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Abstract. Requirements engineering (RE) is an inherently piecemeal
and dynamic process. Arrangement, correlation and integration of mod-
els presenting different views of the system are an important component
of the requirements engineer’s work. If manually performed, these op-
erations are error-prone and time consuming and, thus, an integrated
computer-aided environment for them would be very useful. In the pa-
per, we present an extendable framework that provides a formalization
and a generic integration pattern for scenario management. The frame-
work is based on mathematical category theory machinery of algebraic
operations with higher-order graphs.
We demonstrate how the framework works by a (not entirely trivial) ex-
ample of scenario integration. A distinctive feature of our integration pat-
tern is an essential use of derived elements: for setting correspondences
between views we augment view scenarios with derived executions. We
show that this augmentation is essential for a proper integration: infor-
mation explicitly specified in one view can be implicit in another view,
where it is derived from the information considered basic in that view.

1 Introduction

Requirements engineering (RE) is inherently piecemeal: normally it results in a
diverse set of models capturing different parts of the system, and different views
of the same part provided by different groups of users. RE is also a dynamic
process, where the requirement engineer often needs to rearrange the models,
integrate them into bigger fragments and discuss them with the users, separate
pieces of these bigger models that need reworking and thus create new models,
then integrate them with the old ones and so on until a sufficiently coherent set
of models is built.

Our long term project aims at developing an integrated environment where
such model management (MMt) tasks could be performed in an intelligent way.
Clearly, as for many other problems related to MMt, an immediate code-centric
programming effort would be inefficient and error-prone [2]. We must begin with
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precise specifications of what are the operations to be performed with models,
and then proceed to how they can be implemented in an efficient way. It would
be very helpful to have a formal specification framework for RE-model manipu-
lations, first of all, for model integration – the most important operation among
them.

A general pattern is as follows. Let M = {M1...Mn} be a set of RE-models
(perhaps, of different types - UML sequence or communication diagrams [17],
message sequence charts (MSCs) [13], use case maps [5]). To integrate them, we
need to encode them in a suitable formalism F by some procedure f , and obtain
a set of formal constructs F = {F1...Fn}, Fi = f(Mi). The latter are amenable
to formal manipulations, and we can perform with them various operations,
particularly, integration: FΣ = F1 ⊕ ...⊕ Fn. Finally, we come back to the RE-
modeling language, MΣ = f−1(FΣ) and consider MΣ to be the result of the
integration (or other operation) over the models Mi.

A fundamental problem of model integration is that different models repre-
senting different views of the same universe can essentially overlap in different
ways. A proper integration has to take this into account, otherwise the result will
implicitly contain duplications and redundancies. The question is what should
be specified in addition to the set of models M so that their integration would
merge all the information contained in the views without loss and duplication.
Moreover, we need to have a generic pattern for model overlap not dependant
on peculiarities of a particular model language. Then we could build a generic
pattern for the entire view/model integration operation.

The data/structure modeling sides of the view integration problems have
been studied for many years in the field of semantic data modeling (in-between
AI and database design) and have an extensive literature, see [3] for a recent
attempt with many references to the literature; recently it gained a new stimulus
in the context of ontology engineering due to Semantic Web flourishing. However,
as a rule, these works heavily depend on the peculiarities of the particular data
models they employ and hence could not be used for our goals. A rare exclusion
is a recent paper [19], which considers a generic machinery very close to ours
(more details are in sect. 6).

Behavior view integration problem in general, and scenario integration in
particular, has gained much less attention in the literature. We can mention just
few theoretical works devoted immediately to scenario integration, [14, 7], and
a few indirectly related, [20, 21, 12, 22], which consider composition of state ma-
chines generated (synthesized) from scenarios (see more in sect.6). These works
differ in their generality and scope but share basically the same approach to
formalization: behaviors/scenarios are encoded in terms of relational structures
and the ordinary logical syntax based on formulas (strings of symbols). Beyond
the scope of toy examples, it results in a bulky formalization difficult to work
with, particularly, the notion of model mapping crucial for model management
[2, 10] becomes heavy to operate. Moreover, the transparency of diagrammatic
scenario specifications is lost and the formal theory begins to live in its own
isolated world.
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We would like to stress that the choice of a suitable formal framework, F in
our notation, is very important for the entire goal of setting MMt on a proper
specificational foundation. Here is a list of the most essential requirements:

1. F should be universal enough so that a sufficiently rich set of RE-models
could be encoded;

2. F-constructs should be amenable for effective manipulations and easy to
work with;

3. F should be natural for RE-models: well readable and close to the original
RE-models, so that the “outline” of model M would be somehow seen in its
formalization f(M).

The last requirement is especially important for RE applications due to the
interactive and dynamic nature of RE. We can hardly hope that view integra-
tion would consist of only two steps: firstly, all requirements, business rules and
overlapping information is figured out and specified, then the merge procedure
runs and returns the result of integration. In reality, model development and
integration on one hand, and gathering requirements on the other, are tightly
interweaved; even the very model merge procedure should be semi-automatic
and intertwined with modeler’s inputs rather than be entirely automatic.

Since an overwhelming majority of RE modeling languages is diagrammatic,
the choice of formalization based on graph-based structures seems to be al-
most inevitable. Fortunately, the graph-based formalisms possess other proper-
ties highly desirable in our context: they are (i) amenable to effective algebraic
manipulations, (ii) extremely expressive and provide a base for really generic
specifications, (iii) have a solid theoretical support provided by mathematical
category theory and a large body of work in graph rewriting, (iv) have a tool
support. Unfortunately, despite this unique combination of properties making
graph-based formal structures uniquely suited for RE, and MMt on a whole,
the power and a proper mathematical treatment of such structures are still not
familiar to the community.

