Technical Report No. 2006513
Iterated TGR Languages:
Membership Problem and Effective Closure Properties

Tan McQuillan
Department of Computer Science, University of Saskatchewan,
Saskatoon, Saskatchewan, Canada STN 5A9, email: mcquillan@cs.usask.ca

Kai Salomaa
School of Computing, Queen’s University,
Kingston, Ontario, Canada K7L 3N6, email: ksalomaa@cs.queensu.ca

Mark Daley
Department of Computer Science and Department of Biology,
University of Western Ontario, London, Ontario, Canada N6A 5B7,
email: daley@csd.uwo.ca

April 30, 2006

Abstract

We show that membership is decidable for languages defined by iterated template-guided
recombination systems when the set of templates is regular and the initial language is context-
free. Using this result we show that when the set of templates is regular and the initial lan-
guage is context-free (respectively, regular) we can effectively construct a pushdown automaton
(respectively, finite automaton) for the corresponding iterated template-guided recombination
language.

Keywords: template-guided recombination systems, formal languages, decision problems, finite
automata, regular languages

1 Introduction

The spirotrichous ciliates are a type of unicellular protozoa which possess a unique and fascinating
genetic behaviour. Each ciliate cell contains two types of nuclei, macronuclei which are responsible
for the day-to-day “genetic housekeeping” of the cell, and micronuclei which are functionally inert,
but used in reproduction. This is in contrast to, e.g., mammalian cells which have only one mi-
cronucleus. Although they reproduce asexually, ciliates are also capable of sexual activity in which
they exchange haploid micronuclear genomes. This results in each ciliate getting a “genetic facelift”
by combining its own genes with those of a mate. After creating a new, hybrid, micronucelus, each
ciliate will then regenerate its macronucleus. It is this process of macronuclear regeneration that
is of principle interest to us here.

In the spirotrichous ciliates in particular, this macronuclear regeneration involves an intricate
process of genetic gymnastics. Suppose that a functional gene in the macronucleus can be divided
into 5 sections and written as follows: 1-2-3-4-5. In many cases, the micronuclear form of the same
gene may have the segments in a completely different order and include additional segments not
found in the macronucleus. For the example given above, a micronuclear gene may appear as:
3-x-5-y-1-z-4-2. For the ciliate to produce a functional macronucleus and continue living, it must
descramble these micronuclear genes. (See, e.g., [13] for further detail).

A biological model for this descrambling process, based on template-guided DNA recombination,
was proposed in [14]. This model was formalized as an operation on words and languages in [4]
which also introduced the notion of a template-guided recombination system (TGR system). It was
then shown in [5] that a TGR system with a regular set of templates preserves regularity, that is,
for a regular initial language, the language resulting from iterated application of the TGR system is
always regular. This is in striking contrast to splicing systems since the splicing language generated
by a regular set of rules and a finite initial language need not be recursive [9]. In fact, [5] shows
much more generally that the operation defined by a TGR system with a regular set of templates
preserves any language family that is a full AFL [15]. Thus if the initial language is context-free,
a TGR system with a regular set of templates defines a context-free language.

However, the above results are non-constructive and, in particular, do not give an algorithm
to decide the membership problem for the language defined by a TGR system, even in the case
where the initial language is finite and the set of templates is regular. Here we show that the
uniform membership problem for the language defined by a TGR system is decidable when the
initial language is context-free and the set of templates is regular. The nonuniform membership
problem (where the TGR system is fixed) can be decided in polynomial time. The decidability
result can be extended for initial languages that are extensions of the context-free languages, such
as the indexed languages, or, more generally, for languages that belong to an arbitrary full AFL
satisfying certain natural effectiveness conditions.

Moreover, we use this result to positively solve the main open problem from [5]. That is, given a
context-free (respectively, regular) initial language and a regular set of templates, we can effectively
construct a pushdown automaton (respectively, a finite automaton) for the language defined by the
TGR system. Using a variant of the decision algorithm for the membership problem, we effectively
find a DFA for the subset of templates that can be used in some recombination operation and this,
together with the results of [5], enables us to construct the pushdown automaton (respectively, the
finite automaton) for the language defined by the TGR system. This result also holds for regular
sets of templates and initial languages from an arbitrary full AFL that satisfies certain effectiveness
conditions.

Both the algorithm for the membership problem and the method for finding the set of useful
templates use expensive brute-force techniques. It remains an open question, whether it is possible
to find a more efficient algorithm, at least in the case where both the initial language and the set
of templates are regular.

