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Abstract

This paper presents an overview of accelerating machines. We begin by exploring

the history of the accelerating machine model and the potential power that it provides.

We look at some of the problems that could be solved with an accelerating machine,

and review some of the possible implementation methods that have been presented.

Finally, we expose the limitations of accelerating machines and conclude by posing

some problems for further research.
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1 Introduction

The goal of this paper is to provide an overview of the work that has been published to

date with respect to accelerating machines. The accelerating machine model is a fantastic

theoretical entity; it promises to be able to solve problems that no machine available today

could ever hope to do, even if it were allowed to run to the end of time. Although most of

the attention paid to the topic has been fairly recent, the temporal patterning at the heart

of the machine has roots thousands of years ago among the ancient Greeks.

This review begins with a look at the fundamentals of computing, beginning with the

Turing machine and the Church-Turing thesis. Then we briey examine hypercomputers,

a class of machines which are capable of more than conventional Turing machines. The

accelerating machine is an example of one such hypercomputer. This is followed by a review

of the basic properties of accelerating machines and some of the problems that would become

tractable should such machines be implemented. Just how this implementation might be

carried out is presented next, along with a discussion of some physical limitations and bounds

on the computational power of accelerating machines. The paper concludes by o�ering some

questions for future research.

�This research was supported by the Natural Sciences and Engineering Research Council of Canada.
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2 Turing Machines

Alan Turing, often considered the father of computing, was the �rst to propose a rigorous

and constructive de�nition of \computation". He invented a computational model, today

named after him, in order to address the question of decidability in mathematics [Akl07a].

A Turing machine is a conceptual object, intended as a model of a computer, that solves

problems e�ectively in the manner that a human clerk would perform the same task using

pencil and paper. The analogy is apt, since in those days, all computers were people employed

to perform calculations by hand [Cop02b]. Turing's idea was to use his model of computation

to solve a problem by executing a �nite number of operations. The Turing machine can be

in one of a �nite number of states, registered by a control unit. In addition, the machine

contains a paper tape of in�nite length, divided into squares, which stores the data and

results of a computation. The Turing machine is equipped with a read/write head that

moves back and forth along the tape. A symbol from a �nite alphabet can be written onto

a square by the read/write head. The current state of the machine, and the symbol on the

square at which the read/write head is positioned, fully determine the next action of the

machine (that is, the new state of the machine, the new symbol, if any, written by the head,

as well as the head's new position, if any, one square to the left or to the right). For a

complete description of the Turing machine, see [Dav00].

As discussed in the next section, this machine is generally assumed to capture the essence

of the process of \computation". On the basis of this assumption, the existence of problems

that cannot be solved by the Turing machine implies the existence of formal mathematical

systems that are undecidable [Tur37]. Turing also conceived of a universal Turing machine,

that is, a machine capable of being \programmed" to perform a thorough simulation of the

operations that any other Turing machine can do.

2.1 The Church-Turing Thesis

The basis of the Church-Turing thesis is that the Turing machine is essentially the de�nition

of computability. There is some dissention as to the precise meaning of this thesis, but at the

heart it states that any mathematical function that is somehow computable by some device,

can be computed by a Turing machine, and conversely, if there is a mathematical function

that cannot be computed by a Turing machine, then it is considered to be uncomputable by

any other means. Nowadays, the thesis is stated as saying that a computational problem is

solvable if and only if a �nite machine (read a Turing machine) can solve the problem in a

�nite amount of time [Cop98a]. Some believe that there does not exist a convincing argument

that any type of object could solve problems that are of a class beyond those solvable by

Turing machines [Cas97, Sud06]. Because no model-independent all-encompassing de�nition

of what it means \to compute" exists (or is even conceivable) this claim is a \thesis", that is,

a conjecture, and an unprovable one at that. However, it may be disproved. Indeed several

examples of computable functions, that cannot be computed by the Turing machine, are

known [CP04, CS99, Deu97, EN02, Kie03, LN04, NA06, Pen90, Sie99, Sta90, WG97]. This

paper is a review of one of the most intriguing vehicles that have been proposed to violate

the Church-Turing thesis: the accelerating machine.
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2.2 Hypercomputation

Turing did not deny that, given some theoretical but potentially physically realizable model

of computation di�ering from the conventional, some problems considered uncomputable by

the Church-Turing thesis may become tractable. In fact, he developed variants of the Turing

machine that were able to compute functions considered uncomputable by the Church-Turing

thesis, such as the O-machine [Tur39] (see also [CP99]). The O-machine is a Turing machine

equipped with an oracle capable of telling instantly whether a queried number belongs to a

certain (possibly in�nite) set of numbers. The Halting problem is a classic problem where,

given an arbitrary mathematical function and its input, it is required to determine in �nite

time whether the program that computes this function will ever halt or run on forever.

Although the Halting problem is uncomputable for a conventional Turing machine [Dav00],

an O-machine is capable of hypercomputation. If the Halting set of a function were a

(possibly in�nite) set of numbers, then the machine could determine whether a given input

belongs to the set, thus solving the Halting problem. This is an example of the promised

power and appeal of hypercomputation.

Today, we know that there exist models of computation possessing more power than a

Turing machine and they collectively are attributed to the �eld known as hypercomputation.

Stannett [Sta04] provides a categorization scheme for the di�erent models of hypercomputa-

tion that have been proposed in the literature. They are summarized by four di�erent basic

strategies for the modi�cation of the Turing model:

� the temporal structure of computation

� the information content of memory

� the information content of programs

� the information content of states.

Accelerating machines fall into the �rst category of these machines. For a review of the

other models, see [Cop02b, Ord02, Sta04].

