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Abstract

One of the major interests of current genomics research isdisease-gene association, that
is, identifying which DNA variation or a set of DNA variations is highly associated with
a specific disease. In particular, single nucleotide polymorphisms (SNPs), which are the
most common form of DNA variation on the human genome, and a set of SNPs on one
chromosome, referred to as ahaplotype, are at the forefront of the disease-gene association
studies. In general, when haplotype information is used for studying disease-gene associa-
tion, it is calledhaplotype analysis. Numerous studies have shown that haplotype analysis
can successfully identify the DNA variations relevant to several common and complex hu-
man diseases. However, despite its advantages over other approaches, the use of haplotype
analysis has been limited due to the high cost and long operation time of bio-molecular meth-
ods for obtaining the haplotype information. To address this limitation, two computational
procedures, namely,Haplotype PhasingandTag SNP Selectionhave been incorporated in
haplotype analysis, and now provide the most practical framework for conducting large-scale
association studies. In this depth paper, we introduce an overview of computational haplo-
type analysis, survey the existing approaches for Haplotype Phasing and Tag SNP Selection,
and discuss their open problems. Given the current state of the field, as presented in this
survey, we plan to conduct further research in the area of Tag SNP Selection.



Chapter 1

Introduction

Understanding the genomic differences in the human population is one of the primary chal-
lenges of current genomics research [65]. The human genome can be viewed as a sequence
of three billion letters from the nucleotide-alphabet{A,C,G,T}, and this sheer amount of
data requires massive computational analysis. In more than 99 percent of the positions on
the genome, the same nucleotide is shared across the population. However, one percent of
the genome includes numerous genetic variations such as different nucleotide occurrences,
deletion/insertion of a nucleotide, or variations in the number of multiple nucleotide repeti-
tions. Thus, differences in human traits, as obvious as physical appearance or as subtle as
susceptibility to disease, may originate from these variations in the human DNA.

Early research [41, 55, 91] has focused on identifying which positions of the human
genome are commonly variant and which are typically invariant. Generally, when a vari-
ation occurs in at least a certain percentage of a population (typically around 5-10%), it is
considered acommonvariation [65]. To date, millions of the common DNA variations have
been identified and are accessible in public databases [41,55,91]. These identified common
variations, usually involve the substitution of a single nucleotide, and are calledsingle nu-
cleotide polymorphisms(SNPs - pronouncedsnips). The nucleotide at a position in which a
SNP occurred is called anallele. The one with the dominant occurrence within a population
is called themajor allele, while the others are called theminor alleles. For example, if 80
percent of a population has the nucleotideA at a certain position of the genome while 20
percent of the population has the nucleotideT at the same position, thenA is the major allele
of the SNP, andT is the minor allele for it.

As a next step of genetic variation study, current interest is focused ondisease-gene
association, that is, identifying which DNA variation or a set of DNA variations is highly
associated with a specific disease. Simple Mendelian diseases (e.g., Huntington disease,
Sickle Cell Anemia, tuberous sclerosis, cystic fibrosis, etc.) are caused by an abnormal alter-
ation of a single gene. However, most current common diseases (e.g., cancer, heart disease,
obesity, diabetes, hypertension, asthma, etc.) are known to be affected by a combination of
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two or more mutated genes along with certain environmental factors; thus, they are often
calledcomplexdiseases. To identify the relations among mutations in multiple genes, at a
statistically significant level, it is necessary to obtain genetic information from a large-scale
population. Thus, traditional family-based analysis methods that were useful for a simple
Mendelian disease [50], do not perform well for complex and common disease studies [33].

Recently,haplotype1 analysishas been successfully applied to the identification of the
DNA variations relevant to several common and complex diseases [11, 30, 54, 75, 87], and
is now considered the most promising method for studying complex disease-gene associa-
tion [58, 77, 90, 111]. In this depth report, I survey the existing approaches for performing
two main computational procedures in haplotype analysis:Haplotype PhasingandTag SNP
Selection, and provide an overview of computational haplotype analysis.

The rest of the paper is organized as follows: Chapter 2 provides an overview of com-
putational haplotype analysis; Chapters 3 and 4 introduce and discuss Haplotype Phasing
and Tag SNP Selection, respectively; Chapter 5 concludes and outlines future research; and
Appendix A contains statistical tests for Haplotype-Disease Association.

1A haplotype is a set of SNPs present on one chromosome. All definitions and terms pertaining to compu-
tational haplotype analysis are going to be introduced and defined in the next chapter.
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Chapter 2

Computational Haplotype Analysis

This chapter starts by defining the basic genetic concepts in computational haplotype analy-
sis. It then provides an overview of computational haplotype analysis, including its general
objective, distinguishing features from previous approaches and essential computational pro-
cedures.

2.1 Basic Concepts in Computational Genetic Analysis

Population geneticsstudies genetic change in populations in order to understand the evo-
lutionary significance of genetic variations, both within and between species [50]. Thus, it
provides the basis for common and complex disease-gene association, that is, identifying a
set of DNA variations that is common enough to be prevalent in the human population and
has a causal connection to the elevated risk of a complex disease [111]. Since the ultimate
aim of computational haplotype analysis is disease-gene association, we first need to define
some basic concepts in population genetics to understand computational haplotype analysis.

2.1.1 Haplotypes, Genotypes, and Phenotypes

Suppose that we have chromosome samples from six individuals. Three of them have lung
cancer and the others do not. We aim to identify a set of DNA variations associated with lung
cancer using the chromosome samples. Due to experimental cost and time, only a limited
region of the chromosome that was previously suggested to be related to lung cancer by
other molecular experiments, is examined. The chromosomal location of the target region is
referred to aslocus. A locus can be as large as a whole chromosome or as small as a part of
a gene.

Let us look at the chromosome samples in detail. All species that reproduce sexually
have two sets of chromosomes: one inherited from the father and the other inherited from
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Figure 2.1: Haplotypes, Genotypes, and Phenotypes

the mother. Thus, every individual in our sample also has two alleles for each SNP, one on
the paternal chromosome and the other on the maternal chromosome. For each SNP, the
allele on one chromosome and the allele on the other can be either identical or different.
When they are the same, the SNP is calledhomozygous. When they are different, the SNP is
calledheterozygous.

Suppose that our target locus contains six SNPs, and each SNP has only two different
alleles (i.e., SNPs are assumed to bebi-allelic). The allele information is as shown in Figure
2.1-a). The major allele of the SNP is colored gray, and the minor is colored black. Each
individual hastwo sets of six SNPs constructed from his/her two chromosomes. A set of
SNPs present on one chromosome is referred to as ahaplotype[19]. Notice that there are
12 haplotypes stemming from the six pairs of chromosomal samples where each pair is
associated with one individual.

Several bio-molecular methods can directly identify the haplotype information from
chromosomes, but due to high cost and long operation time, they are mainly used for small
to moderate-size samples (typically from several to tens of individuals) [19]. For large-
scale samples (typically from hundreds to thousands of individuals), high-throughput bio-
molecular methods are used to identify the alleles of the target locus for each individual.
The main limitation of the high-throughput methods lies in their lack of ability to distinguish
the source chromosomes of each allele. Typically, such methods simply associate the two al-
leles with the SNP position, but do not determine their source chromosomes. This combined
allele information of a target locus is called agenotype, and the experimental procedure
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obtaining the genotype information is calledgenotyping.
Figure 2.1-b) displays the genotype information for our sample. When the combined

allele information of the SNP consists of two major alleles, it is colored gray. SNPs with two
minor alleles are colored black, and with one major and one minor allele are colored white.
The number of genotypes is six, the same as the number of individuals.

While haplotypes and genotypes represent the allele information of a target locus on
chromosomes, aphenotypeis the physical, observed manifestation of a genetic trait. In this
example, the phenotype of an individual is eitherlung canceror no lung cancer. In general,
the individuals with disease are referred to ascases, while the ones with no disease are
referred to ascontrols. Figure 2.1-c) displays the phenotype information for our sample.

2.1.2 Linkage Disequilibrium and Block Structure of the Human Genome

One interesting feature of a haplotype is the non-random association among the SNPs com-
prising it, calledlinkage disequilibrium(LD) [33]. As mentioned earlier, humans possess
two copies of each chromosome: paternal and maternal. Each of these two chromosomes
is generated byrecombinationof the parents’ two copies of chromosomes, and is passed by
inheritance to a descendant. Figure 2.2 illustrates this process.

Theoretically, recombination can occur at any position along the two chromosomes any
number of times. Thus, a SNP on one chromosome can originate from either copy of the
parents’ two chromosomes with an equal probability, and the origin of one SNP is not af-
fected by the origin of the others. This characteristic ofindependencebetween SNPs is called
linkage equilibrium.