2 Preliminaries

Here we recall some basic definitions needed in the next section. For all unexplained notions related
to formal languages we refer the reader e.g. to [10, 15]. Recent work on language classes motivated
by bio-operations can be found in [2, 3] and in the references listed there.

In the following 3 is a finite alphabet and the set of all words over ¥ is ¥*. The length of a
word w € ¥* is |w|. The ith symbol of a word w € £* is denoted w(i], i = 1,... |w|.

A language is a subset of 3*. The sets of all prefixes, all suffixes and all subwords of words in
L are denoted, respectively, pref(L), suf(L), subw(L). An inner subword of a word w is a subword
that is not a prefix and not a suffix. By a proper subword of w we mean any subword that is not
w. An inner subword is a proper subword, but not vice versa, in general.

A deterministic finite automaton (DFA) is a tuple A = (X,Q, qo, F,) where X is the input
alphabet, @) is the finite set of states, gy € Q is the start state, F' C @ is the set of accepting
states and 6 : Q X ¥ — @ is the transition function. In the well known way ¢ is extended as a
function 6 : @ x ¥* — @ and the language recognized by A is L(A) = {w € ¥* | §(qo,w) € F}.
The languages recognized by DFA’s are exactly the regular languages.

A family of languages is said to be a full abstract family of languages (full AFL) [8, 15] if it
contains a nonempty language and is closed under the following operations: union, Kleene plus,
homomorphism, inverse homomorphism, and intersection with regular languages. The operations
in the above list are called the AFL operations.

We recall definitions concerning template-guided recombination systems [4, 5].

Definition 2.1 A template-guided recombination system (TGR system) is a tuple o = (T, %, nq,n2),
where X3 is a finite alphabet, T C X* is the template language, and ni,ny € IN.

Let z,y € ¥* and t € T. The recombination operation defined by o is given by: (z,y) Ff w if
and only if we can write

z =uafd, y=efy, t=afy and w=uafyv (1)

for some u,v,d,e € L*, a,y € B2" and § € 1.
For L C ¥* we define:

o(L) ={w € &* | (z,y) F? w for some T,y € L,t € T}

The original definition of the recombination operation - uses a weaker condition that requires
only B € ¥2"2. Tt is shown in [4] that without loss of generality we can assume that 8 has length
exactly no.

Let o = (T,%,n1,n2) be a TGR system and let L C ¥*. We define the iteration o) of the
operation p by setting o(®)(L) = L, and defining

0 (L) = o (L) U p(o® (L)) for all § > 0. (2)

Denote o
eM(L) = (D).
i=0

Let o = (T, %, n1,n2) be a TGR system and let L C ¥*. A word ¢ € T is said to be useful on
(L, p) if t can be used in iterated application of g on the initial language L. It is shown in [5] that
t € T is useful on (L, g) if and only if |¢| > 2n; + ny and ¢ is a subword of some word in o*)(L).
The TGR system p is said to be useful on L if every word of T is useful on (L, o). The useful subset
of o on L is the set of all words in T' which are useful on (L, g).

3 Membership problem

Here we show that for a context-free language L and a TGR system ¢ = (T, X, nq,n9) where T is
regular, the uniform membership problem for the language o*)(L) is decidable.

We want to be able to establish properties concerning how many recombination operations are
required to produce some subword of a word w when it is known that w requires a given number of
recombination operations. For this purpose it turns out to be useful to consider “marked variants”
of words over . The marked variants associate states of a DFA recognizing the set of templates T
and length information with certain positions in the word. This additional control information is
used to keep track of the templates (or strictly speaking equivalence classes of templates) that can
be used in the recombination operations.

For the above purpose we next introduce some technical notation. Let o = (T, %,n1,n2) be a
TGR system and

A:(27Q7QOaF75) (3)

be a DFA that recognizes T'.
Denote

— — < —
Q={dlqeQ}, Q={2/qeQ}.
For n € IN let [n] = {0,1,...,n}. We define the extended alphabet X[p] as

o] = % x P((Q U Q) x [my)). 4)

The first component of elements of ¥[g] is an element of ¥ and the second component consists of
a set of states of @@ each marked with a “right arrow” or a “left arrow”. Additionally, each state is
associated with an index from {0,1,...,n1}.

The projections from X[g] to ¥ and to P((a U 5) X [n1]) are denoted, respectively, 7§ and 5.
When p is clear from the context, we denote the projections simply as 71 and wo. The projection
71 is in the natural way extended to a morphism X[g]* — X*.

Let L C ¥*. The T-controlled marked variant of L is the largest language Cr(L) C X[p]* such
that the below conditions (i) and (ii) hold'. The notations refer to (3) that gives a DFA for the
language T'.

