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Abstract

We draw an analogy between G�odel's Incompleteness Theorem in mathematics, and

the impossibility of achieving a Universal Computer in computer science. Speci�cally,

G�odel proved that there exist formal systems of mathematics that are consistent but

not complete. In the same way, we show that there does not exist a general-purpose

computer that is universal in the sense of being able to simulate any computation

executable on another computer.
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1 Introduction

In 1931, the Austrian logician Kurt G�odel published his famous Incompleteness Theorem,

arguably the most important result in the history of mathematics. The theorem established

that there exist nontrivial formal systems of mathematics that, if consistent, cannot be

complete. Seventy-�ve years after G�odel, we prove that universality in computer science

cannot be achieved. Speci�cally, we show that no general-purpose computer can be built

that claims to be universal, in the sense of being able to simulate any computation that is

executable on another computer. We also draw an analogy between the two results that

illustrates the similarities in their formal structure and philosophical implications.

Lest there be any misunderstanding, we wish to state at the outset, absolutely clearly and

unequivocally: This paper is not about the Turing Machine [22]. Indeed, the inadequacy of

the Turing Machine as a universal model of computation has been previously demonstrated

amply, eloquently, and de�nitively. These demonstrations are well documented elsewhere

(see, for example, [13, 14, 24, 25, 33, 37, 43, 48, 52, 54, 58]). One of many limitations of the

Turing Machine is the fact that it is incapable of performing any computation that requires

feedback from the outside world during the computation (by contrast, such computations are

routinely performed on today's computers, from those in our cars to those in our airplanes).

�This research was supported by the Natural Sciences and Engineering Research Council of Canada.
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We do not intend to belabor this point here any further. Rather, our purpose is to prove that

(like the Turing Machine) no other computer, regardless of how powerful, be it theoretical or

practical, whether existing or contemplated, can achieve universality, as long as it is designed

and �xed once and for all (as required by the very de�nition of a universal computer). Having

said that, we note that the Turing Machine is often referred to throughout the paper; these

references, however, are only for historical and pedagogical purposes.

An overview of G�odel's theorem is provided in Section 2. In Section 3 we prove that,

given a computer U1 with a claim to universality, a computation P1 can be de�ned that

cannot be carried out on U1. While P1 is easily performed on another computer U2, the

latter's algorithm is impossible to simulate on U1. Examples of such computations P1 are

presented in Section 4. Some �nal remarks are o�ered in Section 5.

2 G�odel's Result

On a hot August day in the year 1900, the illustrious German mathematician David Hilbert

addressed the International Congress of Mathematicians assembled at the Universit�e Sor-

bonne in Paris. Hilbert presented his colleagues with a list of problems on which, he believed,

they should spend their time in the new century. Among these problems was the question of

whether there exists a �xed set of true mathematical statements that can be used to prove

automatically any new mathematical statement. Hilbert's objective was the formalization of

mathematics.

A formal mathematical system consists of an alphabet of symbols, rules for combining

these symbols into well-formed formulas, and a special set of well-formed formulas, the

axioms of the system. Examples of such systems are arithmetic, geometry and so on. A

formal system is consistent if it does not yield any logical contradiction. It is complete if all

logically true propositions expressible in the system are provable within the system. Finally,

a formal system is decidable if it is possible to determine (without providing a proof) whether

a proposition expressible in the system is true. The hope was that, with a few axioms and

just by mechanically moving symbols around, one could prove any mathematical system to

be consistent, complete, and decidable.

With their monumental work [60], Whitehead and Russell felt that they had ful�lled

Hilbert's dream. In it, they supplied rigid rules for manipulating symbols to produce theo-

rems from axioms. Paradoxes such as Russell's Paradox (also known by many other names,

including the Barber's Paradox), were completely avoided. Unfortunately, the approach had

a aw which was to be discovered by the twenty-�ve year old Kurt G�odel. His celebrated

incompleteness result shows that there exist nontrivial formal systems that, provided they

are consistent, must be incomplete.

