
Technical Report No. 2006-514

All Or Nothing?

Finding Grammars That Are More Than

Context-Free, But Not Fully Context-Sensitive

Sarah-Jane Whittaker

August, 2006

Abstract

This survey paper describes several extensions of context-free grammars as defined in the

Chomsky hierarchy. These augmentations use a variety of different strategies to create

grammars that generate all context-free and some context-sensitive languages. The basic

concepts of each of these extensions will be examined, as well as whether the enhanced

grammars inherited some of the desirable properties normally associated with context-

free grammars. In addition, a brief examination of non-Chomsky-related augmentations

is included to show that the definition of “extension” is open to interpretation.

Contents

1 Introduction 3

2 Background 3

2.1 Chomsky Grammar . 3

2.2 Chomsky Hierarchy . 4

2.3 Language Properties . 5

2.4 What About Natural Languages? . 5

3 Extensions, Part One 6

3.1 Indexed Grammars . 6

3.1.1 Definition . 6

3.1.2 Properties . 7

3.2 Programmed Grammars . 8

3.2.1 Definition . 8

3.2.2 Properties . 9

3.2.3 A Further Extension . 10

3.3 Boolean Grammars . 11

3.3.1 Definition . 11

3.3.2 Properties . 12

4 Extensions, Part Two 13

4.1 Combinatory Categorial Grammars . 13

4.1.1 Definition . 13

4.1.2 Properties . 15

4.2 Linear Indexed Grammars . 15

1

4.2.1 Definition . 15

4.2.2 Properties . 16

4.3 Tree Adjoining Grammars . 16

4.3.1 Definition . 16

4.3.2 Properties . 18

4.4 Head Grammars . 18

4.4.1 Definition . 18

4.4.2 Properties . 19

4.5 Surprise! . 20

5 Alternatives 20

5.1 Fuzzy Languages and Grammars . 20

5.2 Imperfect Strings . 22

6 Conclusion 23

List of Figures

1 Example - Parse Tree . 6

2 Dynamically Programmed LL(k) Automaton [4] 10

3 Example - TAG Tree Definitions . 17

4 Example - TAG Tree Derivation . 18

2

1 Introduction

Noam Chomsky is nothing if not influential. His language hierarchy has both enticed

and disappointed those working with natural languages for quite some time. While

context-free grammars and languages offer tantalizingly sweet properties such as parse

trees, their restrictive nature leaves a sour taste. In contrast, context-sensitive grammars

and languages are so broad that they require biting off more than can be chewed while

lacking the same luscious flavour. Neither provides any real sustenance for a starving

linguist.

Perhaps then there is reason to consider a graft: create fruit with sweetness and size

enough to feed a researcher. If context-free grammars could be extended to generate some

languages that are context-sensitive, their status may be upgraded from “frustrating” to

“useful”. This is exactly what at least seven researchers over at the past 38 years have

strived to do. The result is a wealth of options, some more complex than others, but all

achieving the basic requirement of extending their territory across a defined border.

Of course, the definition of the word “extension” is not exclusive to the Chomsky

hierarchy. Some have interpreted this word in much broader terms, resulting in language

and grammar augmentations which do not necessarily eschew Chomsky but instead seek

to address different challenges in the realm of natural languages. Although this report is

primarily concerned with Chomsky-related extensions, it would be biased to not consider

a few different approaches.

Thus, this survey will proceed as follows. Section 2 will introduce the reader to

or remind the reader of the basics of Chomsky grammars. Sections 3 and 4 contain

heavily distilled summaries of seven “standard” extensions of context-free grammars.

Finally, Section 5 concludes the body of this report with brief examinations of two

“nonstandard” extensions which attempt to solve problems that are not considered by

the previous extensions.

2 Background

The definitions and examples in this section were either culled from [12] and [15] or are

original work unless otherwise stated.

2.1 Chomsky Grammar

A Chomsky grammar [2], [3] is defined as a four-tuple G = (T,N,R, S) where T is

an alphabet of terminals, N is an alphabet of non-terminals, R is a set of rewriting

3

rules (otherwise known as productions) and S is the start symbol, which is also a non-

terminal. The rules contained in R are of the form LHS → RHS, where LHS and RHS

are mixed strings of terminals and non-terminals. A grammar G produces its associated

language L(G) ⊆ T ∗ through a series of derivations. Beginning with the start symbol

S, rules from R are repeatedly applied by replacing a substring of the form LHS with a

substring of the form RHS. Note that only strings composed entirely of terminals are

members of the associated language; strings composed of terminals and non-terminals

are only generated at intermediate steps. A string is produced ambiguously if there exist

two or more different derivations that yield it. A grammar is considered to be ambiguous

if one or more of its strings can be generated ambiguously.

Example Consider grammar G = ({a, b}, {S,A,B}, R, S) where R contains the

following rules:

• S → AB

• A → ABA and A → a

• B → BAB and B → b

The string ab is generated by two separate derivations: S → AB → aB → ab and

S → AB → Ab → ab. Thus, the grammar G is ambiguous.

