
Technical Report No. 2006{507

Coping with Decoherence: Parallelizing the

Quantum Fourier Transform

Marius Nagy and Selim G. Akl

School of Computing

Queen's University

Kingston, Ontario K7L 3N6

Canada

Email: fmarius,aklg@cs.queensu.ca

March 2006

Abstract

Rank-varying computational complexity describes those computa-

tions in which the complexity of executing each step is not a constant,

but evolves throughout the computation as a function of the order of

execution of each step [2]. This paper identi�es a practical instance of

this computational paradigm in the procedure for inverting the quan-

tum Fourier transform. It is shown herein that under the constraints

imposed by quantum decoherence, only a parallel approach can guar-

antee a reliable solution or, alternatively, improve scalability.

1 Introduction

The computations carried out today are qualitatively di�erent from those

performed more than half a century ago, when the age of computers was

only just beginning. The traditional concept of computation is best captured

by the functioning of the Turing machine. A sequence of operations (or

1

transformations) forming the algorithm is applied to a set of input data to

produce an output (or result).

In time, this rather simplistic view on computation has been challenged

by increasingly demanding applications and real-world problems. We need

better solutions, faster, to problems whose input speci�cations may vary with

time. Often, our results need to be obtained before certain deadlines, or else

various penalties can be applied. If a deadline is set by human, there may still

be some value in a result that misses it, but sometimes Nature itself imposes

strict deadlines on our computations and any algorithm running past the

speci�ed time can no longer produce a valid or correct solution. Parallel

processing may be the only viable alternative in such situations.

Computational environments have been identi�ed in which a task can

be e�ciently executed in parallel, but impossible to carry out sequentially

[1]. As a concrete example, a parallel approach makes the di�erence between

success and failure when trying to measure (or set) the parameters of a

dynamical system [3].

The quest to make computation more e�cient and meet today's require-

ments has led to the development of entirely new computational paradigms.

These are based on revolutionary principles like the laws of quantum me-

chanics, the Watson-Crick complementarity of the building blocks forming

DNA strands, the dynamics of complex chemical reactions or the structure

of a living cell. And it seems that parallelism plays an important role also

in these novel ways of performing a computation. We demonstrated in [10]

the importance of parallelism for quantum measurements. In this paper we

focus on quantum computation and present an instance of a rank-varying

complexity algorithm which can only be reliably implemented in a parallel

setting. The example we describe involves computing the inverse quantum

Fourier transform, under the constraints imposed by avoiding the undesired

e�ects caused by coupling with the environment.

The remainder of the paper is structured as follows. The next section

is intended to familiarize the reader with the quantum circuit performing

the discrete Fourier transform. In section 3, computing the quantum Fourier

transform and its inverse are shown to belong to the class of computations

with rank-varying complexity. A way to speed up the application of the in-

verse quantum Fourier transform through parallel processing is also described

in the same section. Section 4 presents the same problem from the practical

perspective of avoiding the undesired e�ects of quantum decoherence and

demonstrates the importance of the parallel approach in the given context.

2

This is followed in section 5 by a discussion on the key issues a�ecting the

parallelization of a computation with steps of varying complexity. The paper

concludes with a short section summarizing its main ideas and contributions.

2 Quantum Fourier Transform

The theory of quantum computation is already well-developed and a great

deal of e�ort is put nowadays into �lling the gap between theory and practical

implementations of quantum computing devices. Quantum computation har-

nesses the quantum mechanical principles of superposition and interference

in order to achieve a potential exponential speed-up over classical algorithms.

For a grasp of the basic concepts in quantum computation we refer the un-

familiar reader to what we consider a few good introductions to the �eld

[11, 8, 12, 4, 7].

The Fourier transform is a very useful tool in computer science and it

proved of crucial importance for quantum computation as well. Since it can

be computed much faster on a quantum computer than on a classical one,

the discrete Fourier transform allows for the construction of a whole class of

fast quantum algorithms. Shor's quantum algorithms for factoring integers

and computing discrete logarithms [13] are the most famous examples in this

category.