Paternal
Chromosomes Recombination

Recombination

Inheritance

maternal
chromosome

paternal
chromosome

Maternal
Chromosomes

Inheritor

Figure 2.2: Recombination and Inheritance

Suppose that we have two SNPss1 ands2. Let |s1| and|s2| denote the number of alleles
that the SNPss1 ands2 have, respectively. Lets1i denote theith allele of the first SNPs1,
ands2j denote thejth allele of the second SNPs2, wherei = 1, ..., |s1| andj = 1, ..., |s2|.
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Under linkage equilibrium, the joint probability of two alleless1i ands2j is expected to be
equal to the product of the alleles’ individual probabilities sinces1 ands2 are independent.
Thus, under the independence assumption:

∀i,j Pr(s1i, s2j) = Pr(s1i) · Pr(s2j). (2.1)

When Equation 2.1 is not satisfied by two SNPs, that is, when their alleles are not indepen-
dent, we consider them to be in a state oflinkage disequilibrium(LD). In principle, when
their allele dependence is large1, two SNPs are considered to be in a state ofhighLD.

In general, SNPs within close physical proximity are assumed to be in a state of high
LD. The probability of recombination increases with the distance between two SNPs [19].
Thus, SNPs within close proximity tend to be passed together from an ancestor to his/her
descendants. As a result, their alleles are often highly correlated with each other, and the
number of distinct haplotypes consisting of the SNPs is much smaller than expected under
linkage equilibrium.

Recently, large-scale LD studies [20,32,84] have been conducted to understand the com-
prehensive LD structure of the human genome. The results strongly support the hypothesis
that genomic DNA can be partitioned into discrete regions, known asblocks, such that re-
combination has been very rare (i.e., high LD) within the block, and very common (i.e., low
LD) between the blocks. As a result, high LD exists between SNPs within a block, and the
distinct number of haplotypes consisting of the SNPs is strikingly small across a population.
This observation is referred to as theblock structure of the human genome. At this point,
there is no agreed upon way to define blocks on the genome [23,88]. However, there seems
to be no disagreement that the human genome indeed has the block structure regardless of
our ability to uniquely identify the blocks.

High LD among SNPs within close physical proximity and the limited number of haplo-
types due to the block structure of the human genome have provided the basis of computa-
tional haplotype analysis for disease-gene association. We introduce the detail of computa-
tional haplotype analysis in the following sections.

2.2 Computational Haplotype Analysis

Our ultimate goal is to identify a set of DNA variations that is highly associated with a spe-
cific disease. Haplotype, genotype, or even single-SNP information can be used to examine
the association of genetic variation with the target disease. When haplotype information is
used for studying disease-gene association, it is calledhaplotype analysis. Single-SNP anal-
ysisandGenotype analysisrefer to the studies that use single-SNP information and genotype
information, respectively.

1The absolute threshold differs in each LD measure. For details, refer to LD review articles [21,57]
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Haplotype analysis has several advantages compared to single-SNP analysis and geno-
type analysis. Single-SNP analysis cannot identify the association where a combination of
several SNPs on one chromosome (i.e., a haplotype) is required to affect the phenotype of
an individual [3,20,104]. Figure 2.3 exemplifies this case. All and only the three individuals
with lung cancer share the haplotypeCTTCTA, marked by a solid box in Figure 2.3-a). Thus,
we can conclude that the lung-cancer phenotype is associated with the haplotypeCTTCTA.
However, if we examine each of the six SNPs individually, no direct association is found be-
tween any one of them and the lung-cancer phenotype. For example, both individuals with
lung cancer and individuals with no lung cancer have the alleleC or the alleleG on the first
SNP, the alleleT or the alleleA on the second SNP, and so on.
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identical

all different

Figure 2.3: Difference between Haplotype Analysis and Genotype Analysis

Genotypes do not contain the source chromosome information, known asphase, thus
they often hide the obvious association existing between a haplotype and a target disease. For
example, in Figure 2.3-a), each individual with lung cancer (i.e., case) has two haplotypes;
one haplotype isCTTCTA, that is the one associated with the lung cancer phenotype, and
the other one is unique for each case. Although all cases share the exact same haplotype
CTTCTA, their genotypes, in Figure 2.3-c), all look different due to their unique haplotype.
Worse, the genotype of individual 6, who has lung cancer, is identical to that of individual
3, who has no lung cancer. Thus, we cannot identify a specific genotype that is highly
associated with lung cancer, and as a result, miss the real association between the haplotype
CTTCTAand lung cancer.

Despite its advantages, the use of haplotype analysis has been limited by the high cost
and long operation time of bio-molecular methods for obtaining the haplotype information.
However, two computational procedures,Haplotype PhasingandTag SNP Selectionaddress
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this problem, and greatly promote the use of haplotype analysis for disease-gene association.
Haplotype Phasingdeduces haplotype information from genotype data.Tag SNP Selection
selects a subset of SNPs on a haplotype that is sufficiently informative to study disease-
gene association but still small enough to reduce the genotyping overhead. When these
computational procedures are used for haplotype analysis, the whole procedure is referred to
ascomputational haplotype analysis.

Figure 2.4 summarizes the general procedures of computational haplotype analysis and
of traditional haplotype analysis. Bio-molecular experiments are displayed in white boxes,
and computational and statistical procedures are displayed in black boxes. Computational
haplotype analysis consists ofHaplotype Phasing, Tag SNP Selection, andHaplotype-Disease
Associationalong with two genotyping experiments. Initially, a relatively small number of
individuals are genotyped from a target population, and their haplotypes are inferred using
Haplotype Phasingalgorithms. Then,Tag SNP Selectionalgorithms select a small subset of
SNPs on the haplotypes, which can represent the identified haplotypes with little loss of in-
formation. Using the selected small number of SNPs, second genotyping is done for a large
number of individuals. Again,Haplotype Phasingalgorithms are used to infer the haplo-
types from these genotype data. Finally,Haplotype-Disease Association, that is identifying
the association of a haplotype or a set of haplotypes with a target disease, is performed on
the haplotypes.

In contrast to computational haplotype analysis, traditional haplotype analysis relies on
bio-molecular experiments to directly obtain haplotype information. Thus, it can provide
more accurate haplotype information than computational procedures, and, in the near future,
the bio-molecular methods might become a standard technique for haplotype analysis [80].
However, until then, the two computational procedures, Haplotype Phasing and Tag SNP
Selection, are expected to be of much use for large-scale association studies.
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Chapter 3

Haplotype Phasing

This chapter introduces Haplotype Phasing, that is, the computational process of deduc-
ing haplotypes from genotypes. The main concepts are introduced and formally defined in
section 3.1. Haplotype Phasing algorithms are categorized by the four major approaches
on which they are based: (1) parsimony; (2) phylogeny; (3) maximum-likelihood; and (4)
Bayesian inference. Sections 3.2 to 3.5 introduce these approaches. We conclude with a
discussion of open problems and future directions in Haplotype Phasing research.

3.1 Overview

Haplotype Phasing refers to the computational procedure of identifying haplotype informa-
tion from genotype data. Formally, we define the Haplotype Phasing problem as follows: Let
G = {g1, ..., gn} be a set ofn genotypes, where each genotypegi consists of the combined
allele information ofm SNPs,s1, ..., sm. For simplicity, we representgi ∈ G as a vector of
sizem whosejth elementgij (i = 1, ..., n andj = 1, ..., m) is defined as:

gij =





0 : when the two alleles of SNP sj are major homozygous,

1 : when the two alleles of SNP sj are minor homozygous,

2 : when the two alleles of SNP sj are heterozygous.

Let H be the set of all1 haplotypes consisting of the samem SNPs,s1, ..., sm. Like the geno-
type, each haplotypehi ∈ H is also a vector of sizem. However, as introduced in Section
2.1.1, haplotypes represent the allele information of SNPs ononechromosome, while geno-
types represent thecombinedallele information of SNPs ontwochromosomes. Thus, thejth

1Since we represent the allele of a SNP as either major or minor, the possible number of haplotypes con-
sisting ofm SNPs is2m.
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Figure 3.1: Haplotype Phasing and Ambiguous Genotypes

element,hij, of the haplotypehi (i = 1, ..., 2m andj = 1, ..., m) is defined as:

hij =

{
0 : when the allele of SNP sj is major,

1 : when the allele of SNP sj is minor.