2.3 Algorithmic Complexity

The traditional method of measuring the complexity of an algorithm is to �nd an expression

to describe the number of primitive operations that the algorithm requires [Akl97]. This is

intuitive, as this description is independent of implementation and the system on which it is

implemented. An alternative description would be a temporal expression, where the duration

of each primitive operation is considered. Time varying complexity is a phenomenon where

the complexity of a problem changes with time [Akl07b]. An example of such a problem

is tracking a satellite that is traveling away from the Earth. As the distance between the

satellite and Earth increases, the time required to communicate with the satellite increases

accordingly, and thus the complexity of operations increases with the passage of time. Con-

sider a simple operation such as an operator on Earth reacting to some input peripheral to
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the satellite by instructing the satellite to rotate towards the input. Simply due to transmis-

sion times, this operation takes twice as long when the satellite is twice the distance from

the operator. (We note here that time varying complexity is not to be confused with the

paradigm of time varying variables. In the latter, the value of a variable changes with time,

be it constantly, exponentially, randomly, and so on [Akl06b].)

3 Accelerating Machines

The basic idea of the accelerating machine is deceptively simple: the time required by an

operation at any given step of a computation is only half (or some other constant fraction) of

that required to perform the same operation in the previous step. More formally, assuming

that an operation takes one time unit in the �rst step, the total time to complete the

computation may be expressed as the sum of a geometric series:

nX
i=0

1

2i
;

where i is the current step and n is the number of steps in the computation. As i approaches

in�nity, the total time approaches 2, that is:

1X
i=0

1

2i
= 2:

The beauty of the accelerating machine is that this model of computation allows any

number of iterations of a computational step to be performed in a �nite amount of time.

This is especially wonderful since this amount of time cannot be even twice the amount

of time required by the �rst iteration! More generally, the accelerating machine can be

formalized as saying that:

1X
i=0

ti < t;

where ti is the time required for the operation at iteration i, and t is some constant �nite

time. Thus, if we run a program on an accelerating machine, we are guaranteed that the

computation will be �nished by time t, even if the program recurses in�nitely.

Turing did not take into account the amount of time that a computation takes on one of

his machines, so the mathematics of Turing machines hold for accelerating machines [Ord02].

Further, there is no requirement that a particular operation should require a constant amount

of time to perform in the Turing model [Sta04]. However, the accelerating machine cannot be

considered a Turing machine, since the Turing machines operate on discrete time intervals.

Accelerating machines do not. We now examine this point in depth as we turn to a discussion

of Zeno's paradoxes.
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3.1 Zeno's Paradoxes

There have been many discussions of the accelerating machine concept through history.

Naturally, there are many references to such a model that are not targeted speci�cally at

computing; the concept could even be attributed to the ancient Greeks.

The original description of the series characteristic of accelerating machines can be traced

back to Zeno's paradoxes. Zeno was a philosopher, who studied under Parmenides, and

developed his paradoxes about 450 BC to show that motion is impossible [Bar05]. His �rst

paradox is usually discussed as an anecdote of a person either walking or running some set

distance. Imagine that you are running a 10 kilometre course. Once you begin running,

you can divide the distance that you must traverse to reach the �nish into discrete intervals.

Let's de�ne these intervals as half of the distance that you have yet to travel, so we get

the series 5, 2.5, 1.25, 0.625, ..., in an in�nite series. Thus, for you to traverse the entire

distance, you must pass through an in�nite number of intervals. Since the Greeks did not

accept in�nities, Zeno used this to show that motion is impossible. Zeno's second paradox is

similar. It consists of two racers: Achilles versus his opponent, who has been turned into a

tortoise. The tortoise is given a 1km head start because he only runs half as fast as Achilles.

When Achilles has reached the 1km mark, the tortoise is at the 1.5km mark; once Achilles

arrives at 1.5km the tortoise is at 1.75km. Achilles's position can be described by

2�
1

2N
;

for N = 0; 1; 2; :::, which will always be behind the tortoise whose position at the same time

interval is

2�
1

2N+1
:

The tortoise will thus always be ahead, albeit by an amount that decreases in�nitely over

the intervals. Thus, Zeno concluded, Achilles can never pass the tortoise and motion is an

illusion.

Zeno's paradoxes have also been used to suggest that accelerating machines, while suf-

�cient, may not be necessary to solve problems uncomputable by Turing machines. Cle-

land [Cle02] argued that Zeno's paradox does not prove that we are required to perform an

in�nite number of distinct tasks to move somewhere, and thus by analogy we may not be

required to perform an in�nite number of distinct operations to solve a problem beyond the

capabilities of a Turing machine. To our knowledge, no one has refuted this claim to date.

3.2 Russel-Blake-Weyl Temporal Patterning

Bertrand Russell discussed the race-course paradox in 1914 [Rus15] and explained the con-

cept that the geometric sum solves the problem as the number of intervals approaches in-

�nity (Ralph Blake [Bla26] drew similar conclusions in 1926). Russell elaborated in a later

work [Rus36], introducing the idea that a man's skill at an operation could increase such

that each time he repeated an operation he would accomplish it twice as quickly; this is a

human version of an accelerating machine. The application in his discussion was that of a

5



man enumerating the digits of �, and he emphasized that such a scenario is logically possible,

although it is medically impossible.

Probably the �rst application of the idea to an actual machine can be attributed to

Hermann Weyl [Wey27, Wey49]. He postulated a machine where the �rst decision for a

given problem could be found within half a minute, and each subsequent decision required

half of the time of the previous one. He asserted that this property would allow the traversal

of all natural numbers in a �nite amount of time, permitting the solution to any problem

associated with them.

Discussion of the model of perpetual acceleration (Copeland dubbed it Russell-Blake-

Weyl (RBW) temporal patterning [Cop02a]) often comes around to Zeus. Georg Cantor was

the reason for this, as he �rst described sets of numbers that cannot be enumerated [Bar05].

Not even Zeus could enumerate these sets, no matter how hard or long he worked. Boolos

and Je�rey [BJ80] discuss Zeus' challenge, and propose the accelerating model as the solution

for Zeus to enumerate any enumerable set. He could simply write a number on a list in half

the time that he wrote the previous number to produce an in�nite list. Thus, machines that

operate using a model of computation based on RBW temporal patterning are sometimes

referred to as Zeus machines [Cop02b].