An immediate goal of this paper is to demonstrate how naturally typed
graphs and similar structures appear in an accurate formalization of scenario
specifications; particularly, how close they are to UML2 sequence and commu-
nication diagrams. We also describe a generic procedure of typed graph merge
(well known in category theory but not in the RE literature), and show how
naturally the corresponding patterns appear in scenario integration. We present
the framework in a easily extendable way, so that ordinary typed graphs, 2-typed
graphs (i.e., graphs typed over typed graphs), 3-typed graphs (graphs typed over
2-typed graphs) and so on can be uniformly treated and merged. In addition,
graphs (nodes and edges between nodes), 2-graphs (which in addition to edges
between nodes have edges between edges, we will call them 2-edges), 3-graphs
(with edges between 2-edges) and so on are also captured “for free”. We can well
consider k-typed n-graphs (i.e., n-graphs typed over (k − 1)-typed n-graphs)
without, in fact, any essential complications of the framework and merge algo-
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rithms.1 We use the term higher-order graphs to refer to this sort of graph-based
structures in a generic way.

Specifically, we present a formalization of some core of UML2 sequence di-
agrams based on 2-typed graphs (sect. 2, and argue that 2-typed 2-graphs are
necessary for more adequate formalization, sect. 5). We do not claim that this
formalization is adequate to the full power of sequence diagrams (though our core
is much more expressive than, say, basic MSCs). Our goal is to demonstrate how
naturally this core can be formalized with higher-order graphs, and how effec-
tively this formalization works in scenario integration. To this end, we consider a
not entirely trivial example of scenario integration (sect. 4.1,4.2), where we glue
an integrated scenario from different pieces of the views (component scenarios).
This topological interpretation explains the essence of the merge procedure, but
the latter is actually based on a sequence of formal algebraic manipulations
with elements from which the scenario graphs are built (sect. 3). Viewing alge-
braic manipulations in an abstract and well-modularized way is one of the main
benefits that category theory could bring to the subject. We then abstract our
example to a general pattern of view integration (sect. 4.3).

A distinctive feature of our integration pattern is an essential use of derived
elements: for proper integration we augment view scenarios with derived execu-
tions. We show that this augmentation is in the very heart of the integration
procedure: information explicitly specified in one view can be implicit in another
view, where it is derived from the information considered basic in that view.

Sections 5 and 6 provide a general discussion of the approach and its relation
to other works.

2 Sequence diagrams/scenarios via typed graphs

In general terms, a scenario is a record of possible message exchanges between
communicating objects. Figure 1 presents an example: a Sale scenario specified
by a UML2 sequence diagram [17]. The meaning of the diagram is hopefully
evident from the message names. Our, and any other, scenario has a structural
base: a set of the interacting objects and (implicitly) the types of messages they
can exchange. The set of objects is explicitly specified in the boxes on the top of
the lifelines. As for messages, in the syntax of sequence diagrams, the modeler
just names the messages but, in fact, some typing is implicit there. For example,
the messages initialOffer(x0) and counterOffer(x1) are reasonable to consider
as two different occurrences of the same message type offer(x) between two
instances of class Agent. Similarly, we can have multiple occurrences of messages
setPrice and getPrice (but in the scenario depicted in Fig. 1 they appear only
once).

1 We are, thus, preparing to live in the world dominated by UML5 and XML3 taught
in elementary schools :)
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buyer : Agentseller : Agent item : Product

setPrice(x)
getPrice

<<return>>
 myPrice

<<return>>
counterOffer(x1)

initialOffer(x0)

<<return>>
 deal
pay

sd Sale

Fig. 1. A sample sequence diagram

The graph, whose nodes are objects participating in the interaction and edges
are message types, is shown in the middle cell of Fig. 2.2 Basically, this graph is
what is called a collaboration diagram in UML2, and we will call it collaboration
graph. Note that this graph is itself typed by class and channel names, which
can also be organized into a graph shown in the bottom cell of Fig. 2. We will
call the latter graph the collaboration base.

Thus, a sequence diagram can be presented as a chain of two typing map-
pings G2

τ1→ G1
τ0→ G0 between three graphs as shown in Fig. 2. This compact

presentation would be enough to capture basic message sequence charts (MSCs),
where graph G2 is just a partial order of event occurrences and graph G0 consists
of one node (objects are not distributed over classes) and one loop (universal
channel for all message types).

However, UML sequence diagrams add to MSCs more than just distribution
over classes. They allow us

(i) to have nested executions over the same lifeline and, hence, concurrency
not only between objects but internally within the same object lifeline too (see
the seller’s lifeline in Fig. 1),

(ii) to distinguish between synchronous and asynchronous messages (denoted
by, respectively triangle and angle arrow heads), and

(iii) to specify control structures immediately in sequence diagrams rather
than in high-level diagrams like HMSCs. We do not consider the capability (iii) in
the paper; as for (i) and (ii), they can be captured in the typed graph formalism
in an intuitively appealing and transparent way as we are going to show.

2 More accurately, buyer and seller are roles (formal parameters in the interaction)
that real objects could play. To simplify wording, we will call them objects when it
will not lead to confusion.
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Fig. 2. Sequence diagrams via typed graphs

First, we introduce for each node in the collaboration base graph G0 a loop
arrow called Self, where the bold font indicates that this is a constant rather
than a user defined item in the graph. Then we introduce for each node in
the collaboration graph G1 two constant loop arrows idle and exec labeled
by Self. Note, if an arrow in the occurrence graph G2 is labeled by idle or
exec, then because the latter are loops, such an arrow necessarily goes along
the lifeline of some object (namely, that one to which the loop in G1 is attached)
rather than between the lifelines. Intuitively, labeling an arrow by idle or exec
means, respectively, that in the time period between the source and target event
occurrences, the object is idling or executing some procedure. In the latter case,
this is the procedure triggered by the message coming to the source event. To
ease distinguishing between idle and exec-typed arrows, we use the following
concrete syntax for them: the former are shown with dotted and the latter with
bold lines.



