
Technical Report No.2006-521

Model transformation via pull-backs: algebra vs.
heuristics ?

Zinovy Diskin

School of Computing, Queen’s University,
Kingston, Ontario, Canada

{zdiskin,dingel}@cs.queensu.ca

Abstract. The paper presents a formal algebraic framework, where
model transformation can be specified in a truly generic way: the source
and the target metamodels are parameters of the entire procedure. In
more detail, the operation is specified as a special diagram operation
well known in category theory under the name of pull-back. At the heart
of the approach is a mapping between the two metamodels, which gov-
erns the entire translation procedure.
An essential feature of the framework is that this mapping is allowed to
map elements of one metamodel to elements that can be derived in the
other metamodel (by posing suitable queries to it) but are not immedi-
ately present in it. This makes the pattern applicable to a wide range of
practically interesting situations.

1 Introduction and motivating discussion

Model transformation (or translation), MT, is a key component of many ac-
tivities in software development and integration. In databases, for example, it
appears in data warehousing (the infamous extract/transofrm/load cycle) and in
numerous scenarios of data and schema integration (from federated databases to
web data). In programming, if we consider code artifacts as models whose meta-
models are usually set by the corresponding grammars, model transformations
are everywhere: from model-based code generation to compilation to reverse en-
gineering. In fact, in the MDD vision, programming is model transformation. In
a sense, software development is all about MT.

The MT-task is formulated as follows: a source model S in some (source)
metamodel MS is to be transformed into a target model T in another (target)
metamodel MT . Note that we can treat the database (DB) and the programming
(language, PL) cases uniformly by simply considering programs as data over
grammars-generated schemas (metamodels). However, different use contexts in
the two communities generated two essentially different approaches to the main
? Research supported by OCE Centre for Communications and Information Technol-

ogy and IBM CAS Ottawa.

MT-problem: how to facilitate programming MT-tasks, which are notoriously
laborious and error-prone.

In DB, a broad vision of generic model management (MMt) emerged [3] as
an environment, where the programmer manipulates models as holistic entities
without zooming into their internal elementwise structure (see[10] for a discus-
sion). The idea of MMt is to offer the programmer a powerful arsenal of oper-
ations over models, where the operator of model transformation (called model
generation, ModelGen, in [2]) is an important yet not the only one (amongst
other MMt-operators are, e.g., Model Merge, Match and Extract [2]). A princi-
pal schema of ModelGen is shown in Fig. 1(a). Traceability mapping is a mapping
from the new model to the old one, it can be considered optional.

(a) MT in DB: an MMt operator (b) MT in PL: Principal schema of MT-
programming

(c) MT in math: via PB procedure
(see also Fig. 2 and 6)

PB-algorithm

Target
model

Traceability
mapping (for free)

Source model;
Metamodel mapping MT → MS,

(MMmap)

ModelGen

Target
model

Traceability
mapping

opt

Source model;
Source metamodel;
Target metamodel;

Transformation
Engine

Target model

Transformation
specification (rules),

TSpec

Traceability
mapping

opt

Source model;
Source metamodel;
Target metamodel;

Fig. 1. Three approaches to MT

In PL, model transformation is viewed in a somewhat different way. First
of all, it is the only MMt-operator considered in a majority of works, because
transformation is the key component of MDD, MDA and other model-centric
endeavors, see [5, 16, 11] for surveys and discussion. The entire MMt trend is
also represented, see [4] and references therein, although has gained much less
attention so far.

A principle schema of MT-programming (adapted from [11]) is presented in
Fig. 1(b).The key block is Transformation specification, TSpec. Roughly, it says
how each element, or a group of elements closed in some technical sense, in the
source model are to be transformed into an element or a group in the target
model. TSpec thus amounts to a set of pairs of elements (in the declarative MT-
languages), or to a set of transformation rules (in the imperative MT-languages).
In either way, the programmer needs to create an elementwise specification re-
lating the source and the target models. Since a model usually comprises a big
set of different elements and their structural links, the elementwise nature of
TSpec makes MT-programming laborious and error-prone. It is these problems
in metadata management that have driven the database community to the idea
of generic MMt.