(i) For every w € Cr(L), m(w) € L.
(ii) Assume that w € Cp(L) and (p, j) € mo(w(i]), 1 <i < |w|, p Ga U <C_2, J € [n1].

H
(a) If p €Q, then 7 (w) has a subword u starting at the (¢ + 1)th position such that |u| > j
and 6(p,u) € F.

(_
(b) If p €@Q, then 7 (w) has a subword u ending at the (i — 1)th position such that |u| > j
and d0(qo, u) = p.

Note that for any w € L, the word w' is in Cp(L) where w' is obtained from w by replacing
each symbol ¢ € ¥ by (¢,) € X[p]. We identify words w and w’ and in this way

we can view L to be a subset of Cp(L). (5)

!Note that the union of languages satisfying this property also satisfies this property, and so the largest language
must exist.

-
According to (i) and (ii) above, the elements (p,j), p €Q U Q occurring in symbols of a word
w € Cr(L) place conditions on what kind of subwords w must have starting directly after or ending

%
directly before that position. If p €@, this means that 71 (w) must have a subword u starting from
the next position that is a suffix of a word in T, u is of length at least j, and p is the state of A

that corresponds to this suffix (that is, d(p,u) € F). If p Ea, this means that 71 (w) must have a
subword u ending at the previous position that is a prefix of a word in T, u has length at least 7,
and p is the state of A that corresponds to this prefix.

The following technical property will be needed later.

Lemma 3.1 Let L C X* and w € Cp(L). Assume that w' € X[p]* has the properties that m (w') =
71 (w) and, for all i =1,...,|w|, me(w'[i]) C mo(w]i]).?
Then w' € Cp(L).

Proof. This follows directly by the definition of the marked variant C7(L) of L. The elements in
the second components of symbols of X[g] are used to restrict what can be the 7-images of subwords
to the left or to the right of the current position. Since w' is obtained from w by removing some of
the elements in the second components, if w is in Cr(L) the same has to hold for w'. ®

We still need the following notation to manipulate words over the alphabet X[g]. Let w € X[g]*,
-«
1<i<w,pe(QUQ) and j € [n1]. Then

wli < (p,4)] (6)

denotes the word obtained from w by adding (p,j) to the second component of the ith symbol,
that is, the second component of the ith symbol is changed to be m2(w[i]) U {(p, 5)}.
We say that a word w € X[p]* is well formed if |w| > 2 and the following conditions hold:

(i) mo(w(1]) CQ x[nal,
(if) ma(wljw]]) CQ x[na], and
(iii) mo(w[j]) =0 when 1 < j < |w|.

(_
In a well formed marked word the first symbol contains only elements of the type (P, j) as markers,

and the last symbol contains only elements of the type (B, J) as markers, p € @, j € [n1]. Symbols
of w other than the first or the last symbol have () as the second component. Note that any word
w € ¥*, |lw| > 2, is well formed when w is viewed as an element of ¥[g]* according to convention (5).

The set of all well formed words over X[p] is denoted by WF(X[g])

The following lemma, says, very roughly speaking, that if w is a subword of o(**1)(L) but w
is not a subword of p*)(L), then w has a proper subword that is a subword of o(*)(L) but not a
subword of p*¢—1) (L). The statement in the previous sentence is oversimplified and does not hold
as such. To be precise, in order to be able to establish the required property we need to add to
the subwords information on the states of the DFA for T" associated with the templates used in the
recombination operations, that is, we need to consider subwords of the T-controlled marked variant
of o¥)(L), k > 1.

*Note that m (w') = 71 (w) implies |w'| = |w|.

Below when referring to a recombination operation that uses a template , by the overlapping
part of the template we mean the subword occurrence £ in the word w if the notations are as in (1)
and the recombination operation is (z,y) Ff w.

For m,n € IN we define the non-negative difference of m and n as

men = m —n if m > n,
] 0 otherwise.

Lemma 3.2 Let p = (T,%,n1,n2) where T is regular and let A as in (3) be a DFA that recognizes
T. Let k > 1 and L C X*.
We claim that if w € WF(X[g]) and

w E subw(C’T(Q(k+1) (L)) — SUbW(CT(Q(k)(L))) (7)
then one of the below cases (8)-(11) holds:

w = uafyv,m(afy) €T, || = ny,lal, |y > ni, (®)
uaf € subw(Cr (o™ (L)) NWF(S[a]), Byv € subw(Cr (o™ (L))) N WF(Z[)),

or,
w = uafy,|B| =ngla| > ni, || > 1,uap € subw(Cr(e™ (L)) N WF(2e)), 9)
BY1187'| < (P,n1 © [Y]) € subw(Cr(o® (L)) N\WF(S[a]), where p = 5(g0, B7)-
or,
w = alﬁ'ylua |ﬁ| = N2, |’Y| > ny, |a,‘ > 1, (10)
&A1 (p,m1 ©|e])] € subw(Cr(o® (L)) N WE(Z[o]),p € Q,
Byv € subw(C’T(g(k) (L)) NWF(2[o]), where §(p,a’By) € F.
or,
w = O‘IIB’YIa |/6| = N2, |Ol’|, |'YI| > 1, (11)