7

The difference between synchronous and asynchronous messages is captured
by whether the next piece of the sender’s lifeline is an idle- or exec-arrow.

The following definitions presents our descriptions in a formal way.

Definition 1 (Graphs and their morphisms) A (directed multi)graph is a
quadruple G = (N,E, so, ta) with N,E sets of nodes and edges (or arrows)
respectively, and so,ta mappings from edges to nodes (giving, respectively, the
source and the target of an edge). We also write e : x → y when e.so = x and
e.ta = y. An edge e is called a loop if e.so = e.ta. Saying “e is an element of
G” means e ∈ N ∪ E.

A graph morphism or graph mapping h : G1 → G2 is a pair of set mappings
hN : N1 → N2, hE : E1 → E2 compatible with so and ta mappings: e.hE .so2 =
e.so1.hN and e.hEta2 = e.ta1.hE for any G1-edge e.

Definition 2 (Reflexive graphs) A double reflexive graph is a graph with two
additional mappings idle and exec from nodes to edges as shown in Fig. 3(a1)
(in UML terms, the latter is the metamodel of reflexive graphs). In addition, for
any node x ∈ N , x.idle.so = x = x.idle.ta and similarly for exec. In other
words, idle and exec are specially designated loops assigned to every node.

A reflexive graph is a double reflexive graph for which idle and exec coincide.
The only special loop in this case is often called Identity or Self. By some abuse
of terminology, we will also use the term “reflexive” generically for both types of
reflexive graphs.

A reflexive graph morphism h : G1 → G2 is a graph morphism compatible
with looping in the following way: for any node x in graph G1, x.idle1.hE =
x.hN .idle2 but
x.exec1.hE ∈ {x.hN .idle2, x.hN .exec2} (see Fig. 3(a2) for the metamodel).

The latter condition is well-known for labeled transition systems morphisms
([23]). It means that an exec-transition (procedure) in one system can be sim-
ulated by idle-transition in another system.

Definition 3 (Typed graphs) We say that a (reflexive) graph G is typed if
there is a (reflexive) graph morphism τ : G → Gτ . The target is called the type
graph or base and the very mapping is called typing or labeling. We will also
say that the graph G is typed over Gτ .

Given two typed graphs over the same base, τi : Gi → Gτ , i = 1, 2, their
morphism is a graph morphism h : G1 → G2 commuting with typing: e.h.τ2 =
e.τ1 for any element e in graph G1.

Definition 4 (Collaboration and Scenario graphs) (i) A collaboration graph
is a double reflexive typed graph, τ0 : G1 → G0, whose nodes are called objects or
instances, edges are message types and the two special loops are called idle and
exec. The type base is a reflexive graph called collaboration base, whose nodes
are classes and edges are (communication) channels. The special loop is called
Self.
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exec ta so idle
t 
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Fig. 3. Metamodels for (reflexive) graphs (a1), typed graphs or graph mappings (a2),
typed 2-graphs (a3), model integration (b). In (a1..a3) rectangles denote sets and arrows
are set mappings. In (b) rectangles are objects (sets, graphs, higher-order graphs) and
arrows are their mappings; bold/ordinary arrow tails denote totally/partially defined
mappings.

(ii) A scenario graph is a graph typed over a collaboration graph, τ1 : G2 → G1

with τ0 : G1 → G0 as above. Nodes and arrows of G2 are called, respectively,
event and message occurrences. Thus, a scenario graph is a three-element chain
of graph mappings G2

τ1→ G1
τ0→ G0 similarly to what we have for sequence dia-

grams.
(iii) The notions of morphisms between collaboration and scenario graphs are

defined in an evident way.

Later we will also need the following notions.

Definition 5 (2-Graphs and their morphisms) A 2-graph is a tuple G =
(N,E, so, ta, E′, so′, ta′) with N,E, E′ sets of nodes, edges and prime- or two-
edges (or arrows), and so,ta,so’,ta’ are the source and target mappings, re-
spectively, for edges and 2-edges. We write e : x → y when e.so′ = x ∈ Edge
and e.ta′ = y ∈ Edge for a 2-edge e. Saying “e is an element of G” means
e ∈ N ∪ E ∪ E′.

A mapping of 2-graphs is a triple of mappings h = (hN , hE , hE′) between the
corresponding sets, which are compatible (commuting) with the source and target
mappings in the evident way (see metamodel (a3) in Fig. 3).

Clearly, we can define the notions of n-graph and n-graph mapping in a
similar way, thus coming to the notion of typed n-graph. In this way, by extending
inductively the metamodel (a3) in Fig. 3 with sets Edge

′′
, Edge

′′′
and so on

upward, and with mappings G2
h2→ G3

h3→ G4 → . . . and so on to the right, we
come to the notion of k-typed n-graph, or higher-order graph.

3 The machinery of merge

An explanation of the typed graph merge operation can be found in many
sources, for example, [19] for a very transparent exposition. However, to make the
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paper more self-contained, and to highlight some additional aspects we consider
important in our context, we will briefly consider the essence of the machinery.
Typed graph merge is based on graph merge, which in its turn is based on set
merge. That is why we begin with careful consideration of what is set merge.