2.2 Chomsky Hierarchy

Depending on the form of its rules, each Chomsky grammar will fall into one of four

categories which form the Chomsky hierarchy. These types are defined as follows:

(0) Unrestricted

(1) Context-sensitive - LHS must be longer than RHS

(2) Context-free - LHS must be a single non-terminal

(3) Regular - Either left-linear or right-linear; LHS must be a single non-terminal and

(LL) RHS must be a single non-terminal followed by a single terminal

(RL) RHS must be a single terminal followed by a single non-terminal

4

Example Consider grammar G1 = ({a, b, c}, {S,B}, R, S) containing rules

• S → aSBc and S → abc

• cB → Bc

• bB → bb

Grammar G1 is context-sensitive and generates the language {anbncn | n ≥ 1}.

In contrast, G2 = ({a, b}, {S}, {S → aSb, S → ǫ}, S) is context-free and generates

the language {anbn | n ≥ 0}. Finally, G3 = ({a}, {S}, {S → a, S → aS}, S) is

regular (right-linear, specifically) and generates the language {an | n ≥ 1}.

2.3 Language Properties

The languages generated by each level of the Chomsky hierarchy have very desirable

set properties. The language sets associated with each type are closed under ∪, · and

∗ while all types but context-free are closed under ∩. However, context-free languages

have some impressive features which the other languages in the hierarchy do not possess.

A context-free derivation can be represented in tree form, yielding a parse tree. The

rules associated with this type of grammar can be simplified so that they yield the

same language yet satisfy a normal form which can also provide properties for proving

theorems. Finally, determining whether or not a given string is generated by a particular

context-free grammar (known as the membership problem) is decidable in polynomial

time. One of the better-known algorithms for this purpose is the Cocke-Younger-Kasami

(CYK) algorithm which has an average time of n3 for a string of length n ([23], verified

using [9]).

Example None of the grammars seen thus far in this section are in Chomsky

normal form, which is one of the most popular; the rule set {S → a, S → SS} is.

The parse tree for the string aabb generated by grammar G2 appears in Figure 1.

2.4 What About Natural Languages?

Although the previous subsection may have given the impression that context-free gram-

mars are truly sweet, they sour a bit when it comes to applying them to natural lan-

guages. Type 2 grammars are simply too restrictive; by not allowing context (in the

5

S

a S b

a S b

ǫ

Figure 1: Example - Parse Tree

form of a single non-terminal as the LHS of a rule), any attempt at a context-free repre-

sentation of a natural language would exclude certain valid phrases, or include nonsense

phrases, or both. In contrast, context-sensitive languages are actually too inclusive.

The advantage of generating a larger syntax comes at the price of desirable context-free

properties; for example, the membership problem for Type 1 grammars is decidable in

exponential time, not polynomial. This leads to an obvious question: is there a gray

area somewhere between these two types? Is there a recipe for a cake (which contains

all context-free and some context-sensitive languages) that can be eaten (via closure and

other desirable properties) too?

3 Extensions, Part One

3.1 Indexed Grammars

3.1.1 Definition

Indexed grammars [1] were first proposed by Alfred Aho in 1968. Such a grammar is

defined as a five-tuple G = (N, T, F, P, S) where N is an alphabet of non-terminals, T is

an alphabet of terminals, F is a set of flags or indices, P is a set of productions and S is

the start symbol. This definition is similar to that of a “standard” Chomsky grammar

with the exception of the flag set which affects how rules are applied.

Productions for an indexed grammar operate much like those for a standard grammar,

except now the RHS can be composed of terminals and non-terminals followed by any

number of flags; formally, (NF ∗ ∪ T)∗. It is vital that productions generate flags next

to non-terminals because flags work like context-sensitive placeholders for other rules

where the RHS has the form (N ∪ T)∗. The non-terminal directly to the left of the flag

determines which of the index’s rules will be applied when the flag is consumed.

The other significant property of note with respect to flags is the manner in which

they “stick” to non-terminals when productions are applied and other indices are con-

6

sumed. The best method for illustrating how this works is to use an example; a formal

definition of the process can be found in [1].

Consider the word w = abAjkBba where j and k are indices and the production

A → DfcC can be applied. When A is replaced, f will take precedence and stick to the

non-terminals D and C with the flags j and k following. The result in this particular case

is w′ = abDfjkcCjkBba. The same thing happens when a index is consumed. Consider

the word w = abAfjkBba where f = {B → b, A → cDC}. When f is consumed along

with the non-terminal A to its left, the result is w′ = abcDjkCjkBba.

Example Let G = ({S,A,B}, {a, b, c}, {f, g}, P, S) be an indexed grammar

with the following production and flag definitions:

• S → aAfc

• A → aAgc

• A → B

• f = {B → b}

• g = {B → bB}

This grammar generates the language {anbncn|n ≥ 1}. The string aabbcc is pro-

duced via the following derivation:

S → aAfc S → aAfc

→ aaAgfcc A → aAgc

→ aaBgfcc A → B

→ aaBfbcc g : B → bB

→ aabbcc f : B → b

3.1.2 Properties

Indexed grammars boast virtually all of the desirable properties normally associated

with context-free grammars. There exist both “reduced” and normal forms, although

the RHS now allows for flags as well as terminals and non-terminals. The languages

produced by indexed grammars are closed under ∪, · and ∗ with themselves and are closed

under ∩ with regular languages. Note that this is even an improvement over context-

free grammars, as they are not closed under ∩ with any other language. Although an

algorithm is given in [1] to solve the membership problem, it is unfortunately exponential

in the number of non-terminals in the grammar as opposed to polynomial in the length

7

of the input string. Indexed grammars also provide parse trees, the only difference being

that internal nodes can now be comprised of non-terminals and flags. Finally, and most

importantly, indexed grammars can generate all context-free languages and some, but

not all, context-sensitive languages.