In order to make his point, G�odel chose the formal system of simple arithmetic, that is,

the natural numbers with equality, addition, and multiplication. Denoting this system by

A1, consider the following proposition G1, expressible within A1:

G1 =< This statement cannot be proved within A1 >

Stepping outside of A1, G�odel proved that G1 cannot be proved within A1. Indeed,

proving it true within A1 would mean that a false statement is true, while proving it false
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within A1 would mean that a true statement is false. Since G1 cannot be proved within A1,

it follows that G1 is true. This means that A1 is incomplete as it contains a true statement

that cannot be proved within A1.

Technically, G�odel needed to accomplish three things. He had to be able to: express G1

within A1, that is, using natural numbers, remove any self-referential ambiguity from G1,

and step out of A1 to prove that G1 is true. All this he did through an ingenious technique,

now known as G�odel numbering [39]. Every symbol, every well-formed formula, every proof,

was mapped to (and henceforth represented by) a unique natural number. Suppose that G1

maps to some number y. Thus y stands for the proposition which says: \There does not

exist a proof whose number is x, such that x proves y". G�odel then proved that indeed no

such x exists.

To appreciate the signi�cance of this result, consider adding the recalcitrant proposition

G1 to A1, thus obtaining a new system A2. Is the latter now complete? Surely not, for now

we can create a proposition G2 not provable within A2. We can prove G2 in a new system

A3, which in turn has its own problem proposition G3 not provable within it, and so on for

ever. This is illustrated in Fig. 1.
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Figure 1: An incomplete formal system of mathematics.

This result became known as G�odel's Incompleteness Theorem, though it was one of two

incompleteness theorems in his paper [27]. The second theorem stated that it is impossible

to prove the consistency of a formal system of arithmetic within that same formal system.
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It is interesting to note in passing the way in which various intellectual movements

took hold of the result as a validation of their agenda [28]. Thus, for example, to the

postmodernists, G�odel's Incompleteness Theorem implied that no �rm foundation exists for

any system of logic. The existentialists saw in it an end to rational and objective thought.

Some philosophers [38] and mathematicians [41] argued on the strength of the theorem, that

humans are superior to machines. One physicist even suggested that, thanks to G�odel's

work, it is now obvious that the human brain is not a deterministic computer; rather, it is

a quantum computer [48, 49].

Having dispatched completeness and consistency, G�odel then moved on to other pursuits.

It was a pioneer of computing who would then tackle the third and only remaining component

of Hilbert's question, namely, decidability.

3 No Computer Is Universal

Alan Turing's scienti�c legacy is rich, varied, and well documented [18, 55]. Our concern

here is with two of his most profound contributions, namely, simulation and universality. We

begin by stating the twin principles of Simulation and Universality as they are understood

today. A few quotes gleaned from the literature in connection with these two principles are

o�ered in order to provide a current context for our subsequent discussion. We then pose the

question as to whether these principles, which have so far remained unchallenged, are still

valid in today's world of computing. The section concludes with our main result, namely,

that no computer, however powerful, can ever ful�ll the ideal of universality.

3.1 Turing, Simulation, and Universality

In order to address the question of decidability in mathematics, Turing needed to formally

de�ne what it means \to compute". His �rst and great insight was to invent a hypothetical

computer that we now call the Turing Machine [21]. It consists of a control unit that can be

in one of a �nite set of states, the symbols 0 and 1, an in�nite one-dimensional tape divided

into squares each of which can hold a 0 or a 1, and a head for moving on the tape, reading

and writing symbols. Turing settled the decidability question by proving that there exist

problems that cannot be computed on this machine, and hence formal mathematical systems

that cannot be decided [57].

While this was an important result, Turing's true gift to the �eld of computing (which

he had by now created) is the idea of simulation. He showed how one machine can simulate

another, leading to a universal machine that can simulate the actions of all others. This

is a profound idea. Today, simulation and its primary consequence universality, are the

main reasons behind the success of the computer as the most inuential invention of the

20th century. Take any algorithm designed in any part of the world, it can be instantly

programmed into any programming language, and before the day is over it can be running

on any computer anywhere (even in outer space).