When the combined allele information of two haplotypes,hj ∈ H andhk ∈ H, comprises
the genotypegi, we say thathj andhk resolvegi and denote the relationship2 ashj⊕hk = gi.
The haplotypeshj andhk are referred to as thecomplementary matesof each other to resolve
gi, and each of them is considered to becompatiblewith gi. The Haplotype Phasing problem
can thus be defined as follows:

Problem : Haplotype Phasing
Input : A set of genotypesG = { g1, ..., gn}
Output : A set ofn haplotype-pairs

O = {< hi1, hi2 > | hi1 ⊕ hi2 = gi, hi1, hi2 ∈ H, 1 ≤ i ≤ n }.

In brief, to solve the Haplotype Phasing problem, one needs to find a set of haplotype-pairs
that can resolve all genotypes inG.

However, the solution to the Haplotype Phasing problem is not straightforward due to
resolution ambiguity. Figure 3.1 illustrates the problem. The genotype data of three individ-
uals are displayed on the left. Each genotype consists of six SNPs. When two alleles of a
SNP in a genotype are homozygous (i.e., either 0 or 1), the SNP is colored gray. When two

2The order of the haplotype-pair does not matter, that is,hj ⊕ hk = gi is the same ashk ⊕ hj = gi.
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alleles of a SNP in a genotype are heterozygous (i.e., 2), the SNP is colored black. The first
genotype consists of all homozygous SNPs, while the second genotype contains one het-
erozygous SNP. For both of these genotypes, the resolving haplotype-pairs can be identified
unambiguously as shown on the top right. However, in the case when there arec heterozy-
gous SNPs in the genotype (c > 1) such as the third one in Figure 3.1, there are2c−1 pairs
of haplotypes that can resolve the genotype. Thus, the genotype cannot be uniquely resolved
without additional biological insight or constraints. In this case, the genotype is considered
ambiguous.

Numerous computational and/or statistical algorithms have been developed for address-
ing this ambiguity in Haplotype Phasing. The methods are typically grouped based on one
of four principles: (1) parsimony; (2) phylogeny; (3) maximum-likelihood; (4) Bayesian in-
ference. The former two solve the Haplotype Phasing problem as a combinatorial problem.
They define an explicit objective function to resolve all genotypes, and aim to find a solution
that optimizes the function [40]. The latter two are based on statistical inference methods.
In addition to resolving all genotypes, they also estimate population haplotype frequencies.

Regardless of the approach, the performance of all Haplotype Phasing algorithms can
be measured byphasing accuracy, that is, the proportion of the genotypes that are correctly
resolved by the algorithm. When a simulation data set is used, the correct haplotype pair
resolving each genotype is already known. In the case of a real data set, the one whose
haplotype information has been directly obtained by bio-molecular experiments is used for
evaluation. In the following sections, we introduce each of the four major Haplotype Phasing
approaches.

3.2 Parsimony-based Methods

All parsimony-based approaches assume that a target population shares a relatively small
number of common haplotypes due to linkage disequilibrium. Thus, they try to resolve an
ambiguousgenotype using one ofalready identifiedhaplotypes.

The principle was first proposed by Clark [17]. Clark’s algorithm begins by finding
unambiguousgenotypes, which contain only homozygous alleles or at most a single het-
erozygous allele. These genotypes can be uniquely resolved, so that their corresponding
haplotype pairs are stored in the set of identified haplotypes, which is denoted byI. For
each remainingambiguousgenotype, the setI is examined to see if it contains a haplotype
that iscompatiblewith the target genotype. When such a haplotype is found, the genotype
is labeledresolved, and the haplotype’scomplementary mateis added toI. This process is
iterated until all ambiguous genotypes are resolved or no new haplotype is found.

Clark’s algorithm is simple, intuitive, and has been known to work well in practice [16].
However, it has several limitations: (1) it requires at least one unambiguous genotype; (2)
genotypes may remain unresolved at the end of the procedure; and (3) a different order of
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iteration may yield a different set of haplotypes. Simulation studies [17] showed that the
first two limitations can be overcome if the size of the sample is large enough. Therefore,
sampling enough individuals is practically important to apply Clark’s algorithm. To address
the last limitation, Clark proposed to repeat the whole procedure multiple times with different
orderings of the data, and select the solution that resolves the largest number of genotypes.
This criterion is referred to asmaximum-resolution.

Gusfield [37] empirically verified the maximum-resolution criterion. Furthermore, he
studiedwhat is the maximum number of genotypes that Clark’s algorithm can resolve, and
defined it as the maximum-resolution (MR) problem. By reducing the satisfiability problem
to the MR problem, he proved that the MR problem is NP-hard. In addition, an approx-
imation algorithm based on linear programming was proposed to solve the MR problem.
Although the experiments [37] show that this approach works well in practice, it may fail to
find a solution.

In contrast to themaximum-resolutioncriterion, several groups [12,38,43,53,66,67,96]
aimed to finda minimum set of haplotypes that can resolve all genotypes in a data set. This
problem is referred to as themaximum-parsimony(MP) or pure-parsimony(PP) problem.
As this problem is proven NP-hard [66], approximation algorithms and heuristics [12,38,43,
53,67,96] were proposed.

The early algorithms are based on integer linear programming [38], a greedy method
[96], or a branch-and-bound rule [96]. However, their memory requirement increases ex-
ponentially with the problem size, limiting their applicability to small-size studies. Re-
cently, several polynomial-space algorithms were suggested using integer linear program-
ming [12,42,67].

All parsimony-based methods assume that the observed number of distinct haplotypes in
a population is much smaller than the possible number of distinct haplotypes under linkage
equilibrium. Therefore, when the data set does not satisfy this condition, the performance of
parsimony-based methods becomes poor [10,40].

3.3 Phylogeny-based Methods

Phylogeny-based approaches assume that the haplotypes in a population evolve along the
coalescent, a popular genetic model which denotes a rooted tree describing the evolutionary
history of a set of DNA sequences [50]. Thus, such approaches aim to find a set of haplotypes
that resolves the target genotype data and follows the coalescent model as well.

In general, the coalescent is built using two assumptions:infinite site mutationandno
recombination. The infinite-site-mutation assumption states that, at each SNP site,a muta-
tion only occurs once in the evolutionary history. Therefore, a chromosome with mutation at
one SNP site must be a descendant of the ancestral chromosome in which the mutation origi-
nally occurred. Moreover, any chromosome without this mutation cannot be a descendant of
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a chromosome that has the mutation. The no-recombination assumption states thatthe target
region of DNA sequence was not recombined from a parent’s two copies of chromosomes,
thus it can be considered to be inherited from just a single ancestor.

A perfect phylogeny[36] is a computational terminology corresponding to a coalescent
tree of haplotypes. LetH be a set of2n haplotypesH = {h1, ..., h2n}, where each haplotype
hi consists ofm SNPs. A perfect phylogeny is defined as a rooted treeT with 2n leaves that
satisfies the following properties:

1. Each of the2n haplotypes labels exactlyone leafof T.
2. Each ofm SNPs labels exactlyone edgeof T.
3. Everyinternal edge(i.e., one not connected to a leaf) is labeled byat least one SNP.
4. For any haplotypehi, SNPs labeled on the path from the root to the leaf labeled by

it, specify the SNPs whose allele is mutated (i.e., minor) inhi.

Figure 3.2-a) shows a perfect phylogeny for a set of 4 haplotypes. In general, the root of
a phylogeny is always assumed to be a haplotype whose alleles are all major (i.e., all 0’s). A
set of haplotypes has a perfect phylogenyif and only if for each pair of SNPs, there are no
three haplotypes with values(0, 1), (1, 0), and(1, 1) [36]. Figure 3.2-b) illustrates a violation
to this condition. Haplotype 1,(1, 0), has a mutation at the first SNP site, while haplotype
2, (0, 1), has a mutation at the second SNP site. Thus, they cannot be descendants of each
other, and two internal edges that denote the mutations at the first SNP and at the second are
drawn. Haplotype 3,(1, 1), has mutations at both SNP sites, thus it should be the descendant
of the subtree that either haplotype(1, 0) or (0, 1) belongs to. However, to make haplotype
3 belong to either subtree, another edge denoting the mutation at either the first SNP or at
the second should be added to the respective subtree. This violates the infinite-site-mutation
assumption, that is, at each SNP site, a mutation can occur only once.

Gusfield [39] first proposed to use the perfect phylogeny to identify a set of haplotypes
that evolves along a coalescent. He defined this problem as theperfect phylogeny haplotype
(PPH) problem. Theorems and algorithms from graph and matroid theory were used to find
a solution to the problem. The complexity of the presented algorithm isO(nm · α(n,m)),
wheren is the number of genotypes,m is the number of SNPs, andα is the inverse Ack-
erman function. Although the performance of this algorithm is nearly linear in the size of
the input, the proposed approach is considered very difficult to understand and challenging
to implement [6,27,40]. Thus, simpler but slower algorithms [6,15,27] were proposed sub-
sequently. All of them have anO(nm2) time complexity. Recently, a linear time algorithm
was developed by Ding et al. [24].