3.2 Programmed Grammars

3.2.1 Definition

Programmed grammars [13] were introduced by Daniel Rosenkrantz in 1969, very shortly

after indexed grammars appeared. This grammar is defined as a five-tuple

G = (N, T, J, P, S) where N is an alphabet of non-terminals, T is an alphabet of termi-

nals, J is a set of production labels, P is a set of productions and S is the start symbol.

Again, this definition is nearly identical to that of a Chomsky grammar except for the

production labels and how they affect derivations.

In addition to the normal LHS → RHS form of a rule, each production also possesses

an integer label and two sets of success and failure labels. Beginning with rule #1, if

the LHS is present in the current derivation then the production rule is applied and is

consider a success; otherwise it is deemed a failure. The next production is then selected

from the success or failure sets; which one is purely the choice of the user. If the set is

empty, the derivation halts.

As the name suggests, a derivation in a programmed grammar is rather similar

to programming in a language with numbered lines. The success and failure options

even operate much like an if-else statement. However, representing a derivation is

slightly different due to these differences. Formally, a derivation would be composed of

word-label pairs (w, j) and steps of the following form: (w, j) → (w′, r) for a successful

application and rule selection r or (w, j) → (w, q) for a failure and rule selection q.

8

Example Let G = ({S,A,B,C}, {a, b, c}, J, P, S) be an indexed grammar with

the following labeled productions:

• S → ABC{2, 5}{}

• A → aA{3}{}

• B → bB{4}{}

• C → cC{2, 5}{}

• A → a{6}{}

• B → b{7}{}

• C → c{}{}

This grammar generates the language {anbncn|n ≥ 1}. The string aabbcc is pro-

duced via the following derivation:

S → ABC S → ABC, {2, 5}, select 2

→ aABC A → aA, {3}

→ aAbBC B → bB, {4}

→ aAbBcC C → cC, {2, 5}, select 5

→ aabBcC A → a, {6}

→ aabbcC B → b, {7}

→ aabbcc C → c, {}

3.2.2 Properties

Unfortunately, [13] does not focus as intently on the properties of the languages generated

by programmed grammars. It is given that programmed grammars are closed under ∪, ·

and ∗ with themselves but are not closed under ∩ with any other language. Rosenkrantz

also states that programmed grammars can generate all context-free languages and a

subset of context-sensitive languages. However, there is no information with respect to

normal forms, the membership problem or parse trees. It is possible (and perhaps likely)

that others have examined these topics, but a moderate search proved fruitless.

9

3.2.3 A Further Extension

In [4], Mariusz Flasiński and Janusz Jurek created an extension for an extension, result-

ing in dynamically programmed LL(k) context-free grammars and automata. Note that

only a brief overview will be included here—please refer to the cited source for formal

definitions.

This grammar is like its original counterpart with a few modifications: every pro-

duction possesses an input tape (like that for a Turing machine) and may perform the

operations add, read and/or move. A separate success or failure condition based on these

tape operations is also given; it is no longer dependent on whether or not the core rule

can be applied. Derivations must also satisfy conditions that make them deterministic

and limit “recursive steps”.

With this extension in mind, a dynamically programmed LL(k) automaton is then

constructed from specialized automata, tapes, tables and stacks to perform the gram-

mar’s function. A diagram of this structure can be found in Figure 2. A dynamically

Figure 2: Dynamically Programmed LL(k) Automaton [4]

programmed LL(k) automaton has three primary components that drive the system.

The first is the LL(k) sub-automaton (LLA), which reads from an input tape and pro-

pose possible productions for the current stage of the derivation. Next, the validating

automaton (VA) chooses a production, followed by the programming automaton (PA)

10

performing the actual production and writing the result to the derivation control tape

(DCL). Direction is then passed back to the LLA automaton and the process described

above repeats until the derivation is complete.

Dynamically programmed LL(k) grammars do not generate the same set of languages

that “standard” programmed grammars do, although it is stated that the associated lan-

guage set is “comparable”. Having said that, dynamically programmed LL(k) automata

have very desirable complexity properties: in relation to the length of the input, the

computation time is polynomial and the storage space required is linear. There’s also

an interesting application for dynamically programmed LL(k) grammars and automata.

The research that yielded these concepts was done in relation to expert systems and has

been applied as a data diagnostic tool for the ZEUS detector, which monitors the energy

and direction of particles in the HERA particle accelerator.

3.3 Boolean Grammars

3.3.1 Definition

Boolean grammars [9] were created by Alexander Okhotin for his Ph.D. thesis in 2003.

This grammar is defined as a five-tuple G = (Σ, N, P, S) where Σ is an alphabet of

terminals, N is an alphabet of non-terminals, J is a set of production labels, P is a

set of productions and S is the start symbol. This definition is identical to that of a

Chomsky grammar, but the RHS of each production is now a formula of terminals, non-

terminals and Boolean operators. Since the language theory behind Boolean grammars

is somewhat involved and difficult to summarize, the following explanation is somewhat

loose in its definitions. For the formal aspects of Boolean grammars, please refer to the

cited source.