Simulation and universality are so entrenched as foundational ideas that they are often

stated as principles:
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1. Simulation: Any computation that can be performed on some computer A can be

simulated exactly on any other computer B.

2. Universality: There exists a Universal Computer U , such that any computation that

can be performed on any other computer can also be performed on U .

In order to dispel any possible doubt (and at the risk of stating the obvious), we make precise

the meaning of simulation before going any further. Let an algorithm for computer A consist

of the sequence of instructions I0; I1; : : : ; IN�1, for some positive integer N . Computer B

simulates this algorithm by executing each instruction Ii, either directly if its repertoire of

instructions includes Ii, or indirectly by performing a sequence of its own instructions I 0
0
;

I 0
1
; : : : ; I 0k�1

, for some positive integer k, whose e�ect is equivalent to that of Ii. Thus, for

example, suppose that Ii calls for multiplying two variables xi and xj, and computer B does

not have the multiplication operation built in its repertoire. Assuming addition is available

to B as an elementary (or primitive) operation, it can obtain the product of xi and xj by

computing the sum of xj copies of xi.

The evidence for the veracity of the two aforementioned principles is, of course, over-

whelming. Computers are everywhere and none of them (provided it has enough time,

memory, and software) ever fails to do what another computer does.

3.2 Universality in the Literature

Every student of computing learns early on in his or her education that there exists a

Universal Computer that can compute everything that can be computed. If this sounds as

a tautology, recall what we have all been taught: There exists a computer that can imitate

exactly the actions of any other computer. Most frequently, though not always, the Turing

Machine is used as this omnipotent computer. Consider, for example, the following quotes:

\The reader will �nd it incredible, at �rst sight, that some of these sets of simple

operations could give rise to the full range of possible computations. [...] As

we will see, it is possible to execute the most elaborate possible computation

procedures with Turing machines whose �xed structures contain only dozens of

parts. [...] Accepting Turing's thesis, we conclude that the universal machine

can simulate any e�ective process of symbol-manipulation, be it mathematical

or anything else; it is a completely general instruction-obeying mechanism." [40]

\It can also be shown that any computation that can be performed on a modern-

day digital computer can be described by means of a Turing machine. Thus

if one ever found a procedure that �tted the intuitive notions, but could not be

described by means of a Turing machine, it would indeed be of an unusual nature

since it could not possibly be programmed for any existing computer." [31]

\The computing power of the Turing machine represents a fundamental limit on

the capability of realizable computing devices." [23]
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\[...] as primitive as Turing machines seem to be, attempts to strengthen them

seem not to have any e�ect. [...] Thus any computation that can be carried out

on the fancier type of machine can actually be carried out on a Turing machine

of the standard variety. [...] any way of formalizing the idea of a `computational

procedure' or an `algorithm' is equivalent to the idea of a Turing Machine. [...] It

is theoretically possible, however, that Church's Thesis could be overthrown at

some future date, if someone were to propose an alternative model of computation

that was publicly acceptable as ful�lling the requirement of `�nite labor at each

step' and yet was provably capable of carrying out computations that cannot be

carried out by any Turing machine. No one considers this likely." [35]

\The Turing Principle

(for physical computers simulating each other)

It is possible to build a universal computer: a machine that can be programmed

to perform any computation that any other physical object can perform." [24]

\[...] any algorithmic problem for which we can �nd an algorithm that can be

programmed in some programming language, any language, running on some

computer, any computer, even one that has not been built yet but can be built,

and even one that will require unbounded amounts of time and memory space

for ever-larger inputs, is also solvable by a Turing machine." [29]

\As far as we know, no device built in the physical universe can have any more

computational power than a Turing machine. To put it more precisely, any

computation that can be performed by any physical computing device can be

performed by any universal computer, as long as the latter has su�cient time

and memory." [30]

Such quotes are typical and can be found in more or less the same form in most books on

computer science, as well as in the logic, physics, psychology, and philosophy of the mind

literature (for a small sample, see [5]). Two points are worth noting. First, while the Turing

Machine is used as the `universal computer' in most of these quotes, it should be clear that

the same claims apply to any general-purpose computer:

