word in F' is divided
by p. O



Lemma 4.2 Let L C {a}* be a regular language such that
L=LR" (13)
where R contains a nonempty word. Then L has a prime decomposition.

Proof. Let L be denoted by a regular expression as in (12). By factoring out the shortest
word we can assume without loss of generality that ¢ € L, that is, j; = 0. We assume that
m (using the notations of (12)) is the cycle length of the minimal DFA for L and all words ¢,
a2, ... al=1, adrth ) @frtis-1 gre pairwise inequivalent. These properties hold if the tail
and cycle of (12) are as in the minimal DFA for L. Note that (13) implies that L is infinite
and hence the minimal DFA has a cycle.

By Lemma 4.1 we can write
R*=c+ad™ +.. . +ad" ' 4+ d"(a")", (14)

where 0 < k; < ... < ki, t > 1, are all multiples of n. Here we require that k; > 1 and
as the word a* we can choose the first nonempty word that is in the cycle of R*. (The
expression (14) does not need to correspond to the minimal DFA for R*. This would be
the case, for example, if the minimal DFA is cyclic, i.e., it has no tail.) Since R contains a
nonempty word, it follows that n > 1.

By (13), wv € L for all u € L and v € R*. Since m is the cycle length of the minimal
DFA for L, this implies that m divides n, and consequently the length of any word in R* is
a multiple of m. Write

akt =c-m, c>1.
Then

L = (e+a”+...+a" " +a"(@" +...+a"*" +a" ™™ +... +a="" ... (15)
4ghtle=m 4 ais‘1+(c_1)m))(akt)*.

In (15) the inclusion from right to left follows by (13) since all words in the first factor
are in L and (a*)* C R* because k; is a multiple of n. The inclusion from left to right
follows using the simple observation that the right side of (15) is obtained from the regular
expression (12) for L with cycle length m by repeating the original cycle ¢ times and taking
¢ -m to be the new cycle length.

In the right side of (15) the first component has a prime decomposition since it is a finite

language. The second component has a prime decomposition by Example 2.1. O

The construction of Lemma 4.2 is illustrated in the next example. In particular, the
example shows that in the factorization (15) we could not use (a™)* as a factor for L where
n is the cycle length of the minimal DFA for R*.
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Example 4.1 Let

L = s+a5 +a12 +0,17(CL3)* +a18(a3)*’
and let R = (a'?+a'®)*. Now L = LR* and the the construction from the proof of Lemma 4.2
gives for L the factorization

I = (6 + a5 + 0,12 +G,17 + a18 + a20 + a21 + 0,23 +G,24 + a26 + a27)(a12)*.

It can be noted that the cycle length of R* is 6. However, (a%)* is not a factor of L since
g,a% € L and a® o™ & L.

Theorem 4.1 FEvery reqular language over a unary alphabet has a prime decomposition.

Proof. Let L C {a}* be regular. If we can write L = L;(Ly)* for regular languages L; and
Lo, where Ly contains a nonempty word, then also L = L(Ly)* holds and, by Lemma 4.2, L
has a prime decomposition.

If there exist no regular languages L;, i = 1,2, Ly # {€}, Ly # 0, such that L = L;(Ls)*,
then using the commutativity of catenation of unary languages and Theorem 3.1 we get that

L is strongly prime decomposable. O

Let 3 be an arbitrary finite alphabet and L C ¥*. The length set of L is the language
over the unary alphabet {a} defined by

length(L) = {a* | Bw € L) |w| = k}.

A language L over a non-unary alphabet may have more structure than the corresponding
length set and decompositions of the length set of L do not necessarily yield a factorization
of L. For example, the language {bc, cb} is prime but it’s length set has the factorization
{aa} = {a}-{a}. Conversely, however, corresponding to any decomposition of L there exists

a decomposition of the length set of L. This gives the following lemma.

Lemma 4.3 Let X be a finite alphabet and L C ¥*. If length(L) is strongly prime decom-
posable, then the same holds for L.

Proof. If L has a non-trivial decomposition L = L; - Ly, then length(L;) - length(Ls) is a
non-trivial decomposition of length(L). Hence, if L has an infinite decomposition index, the

same holds for length(L). In other words, if length(L) is strongly prime decomposable, so is
L. O

The result of Lemma 4.3 can be used to show the existence of prime decompositions for
context-free languages where the tail of the length set is “not closed” under any multiple
of the cycle length of the minimal DFA for the length set. Note that the length set of a

context-free language is always regular [8, 13].
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Theorem 4.2 Let L be a context-free language and let m be the cycle length of the minimal
DFA for length(L). If for some d > 0 and My > 1, a® € length(L) and, for all i > My,
adtt™ & length(L), then L has a prime decomposition.

Proof. Assume that length(L) has a decomposition length(L) = M R* in terms of regular
languages M and R, where R contains a nonempty word. Then length(L) = length(L)R*
and, by the proof of Lemma 4.2, we know that there is a constant ¢ such that a? € length(L)
implies that, for all 7 > 1, a?**¢™ is in length(L). This contradicts the assumptions for
length(L).

Hence there do not exist regular languages M and R, R # 0, R # {e}, such that
length(L) = M R*. By Theorem 3.1, length(L) is strongly prime decomposable and Lemma 4.3
implies that also L is strongly prime decomposable. O

The conditions of Theorem 4.2 apply, for example, to any context-free language L such
that L has a word of odd length and there exists a constant My > 1 such that all words
of L of length greater than M/, have even length. The assumption that L is context-free is
needed to guarantee that the length set of the language is regular.

Open problem 4.1 Does there exist some unary language that does not have a prime de-

composition.

We know that any language that could provide a positive answer to the above question
cannot be regular.

5 Conclusions

We have established an effective characterization of the strongly prime decomposable regu-
lar languages. Using the characterization it is easy to construct regular languages (over a
unary or a non-unary alphabet) that are not strongly prime decomposable, i.e., that have an
infinite decomposition index. We have shown that every regular language over the unary al-
phabet has a prime decomposition. The main open problem remaining is whether all regular
languages over arbitrary alphabets have at least one prime decomposition. We conjecture a

positive answer to this question.
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