3.1 Setting correspondences between sets

Suppose we have two sets A = {a, b, c} and X = {x, y, z} considered as schemas,
that is, sets whose elements are considered as names for some “real world” en-
tities – denotations of the names (these entities could be objects, or events, or
messages, or sets of these, whatever that could have a name). We will write [[n ]]
for the denotation of name n. We can always restrict the scope of these names to
the containing schema (e.g., by qualifying them with the schema name, say, b::A,
z::X etc), and hence consider the schema-sets to be disjoint. If there is no infor-
mation about inter-relations between denotations, then the integration (merge)
of these sets is nothing but their disjoint union I = A

⊎
X

def= {a, b, c, x, y, z}.
Suppose we know that elements a ∈ A and x ∈ X actually refer to the same

“real world” element, [[ a ]] = [[ x ]], and similarly [[ c ]] = [[ z ]]. The question is how
to specify these fact syntactically, without reference to semantics. Informally,
we need to set equivalences between the names: a ∼ x and c ∼ z. In fact,
each such an equivalence is just a pair of names (n, m) taken from sets A and
X respectively. A set of such equivalences is then a set R together with two
projection mappings, f : R → A and g : R → X, so that if for an element r ∈ R
we have r.f = a and r.g = x, it can be seen as having an equivalence a ∼ x.
Thus, formally, interconnection between two schema-sets is specified by an arrow
span: a set R with two projection mappings as above. In our case, R = {p, r}
and projections are given by equalities:

p.f = a, r.f = c, p.g = x, r.g = c.

We will also call projections the arms of the span, the sets A,X its hands and
the set R is the head.

The process of discovering the same denotations of different names can be
rather complicated, it needs a special investigation and may involve various
heuristic techniques studied in the domain of schema matching (see [18] for a
survey). In this paper, we consider schema matching as a black box procedure
that returns a span connecting the schemas to be integrated. What is important
for us is that the schema matching investigation often reveals new entities re-
lated to the subject matter yet not named in either of the component schemas.
Suppose, for example, that in our domain specified by schemas A and X, we have
discovered some new object Q named in neither A nor X. Then it is reasonable
to enter a name for this object, say, q, into the head of the interconnection span
and set R = {p, q, r}. We have the same span configuration as above but now
the arms are partially defined mappings. Total mappings can be retained if we
replace the arms by their graphs (extensions) Rf , Rg as shown in Fig. 3(b). The
entire configuration is then a couple of spans (Rf , Rg) sharing the common hand
R, and it lives in the universe of sets and total mappings.
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3.2 Merging sets

Integration of sets A and X with their interconnecting span R taken into ac-
count or, as we will say, integration modulo the span R, S = A

⊕
R X, is

performed as follows. We first take the disjoint union of all participating sets
S0 = A

⊎
X

⊎
R, and then identify those elements which are declared to be “the

same” by mappings f, g. In more detail, we first compose a binary relation E

over S0, E
def= {(p, a), (r, c), (p, x), (r, z)}. Then we generate the least equivalence

relation E∗ containing E and, finally, take the factor set (the partition) S0/E∗

of S0 by this equivalence. In our case, the partition is a five element set

PE∗ = {{a, p, x}, b, {c, r, z}, y, q}

(the reader can easily recognize our two ∼-equivalences here). It remains to
agree how to name those denotations which are named differently in different
component schemas. A reasonable agreement is to set the priority of the inter-
connecting schema and to name the multi-named objects by their names from R.
Thus, the factor set is the five element set S = S0/E∗ = {p, b, r, y, q}. Together
with evident mappings f ′ : A → S, g′ : X → S and h′ : R → S it forms the result
of integration.

We emphasize that the actual result of integration is an arrow configuration
shown in Fig. 3(b) in dashed lines rather than just its head S. The mappings
f ′, g′, h′ are important and allow us to trace how the component schemas are
represented in the merge. Note that these mappings are totally defined (which is
shown by their bold tails) and, hence, nothing is lost in the integration. Moreover,
the triple of mappings (f ′, g′, h′) jointly covers their common target, and hence
nothing extra is acquired. The set S is the “least upper bound” of sets A,X
modulo span R in some lattice of set information contents.

Evidently, the property of “nothing lost and nothing extra” is in the very
heart of the integration procedure, and it is necessary to have its precise formal
explication. For sets, totality of primed mappings together with their jointly
covering property do the job. Unfortunately, the notion of covering is hard to
reformulate for structures other than sets in a a way suitable for our context
(“covering = nothing extra”), and we need to look for another formalization. A
fundamental approach to handle such issues was found in category theory under
the name of universal properties.

Let us call a family of arrow with a common target a cospan. The merge
procedure is then can be phrased as building a special cospan S = (S, f ′, g′, h′)
over the input span R to form a commutative diamond (see Fig. 3(b)). This
cospan possesses the following remarkable property: let S′ = (S′, f ′′, g′′, h′′) be
any other cospan similar to S, which also makes with R a commutative diamond.
Then there is a unique mapping ! : S → S′ making all the triangle diagrams com-
mutative. If we treat a mapping between sets as a sort of information embedding,
then an arbitrary cospan (S′, f ′′, g′′, h′′) over R can be seen as an information
upper bound of R while the merge cospan is the least information upper bound.
In categorical terms, the latter is called colimit or else amalgamated sum.
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The procedure we have just considered can be immediately generalized for
the case of multiple sets to be merged modulo multiple interconnections between
them. Moreover, a general pattern for merge is not restricted by interconnections
of the span shape. In fact, any collection of sets Ai, i = 1..m, together with any
collection of mappings between them fj , j = 1..k, can be merged (integrated)
into the least upper bound set S with canonic embeddings of the component
ι′ : Ai → S. The algorithm is described in Fig. 4. We will sometimes call a general
configuration (A, f) with A = (Ai, i = 1..m), f = (fj , j = 1..k) a (generalized)
span int he universe of sets and set mappings.

Set Merge(A1, . . . , Am, f1, . . . , fk)
• Let A =

⊎
i=1..m Ai and ιi : Ai → A be canonic inclusions;

• Let E = ∅ ⊂ A×A;
• For every mapping fj , j = 1...k, do

• For every element a in the domain of fj , do
E := E ∪ {(a, fj(a))} od od

• Set E∗ = reflexive symmetric transitive closure of E;
• Set ε : A → A/E∗ be the canonic surjection;
• Return S = A/E∗ and ι′i = ιi..ε : Ai → S, i = 1...m.