Consider a non-terminal A from any grammar G. If A were made the start symbol

of G, you could remove any of the terminals, non-terminals and rules that are “inac-

cessible”, i.e., never encountered in any possible derivation starting from A. Let GA

represent this new grammar and let L(GA) denote the “language of A within G” or

LG(A). This notation could be expanded for strings of terminals and non-terminals

using the concatenation operation. For example, LG(aAbB) = {a} ·LG(A) · {b} ·LG(B).

A Boolean language formula has three components: α, β ∈ (Σ ∪ N)∗ and Boolean

operators & and ¬. These formulae are interpreted as follows: ¬α = Σ∗\LG(α) and

α&β = LG(α) ∩ LG(β). Productions for Boolean grammars have (of course) a single

non-terminal on the LHS and a Boolean language formula on the RHS.

11

Example Let G = ({a, b, c}, {S,A, P,Q,C}, P, S) be a Boolean grammar with

the following productions:

• S → AP&QC

• A → Aa | ǫ

• P → bPc | ǫ

• Q → aQb | ǫ

• C → Cc | ǫ

The non-terminal A generates strings with any number of as while P generates

strings with equal numbers of bs and cs. In contrast, Q generates strings with

equal numbers of as and bs while C generates strings with any number of cs. By

taking the conjunction (or intersection) of the concatenated languages associated

with AP and QC, this grammar generates the language {anbncn|n ≥ 1}.

3.3.2 Properties

Boolean grammars possess some very useful properties normally associated with context-

free grammars. A binary normal form is defined in a manner that is very similar to

Chomsky normal form, except it allows for Boolean formulae on the RHS of every rule.

The languages produced by Boolean grammars are closed under ∪, ·, ∗ and ∩ with them-

selves. Note that this is an improvement over context-free grammars, as CFGs are not

closed under ∩ with any other language. Okhotin also includes a modified version of the

CYK algorithm for membership that retains cubic-time complexity. Unfortunately, parse

trees for Boolean grammars are somewhat difficult as negative conjuncts cannot really be

represented, although positive conjuncts can be through &-labeled links. Perhaps sur-

prisingly though, Boolean grammars generate the set of deterministic context-sensitive

languages, i.e., the set of languages recognized by Turing machines with a limited num-

ber of states and a limited length of input tape. This is a much larger set than those

produced by indexed or programmed grammars yet seemingly without sacrificing many

of context-free’s valuable properties.

12

4 Extensions, Part Two

4.1 Combinatory Categorial Grammars

4.1.1 Definition

Combinatory categorial grammars (CCGs) [16] [17] were introduced by Mark Steedman

in 1988. Such a grammar is defined as a five-tuple G = (N, T, S, f, R) where N is an

alphabet of non-terminals, T is an alphabet of terminals, S is the start symbol, f is the

terminal function and R is a set of combinatory rules. Differences between CCGs and

CFGs include the function f which maps terminals to categories (more on those briefly)

and a group of combinatory rules replacing the standard set of productions. As with

Boolean grammars, the theory behind CCGs is somewhat complex. Hence, the brief

explanation here is neither complete nor formal. For the full technical definition, please

refer to the cited sources.

Consider a “standard” grammar rule S → AB; this could be expressed differently

as an equation S = A · B. Continuing with this new format, the non-terminal A can

be expressed as the start symbol with the non-terminal B removed, or A = S/B =

(A/B) · B. The same can be said for non-terminal B with B = S\B = A · (B\A). The

trick with this “equation method” is preserving the ordering associated with the original

rule. Since A precedes B, a forward slash is used as an ordered divisor while for B a

backward slash is used to show that B follows A.

Categories are defined over non-terminals (c ∈ cat(N)) and, at their lowest level,

are simply non-terminals. However, these can be expanded using either the forward

or backward divisors discussed in the previous paragraph, e.g., A and (S/B\A) are

both categories. Every category has a non-terminal as its target, defined recursively

as target(A) = A, target(c/c′) = c or target(c\c′) = c. In addition, variables can be

defined to stand in for all or specific categories. The variable y ∈ cat(N) can represent

any possible category while the target-restricted variable xA requires the category to

have A as its target.

The combinatory rules possess the familiar structure LHS → RHS, but the LHS is

composed of two categories (possibly represented by variables) c and c′ while the RHS

is a single resulting category c′′. This may seem odd, as the rules actually simplify,

not expand. It does makes sense from an equation perspective though, as equations

are typically simplified as they are solved. Therefore, to actually create strings using a

derivation, begin with the start symbol S and apply the rules backwards to expand out

to a series of categories.

The last key in the derivation is the terminal function f : T → cat(N) which maps

13

terminals to various categories. Again, this may seem odd as in a derivation it is desirable

to generate terminals, not replace them. The solution lies in going backwards here as

well; by applying the inverse of this function, terminals may be substituted for categories

in the derivation, thus generating strings.