The quantum Fourier transform is a linear operator whose action on any

of the computational basis vectors j0i; j1i; � � � ; j2n � 1i associated with an

n-qubit register is described by the following transformation:

jji �! 1p
2n

2n�1X
k=0

e2�ijk=2
n jki; 0 � j � 2n � 1: (1)

However, the essential advantage of quantum computation over classical

computation is that the quantum mechanical principle of superposition of

states allows all possible inputs to be processed at the same time. Conse-

quently, if the quantum register is in an arbitrary superposition of the basis

vectors

2n�1X
j=0

xjjji;

then the quantum Fourier transform will rotate this state into another su-

perposition of the basis vectors

3

2n�1X
k=0

ykjki;

in which the output amplitudes yk are the classical discrete Fourier trans-

form of the input amplitudes xj. Classically, we can compute the numbers

yk from xj using �(22n) elementary arithmetic operations in a straightfor-

ward manner and in �(n2n) operations by using the Fast Fourier Transform

algorithm.

In contrast, a circuit implementing the quantum Fourier transform re-

quires only �(n2) elementary quantum gates. Such a circuit can be easily

derived if equation 1 is rewritten as a tensor product of the n qubits involved:

jj1j2 � � � jni �!
(j0i+ e2�i0:jn j1i)
 (j0i+ e2�i0:jn�1jn j1i)
 � � �
 (j0i+ e2�i0:j1j2���jn j1i)

2n=2
:

(2)

using the binary representation j1j2 � � � jn of j and binary fractions in the

exponents (for full details see [11]).

Note that each Fourier transformed qubit is in a balanced superposition of

j0i and j1i. They di�er from one another only in the relative phase between

the j0i and the j1i component. For the �rst qubit in the tensor product, jn
will introduce a phase shift of 0 or �, depending on whether its value is 0 or

1, respectively. The phase of the second qubit is determined (controlled) by

both jn and jn�1. It can amount to � + �=2, provided jn�1 and jn are both

1. This dependency on the values of all the previous qubits continues up to

(and including) the last term in the tensor product. When jj1i gets Fourier
transformed, the coe�cient of j1i in the superposition involves all the digits

in the binary expansion of j.

In the case of each qubit, the 0 or � phase induced by its own binary

value is implemented through a Hadamard gate. The dependency on the

previous qubits is reected in the use of controlled phase shifts, as depicted

in Figure 1. In the �gure, H denotes the Hadamard transformation

H � 1p
2

"
1 1

1 �1
#
;

while the gate Rk implements a �=2k�1 phase shift of the j1i component,

according to the unitary transformation

4

R2

H

2RH

n-1Rn-2R2RH

nRn-1RH

π2
|0> + e |1>

2
i0.j ... j

n
π2

|0> + e |1>

|0> + e |1>
π2 i0.j ... j

1 n

n|j >

|j >n-1

2|j >

|j >1

n-1

ni0.jπ2
|0> + e |1>

n
i0.j j

Figure 1: Quantum circuit performing the discrete Fourier transform.

Rk �
"
1 0

0 e2�i=2
k

#
:

3 Rank-varying complexity

When analyzing the computational complexity of a given algorithm, we usu-

ally focus on how this quantity varies as a function of the problem size,

without paying too much attention to how the complexity of each step in the

algorithm varies throughout the computation. Though in many cases the

complexity of each step is a constant, there are computations for which the

cost of executing each step is di�erent from one step to another.

One factor determining such a variation could be time. Data may be

a�ected by the passage of time, making the same computation increasingly

harder as time goes by. A variety of instances demonstrating time-varying

complexity are described in [2]. In other computational environments, it is

rather the rank of a step, de�ned as the order of execution of that step, which

dictates its complexity [2]. Examples of this kind are hardly new. Euclid's

algorithm for computing the greatest common divisor of two numbers exe-

cutes the same basic operation (a division) at each step, but the size of the

operands (and implicitly the complexity of the operation) decreases contin-

ually. Algorithms for which an amortized analysis can be applied also make

good examples of rank-varying computational complexity. Incrementing a bi-

nary counter [6] is a procedure in which the number of bit ips at each step

is not constant, though it's neither strictly increasing nor strictly decreasing

with the rank.