Fig. 4. General set merge procedure

3.3 Merging graphs, typed graphs and higher-order graphs

Suppose we have a generalized span R = (G, f) in the universe of graphs and
graph mappings, that is, a configuration of graphs G = (Gi, i = 1..m) and
mappings between them f = (fj , j = 1..k). In means, in fact, that we have two
similar configurations of sets (two generalized spans) RN = (GiN , fjN ), and
RE = (GiE , fjE), i = 1..m, j = 1..k, connected, in addition by the family of
“vertical” (w.r.t. Fig. 3(a1)) mappings soi, tai, i = 1..m. It follows from general
category theory results that any span of graphs has the least upper bound (in
the sense of the universal property we considered), which can be built as follows.

We first merge the spans of nodes and edges separately, thus getting sets SN

and SE together with the respective inclusion mappings making them cospans,
ι′iN : GiN → SN and ι′iE : GiE → SE , i = 1..m. Now we need to relate them be-
tween themselves. Take a “vertical” mapping in the graph metamodel Fig. 3(a),
say, so. For each of the input graphs Gi we have a set mapping soi..ι′iN : GiE →
GiN → SN , which together make SN a cospan over the configuration of edge
sets GiE . Because of the universal property of SE , there is a unique mapping
!so : SE → SN . Similarly, we proceed with the target mappings tai and obtain a
mapping !ta : SE → SN . In this way we come to a graph S = (SN , SE , !so , !ta),
and it is just a routine check to show that (i) set mapping pairs ι′i = (ι′iN , ι′iE),
i = 1..m form graph mappings and hence the tuple (S, ι′i, i = 1..m) is a cospan
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over Gi, and (ii) this cospan possesses the universal property wrt other graphs,
that is, is the colimit (merge) of the initial span of graphs in the universe of
graphs and graph mappings.

A simple example of graph merge is presented in Fig. 5. Mathematically,
this is just the merge of the configuration (A,R, X, f1, f2) of graphs and their
mappings. Substantially, we suppose that the initial task was to merge graphs
A,X modulo some correspondence between them; the latter to be found in the
process of “schema matching” [18]. We assume that during this investigation,
apart of establishing interconnections between schemas recorded in the mapping
tables f1, f2, existence of an arrow s (missed in both schemas) was discovered.

   

   

 

Mapping A←R :f1 
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Fig. 5. Example of graph merge: S = A
⊕

R,f1,f2
X

Clearly, if we deal with reflexive graphs and need to consider other “vertical”
arrows in the metamodel, idle and exec, we apply the same arguments but now
to get mappings !idle, !exec : SN → SE we use the universal property of SN rather
than SE . Moreover, it is not hard to see that the algorithm of graph merge
presented above works in the general situations of higher-order graphs as well.
Consider, for example, merge of n-graphs. Instead of two sets Node and Edge,

we have a structure consisting of a family of sets Edge0, Edge1...Edgek inter-
related by a number of “vertical” mappings v0...vl (for example, for reflexive
graphs we have k = 1 and l = 3). Given a generalized span of such higher-order
graphs, we can merge them by, first, merging separately their component sets
Edge0...Edgek into cospans S0...Sk (like SN and SE for graphs). Then we use the
universal property of the respective cospan for setting vertical mappings !0...!l
(like !so ...!exec) for reflexive graphs).

Remark: Graph + Constraints = Sketch. It was shown in category
theory that the machinery described above works well even in more general
situations but with an important restriction. To wit: the component sets and
mappings are either unconstrained or, perhaps, subjected to a very special class
of constraints expressible by equations (like commutativity conditions for graph
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mappings) or implications built from equations [1]. As soon as we allow using
more complex constraints, e.g., with existential quantifiers, we leave the world
of higher-order graphs and come into the world of higher-order or generalized
sketches. Roughly, the latter are graphs endowed with predicates defined on
mappings targeted into these graphs. If a pair (G, π) with G a graph and π a
predicate is a sketch, then only some of the graph mappings h : G′ → G into G
are valid, and then we write h |= π. The existence of constraints and, hence,
non-valid graph mappings essentially complicates the merge procedure but does
not disables it. Mathematical theory can be found in [15] and applications to
OO visual modeling in [9], see also [6] for examples of sketch integration.

4 Scenario integration

In this section we consider an example of how the machinery developed above
can work. The goal is to build a model (scenario) of BrokeredSale behavior from
two copies of our model of Sale behavior. Suppose that after interviewing a
few subject matter experts (SMEs), we know that a Brokered Sale (bSale) is
a composition of two Sales, called the Wholesale (wSale) and the Retail Sale
(rSale), such that the folowing conditions hold:

(o) Both sales deal with the same item.
(i) The buyer in wSale is the seller in rSale, and is called the retailer for the

entire bSale behavior.
(ii) In general, rSale follows after wSale but
(iii) the retailer obeys the rule to pay to the whole-seller after she gets the

payment from the retail buyer.
The question is whether it is possible to specify this information according

to the patterns described in the previous section so that the procedures of graph
merge would produce the intended result automatically. We will begin with the
merge of collaboration bases and then will consider behavior.

4.1 Collaboration integration

Specifying interconnections for collaboration graphs in question is fairly simple.
In the language of equations (sect. 3.2) we set item::wSale = item::rSale and
buyer::wSale = seller::rSale. Suppose, in addition, that our interviews with SMEs
revealed that

(iv) the retailer’s role requires essential intellectual efforts and during bSale
the retailer sometimes needs to perform a special procedure called think, and
also needs to do complex banking.

In our language of collaboration graphs it means that there are two new types
of messages, think and banking, from the node retailer:Agent to itself.