Although the performance of the perfect phylogeny-based methods have improved, all of
them suffer from their strict conformity to the coalescent model; it is possible thatno perfect
phylogeny solutionexists for a given genotype data set. In practice, real data often does not
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Figure 3.2: Perfect Phylogeny and Imperfect Phylogeny

perfectly fit the coalescent model. This may occur due to errors in genotyping or a violation
of the infinite-site-mutation and/or no-recombination assumption during evolution [63].

Eskin et al. [27] tried to remove a minimum number of genotypes from the original data
so that the remaining ones can be resolved by a set of haplotypes with a perfect phylogeny.
The problem was proven NP-hard, but no heuristic solution was presented. Halperin et
al. [45] tried to assign the values of missing alleles so that the resulting haplotypes can have
a perfect phylogeny solution. Both approaches assume that a perfect phylogeny solution
exists for a given genotype set, but it cannot be identified due to genotyping errors or missing
alleles.

Imperfectphylogeny-based methods [28,44] take a more realistic approach. In principle,
the methods assume thatmost but not allhaplotypes will fit the perfect phylogeny model.
Thus, they consider a relaxed model that allows for a certain number of recurrent mutations
and recombinations. Among multiple candidate solutions satisfying the relaxed model, the
one with the maximum-likelihood given a genotype data set is chosen as the solution. How-
ever, handling the exponential number of candidate solutions remains an unsolved problem.

3.4 Maximum-Likelihood-based Methods

The parsimony-based methods and the phylogeny-based methods introduced above, aim to
directly resolve each genotype with a pair of haplotypes. In contrast,maximum-likelihood
(ML) methods are based on a rather indirect approach,haplotype frequency estimation(HFE).
They aim to estimatethe haplotype distribution in a population, maximizing the likelihood
of the genotype data.

Let D be the genotype data ofn individuals, where each genotype consists ofm SNPs,
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and the number ofdistinctgenotypes inD is n′. Let gi denote theith distinct genotype, and
fi denote the frequency ofgi in the data setD, wherei = 1, ..., n′. Let H be the set of
all haplotypes consisting of the samem SNPs. As explained in Section 3.1, the number of
haplotypes inH is2m. Lethj denote thejth distinct haplotype inH, andpj be thepopulation
frequencyof haplotypehj, wherej = 1, ..., 2m. Unlike the genotype sample frequencies,fi,
which we can directly calculate from the data set, the haplotype population frequencies,pj,
are unknown, and we need to estimate them.

Maximum-likelihood (ML) methods estimate the population haplotype frequencies,λ =

{p1, p2, ..., p2m} based on their likelihood,L, given the genotype dataD. Initially, the
likelihood,L, can be stated as the probability of genotypes comprisingD as:

L( λ ) = Pr( D | λ ) ≈
n′∏

i=1

Prλ(gi)
fi =

n′∏
i=1

(
∑

{∀<hk,hl> | hk⊕hl=gi}
Prλ(hk, hl))

fi . (3.1)

In brief, the likelihood of the dataD is the product of the probabilities of all genotypes inD.
Each genotypegi occursfi times inD, and its probabilityPrλ(gi) can be computed by sum-
ming the joint probability of each haplotype pair that can resolve the genotype. Under the
assumption of random mating, known as theHardy-Weinberg Equilibrium(HWE) assump-
tion, the joint probabilityPrλ(hk, hl) of two haplotypes can be computed as the product of
the two population haplotype frequencies,pk andpl. Whenk = l, Prλ(hk, hl) = (pk)

2.
Otherwise3, Prλ(hk, hl) = 2pkpl. Thus, the joint probabilityPrλ(hk, hl) in Equation 3.1
can be substituted with the product of the two population haplotype frequencies accordingly,
and the population frequencies that maximize Equation 3.1 are computed. Using the esti-
mated population frequencies, each genotype can be resolved by the haplotype pair with the
maximum population frequency among all pairs compatible with the genotype.

Several groups [29, 48, 49, 72] independently proposed the expectation maximization
(EM) algorithm to estimate the maximum-likelihood haplotype frequencies. The EM pro-
cedure is defined as follows: Initially, arbitrary values are assigned to the target haplotype
frequenciesp1, ..., p2m, which we refer to asp(0)

1 , ..., p
(0)
2m . In the Expectation step, the haplo-

type frequencies are used to estimate the expected genotype frequencyˆPrλ(hk, hl)
(t) where

(t) denotes thetth iteration. In the Maximization step, the expected genotype frequency
ˆPrλ(hk, hl)

(t), computed in the previous step, is used to re-estimate the haplotype frequen-
ciesp

(t+1)
1 , ..., p

(t+1)
q . The expectation and maximization steps are repeated until the change

in the haplotype frequency in consecutive iterations is less than some predefined value. The
time complexity for one iteration of the EM algorithm isO(n2k) wheren is the number of
genotypes, andk is the maximum number of heterozygous SNPs in the genotypes.

The main limitation of the EM algorithm lies in the exponential increase in the number
of possible haplotypes as the number of heterozygous SNPs in a genotype grows. Thus, the

3Since we do not know the phase information of the given genotype, two different haplotypes can have two
phases:pk on the maternal chromosome andpl on the paternal, and vice versa.

16



number of SNPs that can practically be handled by the EM algorithms is often limited to
about 12 [86]. To address this problem, apartition-ligation (PL) strategy [18, 69, 86] and a
block-partitioningstrategy [86] were proposed. Both of these solutions take a divide-and-
conquer approach. They divide a set of SNPs into a small number of contiguous subgroups,
identify the set of most probable haplotypes for each subgroup, and combine the selected
haplotypes from all subgroups through a bottom-up approach.

The partition-ligation methods partition the set of SNPs into subsets of equal size (e.g., 8
contiguous SNPs), while the block-partitioning methods partition it into subsets of different
sizes, where each subset satisfies a given block definition4. There are several issues that need
further research. For example, when using the divide-and-conquer approach, the solutions
are often only locally optimal with respect to the whole region [34, 86]. It is also unknown
whether the fixed size of subgroups in the partition-ligation methods or the different block
boundaries in the block-partitioning methods affect the overall accuracy of the proposed
methods. Nevertheless, both approaches are used in practice.

Once the EM algorithms were successfully applied to Haplotype Phasing, their perfor-
mance under various conditions was examined [31, 62, 64, 94]. All EM-based methods as-
sume theHardy-Weinberg Equilibrium (HWE), that is, they assume that each genotype is
composed of two haplotypes randomly mated. Initially, Excoffier et al. [29] reported that the
HWE condition is more likely to be satisfied when the number of individuals in a sample
is large, so the EM algorithm is appropriate for analyzing a large-size sample. However,
subsequent simulation studies [31, 94] demonstrated that the EM algorithm is reliable and
robust even when the HWE assumption is violated.

The effect ofgenotyping errorsand ofmissing alleleson the performance of the EM
algorithm was studied by Kirk et al. [64] and by Kelly et al. [62], respectively. Under mod-
erate to strong levels of linkage disequilibrium (LD) among SNPs, the absence of up to 30%
of data was reported not to affect the overall accuracy of the EM algorithm [62]. However,
genotyping errors were reported to substantially reduce the estimation accuracy of the EM
algorithm, particularly under low LD [64]. Thus, Kelly et al. [62] concluded that ambigu-
ous data are better treated as unknown. More extensive studies are needed to confirm this
conclusion.

In general, the performance of EM-based methods for the Haplotype Phasing problem
was demonstrated to be accurate and robust under a wide range of parameter settings [31,62,
94]. However, several shortcomings still exist. First, the EM algorithm strongly depends on
its initial condition, and does not guarantee a global optimum. To overcome this, EM-based
methods should be run multiple times with different initial conditions. Second, the variance
of the haplotype frequency estimation is not accurately known [29, 48]. Last, calculating
confidence intervals and conducting statistical tests under the EM algorithm typically involve

4Blocks are typically defined based on limited haplotype diversity [84], linkage disequilibrium [32], and
recombination [97]
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approximations, which require a large sample to be most accurate [9].