3.3 Di�erent Time Scales

Svozil [Svo98] explains the behavior of accelerating machines in a slightly di�erent fashion,

although the meaning is the same. He describes two di�erent time scales:

� � - this describes the time scale that our clocks would measure, what Svozil calls

physical system time.

� t - this is a discrete time scale, which can be measured using the set of non-negative

integers, describing the intrinsic time for a machine.

The accelerating machine operates by compressing the time scale t with respect to � by a

geometric progression. Given a factor k < 1, the time t can be measured in terms of � by

the following:

�0 = 0;

�1 = k;

�t+1 � �t = k (�t � �t�1) ; t � 1;

�t =
tX

n=0

kn � 1 =
k (kt � 1)

k � 1
:

Since k < 1, as t goes to in�nity, the time � remains �nite:

�
1
=

k

(1� k)
:

The conventional example we have been using throughout the paper has been that the speed

of the accelerating machine doubles with each iteration. To apply this pattern to Svozil's
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model, we would use k = 1=2, giving �1 = 1=2 and �
1

= 1. This is the same pattern

as presented earlier, expect for the �rst iteration. If the speed of an accelerating machine

doubles with each iteration, the total time required is 1 time unit if the initial iteration is

1/2 time unit. If the �rst iteration takes 1 time unit, the machine will take 2 time units in

total for an in�nite number of iterations.

The application of an accelerating series to a Turing machine has been fully discussed by

Copeland [Cop98b, Cop02a, Cop04b], who coined the appellation `accelerating universal Tur-

ing machine (AUTM)', which is commonly used by other authors [EW03, CP04]. Copeland

has synonymously used accelerating Turing machine (also [Ste02, Sha04, OK05]) and ac-

celerating digital machine [CS99]. There are many other names that have appeared, such

as the Zeus machine of Boolos and Je�rey [BJ80], or the Zeno squeezed oracle computer of

Svozil [Svo98], or Stewart's [Ste91b] Rapidly Accelerating Computer (RAC). Stannett [Sta04]

uses accelerating-time hypercomputer, accelerating Turing machine, accelerating-time ma-

chine, and convergent-time machine interchangeably.

4 Applications

One remarkable application of the accelerating machine is in the solution of the Halting

problem: Given a mathematical function f and its argument x, it is required to determine

in �nite time whether the computation of f(x) terminates or continues inde�nitely. The

accelerating machine computes f(x) by performing the �rst operation in the calculation

in one time unit, the second in one-half of a time unit, and so on. The answer to the

problem is obtained in a total of at most two time units (even if the computation of f(x)

does not terminate). Many papers have described this application of an accelerating Turing

machine [Hog94, Tip94, Cop98a, Cop02a, Ord02, Ste02, Sha04, Sta04], as it is a variant

of a problem used by Turing to describe the limitations of Turing machines, known as the

Entsheidungsproblem, or the \decision problem". It is interesting to note that the current

and widely used incarnation of the Halting problem, is attributed to Martin Davis [Cop04a].

4.1 Internal and External Operation

Now, one may require that there be a means of indicating to external parties whether the

(Turing machine) program for computing f indeed halted on a given input x. Conventionally,

the proposed implementation provides the machine with a square on the tape that has a 0

as the initial value. This value is changed to a 1 if and when the program halts. If after two

time units (double the time used by the �rst operation) the value in the square remains a 0, it

can be concluded that the program has not halted. This model of computation is a modi�ed

Gold-Putnam machine, which has a standard, non-accelerating implementation [Cop04b].

Copeland [Cop98a] has also suggested using a hooter to blow a tone when the function halts,

a testament to Turing and his colleagues who enjoyed the prospects o�ered by hooters in

computing. This observation suggests that a distinction might be needed between the case

in which a function is computable by a machine in an internal sense, and the case where

it is computed in an external sense [Cop02b]. The method of solving the Halting problem

presented here (using an accelerating machine) is done in the external sense, in that another
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machine or a person checks the result by reading the value on the prede�ned square after

the set amount of time has passed. The accelerating machine itself is not truly solving the

problem, as people conventionally think of problem solving being performed in the internal

sense. The internal sense of solving a problem would be that the machine arrives at the

solution without any input other than the initial arguments and presents its conclusions

when �nished. It has been suggested that no Turing machine can solve the Halting problem

in the internal sense (see [Tur37] or [Cop98a] for a discussion). It may be relevant to point

out here that the distinction between internal and external solutions is wholly arti�cial,

whether the question is regarded philosophically or pragmatically. Indeed, it is clear that

no computation is ever useful unless its results are noticed, directly or indirectly, by an

active observer (in other words, all meaningful computations are essentially performed in an

external sense).

4.2 Mathematical Applications

Stewart [Ste91a, Ste91b] suggests that we might use accelerating machines to prove or dis-

prove Fermat's last theorem. Although this theorem has been proved in the meantime, the

point remains that an accelerating machine could be used to prove any theorem one wishes

by exhaustively testing all possible inputs in a �nite amount of time (for that matter, one

could prove all possible theorems in a �nite amount of time).

A perpetual problem in computer science and mathematics is the expansion of �. Since

� is irrational, it is impossible for a conventional Turing machine to perform the expansion.

For each new integer, the Turing machine must calculate it and then transcribe it on paper.