Example Let G = ({S, T,A,B,D}, {a, b, c, d}, S, f, R) be a combinatory cate-

gorial grammar with the following combinatory rules:

• (xS/T) (T\A/T\B) → (xS\A/T\B)

• (A/D) (xS\A) → (xS/D)

• (xS/y) y → xS

• y (xS\y) → xS

The terminal function f contains the following definitions:

• f(a) = {(A/D)}

• f(b) = {B}

• f(c) = {(T\A/T\B)}

• f(d) = {D}

• f(ǫ) = {(S/T), T}

This grammar generates the language {anbncndn|n ≥ 1}. The string abc is pro-

duced via the following derivation:

S → (S/D) D (xS/y) y → xS

→ (A/D) (S\D) D (A/D) (xS\A) → (xS/D)

→ (A/D) (S\D/T) T D y (xS\y) → xS

→ (A/D) B (S/T) (S\D/T\B) T D (xS/T) (T\A/T\B) → (xS\A/T\B)

→ (A/D) B (S\D/T\B) D f(ǫ) = {(S/T), T}

→ a B (S\D/T\B) D f(a) = {(A/D)}

→ ab (S\D/T\B) D f(b) = {B}

→ abc D f(c) = {(T\A/T\B)}

→ abcd f(d) = {D}

14

4.1.2 Properties

As is the case with Rosenkrantz and programmed grammars, Steedman does not detail in

[16] which context-free properties combinatory categorial grammars provide. There are,

however, others who have broached the subject: [21] describes a specific “simplified”

form for proof purposes while [20] proves that the membership problem for CCGs is

polynomial-time solvable, specifically n6. With respect to the language set generated

by CCGs, it is known to contain all context-free languages but remain a proper subset

of context-sensitive languages. Unfortunately, no precise information could be located

with respect to parse trees or closure, although personal correspondence [18] with Dr.

Steedman did reveal his suspicion that the languages generated by CCGs are closed

under union.

4.2 Linear Indexed Grammars

4.2.1 Definition

Linear indexed grammars (LIGs) [5] were introduced by Gerald Gazder in 1988, around

the same time CCGs appeared. This grammar is defined as a five-tuple G = (N, T, I, S, P)

where N is an alphabet of non-terminals, T is an alphabet of terminals, I is a set of

indices, S is the start symbol and P is a set of productions. If this definition seems

identical to that of an indexed grammar, that suspicion is accurate. The difference is in

the way productions are handled.

Flags still “stick” to non-terminals in LIGs, but here they do so via a stack. Every

non-terminal has an associated index stack represented as A[...f] or A[] if the stack is

empty. As a result, there are three basic forms for rules in a linear indexed grammar.

The LHS is now a single non-terminal with its associated stack and the RHS may push

or pop a flag from that stack and/or replace the non-terminal with another. In addition,

the RHS may also introduce further non-terminals (with stacks) and terminals into the

derivation, which always begins with S[].

15

Example Let G = ({S, T}, {a, b, c, d}, {l}, S, P) be a linear indexed grammar

with the following productions:

• S[. . .] → aS[. . . l]d

• S[. . .] → T [. . .]

• T [. . . l] → bT [. . .]c

• T [] → ǫ

This grammar generates the language {anbncndn|n ≥ 1}. The string aabbccdd is

produced via the following derivation:

S → aS[l]d S[. . .] → aS[. . . l]d

→ aaS[ll]dd S[. . .] → aS[. . . l]d

→ aaT [ll]dd S[. . .] → T [. . .]

→ aabT [l]cdd T [. . . l] → bT [. . .]c

→ aabbT []ccdd T [. . . l] → bT [. . .]c

→ aabbccdd T [] → ǫ

4.2.2 Properties

Happily, there is some information available about the properties of languages generated

by linear indexed grammars. There exists at least one simplified form, again given in [21]

for proof purposes, and the membership problem is solvable with a modified CYK-type

algorithm. Gazder himself provides samples of parse trees, which appear nearly identical

to context-free parse trees except that non-terminal nodes also feature their associated

stack. Regrettably, no information was found on the topic of closure for the languages

generated by LIGs.

4.3 Tree Adjoining Grammars

4.3.1 Definition

Tree adjoining grammars (TAGs) [6] were introduced by Aravind Joshi, Leon Levy and

Masako Takahashi in 1975. This grammar is defined as a five-tuple G = (N, T,C,A, S)

where N is an alphabet of non-terminals, T is an alphabet of terminals, C is a set of

labeled center trees, A is a set of labeled adjunct trees and S is the start symbol. This

grammar perhaps bears the least resemblance to the definition of a Chomsky grammar

16

as any other described in this report; instead of productions, there are two set of label

trees which act as rules within a derivation.

The nodes of center and adjunct trees are composed of terminals and non-terminals.

They also share one structural property: the internal nodes of both types are of the form

A{l,m,...}, o where A is a non-terminal, {l,m, . . .} is a set of adjunct tree labels and o is a

Boolean indicating whether adjunction (more on that later) is obligatory for this node

or not. Each center tree has S{l,m,...}, o as its root and terminals as its leaves. In contrast,

the root of an adjunct tree is A{l,m,...}, o and one leaf is also designated A{n,...}, o. Note

that although the root and single leaf share the same non-terminal, their tree labels may

differ. All other leaves of an adjunct tree are terminals.

A TAG derivation begins by selecting a center tree as a start point. The derivation

is then expanded by performing adjunctions with adjunct trees. This process is actually

quite simple. First, a non-terminal node with a nonempty set of adjunct labels is selected

and one of those tree labels is chosen, e.g., A and l. The non-terminal node A is the then

replaced with the root of adjunct tree l, which is also A if the grammar is well-formed.