3.5 Bayesian Inference-based Methods

Like the maximum-likelihood (ML) methods introduced above, Bayesian inference methods
take a statistical approach. However, while ML methods aim to find a set of exact model pa-
rametersΘ that maximize the probability of genotype dataG = {g1, ..., gn} given the model,
that is,Arg max

Θ
Pr(G|Θ), Bayesian inference methods aim to find theposterior distribu-

tion of the model parameters given the genotype dataG, which isPr(Θ|G). Moreover, in
ML methods,Θ denotes a set of unknown haplotype frequencies in a population, while in
Bayesian inference methods,Θ denotes a set of each genotype’s resolved haplotype pairs.
Thus, whereH is a set of haplotype pairs resolving the given genotypes, Bayesian inference
methods aim to find the posterior probabilityPr(H|G). However, computingPr(H|G) ex-
actly is not feasible in the general case [9]. Thus, Markov Chain Monte-Carlo (MCMC)
techniques are used to obtain approximate samples fromPr(H|G), and their expectation is
presented as the final solution.

One popular MCMC technique is Gibbs sampling. Its essential application to haplotypes
is as follows: LetH(t) denote the set of haplotype pairs resolving all genotypes at thetth

iteration,H(t)
−i denote the set of haplotype pairs resolving all genotypesexceptgi at thetth

iteration, andH(t)
i denote the set including only the haplotype pair resolving the genotypegi

at thetth iteration. Gibbs sampling starts with an initial guessH(0). An ambiguous genotype
gi is then randomly selected. Under the assumption that a current estimation ofH(t) is correct
for all genotypes exceptgi, the new haplotype pair resolvinggi, that is,H(t+1)

i , is sampled
from the distributionPr(Hi|G,H

(t)
−i ). This random selection and update is iterated, until we

get approximate samples from the haplotype distribution for the genotype setG, Pr(H|G).
The first Bayesian inference method in the context of Haplotype Phasing was proposed

by Stephens et al. [93]. Their algorithm exploits ideas fromcoalescenttheory to guide their
Gibbs sampling procedure. As defined in section 3.3, a coalescent is a rooted tree repre-
senting the evolutionary relationships among haplotypes. Along the coalescent, haplotypes
evolve one SNP at a time. Thus, whenever a genotype cannot be resolved using existing hap-
lotypes, new haplotypes that are most similar to the existing common5 ones are generated to
resolve the genotype.

Other Bayesian inference methods [70,79,101] use similar MCMC sampling techniques,
but employ priors of different forms. The priors include: simple Dirichlet [70,79] and Dirich-
let Process [101]. In addition, Lin et al. [70] use neighboring information of heterozygous
SNPs to resolve each genotype.

5Due to its preference to common haplotypes, some [70] interpreted this approach as a kind of a parsimony
approach.
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Bayesian inference methods using MCMC techniques are often compared with maximum-
likelihood (ML) methods that use the EM algorithm. However, the performance of both
approaches varies under different genotype compositions and with different accuracy mea-
sures [2,68,92,102,110], making it difficult to decide whether one approach is superior to the
other. Most importantly, the two approaches both have their own merits and shortcomings.
Unlike ML methods, Bayesian inference methods can be applied to samples consisting of a
large number of SNPs or to samples in which a substantial portion of haplotypes occur only
once [9, 42]. In addition, MCMC techniques can explore the whole state space, thus they
avoid local maxima given sufficient running time [81]. Last, Bayesian inference methods
can incorporate prior knowledge to guide their estimation procedure. In contrast, ML meth-
ods require less computing time [9], and are easier to check for convergence than Bayesian
inference methods [86]. Furthermore, the performance of ML methods is robust even under
the violation of their basic assumption, Hardy-Weinberg Equilibrium, while the performance
of Bayesian inference methods is reported to be affected by a deviation of data from their
basic assumption, coalescent theory [92].

3.6 Discussion

Arguably, two statistical approaches, namely maximum-likelihood (ML) using the EM algo-
rithm and Bayesian inference using MCMC techniques, are most popular for Haplotype
Phasing [80]. First and most importantly, empirical comparison studies [98, 102] show
that the phasing accuracy of the two statistical approaches is somewhat better than that of
the combinatorial approaches. In addition, parsimony-based methods and phylogeny-based
methods often presentmultiple solutions, making it difficult to compare their performance
with other methods. Last, statistical approaches are applicable even when only ambiguous
genotypes are in the data and when no perfect phylogeny solution exists, that is, these ap-
proaches can be used even when parsimony-based methods and perfect-phylogeny methods
cannot be applied.

Although the performance of the two statistical approaches is quite promising [2,94,102],
there are several difficulties that none of the current Haplotype Phasing methods can address
well. First, the phasing accuracy of all methods decreases as linkage disequilibrium (LD)
drops [2, 31]. This poor accuracy occurs more often when a large number of SNPs are
examined [43], since LD tends to decrease as the distance between SNPs increases.

Second, most algorithms work well for data sets with few or no genotyping errors or
missing alleles [62, 64]. However, very often, allele information is incorrect or missing due
to imperfection of current genotyping technology. Missing allele information increases the
combinatorial complexity of the Haplotype Phasing problem. The genotyping error problem
is even more difficult to solve, since in general, we do not know which alleles are incorrect.
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Last, most Haplotype Phasing algorithms show a poor phasing accuracy for rare hap-
lotypes (i.e., ones with a population frequency< 1-5%) [2, 37, 40, 94]. This problem oc-
curs since most Haplotype Phasing algorithms are based on population genetic assumptions
which prefer common haplotypes (i.e., occurring in more than 5%-20% of the population).
However, it is not clear yet whether rare haplotypes or rather common ones are important for
the etiology of disease [19].

In conclusion, future research of Haplotype Phasing should focus on improving the per-
formance of algorithms for data sets with low LD, genotyping errors, missing alleles, and
rare haplotypes.
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Chapter 4

Tag SNP Selection

This chapter introduces Tag SNP Selection. An overview of the problem is given in section
4.1. Tag SNP Selection algorithms are categorized into four major approaches based on: (1)
haplotype diversity; (2) pairwise association; (3) tagged SNP prediction; and (4) phenotype
association. We give a brief introduction of each approach and conclude with a discussion
of open problems and future directions.

4.1 Overview

In most large-scale disease studies, genotyping all SNPs in a candidate region for a large
number of individuals is still costly and time-consuming. Thus, selecting a subset of SNPs
that is sufficiently informative to conduct disease-gene association but small enough to re-
duce the genotyping overhead, a process known asTag SNP Selection, is a critical problem
to solve. In general, the selected SNPs on a haplotype are referred to ashaplotype tag SNPs
(htSNPs), and the unselected SNPs are referred to astagged SNPs.

Formally, we define the Tag SNP Selection problem as follows: LetS = {s1, ..., sm} be
a set ofm SNPs in a candidate region, andD = {h1, ..., hn} be a data set ofn haplotypes
consisting of them SNPs. As defined in Section 3.1,hi ∈ D is a vector of sizem whose
vector element is 0 when the allele of a SNP ismajor and 1 when it isminor. Suppose that
the maximum number of htSNPs isk, and a functionf(T ′, D) evaluates how well the subset
T ′ ⊂ S represents the original dataD. Then, the Tag SNP Selection problem can be stated
as follows:

Problem : Tag SNP Selection
Input : A set of SNPsS, A set of haplotypesD, A maximum number of htSNPsk
Output : A set of htSNPsT = argmax

T ′ s.t. T ′ ⊂ S & |T ′| ≤ k

f(T ′, D) .
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In brief, to solve the Tag SNP Selection problem, one needs to find an optimal subset of
SNPs,T , of size≤ k based on the given evaluation functionf , among all possible subsets
of the original SNPs.

Initially, Tag SNP Selection was motivated bylinkage disequilibrium(LD) introduced
in Section 2.1.2 [33]. When high LD exists between SNPs, their allele information might
be almost the same. Thus, we can select one from those redundant SNPs so that, even with
only a subset of original SNPs, most information in a haplotype is retained. However, what
comprises the best htSNP selection strategy is still an open problem [99].

Researchers proposeda variety of measuresto represent the information of haplotypes,
and tried to identify the subset of SNPs that optimizes these measures. The relations among
these measures and their effect on the selection of htSNPs are still the subject of ongoing
research. Most importantly, unlike Haplotype Phasing, there is no gold standard to evaluate
the performance of different approaches [23]. Thus, the performance of Tag SNP Selec-
tion algorithms is often evaluated based on their own information measure, which makes
comparison among different approaches difficult.

We group here the algorithms for Tag SNP Selection into four categories based on the
approach they take to measure theinformation of haplotypes: (1) haplotype diversity; (2)
pairwise association among SNPs; (3) tagged SNP prediction; and (4) phenotype association.
In the following sections, we introduce each of them.