A conventional Turing machine would continue these operations for as long as it had paper

and power. An accelerating Turing machine could accomplish this task in a �nite time, since

it would compute each digit in half of the time required to compute the one before. Of

course, this Turing machine would also require an in�nite amount of paper on which to write

all of these numbers. Intuitively, this whole concept seems to entail a logical contradiction

(one which Copeland [Cop02a] contended would render accelerating machines as logical

impossibilities as well). Consider that this machine, in order to write the entire expansion

of �, had to write a �nal decimal place to �nish its task. But there is no such number since

the expansion is in�nite. This problem is accounted for by in�nities, since the expansion

of � is in�nite, the machine required an in�nite amount of paper to write the expansion,

and there is no last digit, since an in�nite number of digits were written. There remains

the question of what would happen if each number were written on a single square, such

that when the task of expanding � was �nished one could simply check this square to learn

the \�nal" number in the expansion. This apparent paradox is addressed in the following

section on super tasks.

4.3 Super Tasks

The process of performing an in�nite number of tasks is referred to as a super task, an

example being the expansion of � just discussed [Cop02a]. There are other examples of

tasks that could be performed by an accelerating machine that have spawned debate. James

8



Thompson [Tho54] developed the famous example of the lamp. Assume that we are given

a lamp, and at each time interval the switch of the lamp is pressed. If the lamp is initially

o�, let's say that at the one second mark it is switched on by our accelerating machine,

at 1.5 seconds it is switched o� again, after 1.75 seconds it is on, and so on in�nitely. The

question is whether the lamp is on or o� after the accelerating machine has ipped the switch

an in�nite number of times. Thompson used the argument to support his claim that super

tasks are impossible. The lamp cannot be on, because the lamp would have to be switched o�

again, and it cannot be o� for the same reason. He uses this to establish a contradiction since

the lamp must be either on or o�. However, Thompson later admitted that his argument is

faulty as a result of a critique of his work by Paul Benacerraf [Ben62]. The lamp could be in

either state at the end of an in�nite number of steps, and this would be logically consistent

with the description of the super task. Thompson's points are not worthless, however, since

there remains the question of whether the state that an accelerating machine will be in after

performing a super task will be consistent. Benacerraf works thoroughly and humourously to

explain the fault in Thompson's claims. He calls the question of the state after the conclusion

of the super task a super-duper task. The state at 2 seconds, using the same example as

previously, has nothing to do with the in�nite number of tasks that were performed prior to

this moment. Benacerraf illustrates this point using Aladdin and the genie of the lamp. He

provides a scenario where Aladdin instructs the genie to move towards a point located at 1

from point 0, and to occupy every point in the series 0;
1

2
;
3

4
;
7

8
; ::: on his way. A point in

this series is described by the function

pi = 1�
1

2i
:

Once he has accomplished his traversal, the genie is to disappear. Now the super-duper task

would be to ask what the genie's state is at point 1, but this was outside our purposes. We

asked him to occupy all the points in this series, a super task, which he would accomplish

without ever reaching 1. We can draw this easily using lines, as shown in Figure 1.

Why couldn't an accelerating machine perform super-duper tasks? The nature of super

tasks is that there is an in�nite number of operations to perform. When we apply an

accelerating machine to the task, inevitably people try to attach a �niteness by questioning

the state of the machine after the �nal operation. This is important: there is no �nal

operation. The question of the lamp is moot, it is the same as asking whether in�nity is

even or odd. To pose such a query is nonsensical. The lamp is turned o� and on an in�nite

number of times; from the perspective of the machine performing the switching, the task is

never �nished. Consider the following algorithm, one that is possible to implement on any

machine in any language:

Algorithm A Simple In�nite Loop

i = 1

while i > 0 do

i = i+ 1

end while

return i.
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Super-duper task

Super task

 0 1

1 0

Figure 1: Aladdin's super task for the genie is to occupy all of the points on this series,

which approaches 1. The super-duper task would be to occupy 1 as well.

This algorithm counts to in�nity; it counts forever. A computer could never \�nish" this

problem. It is a perfect example of where an accelerating machine could be used to solve the

halting problem. The algorithm has a halting condition (which will obviously never be met

as i will never be zero or less), so we can run it on the accelerating machine to determine

if it will halt. The machine will run, performing an in�nite number of computations, and

nothing will be returned within the time frame in which we know the machine could perform

this in�nite number of computations. We can conclude therefore that the program did not

halt. However, for the accelerating machine, it ran forever. There is no \�nishing" this task,

as obviously the halting condition is never met. This is perhaps illustrative of the intended

di�erence between internally and externally solving the problem. With such super tasks,

only externally solvable problems are valid. Thus the question of the state of the machine

after it has performed an in�nite number of computations does not apply, as there can be no

\after" in�nity. We discuss this matter further while covering implementations in Section 6.

4.4 Returning to �

Copeland [Cop02a] states that no Turing machine could perform the task of expanding �,

since there is no halting condition. Copeland tries to work around this problem by suggesting

that a machine could be built to shut down the accelerating machine after the amount of

time has passed that the machine requires to perform the expansion, but this is just avoiding

the problem. To state that one needs to shut down the machine after it has carried out the

super task implies that it is still doing something, that it is still performing some task.

Suppose we had an accelerating machine that is capable of expanding �. Asking what the

�nal number that would be written is again asking for a super-duper task. The expansion of

� is an in�nite task, so one cannot ask this of the machine. We could ask if it halts, and it

would not reply, so we would know that it does not. We could ask queries such as whether
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there is ever an instance of 100 consecutive 7s in the expansion, and the machine can answer

that. But since there is no �nal digit, it is not a valid query to ask what the �nal digit is.