\That is to say, even the lowliest of today's home computers can be programmed

to solve any problem, or render any environment, that our most powerful com-

puters can, provided only that it is given additional memory, allowed to run for

long enough, and given appropriate hardware for displaying its results." [24]

Second, these claims are indeed true for the vast majority of conventional computations

�tting the following general paradigm: Given a datum x in the computer memory, compute

y = f(x), for some function f . Do they still hold when the essential nature of computation

changes?
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3.3 The Main Theorem

Thus we ask the two questions: Is simulation always possible? Is universality true? In

this section we answer these questions in the negative. Speci�cally, there are computations

that are executable on a given computer but impossible to simulate on any putative uni-

versal computer. We provide a short proof of this result in what follows. Examples of the

computation used in our proof are presented in the following section.

Suppose that time is divided into discrete time units, and let U1 be a computer capable

of V (t) elementary operations at time unit number t, where t is a positive integer. Here, an

elementary computational operation may be any one of the following:

1. Obtaining the value of a �xed-size variable from an external medium (for example,

reading an input, measuring a physical quantity, and so on),

2. Performing an arithmetic or logical operation on a �xed number of �xed-size variables

(for example, adding two numbers, comparing two numbers, and so on), and

3. Returning the value of a �xed-size variable to the outside world (for example, displaying

an output, setting a physical quantity, and so on).

Each of these operations can be performed on every conceivable machine that is referred to

as a computer. Together, they are used to de�ne, in the most general possible way, what is

meant by to compute: the acquisition, the transformation, and the production of information.

Now all computers today (whether theoretical or practical) have V (t) = c, where c is

a constant (often a very large number, but still a constant). This is the assumption made

in [6] to demonstrate the impossibility of a universal computer. That result is generalized

here: We do not restrict V (t) to be a constant. Thus, V (t) is allowed to be an increasing

function of time, such as V (t) = t, or V (t) = 22
t

, and so on, as is the case for some

hypothetical accelerating machines [7, 17]. (The idea behind these machines goes back to

Bertrand Russell, Ralph Blake, and Hermann Weyl [15]; recent work is surveyed in [26].)

Finally, U1 is allowed to have an unlimited memory in which to store its program, as

well as its input data, intermediate results, and outputs. Furthermore, no limit whatsoever

is placed on the time taken by U1 to perform a computation.

Theorem U: U1 cannot be a universal computer.

Proof: Let us de�ne a computation P1 requiring W (t) operations during time unit

number t. If these operations are not performed by the beginning of time unit t + 1, the

computation P1 is said to have failed. Let W (t) > V (t) for all t. Clearly, U1 cannot perform

P1. However, P1 is computable by another computer U2 capable of W (t) operations during

the tth time unit.

It is important to note that, by the de�nition of universality, U1, once its features have

been speci�ed, is �xed and cannot change during the computation:

\Although the Universal Turing Machine { as its name suggests { is universal,

in the sense that it can simulate any specialized Turing machine (i.e., any com-

putational task), the machine cannot be recon�gured and its architecture cannot

be changed during operation." [56]
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\But the point of universality is that it should be possible to program a single

machine, speci�ed once and for all, to perform any possible computation, or

render any physically possible environment." [24]

Despite being allowed extraordinary powers (such as, for example, the ability to increase

the number of operations it can do at every consecutive time unit), U1 still fails to perform

P1. The computer U2 on the other hand is especially tailored to carry out P1 and succeeds

in doing so. This establishes that P1 is de�nitely computable. Yet surprisingly, U1 is unable

to simulate the actions of U2, notwithstanding the fact that no limit is placed on its memory

or the time it is allowed to run. Would U2 be the new Universal Computer? Of course not,

as we can easily de�ne a computation P2 that it cannot perform. A more powerful computer

U3 can execute P2, but is in turn defeated by a third computation P3, and so on for ever.

This is illustrated in Fig. 2.
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Figure 2: No general-purpose computer is universal.