4.2 Haplotype Diversity-based Methods

Recent observation ofthe block structure of the human genome[20,32,84] demonstrates that
the human genome can be partitioned into discrete blocks such that within each block, most
of the population (i.e., 80-90%) shares a very small number of common haplotypes (i.e., 3-5
haplotypes). Based on this assumption, early htSNP selection research aimed to finda subset
of SNPs that can capture most of the limited haplotype diversity in the original data.

Figure 4.1 illustrates how a set of htSNPs can be selected based on the limited diversity
of haplotypes. Suppose that our sample consists of eight haplotypes with four SNPs, as
shown in Figure 4.1-a). The major allele of a SNP is coded as 0 in light gray, and the
minor allele is shown as 1 in dark gray. Since each allele must be either major or minor, the
possible number of distinct haplotypes consisting of four SNPs is24. However, the observed
number of distinct haplotypes in the sample is only 3 as shown in Figure 4.1-b). Therefore,
the information about 2 SNPs might be sufficient to uniquely identify the limited number
of distinct haplotypes. In principle, we can try every possible combination of two SNPs to
quantify how well they can distinguish the diverse haplotypes in the original data. Then, the
pair that provides the most distinguishing power is selected as htSNPs.

A variety of haplotype diversity measures were proposed. Some [59,84] usethe number
of haplotypes that are uniquely distinguishable by the candidate subsetT ′ as a measure of
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Figure 4.1: Tag SNP Selection based on limited haplotype diversity

the haplotype diversity captured byT ′. For example, in Figures 4.1-c) and 4.1-d), SNP1

and SNP4 successfully partition all 8 haplotypes into 3 different groups, while SNP1 and
SNP3 put only 4 of the haplotypes into a truly distinct set ( the other 4 haplotypes are placed
together despite their differences ). Thus, the haplotype diversity captured by the subset
{SNP1, SNP4} is 8, while for{SNP1, SNP3}, this measure is only 4.

Johnson et al. [56] define the haplotype diversitynot captured by the candidate subset
T ′ (i.e., theresidualhaplotype diversity ofT ′) asthe number of allele differences between
every haplotype pair in the same group based on T’. If the candidate subsetT ′ successfully
partitions all distinct haplotypes into different groups as shown in Figure 4.1-c), itsresidual
haplotype diversity will be 0. Otherwise, originally distinct haplotypes will be placed in the
same group, as shown on the bottom of Figure 4.1-d), which makes itsresidualhaplotype
diversity greater than 0. Thus,T ′ with thesmallest residualhaplotype diversity is selected
as the set of htSNPs.

Another popular haplotype diversity measure isShannon’s Entropy(H) [1,5,47,58,78].
Let n′ be the number ofdistincthaplotypes in the haplotype data setD, andpi be the relative
frequency of theith distinct haplotype. The haplotype diversity ofD can be computed as its
EntropyH:

H(D) = −
n′∑

i=1

pi log2 pi.

Like other methods introduced earlier, for each candidate htSNP setT ′, haplotypes are par-
titioned into groups so that the ones in the same group share the same alleles at the SNPs
∈ T ′. The Entropy of the data setD is measured based on this partition. The haplotypes that
are placed in the same group are considered identical. The number of distinct haplotypes,n′,
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thus becomes the number of groups, and the relative frequency of theith distinct haplotype,
pi, is the ratio between the number of haplotypes in theith group and the total number of
haplotypes. The more groups the candidate subsetT ′ recognizes, the larger the Entropy of
the data setD based on the grouping. Thus, the candidate setT ′ with the largestEntropy is
selected as the solution.

The methods introduced above [1,5,13,18,47,56,58,59,78,84] exhaustively examine all
subsets of the original SNP setS, limiting their applicability to only a small number of SNPs.
To overcome this problem, several heuristics and efficient search methods were proposed
using: a greedy algorithm [109], a branch-and-bound rule [22], dynamic programming [103–
108], and principal component analysis (PCA) [52,71,76].

Haplotype diversity-based methods are intuitive and straightforward. However, to ensure
that haplotype diversity is indeed limited, block-partitioning must first be conducted on the
target locus, and htSNP selection is done block by block. The possible limitation of this
block-dependent approach lies in the possibility that the union of the optimal sets of htSNPs
from each block might not be the optimal set of htSNPs for a whole region [34]. Furthermore,
as introduced in 2.1.2, regions of low linkage disequilibrium existbetweenblocks [19]. Thus,
certain regions of the target locus may demonstrate a large number of diverse haplotypes,
deeming the above methods impractical. In addition, as of yet there is no agreed upon
way to define blocks on the genome. Thus, the selection of htSNPs depends on the block-
partitioning method used [23,82,88].

4.3 Pairwise Association-based Methods

Pairwise association-based approaches rely on the idea that a set of htSNPs should bethe
smallest subset of available SNPs that are capable of predicting a disease locuson a haplo-
type. However, the disease locus is generally the one we are looking for, and is not known
ahead of time. Instead, pairwise association between SNPs is used as an estimate for the
predictive power with respect to the the disease locus. In principle, a set of htSNPs is se-
lected such thatall SNPs on the haplotype are highly associated with one of the htSNPs.
This way, although the SNP that is relevant to the disease may not be selected as an htSNP,
the association of the target disease with that SNP can be indirectly deduced from the ht-
SNP that is highly associated with it. In most studies, non-random association of SNPs (i.e.,
linkage disequilibrium (LD)) introduced in Section 2.1.2, is used to estimate the pairwise
association.

Byng et al. [13] first proposed to use cluster analysis for pairwise association-based ht-
SNP selection. The original set of SNPs is partitioned into hierarchical clusters, where SNPs
within the same cluster have at least pre-specified level,σ, (typically σ > 0.6-0.8) of pair-
wise LD withat least oneof the other SNPs. After clustering is performed, they recommend
to select one SNP from each cluster based on practical feasibility such as ease of genotyping,

24



importance of physical location, or significance of the SNP mutation.
Others [4, 14, 100] proposed that a htSNP should be selected as the one whose pairwise

LD is greater than the fixed level,σ, with respect toall the other SNPs in the cluster. To
ensure the htSNP selection property,minimax clustering[4] and greedy binning algorithm
[14,100] were proposed.

In minimax clustering, theminimaxdistance between two clustersCi andCj is defined as
Dminimax(Ci, Cj) = min

∀s∈(Ci∪Cj)
(Dmax(s)), whereDmax(s) is the maximum distance between

the SNPs and all the other SNPs in the two clusters. Initially, every SNP constitutes its
own cluster. The two closest clusters based on their minimax distance are then merged
iteratively. The merging stops when the smallest distance between two clusters is larger than
pre-specified levelσ. Finally, the SNP that defines the minimax distance of each merged
cluster is selected as the cluster representative.

The greedy binning algorithm works as follows: First, it examines all pairwise LD rela-
tionship between SNPs, and for each SNP, counts the number of other SNPs whose pairwise
LD with the SNP is greater than pre-specified levelσ. The SNP that has the largest count-
ing number is then clustered together with its associated SNPs, and becomes the htSNP for
the cluster. This procedure is iterated with the remaining SNPs until all the SNPs are clus-
tered. The SNPs whose pairwise LD is not greater thanσ with respect to any other SNPs are
considered singleton clusters.

All pairwise association-based methods have a complexity ofO(cnm2), where the num-
ber of clusters isc, the number of haplotypes isn, and the number of SNPs ism. Thus, in
general, they run faster than the methods based on haplotype diversity, and do not require
a prior block-partitioning procedure. The major shortcoming of pairwise association-based
methods lies in their lack of ability to capture multi-SNP dependencies [7] and in a tendency
to select more htSNPs than other methods [34,61,74,88].

SNP1SNP2SNP3

1 1 1 0 0 0

SNP4

Haplotype1

Haplotype2

Haplotype3

Haplotype4

a) Haplotype Sample

SNP5SNP6

0 1 0 0 1 0

1 0 0 1 0 0

0 0 0 0 0 1

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6

SNP1 1 1/3 1/3 1/3 1/3 1/3

SNP2 1/3 1 1/3 1/3 1/3 1/3

SNP3 1/3 1/3 1 1/9 1/9 1/9

SNP4 1/3 1/3 1/9 1 1/9 1/9

SNP5 1/3 1/3 1/9 1/9 1 1/9

SNP6 1/3 1/3 1/9 1/9 1/9 1

b) Pairwise LD using r2 c) Multi-SNP relationship

SNP3 = SNP1 x SNP2

SNP4 = SNP1 x (1-SNP2)

SNP5 = (1-SNP1) x SNP2

SNP6 = (1-SNP1)x (1-SNP2)

Figure 4.2: Pairwise linkage disequilibrium (LD) among SNPs and multi-SNP dependencies

Figure 4.2 illustrates this weakness of pairwise association-based methods. Suppose that
our sample consists of four haplotypes with six SNPs, as shown in Figure 4.2-a). If we
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measure pairwise LD between the SNPs using the most common LD measure, correlation
coefficientr2 [34], no two SNPs have pairwise LD greater than 0.5, as shown in Figure 4.2-
b). Thus, pairwise association-based methods will select all six SNPs as htSNPs. However,
as shown in Figure 4.2-c), the allele of SNP 3, 4, 5, and 6 can be perfectly represented by
the alleles of SNP 1 and 2. Thus, if we consider multi-SNP dependencies, only two SNPs,
namely SNP 1 and 2, are sufficient to represent all the six SNPs.