5

n|j >

|j >n-1

2|j >

|j >1HR2n-1n-1R

2
i0.j ... j

n
π2

|0> + e |1>

H2Rn
i0.j j

n-1
π2

|0> + e |1>

ni0.jπ2
|0> + e |1> H

nR|0> + e |1>
π2 i0.j ... j

1 n

H2Rn-2Rn-1R

Figure 2: Quantum circuit performing the inverse Fourier transform.

Of particular interest to us are those instances where the computational

requirements grow with the rank. Computing the quantum Fourier transform

and especially its inverse are such examples. According to the quantum

circuit above, we need n Hadamard gates and n�1+n�2+� � �+1 conditional

rotations for a total of n(n + 1)=2 gates required to compute the Fourier

transform on n qubits. But this total amount of work is not evenly distributed

over the n qubits. The number of gates a qubit needs to be passed through

is in inverse relation with its rank. jj1i is subjected to n elementary quantum

gates, n � 1 elementary unitary transformations are applied to jj2i, and so

on, until jjni, which needs only one basic operation.

If we break down the quantum Fourier transform algorithm into n steps

(one for each qubit involved), then its complexity varies with each step.

Depending on whether we start with jj1i or jjni, the time needed to complete

each step decreases or increases, respectively, over time. Since the rank

of each step dictates its complexity, the circuit implementing the quantum

Fourier transform is an example of a rank-varying complexity algorithm.

Naturally, the computation of the inverse quantum Fourier transform can

also be decomposed into steps of varying complexity. Reversing each gate

in Figure 1 gives us an e�cient quantum circuit (depicted in Figure 2) for

performing the inverse Fourier transform. Note that the Hadamard gate is

its own inverse and R
y
k denotes the conjugate transpose of Rk:

R
y
k �

"
1 0

0 e�2�i=2
k

#
:

Getting back to the original jj1j2 � � � jni from its Fourier transformed ex-

pression has a certain particularity though. Because of the interdependencies

6

introduced by the controlled rotations, the procedure must start by comput-

ing jjni and then work its way up to jj1i. The value of jjni is needed in the

computation of jjn�1i. Both jjni and jjn�1i are required in order to obtain

jjn�2i. Finally, the value of all the higher rank bits are used to determine

jj1i precisely. Thus, computing the inverse Fourier transform by the quantum

circuit above is an increasing complexity procedure.

As in the case of the circuit in Figure 1, a purely sequential approach

requires n(n + 1)=2 time units (in the worst case) to complete the work,

assuming each quantum gate completes its unitary evolution in one time unit.

However, there is a certain degree of parallelism in these two algorithms that

can be exploited. Referring to the circuit for performing the inverse Fourier

transform, we observe that as soon as we know jn (at the end of the �rst step),

we can apply all the rotations controlled by the value of jn, in parallel, in the

second step. With the value of jn�1 obtained at the end of the second step,

we can perform all n� 2 jn�1-controlled rotations in step 3. The number of

operations performed in parallel, in each step, decreases steadily until there

is only one controlled rotation left for the last step.

Therefore, in terms of the time elapsed, a parallel approach only needs

1+ 2+ 2+ � � �+2 = 2n� 1 time units to complete the procedure. A similar

analysis (yielding the same results) can also be carried out for the quan-

tum circuit computing the direct Fourier transform. The di�erence in time

complexity between the sequential approach and the parallel one, although

seemingly insigni�cant from a theoretical perspective, may prove essential

under practical considerations, as we show next.

4 Quantum decoherence

Qubits are fragile entities and one of the major challenges in building a prac-

tical quantum computer is to �nd a physical realization that would allow us

to complete a computation before the quantum states we are working with

become seriously a�ected by quantum errors. In an ideal setting, we evolve

our qubits in perfect isolation from the outside world. But any practical im-

plementation of a quantum computation will be a�ected by the interactions

taking place between our system and the environment. These interactions

cause quantum information to leak out into the environment, leading to errors

in our qubits. Di�erent types of errors may a�ect an ongoing computation

in di�erent ways, but quantum decoherence, as de�ned below, usually occurs

7

extremely rapidly and can seriously interfere with computing the inverse

Fourier transform.