/B[l + (P,n1 ©|a])] € subw(Cr(e® (L)) N WF(S[a)),p € Q,
BY1BY] + (p1,m1 © |7'])] € subw(Cr (o™ (L)) N WF(Z[0]), where 6(p, o/ B') = p1.

Furthermore, in any decomposition of w as in (8)-(11) at most one of the two mentioned marked

subwords of subw (Cr (o) (L))) can be in subw(Cr(o*~1(L))).

Proof. If for some words z;, y;, i = 1,2,3, z129x3 = y1y2y3 and |z1| > |y1|, |z3] > |ys| we say
that the subword occurrence x5 is contained in the subword occurrence y3. When it is understood
that we are talking about subword occurrences, we may say simply that “a subword is contained
in another subword”.

Consider a particular subword occurrence z in a word y, where z,y € X[p|*. Then by the
occurrence of the subword 71 (z) in 71 (y) we mean the subword of 7 (y) at the position where z
occurs in y (although 71 (z) naturally could occur also at other positions).

Let w be as in (7). Since w ¢ subw(Cr(o®)(L))), according to (2), w must be a subword of
wy € Cr(o*+tY (L)) such that

(‘T,y) |_§ 7'('1(’!1)1), T,y € Q(k)(L)a (12)
and the overlapping part of the template ¢ is an inner subword of the subword occurrence 71 (w) in
m1(wy).

Now (8) corresponds to the situation where the entire template ¢ (when viewed as a subword
occurrence of m1(wi)) is contained in 71 (w), (9) corresponds to the situation where the end of
the template ¢ lies outside of 71 (w), (10) corresponds to the situation where the beginning of the
template ¢ lies outside of m1(w), and (11) corresponds to the situation where both the beginning
and end of the template ¢ lie outside of 7 (w). It is immediate that one of these situations must
occur.

In each of the cases (8)—(11), in the resulting two words of subw(Cr(o*)(L))) we add new state
markers only to the first and/or the last symbol, and any state added to the first symbol has a
“left arrow” and any state added to the last symbol has a “right arrow”. Since w is well formed,
it follows that also the resulting new words are well formed. Note that for the purpose of finding
the two words in subw(Cr(o%*)(L))) with the required properties we, of course, would not need
any of the newly added state markers. The new markers are needed below to argue that, in each
case (8)-(11), both of the resulting words cannot be in subw(Cr(o*~D(L))).

Note that the decomposition of w as in (8)—(11) is, in general, not effective, e.g., in (10) or (11)
we do not need to worry how the state p would be found.

Next we argue that if (11) is true, at least one of the two subwords must be in the set
subw(Cr(0®)(L))) — subw(Cr (0% Y(L))). The first three cases (8)-(10) are similar and simpler.
If in (11) both subwords are in subw(Cr (0¥~ (L))), then the control elements added to the first
symbol of o/ and the last symbol of 3y guarantee that there exist o”,7" € X[g]* such that
||, |Y'y"| > n1, 6(qo, m1 (")) = p and 6(p1, 71 (")) € F. Thus, m ("' By'y") € T and o"o'B
and Bv'y" are subwords of z,y € Cp(o* =D (L)), respectively, i.e., we can write

r=51a"d Bra, y =187y (13)

Now
I/

(m1(z), 71 (y)) Ff mi(zia”d By'y"y2), where t1 = m (oo By'y") € T. (14)

By Lemma 3.1 we can choose in (13) the words z and y so that they do not contain any marker
elements other than the elements occurring in o’ and v'. Note that since w = o/ 37’ is well formed,
it can have marker states only in the first symbol of o/ and in the last symbol of 4'. That is, in all
symbols of z and y except the first symbol of o’ and the last symbol of 7/ the second component
is 0.

Since z € subw(Cr (o~ (L))), the prefix z;a” has to satisfy the requirements imposed by the
“left-arrow” states in the first symbol of o/. Similarly, since y € subw(Cr(o*~Y(L))) the suffix
v"y9 has to satisfy the requirements imposed by all “right arrow” states in the last symbol of +'.