2

Thus, MMt suggests a radically different and seemingly a more efficient ap-
proach to programming model operation. However, the key condition of its real-
ization is that all MMt-operators must be specified in a generic (metamodel inde-
pendent) way. Genericness becomes especially non-trivial for the model transla-
tion operator. In [2], Phil Bernstein even questioned the very possibility of spec-
ifying this operation in a generic way. Indeed, the few attempts of approaching
the task one can find in the database literature are, in fact, attempts to sidestep
the problem rather than to solve it. The main idea employed in these works was
to catalogue the constructs used in all the dialects of a modeling language and
then try to extract a core generic subset from them. A typical example is the
“the most general” super-ER format in [1]. Though the approach can be efficient
within the space of ER-modeling (understood in a broad sense), it will not work
beyond the ER-space.

Fortunately, mathematical category theory offers a suitable apparatus for
designing generic specifications, particularly, for model translation, see [6] for an
outline of its MMt-applications. The present paper illustrates how the machinery
works for MT in greater detail.

Briefly, the idea is as follows. If we want to translate models in some (source)
metamodel MS to models in another (target) metamodel MT , then the elements
of MT should be somehow found in MS . The simplest case is when we have a
mapping m : MT → MS interpreting MT -constructs by suitable MS-constructs.
However, in practice we rarely have such a simple relationship between the meta-
models. As a rule, MS-counterparts of MT -constructs are not basic (i.e., imme-
diate) elements of MS but can be derived from them by applying to MS suitable
algebraic operations (queries, in the database jargon). The metamodel relation-
ship is then specified by a mapping m : MT → derQMS into some augmentation
derQMS of the source metamodel with derived elements (where Q refers to the
set of operatiosn/queries used). (In category theory, such mappings are called
Kleisly morphisms), see [6] for a popular presentation).

Given such a mapping (MMmap), it can be demonstrated that the result of
translating MS-models into MT -models could be defined as the result of some
algebraic (meta)operation over models and model mappings. This operation,
well known in category theory under the name of pull-back (PB), is formally
defined and appears in many different mathematical and applied contexts. For
example, when we consider typed graphs and their transformations, the retyping
procedure is given by the corresponding pull-back (see, e.g., [15]).

Model transformation also can be seen as a sort of retyping; however, does
this retyping (MT-retyping) equal to retyping provided by the PB-operation
(PB-retyping)? Equality that we mean here should be understood in some con-
ventional sense: what is a proper result of model transformation is determined
by an application dependant pragmatic context and hence is an informal notion
(at least, in the situation when semantics is not taken into account!). In con-
trast, the result of the PB-operation is perfectly formal and mechanistic. Thus,
equality MT-retyping = PB-retyping is just a definition, which we can ac-
cept (if we believe it is useful) or reject otherwise. The paper aims at careful

3

motivation of this definition. In other words, the goal is to show that defining
model transformation to be the result of the corresponding PB-operation is an
adequate algebraic model of MT.

Nevertheless, however reasonable this motivation could be, the final justifi-
cation is the responsibility of the two Top Judges:
(a) a formal proof that MT-via-PB preserves sets of instances in some still-to-be
defined sense, and
(b) an implementation of an MT-via-PB tool and checking its effectiveness.

As for the former, it is a big and largely unexplored issue; in the current state-
of-the-art of MMt theory, we cannot even formulate what needs to be proved
precisely. Nevertheless, in data modeling a few successful attempts can be men-
tioned, for example, [13] studies transformation between relational schemas and
ER-diagrams with instances essentially taken into account, and [6] describes a
general framework for data model and data instance transformations going to-
gether. Particularly, in [7] this framework is used for building a coherent syntax-
semantics theory of model merge: a generic procedure for model merge is pro-
posed and a result semantically justifying this procedure is proved. A “big goal”
is to build similar semantic justifications for other MMt operators in both data
modeling (cf. [14]) and behavior modeling.