The similarity between Fig. 1 and Fig. 2 is remarkable, and suggests a de�nite link

between the underlying formal structures of the two results. The in�nite ascent in the

search for completeness in mathematics and in the quest for universality in computer science

are very much alike.
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4 Counterexamples To Universality

Theorem U tells us that for any computer U1 that purports to be universal (be it the Turing

Machine, a supercomputer, or massively parallel processors), there exists a computational

task P1 that can easily be performed on another computer U2, but not on U1. Clearly,

Theorem U applies in turn to U2 for which a task P2 exists that it cannot compute. However,

P2 is computable on some other machine U3, and so on ad in�nitum. In this section we

provide examples of the computation P1 used in Theorem U. Each of these computations is,

in some sense, unconventional. (Other examples of such unconventional computations are

described in [6, 7].)

In what follows we assume that U1 (unlike the Turing Machine, but like any ordinary

computer today) is capable of communicating with the outside world during its computation.

Furthermore, the number of operations that U1 can perform during the tth time unit, that

is V (t), is a function that grows with t. This is not only unlike the Turing Machine, but also

unlike any of today's computers (even the most powerful ones). But, according to Theorem

U, computer U1, with all its power, still cannot be universal.

For de�niteness, we assume henceforth that V (t) = 2t�1, that is, U1 is able to double the

number of operations that it can execute at every consecutive time unit, for t = 1; 2; : : :.

Now consider the second computer mentioned in the poof of Theorem U, namely, U2, which

is used to express the fact that P1, though it foils U1, is in fact executable on U2. Henceforth,

we assume thatW (t), the number of operations that U2 can execute in time unit t, is always

equal to a positive integer n, a measure of the size of P1. Speci�cally, we will take U2 to be a

parallel computer equipped with n processors, each of which able to perform one operation

per time unit [3]. Of course, a computation P2 of size n + 1 or more renders U2 powerless.

4.1 Time-Varying Variables

For n � 2, there are n functions f0; f1; : : : ; fn�1, each of one variable, and n physical

variables, each of which changes as a function of time, namely, x0(t); x1(t); : : : ; xn�1(t): For

all practical purposes, the change in the value of xi as time moves from t to t+1 is random,

unstoppable, and irreversible.

The computational problem that concerns us here is to evaluate fi(xi(1)), for i =

0; 1; : : : ; n � 1. Each function evaluation requires one time unit. Since U1 can do one

operation when t = 1, it can compute f0(x0(1)), for example. At this point, one time unit

has elapsed, t = 2, and the remaining variables have changed to x1(2); x2(2); : : : ; xn�1(2):

Clearly, U1 fails to perform the computation. Note that U2 succeeds in computing fi(xi(1)),

for i = 0; 1; : : : ; n � 1 during the �rst time unit. With all of the processors of U2 oper-

ating simultaneously, each processor evaluates one of the functions. However, simulating

this algorithm on U1 is impossible, due to the relentless march of time. Two examples of

computations with time-varying variables follow.

4.1.1 Computing with qubits

A quantum bit, or qubit, is a physical entity in a state of superposition of the values 0 and 1

[44]. Through `prolonged' exposure to its environment, the qubit undergoes decoherence: Its
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superposition is said to collapse, and it loses its quantum properties. Usually, decoherence

takes place in times signi�cantly smaller than one second.

Suppose that x0(1); x1(1); : : : ; xn�1(1); represent the values of n independent qubits,

each in a state of superposition, at time t = 1. Now U1 proceeds to compute f0(x0(1)), by

which time the n� 1 remaining qubits would most likely have undergone decoherence.

4.1.2 Identifying genes

In a living cell, the genes x0(t); x1(t); : : : ; xn�1(t); expressed as proteins change over time

as the cell ages or becomes infected, and can evolve from simple regulatory processes to a

full out war against invaders [59]. A biochemical application requires the number and types

of genes expressed in a cell to be determined. However, since drastic cellular changes can

occur in extremely small amounts of time, U1 has no hope of telling exactly which proteins

are coded for in a given cell and how they interact with one another.

4.2 Interacting Variables

In this computation, x0; x1; : : : ; xn�1; where n � 2, are the variables of a physical system.