By (14), mi(z10"a/By'v"ys) € o%)(L) and since above it was established that all control re-
quirements imposed by the marker elements are satisfied it follows that

210"/ By'y"ys € Cr (0™ (L))

and, consequently,
w = o'By € subw(Cr(o®(L))).

This contradicts (7). ™

We should note that in (9), (10) and (11) in Lemma 3.2 it is essential that we add the new
marker states to the resulting subwords. For example, using the notations of (11), it is quite possible
that 7, (! 8) € subw(o*~D(L)) and 71(87') € subw(o* V(L)) because o/ 3 could be part of a word
that does not allow recombination using any template of T" with the words where 87" occurs as
a subword. The marked variants of the words prevent this possibility by storing the appropriate
states and length information in the first symbol of o/ and in the last symbol of 7. The marker
information forces that o'8 (respectively, $7') must occur in a position where the immediately
preceding (respectively, immediately following) subword contains a suffix (respectively, a prefix)
that allows us to complete o/ 37" into a template of T.

Using Lemma 3.2 we get the following property that will be essential for deciding the member-
ship problem. Also we note that Lemma 3.3 (i) is not a special case of (ii) (although their proofs
are similar) and hence we include both statements.

Lemma 3.3 Let p = (T,%,n1,n2) be a TGR-system where T is reqular and L C ¥*.
() Ifwe o®(L) — o*=)(L), k > 1, then |w| —ny —1 > k.
(ii) If w € subw(o®)(L)) — subw(o*1)(L)), then |w| —ng —1 > k.

Proof. For (i) we want to argue that if w € p*+1) (L) — o*) (L), then w has to have length at least
k (plus some constant). This is done by applying the conditions of Lemma 3.2 recursively. When
dealing with prefixes or suffixes of the original word w, some of the possible ways to perform the
next recombination step listed in (8)—(11) may not be applicable.

When applying Lemma 3.2 to w € p{k+1) (L)— o¥) (L), in the first recombination step the entire
template must lie inside w and necessarily we get uaf8 and Byv as in (8). We say that w; = uaf is
an uncut prefiz to indicate that it contains the initial part of the original word. Similarly we = Bvyv
is called an uncut suffiz.

Now according to Lemma 3.2, there is 7 € {1,2} such that

w; € subw(Cr (o™ (L)) — subw(Cr(o*~V(L))). (15)

After the first step the words do not have any marker elements, so above w; is in fact a word over
>

Next the process is continued from w;. When applying Lemma 3.2 to an uncut prefix, only
cases (8) or (9) may apply since it is not possible that the begin of the template used in the next
operation would lie outside of w;. The first of the resulting words is again an uncut prefix and the
second is a subword of Cp(o*~1(L)).

Similarly, when applying Lemma 3.2 to an uncut suffix, only cases (8) or (10) may apply since
the end of the template may not lie outside of the uncut suffix, and in this case the first resulting
word is a subword of Cr(o*~V (L)) and the second is an uncut suffix. When applying Lemma 3.2
to words other than an uncut prefix or an uncut suffix, any of the cases (8)—(11) may apply.

At each step the length of each of the resulting words is strictly shorter than the previous word,
and one of the two resulting words requires only one less iteration of (2) than the original word.
At the end we obtain w; as in (15) with & = 1. Directly from the definition of the recombination
operation (1) it follows that if u € subw(o™) (L)) and |u| < ng + 1 then u € subw(L). Since,
according to (15), w; & subw(Cr (0% (L))) = subw(Cr(L)) it follows that

|’LUZ'| > ng + 2.

For (ii) we use exactly the same argument. Now we start with a word w € subw(o*T1) (L)) —
subw(o(¥) (L)), and the only difference to the above argument is that when applying Lemma 3.2 at
the start of the process any of the cases (8)-(11) may apply.

Using a more general definition of Cr(L) the result of Lemma 3.3 can be extended for sets of
templates that are not regular. For our main results here it is sufficient to consider regular sets of
templates.

Theorem 3.1 Given a TGR system o = (T,3,n1,n3) with T regular, a context-free language L
and a word w € X, it is decidable whether or not w € o™ (L).
Furthermore, it is decidable whether or not w € subw(o™*)(L)).