Hamkins [Ham02] uses an interesting anecdote to caution about the idiosyncratic nature

of super tasks. You are fortunate enough to have an in�nite number of one dollar bills,

which are numbered with all of the odd integers. You meet the devil in a seedy bar, and

he o�ers to give you two dollars for every one that you have, the only condition being that

he will give you bills indexed higher than those you have. Being intrigued, you agree to the

deal thinking that you have nothing to lose. You perform the transaction in an accelerating

fashion, so that at time step 1 you give him your bill labelled 1, and the devil gives you

those labelled 2 and 4. At time 1.5, you give him back the bill labelled with a 2, and he

hands you bills bearing 6 and 8. You continue this until time 2, and you discover you are

broke; hoodwinked by the devil. At iteration n of your transactions, you gave him the bill

labelled with n, and by his scheme you will never see that bill again. Thus, given the ability

to perform super tasks, particular care must be paid to the implementation of the algorithm,

lest surprising consequences arise. It is contentious as to whether this argument is valid,

however, as there is no formal proof provided in the paper. In fact, a counterproof to this

argument is straightforward. At every iteration of your dealings with the devil, you gain

1 dollar. At iteration i, you could say that you have gained i dollars (technically, you still

have not gained any money, because your pile is still in�nite). So your cash c at iteration i

is given by

ci =1+ i =1:

As i approaches in�nity, your supply is clearly increasing, such that

c
1
=1+1 =1:

It may be true that for any iteration i, you will never see the bill labelled with i again, but it

is also true that you always receive two bills in the exchange. Whether there is any proof that

can support Hamkins' argument is given as an open problem. More details regarding the

peculiarities arising with in�nities are provided by Sorensen [Sor94], who discusses in�nities

in the context of decision theory.

5 Some Example Problems

In order to explore the importance of time with respect to the complexity of some problems,

let us begin with an art gallery. This particular art gallery has been designed by a rather

unimaginative architect, such that all of the rooms in the gallery are uniform, square, and

each has four exits to similar rooms. The oor plan is illustrated in Figure 2. The art gallery

is very large, and for the purposes of this example, assume that it extends in�nitely in each

direction. In each room is a security camera and an alarm system, which is tripped if art

is damaged or stolen. The security guard has a station which contains a single monitor, on

which he can observe any room in the gallery at any given time. If the alarm is tripped,

he can switch to the camera in that room to see where the thief is and where he is going.

Meanwhile, he can radio his colleague on the oor in the gallery, to guide him to the thief.
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Figure 2: The layout of the art gallery is shown. The thief is in the middle of the gallery, and

the security guard is shown in his o�ce. The numbers in the rooms indicate which rooms

the thief could reach with each successive time step.

Assume that the time taken for the thief to dash from one room into the next is a unit

amount of time, and the time it takes the security guard to scan a room for the thief also

takes the same time unit. The nature of the problem then is that for the security guard to

scan N rooms of the art gallery takes N time units. If the guard is attentive and notices

the alarm at time t = 1, then he knows the exact room that the thief is in, and the latter

will be caught. If the guard does not notice until time t = 2, he now has 5 potential rooms

that the thief may be in (he could have passed through a doorway into an adjacent room,

or perhaps he remained in the initial room). At time step t = 3, there are now 13 rooms to

be searched, and there are 25 rooms to be searched at time t = 4. The number of rooms to

be searched at time t for this model is

N = t2 + (t� 1)2:

Since the number of rooms is growing quadratically with t, having an accelerating machine

to carry out the task could assure us of catching the thief in every instance. This machine

would be designed so that it is capable of searching any given room in half the time it took

to search the previous room. With such a system, the thief could have any amount of a head

start, but he will be caught. The machine will have searched an in�nite number of rooms in

only twice the time it took to search the initial room, so we are guaranteed to have searched
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the room that the thief is in at some point.

We can arbitrarily increase the complexity of each step of a problem like this by adjusting

the con�guration of the rooms, but the guard equipped with an accelerating machine will

always locate the thief. Suppose the doors are in the corners of the rooms, so that at time t

the number of possible rooms the thief could be in is

N = (2t� 1)2:

Again, this is not a problem. We could even fathom a three-dimensional con�guration

reminiscent of Jorge L. Borges' Library of Babel [Bor64]. If we had a passage in each corner

of a room so that one could move from one room to any other sharing a vertex with the

present room in a single time step, the possible number of rooms at time t grows only as

N = (2t� 1)3;

and the thief can still be tracked down.

Finally, we could conceive of an accelerating thief. Each time the thief passes through a

room, he learns more about the best way to escape and how to move through the art gallery.

Suppose that this thief takes only half the time to pass through a room as he took to pass

through the previous room. Now we have a thief who may give our accelerating machine a

run for the money. Suppose our thief is in the second style of art gallery, where the passages

are in the corner of each room. At step i, where i = 1; 2; : : :, the time is

t =
2i � 1

2i�1
;

and the number of rooms he could be at is

N = (2i� 1)2:

Given that

i = log
2

�
1

2� t

�
+ 1;

when t � 2 the thief could be in any of an in�nite number of rooms. Of course, to catch

the thief all that is required is an accelerating machine that accelerates faster than the thief,

such as one that triples in speed with every iteration. With this new machine, the time

required to perform an in�nite number of iterations is given by

1X
i=0

1

3i
= 1:5:

This pattern of increasing complexity in response to an increase in the computing ability

of an accelerating machines resembles the proof of non-universality of accelerating machines,

which will be revisited in Section 7 on limitations. For more examples of the kinds of

problems that are well suited to accelerating machines, refer to the section on time-varying

computational complexity in [Akl07b]. These include problems such as monitoring biological

tissues or viruses, dealing with software viruses or spam, tracking moving objects in large

volumes, addressing security issues, and modelling complex systems.
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6 Implementations

In this section we examine the theoretical models that have been proposed for the actual

implementation of an accelerating machine. Some believe that such machines are an impos-

sibility [Ste91b, Cas97, Svo98]. Svozil [Svo98] presented a diagonalization argument show-

ing that an accelerating machine would be able to compute its own Halting problem and

thus be a logical impossibility, but this argument was subsequently disproved by Ord and

Kieu [OK05]. There are many papers with proposed implementations, and no papers to date

with a counterproof to the possibility of implementing an accelerating machine.