The children of A are then attached to the A-leaf of l and the replacement is then

complete. Note that since a center tree is used as the initial tree and adjunctions are

only performed on internal non-terminal nodes, the leaves of the current tree are always

terminals. Also note that no derivation is complete unless all non-terminal nodes carry

false in their superscript; otherwise, further adjunctions are obligatory. To extract the

string from any tree, simply concatenate the terminal leaves in a breadth-first manner.

Example Let G = ({S}, {a, b, c, d}, {α}, {β}, S) be a tree adjoining grammar

with the tree structures shown in Figure 3.

α =
S{β}, false

ǫ
β =

S{}, false

a dS{β}, false

b cS{}, false

ǫ

Figure 3: Example - TAG Tree Definitions

17

This grammar generates the language {anbncndn|n ≥ 1}. The string aabbccdd is

produced via the derivation given in Figure 4.

S{β}, false

ǫ
⇒

S{}, false

a dS{β}, false

b cS{}, false

ǫ

⇒
S{}, false

a dS{}, false

a dS{β}, false

b cS{}, false

b cS{}, false

ǫ

Figure 4: Example - TAG Tree Derivation

4.3.2 Properties

Fortunately, there is a wealth of information available about which context-free proper-

ties tree adjoining grammars possess. A normal form is given in the appendix of [21]

and used in a proof in the body of the paper. The languages produced by TAGs are

closed under ∪, · and ∗ with themselves and are closed under ∩ with regular languages

[19]. The membership problem is solvable in polynomial time, again with an adapta-

tion of the CYK algorithm [21]. And, as expected, the language set generated by tree

adjoining grammars contains all context-free languages but is a proper subset of context-

sensitive languages. No specific mention of parse trees was found, likely due to fact that

derivations are already in tree form.

4.4 Head Grammars

4.4.1 Definition

Head grammars [10] [11] were introduced by Carl Pollard in his 1984 Ph.D. thesis.

This grammar is defined as a four-tuple G = (N, T, S, P) where N is an alphabet of

non-terminals, T is an alphabet of terminals, S is the start symbol and P is a set of

productions. This grammar may initially appear to be identical to a Chomsky grammar,

18

but there are two core differences: the head ↑, which divides the current derivation string

w ∈ T ∗ into two parts u ↑ v, and the structure of productions.

There are two types of operations that can be performed using the head. The first

is concatenation Cn which joins n head-divided words in order and inserts a new head

in the string. The position of this new head depends on the value of n. If it is even,

the new head is simply inserted between the two “middle” strings, e.g., C2(u1 ↑ v1, u2 ↑

v2) = u1v1 ↑ u2v2. Otherwise, the head is placed in its original position in the “center”

word, e.g., C3(u1 ↑ v1, u2 ↑ v2, u3 ↑ v3) = u1v1u2 ↑ v2u3v3. The second operation

is wrapping which inserts one word into another based on the head positions, e.g.,

W (u1 ↑ v1, u2 ↑ v2) = u1u2 ↑ v2v1.

The productions in a head grammar follow the standard context-free form LHS →

RHS where the LHS is a single non-terminal, but the RHS is one of the concatenation

or wrapping operations. The other difference is that each rule contains precisely two

non-terminals: one is given as an operation parameter on the RHS and represents the

current derivation string, while the other on the LHS is the “next” non-terminal to

represent the derivation string.

Example Let G = ({S, T}, {a, b, c, d}, S, P) be a head grammar with the fol-

lowing productions:

• S → C1(ǫ ↑ ǫ)

• S → C3(a ↑ ǫ, T, d ↑ ǫ)

• T → W (S, b ↑ c)

This grammar generates the language {anbncndn|n ≥ 1}. The string aabbccdd is

produced via the following derivation:

S → ǫ ↑ ǫ S → C1(ǫ ↑ ǫ)

→ ǫb ↑ cǫ T → W (S, b ↑ c)

→ aǫb ↑ cdǫ S → C3(a ↑ ǫ, T, d ↑ ǫ)

→ abb ↑ ccd T → W (S, b ↑ c)

→ aǫabb ↑ ccddǫ S → C3(a ↑ ǫ, T, d ↑ ǫ)

⇒ aabbccdd

4.4.2 Properties

Fortunately, there is some information available detailing which desirable context-free

properties head grammars possess. The membership problem is solvable, again with

19

an adaptation of the CKY algorithm [21]. Head grammars also have the same closure

properties as TAGs [22]: closed under ∪, · and ∗ with themselves and closed under

∩ with regular languages. Parse tree representation is possible for a head grammar

derivation, but in a packed form that “avoids exponential explosion” [8]. Finally, as to

be expected at this point, head grammars can generate all context-free languages and

some, but not all, context-sensitive languages. No mention of simplified or normal forms

was found, possibly because the rules are already in a somewhat reduced form with a

single operation on the RHS and only two nonterminals in use at each step.

4.5 Surprise!

In 1994, K. Vijay-Shankar and David Wier proved that combinatory categorial gram-

mars, linear indexed grammars, tree adjoining grammars and head grammars are all

weakly equivalent, i.e., they all produce the same class of languages. The proof it-

self is a series of language subset proofs: CCL ⊆ LIL, LIL ⊆ HL, HL ⊆ TAL and

TAL ⊆ CCL. What is really amazing, however, is that these four extensions with

(seemingly) very different definitions were devised by six people over 15 years and yet

these grammars still generate the same set of languages.