4.4 Tagged SNP Prediction-based Methods

Tagged SNP prediction-based approaches consider htSNP selection as a reconstruction prob-
lem of the original haplotype data using only a subset of SNPs. Thus, they aim to selecta set
of SNPs that can predict the unselected (i.e., tagged) SNPs with little error. In general, after
the selected htSNPs are genotyped, the alleles of the tagged SNPs are predicted using the
alleles of the htSNPs, and disease-gene association is conducted based on the reconstructed
full haplotype data. Therefore, these methods present a prediction rule for tagged SNPs
along with the selected set of htSNPs.

Bafna et al. [7, 43] first proposed to select htSNPs based on their accuracy in predicting
the tagged SNPs. LetEt

i,j be the event that haplotypeshi andhj have a different allele at
SNPt. To measure how well a set of SNPs,S = {s1, ..., sk}, can predict the SNP,t, Bafna
et al. define a measure calledinformativenessas:

I(S, t) = Pri 6=j(
k⋃

l=1

Esl
i,j|Et

i,j).

Based on the proposed measure, an optimal subset of SNPs that can best predict the remain-
ing ones is identified using dynamic programming. Bafna et al. restrict the predictive htSNPs
of each tagged SNP to those that are within a relatively close physical proximityw to the
predicted. However, the exponential time complexityO(nk2w) of dynamic programming
needs to be reduced. Recently, Halperin et al. [46] proposed a polynomial time dynamic pro-
gramming algorithm, but, in principle, their improvement results from limiting the number
of htSNPs for each tagged SNP to 2.

Both methods proposed amajority voteas a reconstruction rule for tagged SNP alleles.
Suppose that our sample consists of six haplotypes with five SNPs, and SNP 1 and 2 are se-
lected as htSNPs as shown in Figure 4.3-a). We call this sample the htSNP selection sample.
As introduced in Section 2.2, second genotyping is conducted to obtain the alleles of the
selected htSNPsfor a large number of individuals. To reconstruct the ungenotyped alleles
(i.e., the tagged SNPs) for each haplotype in this new sample, first, the haplotypes whose ht-
SNP alleles are the same as those of the new haplotype are identified in the htSNP selection
sample. In Figure 4.3-b-1), these haplotypes are marked by a solid box. Each tagged SNP
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Figure 4.3: Majority Vote in Tagged SNP Prediction-based Methods

in the new haplotype is assigned the allele that occurs most often in the haplotypes identi-
fied above, as shown in Figure 4.3-b-2). As a result, this majority-vote-rule tends to assign
common alleles rather than rare ones to a new haplotype.

Unlike pairwise association-based methods, tagged SNP prediction-based methods use
multi-SNP dependencies to select the set of htSNPs. As a result, the number of selected
htSNPs is often smaller than that of pairwise association-based [8]. In addition, all dynamic
programming methods [7, 43, 46] guarantee to find a global optimum with respect to the
given measure. However, their prediction efficiency is still limited by some restrictions such
as the small-bounded location or the fixed number of htSNPs. Further research is needed to
effectively address this problem.

4.5 Phenotype Association-based Methods

Phenotype association-based approaches assume the availability of phenotype information,
and try to finda set of SNPs that can distinguish individuals carrying the disease(i.e., case)
from individuals with no disease(i.e., control). These SNPs are then used as the set of
htSNPs. Under this view, htSNP selection is a kind of feature selection, which aims to select
a set of features that distinguishes between two classes (case/control) with little error. As
a result, classification techniques and test statistics measuring association between features
and class labels, are used in this context.

Despite its simplicity, one of the most popular classifiers is the naı̈ve Bayes classifier [95].
It assumes that the allele of one SNP is conditionally independent from that of others given
the individual phenotype, and classifies each haplotype ascaseor controlbased on its proba-
bility of belonging to each of these classes. The subsetT ′ of SNPs with the best classification
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accuracy is then selected as the set of htSNPs. The main limitation of this approach lies in
theconditional independenceassumption among SNPs used by the naı̈ve Bayes classifier. In
reality, non-random association (i.e., linkage disequilibrium) exists among SNPs [52]. Shah
et al. [89] addressed this problem by using a feature selection method considering correlation
among SNPs. Their algorithm selects a feature if it correlates with a target class label but
not with any other features that have already been selected.

The above phenotype association-based methods focus on selecting a set of SNPs that
accurately partitions the given data into case and control classes. Hoh et al. [51] proposed a
method that not only classifies the given data well but also guarantees its performance at a
statistically significant level. Their algorithm is based on a bootstrap technique [26]. Suppose
that our original data consists ofn haplotype-phenotype pairs. First, one replicate setA is
made by samplingn haplotype-phenotype pairs from the original data with replacement.
Second, additional 1000 replicate sets,B1, ...B1000, are made, where each set consists of
n haplotype-phenotype pairs sampled from the replicateA with replacement. These latter
1000 replicates represent the samples in which no association exists between haplotypes and
phenotypes, thus their phenotype and haplotype labels are randomly permuted. Last, the
SNPs whose sum of association score is higher inA than in at least (1-α) x100 (typically
α=0.05) percent of the random samplesB1, ...B1000, are selected. This procedure is iterated
a pre-specified number of times, and the SNPs selected at least 50% of the iterations are
presented as the set of htSNPs. The decision on test statistic for measuring the association
between a SNP and a phenotype was left for future research.

Phenotype association-based methods are directly related to the main goal of computa-
tional haplotype analysis, namely, disease-gene association. The main limitation of a pheno-
type classification-based approach lies in its need of phenotype information, which may not
be available ahead of time. In addition, usually, the number of haplotypes used for Tag SNP
Selection is relatively small. Thus, the selected htSNPs that classify the small sample very
well, may not perform as well on a larger sample. This can directly affect the performance
of subsequent disease-gene association.

4.6 Discussion

The feasibility of Tag SNP Selection has been empirically demonstrated by simulation stud-
ies [34,60,61,74,104]. The results suggest that Tag SNP Selection can yield about 2-5 fold
savings in the genotyping efforts. Most importantly, Zhang et al. [104] demonstrate that Tag
SNP Selection shows little loss of power1 in subsequent association studies. Based on 1000
simulated data sets, the average difference in power between a whole set of SNPs and a set
of htSNPs whose size is1/4 of the original SNP set is only 4 percent.

1The power of association tests is the probability that the test rejects thefalsenull hypotheses [83].
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However, several pitfalls still exist:
1) Most Tag SNP Selection algorithms focus on covering common haplotypes or com-

mon SNPs rather than rare ones [111]. Common variations are of interest because many
common human diseases have been explained by common DNA variations rather than by
rare ones [25,61,85]. Furthermore, practically, a much larger sample size is needed to iden-
tify rare haplotypes [65]. However, as discussed in Section 3.6, it is still an open question
whether common variations or rare ones influence the susceptibility to common and complex
disease.

2) Many algorithms require haplotype data rather than genotype data. When only geno-
type data are available,Haplotype Phasingis performed on the genotype data, and the iden-
tified haplotype information is used. However, Haplotype Phasing may lead to incorrect res-
olution. To address this, some statistical algorithms produce multiple solutions along with
their uncertainty [73], or the distribution of haplotype pairs for each genotype rather than a
single resolved pair [111]. Until now, no htSNP selection methods consider this uncertainty
of inferred haplotype data.

3) All the algorithms described above assume that the set of htSNPs selected from a given
sample will work well for another sample from the same population. However, to ensure the
generalized performance, a sufficient number of individuals should be sampled for Tag SNP
Selection. For example, Goldstein et al. [34] reported that at least 100 chromosomes, that
is, 200 haplotypes, are needed when the number of SNPs is about 20. Therefore, Tag SNP
Selection should be applied only when a sufficient number of individuals can be sampled. In
addition, methods that can avoid over-fitting of the given data set are needed when sample
data are insufficient.