Consider the task of recovering the original bit string j = j1j2 � � � jn from

its quantum Fourier transformed form. The circuit performing this compu-

tation (see Figure 2) takes as input n qubits. The state of each qubit can be

described by the following general equation:

j ki = 1p
2
j0i+ ei�kp

2
j1i; 1 � k � n (3)

where the relative phase �k, characterizing the qubit of rank k, depends on

the values of bits jk; jk+1; � � � ; jn. The corresponding density operator is given
by

�k = j kih kj = 1

2
j0ih0j+ e�i�k

2
j0ih1j+ ei�k

2
j1ih0j+ 1

2
j1ih1j; (4)

or in matrix form

�k =
1

2

"
1 e�i�k

ei�k 1

#
: (5)

The diagonal elements (or the populations) measure the probabilities that

the qubit is in state j0i or j1i, while the o�-diagonal components (the co-

herences) measure the amount of interference between j0i and j1i [5]. Deco-
herence then, resulting from interactions with the environment, causes the

o�-diagonal elements to disappear. Since that is where the whole information

carried by a qubit is stored, the input qubits for computing the inverse Fourier

transform are very sensitive to decoherence. When they become entangled

with the environment, the interference brought about by the Hadamard gate

is no longer possible, as the system becomes e�ectively a statistical mixture.

In other words, decoherence makes a quantum system behave like a classical

one.

Naturally, this process is not instantaneous, but it usually occurs ex-

tremely rapidly, subject to how well a qubit can be isolated from its environ-

ment in a particular physical realization. Recall that applying the quantum

gates depicted in Figure 2 in a strict sequential order takes (n2+n)=2 steps,

while taking advantage of parallelism ensures the completion of the compu-

tation in only 2n � 1 time units. Because of decoherence, we must obtain

8

the values of j1; j2; � � � ; jn before time limit �, after which the errors intro-

duced by the coupling with the environment are too serious to still allow the

recovery of the binary digits of j.

The precise value of � will certainly depend on the particular way chosen

to embody quantum information, but, in general, we can assert the existence

of integers ns and np such that

2n� 1 < � <
n2 + n

2
; 8n ns < n < np: (6)

Here, ns represents the maximum number of qubits for which a sequential

solution to the problem of inverting a quantum Fourier transform may still

produce accurate results. Similarly, we denote by np the size of the problem

for which even a parallel approach is no longer able to cope with decoherence

e�ects.

We conclude that within the interval delimited by ns and np, the parallel

algorithm is the only one that succeeds, while a sequential algorithm will fail

to precisely recover all digits in the binary expansion of j. Therefore, in this

case, parallelism may be regarded as a means of improving the scalability of

computing the inverse quantum Fourier transform.

5 Discussion

In this paper, we have investigated the bene�ts of a parallel approach when

addressing a computational problem with steps of increasing complexity, in

the presence of deadlines. Our focus was on the quantum algorithm used to

compute the inverse Fourier transform, when the qubits jj1i, jj2i, � � �, jjni
have classical values (they are classical bits). This restriction is crucial in

allowing the parallelization we have described. No parallel algorithm exists

in the general case, when an arbitrary superposition of the basis vectors is

Fourier transformed and we seek to reverse that transformation.

The reason for this impossibility is the quantum mechanical nature of the

qubits controlling the inverse rotations in Figure 2. Such a controlled rotation

corresponds to a two-qubit gate and we need to apply, in parallel, a number

of two-qubit gates, where the control qubit is the same in all gates. Since

we cannot gain knowledge of the control qubit's state through measurement

and cloning an unknown quantum bit is forbidden by the laws of quantum

mechanics, any attempt to parallelize the procedure in the general case is

9

doomed to failure. However, in the particular case when the value of the

control qubit is 0 or 1, we know that either there are no rotations to be

reversed, or that all the lower-rank qubits are simultaneously subjected to

single-qubit rotations, respectively.