5 Alternatives

The extensions seemed so far in this report were all created with (at least) this goal in

mind: producing a grammar that behaves like it’s context-free but generates like it’s

(almost) context-sensitive. However, that’s actually a narrow definition restricted to the

Chomsky hierarchy. There are many other ways of “extending” a grammar or a language

and this section of the report will briefly examine two of them.

5.1 Fuzzy Languages and Grammars

A fuzzy language [7] L is much like any language defined over an alphabet or a set of ter-

minals, except that each word has an associated membership grade assigned by a grade

function µL : L → [0, 1]. You could look at the membership grade as differentiating be-

tween precise and imprecise members, much like words or sentences in natural languages

which may not be spoken correctly. For example, “I seen” is a grammatically incorrect

form of “I’ve seen” that is frequently used and understood in the English language.

20

Example Let L = {(a, 1.0), (b, 0.8), (aa, 1.0), (ab, 0.4), (ba, 0.3), (bb, 0.7)} be a

fuzzy language, represented here as a set of (w, µL(w)) pairs. In this case, strings

composed of the same terminal are graded higher then those strings composed of

a mix of terminals.

The standard set operations union, intersection, concatenation and Kleene star are

defined similarly for fuzzy languages but with consideration for the grade function. For

two languages L1 and L2, the grade function for L1 ∪ L2 or L1 ∩ L2 simply takes the

maximum or the minimum values available from µ1 and µ2, respectively. Concatenation

works a bit differently in that it takes the maximum of the possible grades for a string

s in L1 · L2; a possible grade for s is the minimum of its prefix grade in L1 and postfix

grade in L2. As for Kleene star, it’s defined as a combination of union and concatenation

operations: L∗ = ǫ ∪ L ∪ LL ∪

Example Let L1 = {(a, 1.0), (b, 0.8), (ab, 0.4)} and L2 =

{(a, 0.5), (b, 0.9), (ba, 0.3)} be two fuzzy languages. The following are the

results of performing the first three set operations described above on L1 and L2:

• L1 ∪ L2 = {(a, 1.0), (b, 0.9), (ab, 0.4), (ba, 0.3)}

• L1 ∩ L2 = {(a, 0.5), (b, 0.8)}

• L1 · L2 = {(aa, 0.5), (ab, 0.9), (aba, 0.3), (ba, 0.5), (bb, 0.8), (bba, 0.3)

(abb, 0.4), (abba, 0.3)}

A fuzzy grammar [7] is defined as a four-tuple G = (N, T, S, P) with all the usual

members. What makes G fuzzy is its grade function µ which is now defined using P ;

formally, µ : P → [0, 1]. Interestingly, fuzzy grammars mirror the hierarchy for Chomsky

grammars. Fuzzy context-free grammars can also be put into a normal form using an

algorithm much like that for CNF but modified to handle and adjust the grade function

for the new rules.

Performing a derivation with a fuzzy grammar is identical to the process for a Chom-

sky grammar: begin with the start symbol and apply the rules until a string composed

entirely of terminals is reached. The only trick is calculating the membership grade

for the resulting string. Like concatenation, this involves taking “the maximum of the

minima”. The grade of a derivation is the minimum grade of all the rules applied in

21

that derivation. The membership grade of any string in LG is thus the maximum grade

of any of its derivations.

Example Consider the fuzzy grammar G = ({S,A,B}, {a, b}, P, S) where P

contains the following productions and membership grades:

• µ(S → A) = 0.8

• µ(S → B) = 0.9

• µ(A → a) = 0.5

• µ(B → a) = 0.2

The string a is generated by two separate derivations: S → A → a with a grade

value of 0.5 and S → B → a with a grade value of 0.2. Therefore, µL(G)(a) = 0.5.

5.2 Imperfect Strings

Take any context-free grammar G = (N, T, S, P) and consider any string s ∈ L(G).

This string is precisely generated by G; if a membership algorithm were executed with

s and G as parameters, the result would be positive. But what about strings that are

close to s but not exactly s? In natural languages, words that are spelled incorrectly

or sentences that are awkwardly constructed are often recognized and understood. Is it

possible to adjust a context-free grammar to do the same thing?

The concept of imperfect strings [14] is designed to tackle this exact problem. Given

any terminal α, there are three types of operations which create new rules for G so

that the grammar can recognize words that are flawed with respect to α. These new

productions are all based on G’s existing rules. The operators are informally defined as

follows:

• Change - CH(α) substitutes another terminal for α in existing productions

• Delete - DE(α) substitutes ǫ for α in existing productions

• Insert - IN(α) places another terminal before or after α in existing productions

22

Example Consider the context-free grammar G = ({S}, {a, b, c}, {S →

abc}, S). If each of the imperfect string operations were applied to G with a

as input, the following new rules would result:

• CH(a) = {S → bbc, S → cbc}

• DE(a) = {S → bc}

• IN(a) = {S → babc, S → abbc, S → cabc, S → acbc}

Note the fact that these operators are designed to handle single imperfections; that is,

a single change, deletion, or insertion of/around a particular terminal. To handle multi-

ple imperfections, it would be necessary to apply each operator several additional times.