The variables are related to one another, in the sense that the value of each variable is a

function of the values of all the other variables. Thus, xi = gi(x0; x1; : : : ; xn�1), for some

functions gi, and i = 0; 1; : : : ; n � 1. When the physical system reaches a state of equilib-

rium, the variables acquire values that remain unchanged so long as they are not disturbed.

However, any operation on any one of the physical variables, a�ects its value and the values

of all the other variables. This means that in the next time unit, the variables would have

shifted to new values, unpredictably, uncontrollably, and irremediably.

Once again, given n functions fi of one variable each, suppose we wish to compute fi(xi),

for i = 0; 1; : : : ; n� 1, when the system is in a state of equilibrium. It takes one time unit to

evaluate each function. Computer U1 will attempt this computation by evaluating f0(x0).

This disturbs the equilibrium, meaning that, one time unit later, all the variables x0; x1;

: : : ; xn�1; would have shifted to new values. In particular, U1 has no hope of obtaining

f1(x1), f2(x2), : : : ; fn�1(xn�1); as the original values of x1; x2; : : : ; xn�1; are lost forever.

Nor does U1 have any way of simulating the actions of U2, which is capable of executing n

operations in one time unit and thus easily computes all of f0(x0), f1(x1), : : : ; fn�1(xn�1);

simultaneously, before the variables change value due to the disturbance. Two examples of

such physical systems follow.

4.2.1 Sorting out an entanglement

In the same way as a single qubit is in a superposition of 0 and 1, an entire register of n

qubits x0; x1; : : : ; xn�1; can be put in a superposition of two states. There are 2n such

superpositions, in which the n qubits are said to be entangled: operating any one of them

causes the superposition to collapse into one of the two original states. Any subsequent

operation on the remaining n�1 qubits will yield a value that agrees with the state to which

the superposition collapsed [42, 43].
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4.2.2 Dependence for survival

Here n living organisms x0; x1; : : : ; xn�1; are housed in a closed environment. The organisms

depend on one another for survival. Performing any operation on one of the organisms in

exclusion of the others may have the e�ect of disturbing the equilibrium su�ciently to

provoke a serious adverse e�ect on the remaining organisms.

4.3 Time-Varying Computational Complexity

In traditional computational complexity theory, the number of operations required to solve

a problem is a function of the size of the problem [4, 19]. In this section, we consider a

paradigm that di�ers from the traditional one. Here, the computational complexity of a

problem depends on time. Time-varying computational complexity is everywhere around us.

For example, as software viruses spread with time they become more di�cult to deal with.

A spaceship racing away from Earth becomes ever harder to track. We concentrate in what

follows on such computational tasks whose complexity, as illustrated by the aforementioned

examples, grows with the passage of time.

4.3.1 Computing with deadlines

Given n variables, x0; x1; : : : ; xn�1; it is required to compute fi(xi), where the n functions

f0; f1; : : : ; fn�1; are entirely independent, and computing any one of them during time unit

t requires 2t�1 operations. Furthermore, there is a deadline for reporting the results of the

computations: All n values fi(xi) are to be returned by the end of the third time unit. We

assume n > 3.

How does U1 fare? It computes f0(x0), which requires one operation, during the �rst

time unit. During the second time unit, f1(x1), now requiring two operations, is computed.

Finally, U1 performs the four operations needed by f2(x2) in the third time unit. At this

point the deadline has been reached and none of

f3(x3); f4(x4); : : : ; fn�1(xn�1);

has been computed.

While U1 has failed, U2 succeeds. It evaluates all n values fi(xi) during the �rst time

unit, handily meeting the deadline.

4.3.2 Computing without deadlines

An alternative to the paradigm of Section 4.3.1 does away with the deadline, while still

being able to defeat U1. Suppose it is the case that computing fi(xi), for i = 0; 1; : : : ; n� 1,

requires 3t�1 operations if executed during the tth time unit. Now U1 can compute f0(x0),

but is unable to keep up beyond that point. Once again U2 succeeds.
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5 Conclusion

The purpose of Hilbert's program in formalizing mathematics was twofold. The �rst goal

was to contain in�nity. Proofs for all true statements of a formal system were to be produced

from a �nite set of axioms. The second goal was to eliminate intuition from mathematics.