The information contained in the requirements (o,i,iv) is specified by the
span shown in Fig. 6: the head is the Retailer collaboration graph and the arms
are shown by dashed arrows.
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Retail

idle : Self

offer(x) : AA

idle : Self

setPrice(x) : AP

myPrice : APgetPrice : AP

seller : Agent

buyer : Agent

deal : AA
pay : AA

item : Product

exec : Self

exec : Self

exec : Self

Wholesale

offer(x) : AA

setPrice(x) : AP

myPrice : AP
getPrice : AP

seller : Agent

buyer : Agent

deal : AA
pay : AA item : Product

exec : Self

retailer : Agent item : Product

Retailer

idle : Self

idle : Self

think : Self

banking : Self

idle : Self

exec : Self

idle : Self exec : Self

Fig. 6. Interconnection of the wSale and rSale collaborations.

The result of merge is shown in Fig. 7. Note that apart from gluing the two
pairs of nodes, the Retailer diagram brought to the merge collaboration graph
two new message types, which were not specified in the Sale collaboration.

4.2 Behavior integration

The two scenarios to be integrated, wSale and rSale, are shown in the left half of
Fig. 8 (disregard bold dashed lines in them for a while). Positioning rSale under
wSale does not have any formal semantic meaning, so far, they are entirely inde-
pendent scenario graphs. The graph merge procedure discussed in sect. 3 suggests
that to explicate the correspondence between the scenarios (i.e., to specify be-
havioral requirements (ii) and (iii)), we need to build a certain inter-connecting
scenario and relate it to wSale and rSale graphs. Clearly, this correspondence
graph should specify the retailer’s lifeline in the entire brokered sale.
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item : Product

idle : Self

exec : Self

BrokeredSale

offer(x) : AA deal : AA

retailer : Agent

pay : AA

setPrice(x) : AP

getPrice : AP
myPrice : AP

idle : Self

getPrice : AP

myPrice : AP

setPrice(x) : AP

exec : Self

idle : Self exec : Self

buyer : Agent

offer(x) : AA deal : AA

seller : Agent

pay : AA

idle : Self
exec : Self

think : Self

banking : Self

Fig. 7. Result of merging the collaboration diagrams in Fig. 6.

The retailer’s lifeline is presented by the scenario graph rLife in the right
half of Fig. 8, which is typed over the Connector collaboration graph. The first
fragment R0-R1 encodes a sequence of idle and exec-edges of retailer’s life as
a buyer in the wSale scenario from the very beginning at B0 till the moment
B4 of sending the deal message. Informally, we can say that at the point R0
the control goes to wSale and at the point B4 leaves it for coming back to
rLife, and the arrow R0-R1 is nothing but composition of arrows B0-B1...B3-B4
in the graph wSale. To capture this idea formally, we first augment the wSale
graph with a new derived arrow B0-B4 (of type exec) built by composition
of the intermediate arrows: /B0-B4def= B0-B1.......B3-B4, where .. denotes the
operation of arrow composition; following the UML notational habits, we prefix
the names of derived elements by slash. Then we can set an equivalence B0-
B4::wSale∼ R0-R1::rLife.3

The Retailer’s lifeline from R1 to R3 is a new piece of information (not
covered by either of sale scenarios) about the retailer’s activity in between her
roles as the buyer::wSale and the seller::rSale. After that, the control goes to
the rSale scenario at point S0 and leaves it at point S4, coming back to rLife
at R4. Here another new fragment (neither in wSale nor rSale) of the retailer’s
activity starts: processing the payment from the retail buyer and preparation to
pay to the whole-seller. At point R6 the control returns to the wSale scenario.

3 To be precise, we also define composition in the type graph and then factorize it
by the equivalenceexec ..idle = exec = idle ..exec. Thus, any composition of idle
and exec arrows results in exec.
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/retail: 

: item

R2:

R3:

R4:

IR0:

IR1:

: think

: retailer

: setPrice(x)

R5:

rLife

: banking

selling:

buying:
R0:

R6:

R1:

: item

counter:offer(x1)

: seller : buyer

S0:
: setPrice(x)

: getPrice

: myPrice

: deal

: pay

S1:

S2:

S3:

S4:

B0:

B1:

B2:

B3:

B4:

I0:

I1:

I2:

B5:

initial:offer(x0)

wSale

/buying:

: item

counter’:offer(x1)

: seller : buyer

S0':
: setPrice(x)

: getPrice

: myPrice

: deal

: pay

S1':

S2':

S3':

S4':

B0':

B1':

B2':

B3':

B4':

I0':

I1':

I2':

B5':

initial’:offer(x0)

/selling:

rSale

Fig. 8. Three scenarios to be merged

An important fact still not specified is that the B4-B5 arrow in wSale is, in
fact, unfolded into a complex fragment R1-R6 of retailer’s activity in rLife. The
latter is a derived arrow /R1-R6 def= R1-R2.......R5-R6, and we set an equivalence
B4-B5 ∼ /R1-R6. Note that this equivalence is really important for getting the
intended result of the formal merge procedure: without it, in the resulting graph
we would have two paths from B4 to B5: one coming from graph wSale and
the other from rLife. With this equivalence, we again have two paths but now
the path (arrow) coming from wSale is stated to be derived (by composition
of other arrows) and hence later can be removed from the merge graph (see
below). Note that to declare the equivalence in question, we need to have the
derived arrow /retail in the rLife scenario, which, in turn, requires the presence
of the arrow R3-R4. The latter, in fact, presents the corresponding composed
activity in rSale. Thus, we need to introduce a derived arrow /S0’-S4’ def= S0’-
S1’..S1’-S2’..S2’-S3’..S3’-S4’ in graph rSale, and declare one more equivalence:
R3-R4::rLife∼ /S0’-S4’::wSale. Note that while arrow /B0-B4 was introduced
to facilitate reading the rLife scenario graph, having derived arrows /R1-R6
and /S0-S4 and the respective equivalences is absolutely necessary for proper
integration.
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Note also that the dashed-dotted curly lines in Fig. 8, which show a flow
of control between the view scenarios, formally set relations between rLife and
wSale, and between rLife and rSale graphs. It precisely corresponds to the inte-
gration schema specified in Fig. 3(b) with A = wSale, X = rSale, R = rLife and
Rf = {(R0-R1, B0-B4), (R1-R6, B4-B5)}, Rg = {(R3-R4, S0-S4)}.