Proof. Let A= (%,Q,qo, F,0) be a DFA that recognizes T'. Given a pushdown automaton B; for
o9 (L), i > 0, we can construct a pushdown automaton B;; for g(”l)(L) as follows.
Let 8 € ¥™ and ¢ € Q. We define

Ll(Bi’ﬁa q) = { w e pref(L(BZ)) | w = ’U,CM,B, |Oé| > ni, 5(Q(),Oéﬂ) =q }’

and,
LQ(Biaﬁa(ﬁ = { w € ﬂ_ISUf(L(BZ)) | w = v, |’Y| > nl’(s(qafy) EF }

Now it is clear that

peX™2,qeQ

Since context-free languages are effectively closed under prefix, suffix, union, and quotient and
intersection with a regular language, using (16) we can construct a pushdown automaton B;,1 for
o TI(L).

By Lemma 3.3, it is sufficient to construct the pushdown automaton B, _n,—1 and decide
whether or not Bjy_n,_1 accepts w. The latter can be done effectively since membership is decid-
able for context-free languages.

Also, context-free languages are effectively closed under subword. Thus, we can test whether
w € subw(p{?l~"2=1)(L)) and, by Lemma 3.3 (ii), this holds if and only if w € subw(o*)(L)). ®

The operation (16) uses union indexed over all words of length ns and consequently the algorithm
given by Theorem 3.1 for the uniform membership problem requires exponential time. However,
if p is fixed, i.e., if we consider the non-uniform membership problem then the algorithm given by
Theorem 3.1 uses polynomial time. The same is true even if only the value of no is fixed. Note that
the number of iterations of (16) is upper bounded by the length of w, i.e., the number of iterations
is given in unary notation.

Corollary 3.1 Let no be fized. Given a TGR system o = (T,3,n1,n9) with T regular, a context-
free language L and a word w € ¥*, it is decidable in polynomial time whether or not w € po*) (L).

Lemma 3.3 does not make any assumptions on the initial language. The proof of Theorem 3.1
uses certain closure and decidability properties of context-free languages. An arbitrary full AFL
satisfies the required conditions, assuming that membership is decidable and closure under the AFL
operations is effective, and a corresponding extended result is stated below in Corollary 3.2. Before
that we introduce some terminology dealing with AFL’s consisting of recursive languages. The
terminology will be useful also in the next section in order to be able to rely in a uniform way on
results from [5] that are formulated in terms of AFL’s.

Definition 3.1 We say that a property P of Turing machines is syntactic if given an arbitrary
Turing machine M it is decidable whether or not M has property P. The class of Turing machines
satisfying a property P is denoted TM[P)].

A language family L is said to be a constructive full AFL if L contains a nonempty language
and there exists a syntactic property of Turing machines Pg such that

(i) a language L is in L if and only if L is recognized by some Turing machine in TM[P],
(ii) given M € TM[P;| and an input word w, it is decidable whether or not w € L(M), and

(iii) languages recognized by machines in TM[P¢] are effectively closed under the AFL operations.
That is, there is an algorithm that for given My, My € TM[P;] constructs Mypion € TM[P¢]
such that L(Mynion) = L(M;1) U L(My), and for any AFL operation o other than union there
is an algorithm to construct M € TM[P] such that L(M) = o(L(M,)).

Well known examples of constructive full AFL’s are the regular and the context-free languages.
An example of a more general constructive full AFL is the family of languages recognized by
(one-way, single head) k-iterated pushdown automata, k£ > 1, [7]. It is easy to verify that any (k-
iterated) pushdown automaton can be simulated by a Turing machine where the transition relation
satisfies a suitably defined syntactic property that forces the work tape to simulate a (k-iterated)
pushdown store. It seems that any full AFL consisting only of recursive languages that is defined
by a “reasonable” machine model could be characterized in the above way.

The family of recursively enumerable languages is a full AFL that is not a constructive full
AFL.

Corollary 3.2 Let L be a constructive full AFL. Given a TGR system o = (T,%,n1,n9) where T
1s reqular and L € L, the membership problem for g(*)(L) is decidable.

The set of useful templates of a TGR system g = (T, X, nq,n2) with an initial language L is the
set T'N subw(o® (L)) N £22"1472 [5]. Thus from Theorem 3.1 we get:

Corollary 3.3 Given a TGR system p = (T,3,n1,n9) where T is reqular and a contezt-free initial
language L, we can effectively decide whether or not a given template is useful on (L,).

This holds again for an arbitrary constructive full AFL.

Corollary 3.4 Let L be a constructive full AFL. Given a TGR system o = (T, X,n1,ny) where T
is reqular and L € L, we can effectively decide whether or not a given template is useful on (L, o).

To conclude this section we make a couple of remarks on limitations in attempting to extend
the previous results. The 2-iterated pushdown automata recognize the indexed languages [1] and,
thus, from Corollary 3.2 we get a decidability result for the membership problem when the initial
language is an indexed language. However, there is no known polynomial time parsing algorithm
for general indexed languages and Corollary 3.1 cannot be extended for the case where the initial
language is indexed.