The concept of imperfect strings has also been extended to embrace fuzzy grammars

with equations for defining the membership grade for each new rule.

6 Conclusion

To a linguistic novice, extending context-free grammars might seem like catering to a

niche market of particular and eccentric researchers who are consumed with theory and

not with practical application. On the contrary, many of the authors who introduced

the extensions described in this report also include an analysis of how their particular

grammars related to a natural language such as French or German.

There is certainly no lack of options if one were looking for an extension of context-

free grammars and it is extremely likely one could find a specific extension that precisely

suits their tastes and their needs. There is a wide variety available; one grammar

may appear completely different than another, but they all fulfill many or all of the

desirable properties normally associated with context-free grammars. Of interest is the

fact that some of the more “complicated” grammars do not possess any more generative

power than their “simpler” counterparts, e.g., combinatory categorial grammars produce

the exact same set of languages as linear indexed grammars. Also of note is that the

definition of the extension truly depends on one’s point of view. Although many (and

arguably most) would immediately think of the Chomsky hierarchy and context-sensitive

grammars, some would take and have taken a different approach. Their augmentations

may be different but they are no less valid with respect to recognizing natural languages.

It will be interesting to see what further extensions arise, as there is no doubt research

on this particular topic will continue to thrive.

23

References

[1] Alfred V. Aho. Indexed grammars - an extension of context-free grammars. Journal

of the Association for Computing Machinery, 15(4):647–671, Oct. 1968.

[2] Noam Chomsky. Three models for the description of language. IRE Transactions

on Information Theory, 2(3):113–124, 1956.

[3] Noam Chomsky. On certain formal properties of grammars. Information and Con-

trol, 2:137–167, 1959.

[4] Mariusz Flasiński and Janusz Jurek. Dynamically programmed automata for quasi

context-sensitive languages as a tool for inference support in pattern recognition-

based real-time control expert systems. Pattern Recognition, 32:671–690, 1999.

[5] Gerald Gazdar. Applicability of indexed grammars to natural languages. In U. Reyle

and C. Rohrer, editors, Natural Language Parsing and Linguistic Theories, pages

69–94. D. Reidel Publishing Company, Englewood Cliffs, NJ, 1988.

[6] Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree adjunct grammars.

Journal of Computer and System Sciences, 10:136–163, 1975.

[7] E. T. Lee and L. A. Zadeh. Notes on fuzzy languages. Information Sciences,

1:421–434, 1969.

[8] Yusuke Miyao and Jun’ichi Tsujii. Probabilistic disambiguation models for wide-

coverage HPSG parsing. In Proceedings of the 43rd Annual Meeting of the Associa-

tion for Computational Linguistics, pages 83–90, Ann Arbor, Michigan, June 2005.

Association for Computational Linguistics.

[9] Alexander Okhotin. Boolean grammars. Information and Computation, 194:19–48,

2004.

[10] Carl Pollard. Generalized Phrase Structure Grammars, Head Grammars and Nat-

ural Language. PhD thesis, Stanford University, 1984.

[11] Carl Pollard and Ivan A. Sag. Information-Based Syntax and Semantics, volume 1.

Center For the Study of Language and Information, Stanford, CA, 1987.

[12] Queen’s University CISC 366 course notes: Languages. Available at

http://www.cs.queensu.ca/home/cisc366/ as of Apr. 23, 2006.

24

[13] Daniel J. Rosenkrantz. Programmed grammars and classes of formal languages.

Journal of the Association for Computing Machinery, 16(1):107–131, Jan. 1969.

[14] M. Schneider, H. Lim, and W. Shoaff. The utilization of fuzzy sets in the recognition

of imperfect strings. Fuzzy Sets and Systems, 49:331–337, 1992.

[15] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Com-

pany, Boston, MA, 1997.

[16] Mark Steedman. Combinators and grammars. In Richard T. Oehrle et al., editor,

Categorial Grammars and Natural Language Structures, pages 417–439. D. Reidel

Publishing Company, Englewood Cliffs, NJ, 1988.

[17] Mark Steedman. Categorial grammar, 1998. Draft of entry in The MIT Encyclopedia

of Cognitive Sciences ; available at http://groups.inf.ed.ac.uk/ccg/publications.html

as of Mar. 24, 2006.

[18] Mark Steedman. Email correspondence, March 30 - Apr. 2, 2006.

[19] K. Vijay-Shanker and A. K. Joshi. Some computational properties of tree adjoining

grammars. In Proceedings of the 23rd Meeting of the Association for Computational

Linguistics, pages 82–93, 1985.

[20] K. Vijay-Shanker and David Weir. Polynomial time parsing of combinatory cate-

gorial grammars. In Proceedings of the 28th Annual Meeting of the Association for

Computational Linguistics, Pittsburgh, pages 1–8, San Francisco, CA, 1990. Morgan

Kaufmann.

[21] K. Vijay-Shanker and David Weir. The equivalence of four extensions of context-free

grammars. Mathematical Systems Theory, 27:511–546, 1994.

[22] K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi. Tree adjoining and head

wrapping. In In Proceedings of the 11th International Conference on Computational

Linguistics, pages 202–207, 1986.

[23] Wikipedia entry: CYK algorithm. Available at

http://en.wikipedia.org/wiki/CYK algorithm as of Apr. 23, 2006.

25