If we now run the merge procedure described in sect. 3 on this input con-
figuration, it will return the graph shown in Fig. 9. Note three derived arrows
among the elements of this graph. When two arrows, one is basic (in one graph)
and the other is derived (in another graph) are glued together in the merge, the
result is a derived arrow because it can be indeed derived exactly in the same
way as it is derived in its component graph. For example, the arrow B4-B5 was
basic in wSale scenario but becomes derived in the merge after gluing it with
the derived arrow /R1-R6, because all the operands for its derivation are present
in the merge graph. Keeping derived arrows in the merge graph may be useful
for traceability, but apart from that they can be safely removed. We will call
this last step of integration normalization. In our example normalization is fairly
trivial but it can be more complicated, see [6, 8] for some details. A sequence
diagram equivalent to the merge scenario graph without derived arrows is shown
in Fig. 10.

The merge procedure in our example can be also seen in topological terms.
It cuts-off the arrow B4-B5 from wSale and inserts into the “hole” the arrow
R1-R6::rLife with its adjoint “environment”, simultaneously gluing together the
arrows R0-R1::rLife and B0-B4::wSale and the nodes IR0::rLife and I2::wSale.
Then, it cuts-off the arrow R3-R4 in the graphs rLife (within the result of the pre-
vious operation) and inserts into the hole the arrow S0-S4::rSale simultaneously
gluing together the arrows R3-IR1::rLife and S0-I0::rSale. Thus, we “break” the
initial scenarios into pieces and then assemble from these pieces the integral be-
havior. This topological view of scenario merge operation can provide a useful
guidance in complex situations.

4.3 General pattern

The example we have just considered suggest the following general format/pattern
of scenario integration.

Formalization. We fix some universe U of higher-order graph-based struc-
tures like scenario graphs. We will call objects of this universe U-graphs
or just graphs. Scenarios to be integrated are presented as U-graphs, G =
{G1...Gm}, which we call views.

Specifying view correspondences. Correspondences between scenarios are
specified by another family of graphs, R = {R1...Rn}. As we have seen, the
latter may contain new information not captured by views. Mathematically,
graphs Rj play the same role of input structures for the merge algorithm as
view graphs Gi. Thus, we come to a family of graphs H = {H1...Hm+n},
H = G ∪R, to be integrated modulo some correspondences (equivalences)
between them.
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I1:

counter’ : offer(x1)

initial’ : offer(x0)

B3:

: seller : buyer : item

: think

S0: : setPrice(x)

: getPrice

: myPrice

counter : offer(x1)

: deal

: pay

S1:

S2:

S3:

S4:

R0: = B0:

B1:

B2:

R1: = B4:

B5':

I0:

IR0: 
= I2:

: retailer

IR1:
= I1':R3: = S0':

: setPrice(x)

I1':
: myPrice

S1':

S2':

B0':

B1': I2':

: getPrice

: deal

: pay

B2':

B3':

B4':

R4: = S4':

R6: = B5:

initial : offer(x0)

R2:

S3':

: bankingR5:

/selling:

/retail:

/buying:

Fig. 9. Result of merging scenarios in Fig. 8. The event and message occurrences coming
from rSale are “primed”, and shown as “equal” to elements coming from wSale if they
are glued together.

To set these correspondences, we may need to augment the view graphs with
new elements derived by the operation of arrow composition. In this way we
come to a family of augmented graphs H = {H1...Hm+n} together with a
family of mappings (determined by correspondences) h = h1...hk between
them.

Merge. The configuration (generalized span) (H,h) is automatically merged
according to the algorithm described in sect. 3. The procedure returns a
cospan of graphs and mappings, S = (S, ι′1...ι

′
m+n), ι′i : Hi → S. Its head

S may contain derived elements.

Normalization. In the merge graph S a subgraph S0 should be chosen in such
a way that any element in S can be derived from elements of S0. Besides this
technical requirement, the chosen subgraph should be compact and seman-
tically meaningful, and should provide transparent meaning for derivations
required to augment it up to S.
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<<return>>
 deal

<<return>>
counterOffer(x1)

seller : Agent retailer : Agent buyer : Agent item : Product

setPrice(x)

getPrice

<<return>>
 myPrice

initialOffer(x0)

<<return>>
counterOffer(x1)

<<return>>
 deal

think

setPrice(x)

getPrice

<<return>>
 myPrice

pay

pay

sd Result

initialOffer(x0)

banking

Fig. 10. Result of merging scenarios in Fig. 8 as a sequence diagram

5 General discussion and future work

In this section we briefly discuss a few issues skipped in the presentation above,
particularly, possible extensions and limitations of the approach
5.1 Schema matching. An important point in making the pattern above re-
ally working is how to discover the correspondences between views. Actually it
is a highly non-trivial and essentially heuristic issue known in the MMt litera-
ture under the name of schema matching, and it is entirely beyond the scope
of our paper. We can only mention that data schema matching is an area of
active research, where sophisticated algorithms based on special AI techniques
(particularly machine learning) are studied and developed, see [18] for a survey
and [11] for a discussion of promising novel ideas in the field. We believe that a
similar activity is necessary for behavioral view matching as well

5.2 Beyond the merge operation. Other operations over higher-order graphs
can be useful in scenario management. Consider, for example, extraction of the
common part from two or several scenarios. Or, given a mapping between sce-
narios, we may need to find the image of this mapping in the target scenario, and
then, perhaps, extract that part of the target scenario which is disjoint to this
image (note that the notion of disjointness in graphs differs from that in sets).
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It is shown in category theory that these and other counterparts of ordinary
set-theoretical operations can be performed with higher-order graphs as well [4].