Along with ways to address these limitations, more comparative studies are needed to
understand the merits and shortcomings of different Tag SNP selection approaches. To date,
little comparative study has been done, and existing studies report conflicting results. By
comparing 5 selection methods (2 haplotype diversity-based, 2 pairwise LD-based, and 1
equal spaced), Burkett et al. [74] concluded that different approaches result in considerably
different numberof htSNPs, and even between two methods based on the same approach,
the proportion of commonly selectedhtSNPs is strikingly small (i.e., 30%). In contrast,
Duggal et al. [82] reported that despite the differences in the number of selected htSNPs, the
proportion of commonly selectedSNPs among 6 haplotype diversity-based methods is, in
general, consistently high (about 50%-95%). In addition, Ke et al. [60, 61] reported that the
prediction abilityof htSNPs is highly concordant between haplotype diversity and pairwise
association-based methods. It is difficult to generalize any of these conclusions since they
are based on different data sets and also different evaluation measures. Further research
should clarify these conflicting results as well as establish a common testbed to evaluate the
performance of different selection approaches.
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Chapter 5

Conclusion

Along with the completion of the human genome project, one of the major interests of current
genomics research is disease-gene association, that is, identifying which DNA variation or a
set of DNA variations is highly associated with a specific disease. Computational haplotype
analysis, and specifically, its two procedures,Haplotype PhasingandTag SNP Selection,
provide the most practical framework for conducting large-scale association studies. They
provide inexpensive, fast, and relatively accurate performance. Thus, until the overhead of
low-throughput bio-molecular experiments becomes less formidable, computational haplo-
type analysis will be in demand. In this paper, we introduced the major computational and
statistical approaches of Haplotype Phasing and Tag SNP Selection along with their biolog-
ical motivations. Of course, certain limitations still exist in both, and future research should
focus on improving them.

Missing alleles, genotyping errors, and low linkage disequilibrium among SNPs are the
common difficulties with which all Haplotype Phasing algorithms are confronted. Further
improvement of Tag SNP Selection requires the ability to handle rare haplotypes, uncer-
tainty in haplotype data, and small sample size. In addition, thorough evaluation of different
approaches and development of a common testbed are also open for more research.

As for our future research directions, we plan to work in the area of Tag SNP Selec-
tion. Compared to Haplotype Phasing, for which two statistical approaches have been used
as an established tool, Tag SNP Selection research has been started very recently, and still
faces many challenges. As discussed in Chapter 4, what comprises the best htSNP selection
strategy is still an open problem, and no standard evaluation measure has been proposed.
However, we believe that the tagged SNP-prediction-based approach, introduced in Section
4.4, has several advantages over others: (1) it does not rely on prior block-partitioning; (2) it
utilizes multi-SNP relationship; and (3) it does not require phenotype information. Currently,
in spite of these advantages, the performance of the tagged SNP-prediction-based methods is
limited by the computational complexity of the dynamic programming procedures. We plan
to apply other machine learning techniques in an attempt to improve the performance. In par-

30



ticular, we consider probabilistic approaches as an alternative to the dynamic programming
procedures. Probabilistic methods have been successfully applied to Haplotype Phasing,
and most importantly, nondeterministic characteristic of haplotype data may be better repre-
sented in a probabilistic framework. The development, examination and application of such
probabilistic approaches is to become the topic for the rest of my PhD work.
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Appendix A

Haplotype-Disease Association

Haplotype-Disease Association aims to identify which haplotype or a set of haplotypes is
highly associated with a target disease, using haplotype samples from a group of individuals
carrying the disease (i.e., cases) and a group of individuals not carrying the disease (i.e.,
controls). This appendix briefly introduces two of Haplotype-Disease Association tests: chi-
square goodness-of-fit test and odds ratio test. We start by explaining their common basis in
Section A.1, and introduce the two tests in Section A.2 and A.3, respectively.

A.1 Common basis of Haplotype-Disease Association

Let H be a set of haplotypes occurring either in cases or controls. Suppose that we want
to examine whether association exists between a haplotypeh ∈ H and a target diseased.
Let Prh(d) be the probability of disease incidence among the individuals possessing the
haplotypeh, andPr¬h(d) be the probability of disease incidence among the individuals not
possessing this haplotype. Our null hypothesis,H0, can be stated as:

H0 : Prh(d) = Pr¬h(d).

To test the null hypothesis, all haplotype-disease association tests use two contingency tables:
one representing theobservedfrequency of haplotypes in cases and controls and the other
representing theirexpectedfrequency under the null hypothesis. Table A.1 displays the first
contingency table,O, where each cell,Oij, represents theobservednumber of the target
haplotypeh or that of the other haplotypes,H − {h}, in the sets of cases and of controls,
respectively.

Under the null hypothesis, the probability of disease incidence,Pr(d), is not affected by
possessing the haplotypeh or not. Thus, it is simply the number of cases divided by the total
number of individuals,Pr(d) = a+b

a+b+c+d
. Theexpectednumber of individuals that have the

diseased as well as the haplotypeh is the product of the number of observed individuals
with haplotypes,(a + c), and the probability of disease incidence,Pr(d),
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Table A.1: The contingency tableO of the observed haplotype frequencies in the sets of
cases and of controls

Haplotypeh Haplotypes∈ H − {h} Total
Case a b a + b

Control c d c + d

Total a + c b + d a + b + c + d

Table A.2: The contingency tableE of the expected haplotype frequencies in the sets of
cases and of controls under the null hypothesis

Haplotypeh HaplotypesH − {h} Total
Case (a + c)× ( a+b

a+b+c+d
) (b + d)× ( a+b

a+b+c+d
) a + b

Control (a + c)× ( c+d
a+b+c+d

) (b + d)× ( c+d
a+b+c+d

) c + d

Total a + c b + d a + b + c + d

(a + c)× Pr(d) = (a + c)× ( a+b
a+b+c+d

).

Thus, the second contingency table,E, of the expectednumber of individuals with and
without haplotypeh, under the null hypothesis, can be calculated as Table A.2. We denote
Oij andEij as the data cell in theith row and thejth column in tablesO andE, respectively
(wherei = 1, 2 andj = 1, 2).

A.2 Chi-Square Goodness-of-Fit Test

Theχ2 goodness-of-fit test examineshow well the observed data agree with the expectation
under the null hypothesisH0 [83]. Theχ2 statistic is defined as:

χ2 =
∑
i,j

(Oij−Eij)
2

Ei,j
.

In principle, if H0 is correct, the observed frequencyOij should not deviate greatly from the
expected frequencyEij underH0; thus, the value of theχ2 statistic should be small.

When all the expected or the observed frequencies are large (> 5) [83], the distribution
of theχ2 statistic can be approximated by theχ2 distribution. Thus, the null hypothesis is
rejected ifχ2 > χ2

α, whereχ2
α can be obtained from theχ2 distribution with degree one

(typically, α=0.05).
When some of the expected or observed frequencies are small (< 5), permutation tests

[35] are used instead of theχ2 distribution. The case-control labels in the data set are ran-
domly permuted, and two contingency tables,O andE, are constructed from the permuted
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sample. Finally, theχ2 statistic is calculated based on the two contingency tables. By per-
forming this permutation step a large number of times, we can define an empirical distri-
bution for theχ2 statistic under the null hypothesis, which can be used instead of theχ2

distribution.

A.3 Odd Ratio Test

One commonly used measure of the relative probability of disease is theodds. If an event
takes place with probabilityp, theoddsfor the occurrence of this event is defined asp/(1−p)

to one [83]. For example, if the probabilityp of disease is2/3, the odds in favor of the disease
is {(2/3)/(1 − 2/3)} = 2 to one. Thus, the probability that the disease occurs is twice as
large as the probability that it does not. Based on this, theodds ratio(OR) can be defined
to compare the probabilities for disease occurrence in two groups, one group possessing the
haplotypeh and the other does not.

Let exposed be a group of individuals with the haplotypeh andunexposed be a group
of individuals with haplotypes∈ H − {h}. The odds ratio (OR) is defined as:

OR = P (disease|exposed)/{1−P (disease|exposed)}
P (disease|unexposed)/{1−P (disease|unexposed)} .

The value of the odds ratio is 1 if disease incidence is statistically independent of the haplo-
typeh. Typically, if the 95% confidence interval of the odds ratio does not include 1 [83],
we reject the null hypothesis.

The odds ratio test is useful when the difference in the disease incidence between two
groupsexposed andunexposed is small. For example, when the odds ofexposed is 0.05
and the odds ofunexposed is 0.02, their absolute difference is 0.03. However, their odds
ratio is 2.5, which strongly indicates association between disease incidence and theexposed

group, as the exposed group is more than twice as likely to get the disease than the unexposed
group.
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