As for (b), it is a project waiting for its realization; so far, we can loosely
replace it by considering a number of MT-examples recognized as right and then
checking that the PB-procedure also provides the right results.

The principle schema of the PB-approach is shown in Fig. 1(c). Note that the
TSpec block crucial for MT is not needed: everything is provided by the mapping
MMmap. In fact, the PB-algorithm itself generates all the necessary transforma-
tion rules from the mapping and then executes them. In this sense, MT-via-PB
“programming” is somewhat similar to declarative MT-programming, but there
are essential differences. Metamodels are much more compact than models and
hence specifying relations between metamodels (mappings) is much less labo-
rious. Also, a mapping between metamodels has a clear semantic meaning of
interpreting constructs of one language by constructs of another language. This
factor makes metamodel mapping design less error-prone. Finally, perhaps the
most dramatic difference (at least, in the data management perspective) is that
ordinary MT-programming sees MT as rewriting (updating) the source model,
while MT-via-PB amounts to augmenting and retyping the source model (query-
ing). Indeed, TSpec prescribes how to change the source model; in the database
jargon, it is an update specification. In contrast, MMmap prescribes what de-
rived information must be extracted from the source metamodel (querying),
afterwards the PB-procedure operates only types of the source model elements
rather than elements themselves. In the database jargon, MMmap is nothing but
a view definition and the target model is the corresponding materialized view.
We will return to this discussion in section 5.

The rest of the paper is organized as follows. In section 2 we discuss how to
specify model translation generically, and how the PB-operation emerges there.
Section 3 outlines some mathematical details. Section 4 demonstrates how it

4

works with two simple examples of extracting ER-diagrams from SQL-table de-
finitions (the first one is unsuccessful but instructive). The culmination is in
section 5: a generic algebraic pattern for model translation is presented and
discussed.

2 Model translation as an arrow diagram operation

We begin with informal general considerations of what could be a generic pattern
for model translation.

2.1 Models as typed graphs

We assume that a model (schema) S is a structure of elements typed by the
corresponding elements of the metamodel MS . An important observation (made
by many people but still not too familiar to the community) is that typing can
be considered as a structure-preserving mapping (morphism) σ : S → MS from
the model to the metamodel. For example, we can specify the metamodel MS by
a (directed) graph, and then a model over MS is nothing but a graph S together
with a graph mapping as above. Following some mathematical traditions, we
will direct the typing mappings vertically from top to bottom and say that S is
a model over MS .

The left half of Fig. 2 presents a simple relational schema (the left column)
and its representation as a typed graph (the column on the right). In the lower
part of the representation column, there is a metaschema of a simplified relational
data model, presented as a directed graph. Those edges that are not directed
are to be considered as syntactic abbreviations for two directed edges going into
the opposite directions. The upper part of the left column shows a typed graph
representing the relational schema.

Type labels are given after a colon (and in violet color on the display). Since
for any two given nodes N and M of the model graph, there is at most one arrow
between them typed by a label L, we can safely omit the names of the arrows
but keep their labels. If necessary, we can unambiguously refer to such an arrow
from M to N by the name (M-N):L.

It can be easily checked that typing actually amounts to a graph morphism,
that is, a mapping sending nodes to nodes and arrows to arrows in such a way
that the incidence relation between nodes and arrows is preserved. Moreover,
it is easy to understand that the example is quite generic and any relational
schema (with the similar simplifying assumptions) can be presented in this way,
that is, by a graph S together with a graph morphism σ : S → MS into the graph
specifying the relational data model.

Similarly, the right half of Fig. 2 presents a ER-diagram as a typed graph
(in the rightmost column). The ER-diagrams we consider are first-order: rela-
tionships (R-Nodes) are defined only over entity (E-)nodes. The metamodel node
Node is abstract in the sense that any of its instances is either E-node or R-node.
It can be readily checked that the typed graph on the right specified a graph

5

morphism τ : T → MT into the corresponding metamodel. These two examples
are quite generic and demonstrate how models in different languages can be pre-
sented by mappings between graphs. We will return to this discussion later, in
section 5.3.