6.1 A Biological Implementation

Calude and P�aun [CP04] discuss using biological systems to implement an accelerating ma-

chine. Their implementation involves decreasing the size of the reacting components or

increasing the speed of the communication channels. They propose accomplishing these

tasks using membrane computing. The membrane of a cell separates two volumes, and the

compositions of the volumes usually di�er. The channels across the membrane allow a certain

kind of computation, and the speed of computation could be regarded as the time required

for particles to traverse the membrane via these channels. The authors create a hierarchical

system of membranes, which they suggest will be able to compute the Halting problem in a

�nite amount of time.

6.2 Appealing to the Laws of Physics

Tipler [Tip94] introduced a model that provides a possible base for the implementation of

an accelerating machine, his aim being to provide examples of machine that could solve the

Halting problem and thus refute the Church-Turing thesis. The model uses a system called

the billiard ball computer, where parts of the machine are analogous to billiard balls such

that when there is a collision between several of the balls, the energy is transferred between

them according to Newtonian laws of motion. There have been works in theoretical physics

demonstrating that it is possible for singularities to achieve accelerating rates of oscillation

when they are arranged in particular con�gurations. This allows the singularity to move

between other particles an in�nite number of times within a �nite period of time (for details,

see [MM75] and [SX95]). This is possible given that the systems achieve an in�nite energy

by the laws of Newtonian physics. By using such singularities as the balls in the billiard ball

computer, it would be possible to perform an in�nite number of computations in a �nite

amount of time. This machine is an accelerating machine.

6.3 The Universe as Computer

There is a philosophical idea that the Universe itself is a computer [Zus70, Whe89, Dav01,

Wol02, Dur04, LN04, Llo06], one that has also gained popular appeal by appearing in books

and movies, such as, for examples, Isaac Asimov 's story The Last Question [Asi56] and

Michael Crichton's Timeline [Cri99]; for other examples, see [HW03]. This concept is based

in quantum mechanics, and holds that since every quantum particle has spin, the latter
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can be treated as information storage. Thus the entire universe is essentially comprised of

information, and every interaction between particles changes the information stored there

and could be considered a quantum computation. The universe is the only conceivable

universal Turing machine, as any machine that could be simulated in the universe is in e�ect

being simulated when it is implemented. There are di�erent theories on the expansion rate

of the universe, some hold that it will collapse again some day, some believe that it will

reach an equilibrium point, and others hold that the universe is continuously expanding at

an accelerating rate and will continue to do so forever (although admittedly the last theory

does not hold favour with too many). If the latter is true, then the universe as a computer

could be regarded as an accelerating machine.

6.4 Spacio-Temporal Patterning

Another possible implementation would be a massively parallel array. Assume that we

have at our disposal an in�nite array of identical processors, and that the problem we are

trying to solve can be decomposed in�nitely. This array can be used as an accelerating

machine. Suppose that one processor is �rst used to perform the �rst iteration of the

computation, and this takes one time unit. Next, the second iteration can be performed

by two processors working in parallel. For many kinds of problems this can result in the

iteration being performed in half the time or less. If we continue this style of division, the

number of processors used is doubled, each iteration takes half the time of the previous one,

and we have created an accelerating machine. We refer to this approach as spacio-temporal

patterning.

Spacio-temporal patterning can be achieved, at least in theory, in a number of ways.

For example, one may imagine that all the particles of the universe are used as a giant

accelerating machine. Each particle serves as a processor. Beginning with one processor,

the number of processors entering into action doubles at each step. Alternatively, one may

view the accelerating machine as an entity that is permanently connected to a source of

energy, and hence is constantly growing by transforming energy into computing agents. A

third option would be to have processors that replicate themselves: At each step of the

computation each processor makes a copy of itself, thus doubling the pool of processors

available to perform that computational step.

Three remarks are in order here. First, we note that spacio-temporal patterning works (as

an accelerating machine) provided that step (or iteration) i, where i � 0, can be decomposed

into 2i independent components, as assumed at the outset. Second, when indeed spacio-

temporal patterning applies to the solution of a problem, this approach to implementing

accelerating machines avoids the speed of light barrier: While it is true that each step

is executed in half the time as the previous one, this is not due to a speeding up of the

computing agents, but rather it results from the step being executed in parallel by twice as

many processors as the previous step. We revisit this point in Section 7. Third, the question

may be asked as to the temporal overhead involved in doubling the number of processors at

each step. This point is addressed in the next section.
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6.5 Parallel Universes

One way to achieve the spacio-temporal patterning con�guration, while not incurring a

time loss in doubling the number of processors, may be gained through the existence of an

in�nite number of parallel universes similar to ours (this is again a favourite topic in science

�ction [HW03]; see, for example, Borges' Garden of Forking Paths [Bor64], Dick's The Man

in the High Castle [Dic92], or Howitt's movie Sliding Doors [How98]). Parallel universes

and quantum computation have been a topic of study for decades [Eve57, Whe89, Kak95,

TW01, Teg03, Smo06]. Deutsch [Deu02] provides a detailed explanation of the operation of

such a con�guration (also known as the multiverse or the many worlds). Thus, we have the

basis for just the con�guration needed to implement spacio-temporal patterning: a quantum

computer operating in parallel with others in an array, one in each of an in�nite number of

parallel universes. Since the processors are already there, each one or more in a di�erent

universe, there is no overhead involved in marshalling them to participate in the solution of

the problem at hand.

6.6 Di�erent Time Frames

Stewart [Ste91a] discussed the implementation of accelerating Turing machines as involving

di�erent time frames. The accelerating machine is able to perform an in�nite amount of

computations because he allows the acceleration to continue unabated by claiming that

classical mechanics imposes no upper bounds on velocity. Thus the machine has its own

time frame, in which an in�nite number of operations may be performed in a �nite amount

of time for the external time frame of an observer (the machine's time frame is referred to

as real time, and the observer's as fake time). This machine will appear to us to be an

accelerating machine, although from the perspective of the machine it is using a constant

amount of time per iteration.