5.3 Adding more structure to behavior. An advantage of our framework
of scenario graphs with their focus on typing is that it brings the benefits of
strict type discipline to scenario-based behavior modeling. This type discipline
can be elaborated even more. First of all, it is possible to introduce 2-edges into
collaboration graphs in order to specify relations between message occurrences.
For example, we could introduce (i) a 2-arrow return from the arrow myPrice
to the arrow getPrice into the graph G1 of message types (see Fig. 2) and, cor-
respondingly, (ii) 2-arrows form message occurrences :myPrice to occurrences
:getPrice in the occurrence graph G2 to be labeled by the type return. Particu-
larly, it would add more discipline to UML2 sequence diagrams by making the
correspondences between return arrows and their “owning” procedures explicit.
Another step towards bringing more structural discipline could be to consider
subclassing in collaboration graphs underlying scenarios.

One more step is to add predicates to the collaboration graphs, which would
constrain the possible scenario graphs over them. For example, so far we im-
plicitly assumed that each execution in the scenario is triggered by exactly one
trigger. To explicate this condition formally, we need to specify the correspond-
ing predicate and attach it to each exec-arrow in the collaboration graph G1

(Fig. 2). We define that a graph mapping τ : G2 → G1 satisfies the predicate iff
for any arrow e in G2 such that τ(e) = exec, there exist a unique arrow m in
G2, called the trigger of e, such that m.ta = e.so.

In general, there may be multiple predicates/constraints embodied into the
collaboration graph. A scenario graph τ1 : G2 → G1 is called well-formed if (G2, τ1)
satisfies all constraints in G1.

The main difficulty with introducing constraints into the formalism is that
they essentially affect its algebraic properties. Graphs with constraints are sketches
(see Remark 3.3 in sect.3.3 above), which are much more expressive but much
harder to work with. We plan to explore the possibilities and problems of using
generalized sketches in scenario based modeling in the nearest future.

5.4 Heterogeneous view integration. Scenarios specified in different lan-
guages can be mapped to higher-order graphs and then integrated. The language
of graphs is sufficiently expressive to make this idea practically interesting. More-
over, if we allow using constraints in addition to graphs as explained above, then
graphs becomes sketches, whose language is universally expressible. It was proven
in category theory that any formal construction can be specified in the sketch
language (see [9] for a discussion).

5.5 Merging incomplete and inconsistent scenarios. The technique pro-
posed in [19] to manage incomplete and inconsistent views can be immediately
applied in our graph-based framework as well. We see here a promising area of
future research.
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6 Relation to other work

Sequential, alternative, parallel and iterative compositions of behavior models
are well known and well explored in different contexts. Their versions for scenar-
ios are specified in the standards addressing scenario-based modeling: interaction
overview diagrams (IOD) in UML2 [17] and high-level MSCs in ITU [13]. These
diagrams are essentially graphs whose nodes represent scenarios and edges show
the control flow between them. In this schema, behaviors specified by nodes are
considered non-overlapping, and the system behavior is composed from compo-
nent nodes as holistic units.

In the paper we address an essentially different issue of how to specify over-
lapping between scenarios, and then integrate (merge) them without duplication.
Following the terminological tradition of semantic data modeling mentioned in
Introduction, we call this problem view integration. In contrast to an extensive
literature on the subject in the field of data modeling, only few papers consid-
ered view integration (more or less directly) in behavior modeling [14, 20, 21, 12,
22, 7] We can also mention the Use Case Maps – a graphical high-level scenario
modeling technique [5], which partially addresses inter-scenario overlapping but
does not provide an integration algorithm.

A common feature of a majority of works in view integration (in both data
and behavior modeling) is non-genericness of the definitions and algorithms:
they essentially depend on the particular modeling language they employ and a
generic format for specifying view overlapping is not offered. Indeed, specifying
operations with models and their relationships in a generic way is a non-trivial
issue, which hardly can be designed from scratch. Fortunately enough, a ma-
chinery for building generic specifications was developed in category theory and
is waiting for its applications in many areas of model management (see [10, 8]
for a brief presentation of the framework and its applications).

Still there are a few papers employing the categorical framework for view
integration in different contexts and for different notions of view: for data mod-
eling in database design in [6] and for schema merge in [8], for early requirement
engineering in [19], for MSCs as scenario models in [14] and for software merge in
[16]. The most important distinction of our integration pattern is that we work
with views augmented with derived elements because information considered
basic in one view can be derived in another. This phenomenon is fundamental
for the entire integration problem yet seems not recognized by the community.
Another distinction of our integration pattern is that we consider the possibility
of discovering a new information not captured by views during the investigation
of their overlapping.

The presentation of the machinery in our paper follows closely to that in [19]
but with some important differentiations. Particularly, we emphasize the value of
the universal property of the merge (as the least upper bound of merged models
in some precisely defined sense described in sect. 3), so that nothing is lost and
nothing extra is acquired. We use the universal property to show that basically
the same merge machinery works well for higher-order graph-based structures
while [19] works with structures “not higher” than typed graphs.
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In [14], the general categorical machinery is employed for merging particu-
lar formal models: scenarios specified by MSCs are encoded as partially-ordered
multisets – a well-known and deserved language for specifying scenarios. How-
ever, this formalism is far less expressive than UML2 sequence diagrams, which
in part motivated our search for another formal framework and led us to higher-
order graphs. Also, as it was already mentioned in Introduction, string-based
(rather than graph-based) formalization used in [14] results in a bulky definition
of morphism and makes the entire integration procedure less transparent and
less scalable beyond small examples. In addition, only injective morphisms are
considered in [14], which might be a serious yet not relevant restriction. On the
other hand, [14] considers also control structures in scenario modeling (high-level
MSCs), which we did not touch in the paper leaving it for future work.
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