6

SQ
L-

co
de

 a
nd

…

…
its

 re
pr

es
en

ta
tio

n
by

 a
 ty

pe
d

gr
ap

h

(r
ep

os
ito

ry
 m

od
el

)

ER

-d
ia

gr
am

 a
nd

…

..i
ts

 re
pr

es
en

ta
tio

n
by

 a
 ty

pe
d

gr
ap

h
(r

ep
os

ito
ry

 m
od

el
)

bD
at

e
:D

at
e

pi
n

:In
t

Pe

rs
on

da
te

 :D
at

ehu
sb

Ma
rri

ag
ew

ife

:e
nd

:o
w

ne
d

:a
ttr

:o
w

ne
d

:a
ttr

:e
nd

:a
ttr

:p
-k

ey

:ty
pe

:ty
pe

:ty
pe

:ty
pe

:ty
pe

Pe
rs

on
 :E

-N
od

e

pi
n:

At
tri

bu
te

bD
at

e:
At

tri
bu

te

M
ar

ria
ge

 :R
-N

od
e

 w
ife

: R
ol

e h
us

b:
Ro

le

D
at

e
:T

yp
e

In
t:T

yp
e

da
te

:A
ttr

ib
ut

e

:o
w

nd

:o
w

ne
d

:fk
ey

:p
-k

ey

:ty
pe

:r
ef

:c
lm

:c
lm

n

:ty
pe

:o
w

ne
d

:ty
pe

:r
ef

:p
-k

ey

Pe
rs

on
 :T

ab
le

pi
n:

Cl
m

n
bD

at
e

:C
lm

n
:c

lm
n

M
ar

ria
ge

 :T
ab

le

w
ife

:C
lm

n
:1

hu
sb

 :C
lm

n

da
te

 :C
lm

n

F1
:F

Ke
y

F2
:F

Ke
y

:2

D
at

e
:T

yp
e

D
at

e
:T

yp
e

In
t:

Ty
pe

In
t:

Ty
pe

:c
lm

n

:c
lm

n

:c
lm

n

:c
lm

n

 a
ttr

No

de

<<
ab

str
ac

t>
>

cl
m

n

C
re

at
e

Ta
bl

e
P

er
so

n
{

pi
n

 I
nt

eg
er

 p
K

ey
,

bD
at

e
 D

at
e

} C
re

at
e

Ta
bl

e
M

ar
ria

ge
 {

w
ife

 I
nt

eg
er

 p
K

ey
,

hu
sb

 In
te

ge
r

pK
ey

,
da

te
 D

at
e;

 Fo

re
ig

n
K

ey
s

(
w

ife
 r

ef
er

en
ce

s
P

er
so

n,

hu
sb

 re
fe

re
nc

es

P
es

ro
n

)}

To

 a
vo

id
 c

lu
tte

r s
om

e
lin

ks
 a

re
 n

ot
 s

ho
w

n,
 p

ar
tic

ul
ar

ly
,

lin
ks

 _
:o

w
ne

d
an

d
_:

fk
ey

 b
et

w
ee

n
F2

 a
nd

 M
ar

ria
ge

,
so

m
e

 _
:ty

pe
 li

nk
s,

al

l _
:o

w
ne

d
lin

ks
 b

et
w

ee
n

Ta
bl

es
 a

nd
 th

ei
r C

ol
um

ns

F
ig

.
2
.
M

o
d
el

s
a
s

ty
p
ed

g
ra

p
h
s

7

S

MS

σ
↓
←

m
MT

S ←
m∗

T

[=]

MS

σ
↓
←

m
MT

τ
↓

T1

S ←
m∗

←

m
∗
1

T ←
!