By mechanizing proof generation, serendipity would no longer be part of the process of doing

mathematics. G�odel's work demonstrated that, on the contrary, in�nity is an integral part

of mathematics and cannot be tamed. Mathematicians will always use their intuition to

reason about the in�nite.

Likewise, Theorem U shows that no �nite computer can be universal. A new machine will

always be needed to cope with the next challenge. The computational problems described in

this paper imply that computation is a fundamental category of Nature, and as such it has

no bounds. Its parameters are limitless. Time passes, inexorably, changing everything in its

path. The constituents of our physical space constantly interact with one another, mutually

a�ecting each other. As our world evolves, computations are taking place everywhere, all

the time. The genie simply does not �t in the bottle.

It is important to realize that Theorem U applies to all known models of computation,

both theoretical and practical. These include the Turing Machine, the Random Access

Machine, and other idealized models [50], as well as all of today's general-purpose computers,

including existing conventional (electronic) computers (both sequential and parallel), as well

as contemplated unconventional ones [8, 11, 12], such as optical [36], biological [2, 20, 53],

chemical [1] and quantum [9, 33, 45] computers. As long as it is de�ned at the outset as

a contender for the title of `universal', and its properties established in advance and �xed

once and for all, no computer can be universal. This is true of hypercomputers [10, 14,

16], quantum hypercomputers [32, 46], quantum adiabatic hypercomputers [34], relativistic

computers [25], black hole computers [37], interactive computers [58], X-machines [54], and

analog neural networks [51, 52]. Even accelerating machines are not universal.

In this respect, we note that one way to realize an accelerating machine is to have a

computer that is able to acquire new processors as needed during its computation. An orig-

inal and intriguing way of doing this is through a biological approach known as membrane

computing, which models the computations occurring in a living cell. Membrane comput-

ers can increase the number of their \processing units" while they are computing [13, 47].

This is accomplished by applying certain rewrite rules, a process which itself represents the

computation. These computers, however, have a �xed initial con�guration and a �xed set

of rewrite rules. By Theorem U, they cannot be universal. For example, it takes time to

apply the rules in order to achieve the required number of processing units, and this would

be a problem in a computation with time-varying variables. Similar di�culties are easy

to imagine in computations involving interacting variables (where a{necessarily perturbing{

measurement is needed to �nd out how many processing units are needed) and computations

with time-increasing computational complexity (where there may be no way of catching up,

however many processing units are generated).

In his book The Fabric of Reality [24], David Deutsch formulates the following variant of

the `Turing Principle' quoted in Section 3.2:
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\The Turing Principle

It is possible to build a virtual-reality generator whose repertoire includes every

physically possible environment." [24]

He goes on to write: \Is there any fundamental limit on how accurately any given era could

be rendered? The Turing principle says that a universal virtual-reality generator can be

built, and could be programmed to render any physically possible environment, so clearly it

could be programmed to render any environment that did once exist physically." It should

be clear by now that, unfortunately, this is not true. Theorem U and the three examples

of Section 4 represent a refutation of this principle. Like a camera that can `see' only part

of a landscape, no �nite device can capture at time t0 a faithful snapshot of all the details

of an arbitrary environment, needed for a correct playback at time t0 + 1. If the present

cannot be recorded, the past cannot be reproduced. Even if it were allowed unlimited time

travel to the past in order to recover what it missed (an extraordinary assumption in its own

right), the �nite device could not simulate time t0 at time t0 + 1. This remains true, even if

we assume the presence of an in�nite number of parallel worlds in which every moment of

time `exists' and is available for retrieval (another unsubstantiated claim). Even accelerating

machines that can travel in time and space cannot recreate an accurate virtual reality of a

bygone moment.

One cannot help but wonder how for seventy years (ever since Turing), we computer

scientists have believed that a simple, �nite, and �xed `universal machine' can fully capture

the complexity, immensity and ever changing nature of the whole Universe.
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