It follows that quantum algorithms will not bene�t from parallelizing the

quantum Fourier transform and its inverse since they rely heavily on pro-

cessing inputs in superposition to achieve speed-up over classical algorithms.

Nevertheless, there are other areas of quantum information processing, like

quantum cryptography, that may still make good use of the quantum Fourier

transform and its inverse, even in the simple form we analyzed herein. Thus,

we show in [9] how existing quantum key distribution protocols can be en-

hanced under the assumption that the receiver is able to store the qubits

transmitted until the communication through the public channel takes place.

The di�culty of devising a parallel algorithm for computing the inverse

Fourier transform comes from the data dependency between the di�erent

steps of the procedure. In most cases, it is exactly this precedence among the

steps composing an algorithm that determines the variation in complexity.

As a consequence, it is not easy, in general, to design a parallel solution to

a problem whose steps are characterized by rank-varying complexity. The

data dependency may impose a strict order of execution, making the resulting

algorithm inherently sequential (think about Euclid's algorithm again).

In the case of the inverse Fourier transform, it is interesting to note that

strict sequentiality is enforced by the laws of quantum mechanics, but we

still have a chance to speed up the computation, provided we restrict the

qubits onto which the quantum Fourier transform is applied to classical bits.

At the other end, perhaps there exist computations made up of steps of

various complexities, for which the order of execution is of no consequence to

the correctness of the computation. A problem belonging to this paradigm

would bene�t most from a parallel approach.

6 Conclusion

The example presented in this paper underlines the importance of parallel

processing for those computational environments in which the complexity of

each step evolves with its rank. This also extends to the cases where the

variation in complexity is time-driven [2]. The use of a parallel approach

becomes critical when the solution to such a problem must accommodate a

10

deadline. In our case, quantum decoherence places an upper bound on the

scalability of the quantum circuit in Figure 2 and the only chance to reach

beyond that limit is through a parallel solution.

References

[1] Selim G. Akl. Coping with uncertainty and stress: A parallel computa-

tion approach. to appear in International Journal of High Performance

Computing and Networking.

[2] Selim G. Akl. Evolving computational systems. In Sanguthevar Ra-

jasekaran and John H. Reif, editors, Parallel Computing: Models, Algo-

rithms, and Applications. CRC Press, 2006.

[3] Selim G. Akl, Brendan Cordy, and W. Yao. An analysis of the e�ect of

parallelism in the control of dynamical systems. International Journal of

Parallel, Emergent and Distributed Systems, 20(2):147{168, June 2005.

[4] Andr�e Berthiaume. Quantum computation. In Lane A. Hemaspaandra

and Alan L. Selman, editors, Complexity Theory Retrospective II, pages

23{51. Springer-Verlag, New York, 1997.

[5] C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum Mechanics, volume

1 and 2. Wiley, New York, 1977.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-

ford Stein. Introduction to Algorithms. MIT Press, Cambridge, Mas-

sachusetts, 2001.

[7] Mika Hirvensalo. Quantum Computing. Springer-Verlag, 2001.

[8] Samuel J. Lomonaco Jr., editor. Quantum Computation: A Grand Math-

ematical Challenge for the Twenty-First Century and the Millennium,

volume 58 of Proceedings of Symposia in Applied Mathematics. Amer-

ican Mathematical Society, Short Course, Washington, DC, January

17-18 2000.

[9] Marius Nagy and Selim G. Akl. manuscript. 2006.

11

[10] Marius Nagy and Selim G. Akl. Quantum measurements and univer-

sal computation. International Journal of Unconventional Computing,

2(1):73{88, 2006.

[11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and

Quantum Information. Cambridge University Press, 2000.

[12] Eleanor Rie�el and Wolfgang Polak. An introduction to quantum com-

puting for non-physicists. ACM Computing Surveys, 32(3):300{335,

September 2000.

[13] Peter W. Shor. Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. Special issue on Quantum

Computation of the SIAM Journal on Computing, 26(5):1484{1509, Oc-

tober 1997.

12