Finally we observe that Theorem 3.1 cannot be extended for the context-sensitive languages or
the languages generated by Boolean grammars [11]. Note that the context-sensitive languages or the
languages generated by Boolean grammars [11] have a decidable membership problem. However,

10

these language families are not closed under the prefix operation. The below construction shows
that Theorem 3.1 could not be extended for context-sensitive or Boolean languages. Let L C ¥* be
arbitrary and ¢ € %. By choosing ¢ = (£2-{c}, ZU{c}, 1,1), we note that o) (LUZ-{c})N(222-{c})
consists of exactly the prefixes of L of length at least two followed by the endmarker c. Using a
variant of Theorem 11 of [12] it can be shown that membership in the set of prefixes of a language
generated by a Boolean grammar is undecidable, and consequently also membership in g(*)(L) is
undecidable when L is generated by a Boolean grammar and the set of templates is finite. Languages
generated by Boolean grammars are a subfamily of the context-sensitive languages.

4 Effective closure properties

We would now like to attack the question of, given ¢ = (T,%,n1,n2), with T regular, and L
recognized by a pushdown automaton (respectively, a finite automaton), can we effectively construct
a pushdown automaton (respectively, a finite automaton) which recognizes o*)(L)? Note that in
the former case it is known that o*)(L) is context-free (and in the latter case regular) [5] but the
results are non-constructive.

We first need to provide some details from [5]. The main non-constructive proof from this paper
shows that, for an arbitrary TGR system o = (T, X, n1,n92) with T regular, and an arbitrary full
AFL £ the following holds: If L € £, then o®*)(L) € £. The proof of this result relies on two
auxiliary results, the first one of which is the following;:

Proposition 4.1 (Theorem 4.2 of [5]) Let p = (T, 2, n1,n2) be a TGR system and let L C ¥*. Let
Ty be the useful subset of o on L. If T is a reqular language, then T, is also regular.

The proof of the above result [5] is not constructive, even in the case where we have some effective
representation for L. However, the proof does give some information as to the structure of the DFA
which accepts T,,. If) is the state set of a DFA which accepts T, then the proof creates a finite
set of automata Xr 1, each automaton with a state set of size ¢, = (|Q|+1)"- (|%]+1)"~! where
n = 2n1 + ne — 1. Moreover, the proof establishes that one of these automata accepts T, but does
not tell us which one is the correct automaton.

Indeed, let o = (T, ¥,n1,n2) be a TGR system where T is regular and let £ be a constructive
full AFL, and let L € £. Then, by Corollary 3.4, we can decide whether or not a given template
is useful on (L, p). Comsider T, N X247 the finite set of all words which are useful on (L, o)
and which are of length less than or equal to 2 - ¢r,.. Using Corollary 3.4 we can now effectively
determine this set. In addition, for each automaton M = (Q,X%,qo, F,d) € X, we can check
whether or not

T, N NsZarL — L(M)N n<24qr,L

We claim that this is true if and only L(M) = T,.
Claim 4.1 T, N X290 = [(M) N B<297L if and only if T, = L(M).

Proof. It is sufficient to show the implication from left to right. According to Proposition 6.3 of
[6], the following is true: Let Mi, My be two deterministic finite automata with state sets @1, Q2
respectively. Then L(M;) = L(Ms) whenever for all s € ¥* such that |s| < |Q1] + |Q2| we have

S € L(Ml) = s c L(Mg)

11

Assume by contradiction that T, # L(M). But there exists M’ € X1, (also with a state set of
size gr,1,) such that L(M') = T, and hence

L(M')NESYTL = T, N BSYTL = [(M) N DS2TL,

However, according to the proposition from [6], this implies L(M') = L(M), a contradiction. H

By Claim 4.1, we can find from X7, the correct automaton which accepts T,. Hence, we can
effectively construct a deterministic finite automaton which accepts 7,,. Thus we have shown that
the following holds:

Lemma 4.1 Let L be a constructive full AFL. Given ¢ = (T,%,n1,n9) with T reqular and L € L,
we can effectively construct a DFA for the useful subset of o on L.

The definition of useful templates now directly gives the following corollary.

Corollary 4.1 Let L be a constructive full AFL. Given o = (T,%,n1,n9) with T regular and
L € L, we can effectively find a regular set of templates Ty such that if o1 = (T1,%,n1,n9) then

Qg*) (L) = Q(*)(L) and o1 is useful on L.
The second auxiliary result from [5] that turns out to be useful is the following;:

Proposition 4.2 (Theorem 4.1 of [5]) If £ is a full AFL, o = (T,%,n1,n2) is a TGR system and
L, T € L, L CX*, are such that p is useful on L, then o) (L) € L.