One possible method of obtaining these separate time frames is through the use of

Malament-Hogarth space-times [Pit90, Hog92, EN93, Hog94]. This is a curious sort of space-

time where one can have local �elds that will take an in�nite amount of time to traverse.

The proposition is that we have a machine that we start running on a problem (such as the

Halting problem), and then we push it on a path carrying it through the heart of this �eld.

We follow a path through normal space-time so that we will meet the machine on the other

side of the �eld. From our perspective, the machine is accelerating. A toy version of this is

illustrated in Figure 3. This con�guration was described by Shagrir and Pitowsky [SP03] as

the only known physical digital hypercomputer.

6.7 The Omega Point

Tipler [Tip94] introduced a phenomenon called the omega point (see also the discussions by

Deutsch [Deu97] and Brown[Bro00]), which will be reached when the Universe collapses on

itself if the Big Crunch model of the Universe is accurate. The essence of the argument for

the omega point is that in order for the Big Crunch to occur, we must cross a threshold

from having a Universe in the shape of a 3-sphere to that of a singularity. As the Universe

approaches this threshold, it will begin to oscillate (according to this theory), distorting in

16



q

p

r

C

D = 1

D > 1

O

Figure 3: This is a toy example of a Malament-Hogarth space-time. The observer follows a

path through space-time denoted by O, and the computer is sent along a path carrying it to

point r. Their space-time paths diverge at point p. The value D denotes a sort of density of

the space time �eld, and in the �eld C the value of D increases to a maximum of in�nity at

the point r. If the computer passes through r, it will have experienced an in�nite amount

of time once it meets the observer at point q on the other side of C. This �gure has been

adapted from [Hog94].

shape from a 3-sphere to various ellipsoids. With further compaction, the frequency of the

oscillations increases, such that at the limit the frequency is in�nite, thus an in�nite number

of oscillations will occur in a �nite amount of time. Deutsch [Deu97] argues that it would be

theoretically possible to construct a computer which would have access to an in�nite amount

of memory and be able to carry out an in�nite number of computations at this point. This

computer would have to be made of elementary particles and gravitational �elds, as all mat-

ter would be destroyed as a result of the Crunch. Furthermore, the violence of the collapse

of the Universe would be problematic for such a computer, as the oscillations will become

increasingly violent, disturbing its operation. In order to address this di�culty, Deutsch re-

quires that the computer manipulate gravity to stabilize the collapse so that its own integrity

is preserved. This stabilization becomes increasingly di�cult as the collapse of the Universe

becomes imminent, so the computer must actually be an accelerating machine to persistently

perform this stabilization. This assumes that we will have a perfect understanding of the

quantum nature of particle physics and gravity so that we can manipulate gravity and the

particles which comprise the memory of the computer as required. Tipler [Tip94] suggests

that such a computer could be used as an accelerating machine by sending a message back in

time from the end of the Universe with the required information (such as whether it halted

on a given input). Here, it is taken for granted that it is possible for the message to be sent

back through time, and that the computer would have sent the message had it halted. If
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no message is received, then after an in�nite number of computations the Universe ended

and the computer was destroyed. If one accepts the premise that some functions are only

externally computable, then a di�culty with this approach is that something has to send

the required information at the point that the Universe ends or afterwards (if there is any

meaning to that). It is not clear how this would be accomplished.

7 Limitations

The limitations associated with accelerating machines are primarily those dictated by the

laws of nature. In particular, there are physical properties that prohibit in�nite computation.

In addition, some apparent paradoxes arise when using accelerating machines. Finally, it

has been shown that accelerating machines are not universal. This section examines some

of these limitations in turn.

7.1 The Speed of Light

Ord [Ord02] describes a possible limitation to the accelerating machine with respect to

physics. The nature of the accelerating machine is that it is capable of performing an in�nite

number of computations in a �nite amount of time. Let us continue using the example of

a Turing machine, where there is a read/write head moving along a tape to perform the

computations. The machine must move the head twice as fast with every iteration in order

to achieve the proposed model of acceleration without loss of generality. Before too long,

the read/write head necessarily must be moving in excess of the speed of light in order to

perform the calculations at this accelerating rate; this is clearly in violation of the laws of

physics. Ord quali�es the speed of light criterion (we can never say something is outright

impossible) by stating that it is theoretically possible to have objects moving faster than the

speed of light as long as they always have been. Building a read/write head into our Turing

machine that is constantly moving at a rate faster than the speed of light would be a tall

order, however, since at some point it would have to be connected to something that was not

moving at this speed. A work around for this problem, as proposed by Davies [Dav01], is to

reduce the distance that the head is required to travel at each iteration by a half so that the

head's speed can remain constant. The problem with this approach is that a point is reached

where in�nite spatial precision is required from the read/write head, which Ord points out

is limited by the principles of quantum mechanics. Spacio-temporal patterning is an entirely

di�erent way to deal with the speed of light barrier (through, for example, doubling the

number of processors at every step), as discussed in Section 6.4. Other physical limitations

on accelerating machines, related to the speed of light by Einstein's famous E = mc2 formula,

are mass and energy.

7.2 In�nities and In�nities

Copeland [Cop02a] draws a distinction between di�erent in�nities in his work on accelerating

machines. Turing de�ned an e�ective procedure as one where the process can be performed

by working in an unintelligent but disciplined manner. The bound on this de�nition of an
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e�ective procedure is that there is a �nite amount of work, and thus the process can be

completed by performing a �nite number of computations. Copeland proposes an alternate

de�nition of an e�ective procedure, which is denoted with capitalization: an E�ective pro-

cedure. The distinction is that an E�ective procedure only requires that the computer use

a �nite amount of time to perform the computation, and this could potentially comprise an

in�nite number of computations.

In�nities are intuitively problematic, and yet they are at the very heart of accelerating

machines. The problem of in�nities is a recurring theme in the work of Weinberg [Wei92],

when he discusses the in�nities that arise in particle physics. He di�erentiates between

distinct in�nities, such as di�erentiating
1X
i=1

i from
1X
i=1

1

i
. Each of these sums are in�nite,

but they can be treated di�erently if being used to eliminate other in�nities in a problem.