The proof of Proposition 4.2 in [5] establishes that ¢*)(L) is in £ by showing that o*)(L) is
obtained from L using a finite number of operations each of which can be expressed as a composition
of AFL operations. Thus the proof gives the following corollary for constructive full AFL’s.

Corollary 4.2 Let L be a constructive full AFL. Given a TGR system o = (T,%,n1,n2) where
T € L, an intial language L € L, L C X*, such that o is useful on L, we can effectively construct
(a Turing machine in TM[P;] for) o*)(L) € L.

Now we are ready to prove the main result of this section.

Theorem 4.1 Let L be a constructive full AFL. Given L € L and a TGR system o = (T, 3, n1,n2)
where T is reqular, we can effectively construct (a Turing machine in TM[Pg] for) the language
o) (L) (which is always in L).

Proof. By Corollary 4.1 we can effectively find a regular set of templates 77 (C T') such that if
01 = (T1,%,n1,n9) then gy is useful on L and

o(L) = o™)(L). (17)

Since any full AFL contains all regular languages, we have 71 € L. Now, by Corollary 4.2, given
L and T; we can effectively construct a Turing machine for Qg*) (L) and we are done by (17). ®

12

Since the regular and the context-free languages are examples of constructive full AFL’s, as
particular cases Theorem 4.1 implies that if ¢ is a TGR system with a regular set of templates,
given a finite automaton (respectively, a pushdown automaton) for a language L, we can effectively
construct a finite automaton (respectively, a pushdown automaton) for the language o*)(L).

Finally, it can be noted that Theorem 4.1 relies on Corollary 4.1 and Corollary 3.4 (that in turn
relies on Corollary 3.2), and these results use brute-force constructions that basically enumerate all
words up to a given length. It would be interesting to know whether for a regular initial language
L and a regular set of templates there is some reasonably efficient algorithm to construct a (not
necessarily deterministic) finite automaton for o(*)(L).

References

[1] A. V. Aho, Indexed grammars — an extenion of context-free grammars, Journal of the ACM
15 (1968) 647-671.

[2] M. Daley, O. Ibarra and L. Kari, Closure properties and decision questions concerning some
language classes under ciliate bio-operations. Theoretical Computer Science 306 (2003) 19-38.

[3] M. Daley, O. Ibarra, L. Kari, I. McQuillan and K. Nakano, Closure and decision properties of
some language classes under 1d and dlad bio-operations. Journal of Automata, Languages and
Combinatorics 8 (2003) 477-498.

[4] M. Daley and I. McQuillan, Template-guided DNA recombination, Theoretical Computer Sci-
ence 330 (2005) 237-250.

[6] M. Daley and I. McQuillan, Useful templates and iterated template-guided DNA recombination
in ciliates, Theory of Computing Systems, in press. E-print available doi:10.1007/s00224-005-
1206-6

[6] S.Eilenberg, Automata, Languages, and Machines, volume A. Academic Press, Inc., New York,
NY, 1974.

[7] J. Engelfriet, Iterated stack automata and complexity classes, Information and Computation
95 (1991) 21-75.

[8] S. Ginsburg, Algebraic and Automata-Theoretic Properties of Formal Languages, North-
Holland, Amsterdam 1975.

[9] T. Head and D. Pixton, Splicing and regularity, to appear. (Available at
www.math.binghamton.edu/dennis/Papers.)

[10] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computa-
tion. Addison-Wesley, Reading, Mass., 1979.

[11] A. Okhotin, Boolean grammars, Proceedings of Developments in Language Theory, DLT 2003
(Szeged, Hungary, July 7-11, 2003), Lecture Notes in Computer Science 2710, Springer, 2003,
pp- 398-410. Full version to appear in Information and Computation.

[12] A. Okhotin, On the closure properties of linear conjunctive languages, Theoretical Computer
Science 299 (2003) 663-685.

13

[13] D.M. Prescott. Genome Gymnastics: Unique modes of DNA evolution and processing in cili-
ates, Nature Reviews Genetics 1 (2000) 191-198.

[14] D.M. Prescott, A. Ehrenfeucht and G. Rozenberg, Template guided recombination for IES
elimination and unscrambling of genes in stichotrichous ciliates, J. Theoretical Biology 222
(2003) 323-330.

[15] G. Rozenberg and A. Salomaa (Eds.), Handbook of Formal Languages, Vols. 1-3, Springer
Verlag, 1997.

14