As pointed out earlier, Cantor was the pioneer in this area; his work with in�nities and

proof of the hierarchy of in�nities using set theory was the breakthrough that earned general

acceptance of the concept of in�nity [Bar05].

7.3 To Vanish or Not to Vanish

An existential problem may arise if we are able to construct an accelerating machine. If we

are to build an accelerating machine that operates within our spacetime, it will disappear

when it �nishes its computations according to the Newtonian laws of motion [Cop02a].

This provides a solution to the problem of what an accelerating machine should do after

it has performed an in�nite number of operations, for what could be cleaner than a simple

disappearance? Another view would be that the machine just performs a trans�nite number

of operations. Hamkins [Ham02] discusses this property thoroughly. Shagrir [Sha04] suggests

that if the machine continues to have a physical existence, the states of the machine no longer

would correspond to the states of the Turing machine. This is a convenient (and plausible)

hypothesis, for it would allow for the solving of the Halting problem and such (especially

through the use of a hooter), but avoids the super task speci�c problem concerning the �nal

state of the machine.

7.4 The Universe as Computer Revisited

Is the Universe an accelerating machine? If one subscribes to the theory that the Universe

is a computer, then the Universe has performed the maximum possible number of di�erent

operations since the Big Bang, and this is certainly a �nite number although stupendously

large [LN04]. On the other hand, the Universe as a computer hypothesis is not a foregone

conclusion. Many people believe that there are fundamentally uncomputable processes in

the Universe, such as human consciousness (see for example Descartes [Des00] and Pen-

rose [Pen90], among others [Nag74, Pla74, Jac82]).
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7.5 No Finite Computer is Universal

Finally, there is the non-universality of accelerating machines. One of the fascinations with

accelerating machines, and hypercomputers in general, is the promise of unbridled com-

putational power and the ability to solve outrageously di�cult problems, or possibly any

conceivable problem, as discussed in this paper. It has been hypothesized that accelerating

machines may be universal, but there exists a proof that this is not the case [Akl05, Akl07a].

This result is not even restricted to accelerating Turing machines, which do not accept in-

put from the outside world during their operation: the non-universality property holds for

accelerating machines in general. A di�erentiation should be made clear at this point. In

the context of this paper, there are two conventional notions of universality:

� The universal Turing machine. This refers to Turing's de�nition of computability: A

function is computable by the universal Turing machine if and only if that function

can be computed by an ordinary Turing machine. The universal Turing machine is not

a hypercomputer, it cannot solve the Halting problem. It is fully realizable, and this

concept of universality is ironclad and indisputable [Sud06].

� The universal computer. This is the notion of the universal computer that can simulate

any computation that is possible on any other machine. The existence of such a

universal computer is a foundational principle in computer science. This `universality

principle' (also known, as mentioned in Section 2.1, as the `Church-Turing thesis' when

the `universal computer' in question is taken to be the Turing machine) is captured by

the following quote:

\As far as we know, no device built in the physical universe can have any more

computational power than a Turing machine. To put it more precisely, any

computation that can be performed by any physical computing device can

be performed by any universal computer, as long as the latter has su�cient

time and memory." [Hil98]

Unfortunately, the `universality principle' is a fallacious concept, and the `universal

computer' is a myth, as shown in [Akl05].

The crux of the argument against the `universality principle' rests on the requirement that

the con�guration of a putative `universal computer' be speci�ed at the outset. For example,

we can specify that a machine M1 performs k operations per time unit. Another valid

speci�cation, would be that machine M2 doubles in speed with every iteration. Whatever

the speci�cations, they must be concrete, �nite, and �xed. Finiteness here refers to the

number of operations that the machine can perform per step, requiring a unit of time.

Finiteness does not refer to the size of the machine's memory or to the total time spent by

the machine to solve a problem, both of which are allowed to be unbounded.

Once the speci�cations are in place, it is then easy to show that the `universal computer'

is unable to solve certain problems. Referring to the examples in the previous paragraph,

machine M1 is unable to solve a problem where k+ 1 operations are required per time unit.

Similarly, machine M2 fails if the complexity of the problem to be solved triples with every
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iteration. In general, for any given �nite complexity that a computer is capable of at a

given time step, it is possible to create a new problem that requires more complexity per

step, otherwise the computation is not possible. The new problem is eminently solvable on

another computer with the proper resources, but that computer is in turn defeated by a

newer problem requiring even more resources, and so on.

It is worth repeating that this result remains true even when the purported `universal

computer' is endowed with an in�nite memory, and is allowed to compute for an unlimited

amount of time. Several computations are described in [Akl06a, Akl06b, Akl07a, Akl07b]

that disprove the `universality thesis'. They include computations with time-varying vari-

ables, with time-varying computational complexity, with rank-varying computational com-

plexity, with interacting physical variables, and with global mathematical constraints.

8 Conclusions

We have shown in this paper that although there exists a signi�cant body of research ded-

icated to accelerating machines, there are still many unknowns. The most pressing issue

would be to determine conclusively whether an accelerating machine can actually be imple-

mented in a useful way. We have shown that there are many proposed implementations, but

none has ever been attempted. On the other hand, it has never been conclusively proven

that accelerating machines cannot be built successfully.

As well, there is no clear de�nition that has been found for the kinds of problems that

accelerating machines are capable of solving. They are clearly capable of solving tasks

beyond those of a standard Turing machine, but it has also been demonstrated that they are

not universal and have limitations. In addition, it has been shown that there are unusual

properties of algorithms once an in�nite number of iterations of a task have been performed,

and this must be accounted for. Perhaps there is a new sub-class of super tasks that are

tractable given an accelerating machine with some speci�ed �nite rate of acceleration. The

identi�cation of this sub-class remains an open problem.
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