[=]

MS

σ
↓
←

m
MT

τ
↓ ←

τ 1

(a) input (b) output (c) universal property

Fig. 3. Pull-back operation

2.2 Model translation generically: informal discussion

Suppose we have a model S over metamodel MS , which we want to translate
into a model over another metamodel MT . Clearly, to do that in a reasonable
way, we first need to specify relationships between the metamodels MS and
MT . A very simple case of such a relationship is when both metamodels are
presented by similar structures (say, by graphs), and are related by a structure-
preserving mapping (maybe, partially defined) m : MT → MS . The reservation
about preserving the structure is important and ensures model translation rather
than messy mixing. Thus, the input data for the translation procedure appear
as a pair of mapping with a common target as shown in diagram (a) of Fig. 3.
We will call such a configuration a sink.

The result of translation must be a model over metamodel MT , hence, we
should have a mapping τ : T → MT . In addition, each element of the new model
T should appear there from some element of the original model. It is reasonable
to assume that this traceability relationship should be structure-preserving and,
hence, traceability appears as a morphism between models m∗ : T → S, see dia-
gram (b) in Fig. 3. Thus, the result of translation appears as a pair of mappings
with a common source; we will call such a configuration a span. In addition, if
an element e in model T has a type e.τ and is traced back to element e.m∗, then
the type of the latter should be e.τ.m. That is, e.m′.σ = e.τ.m for all elements
in model T and the diagram (b) is commutative (note the marker [=]).

The properties just listed do not necessarily characterize a unique model and
we can well imagine another model T1 together with mappings τ1 and m′

1 making
the outer ”square” diagram in column (c) of Fig. 3 commutative. What should
distinguish the desired translation T among other possible translations T1, T2, ...
is that the former must not lose information and hence be maximal amongst all
models Ti in some sense. In other words, model T should be considered as a union
of all possible “partial” translations Ti. This suggests to specify maximality of T
by the existence of a unique mapping ! to the model T from any model Ti that
makes the outer diagram commutative.

These considerations motivate the following algebraic construction.

8

3 The pull-back operation

Let C be some universe of sets with structure (objects, nodes) and structure
preserving mappings between them (morphisms, arrows).
3.1 Definition and construction. Let (σ,m) be a couple of mappings with a
common target (sink) as shown in Fig. 3(a). A square diagram (b) is called pull-
back (PB) if it is commutative and possesses the universal property specified by
diagram (c). It can be easily proven that if (T, m∗, τ) and (T′,m∗′, τ ′) are two
arrow spans making PB-squares with the same input sink then objects T and T′

are canonically isomorphic (and this isomorphism “switches” between τ and τ ′,
and m∗ and m∗′). Then we can consider pull-back as a diagram operation: given
an arrow sink on its input, it produces one (up to isomorphism) arrow span on
its output. We will also say that the diagram (b) is the pull-back of the diagram
(a) and write (T, τ,m∗) = PB(S, σ, m).

The pull-back operation is well-known in mathematical category theory; it
works well in different contexts and appears in many applications without any
relation to model translation. Thus, we can summarize our considerations in
the previous section as a motivation to define the model translation as the PB-
operation in the universe of graphs and graph morphisms. Of course, however
reasonable this motivation may sound, for a more solid justification of the defi-
nition we need to consider a few examples, where we well understand what the
result of the translation is, and then check whether it is indeed given by the
pull-back or not.

This is the goal and contents of the next section yet before taking this en-
deavor, we need a constructive definition of the PB-operation. Indeed, the def-
inition given above is entirely declarative: it explains what the PB is but does
not say how to compute it. Fortunately, a well-known result of category theory
says that if our universe of objects and morphisms has Cartesian products, then
the pull-back object T can be computed as a specific relation over S and MT :

(1) T = {(a,X) ∈ S ×MT | a.σ = X.m} ,

and mappings m∗ and τ are the projection mappings of this relation.
For example, if our universe consists of directed graphs and their mappings,

the pull-back can be computed by applying the definition (1) twice: for nodes
and for arrows. Example in Fig. 4 shows how it works. The lower part presents
a mapping m : GT → GS between two graphs (the base mapping). The left up-
per quadrant presents another graph mapping σ : S → GS specified by labeling
(names of the arrows in this graph are omitted but the labels are kept; these
arrows can be identified with ordered pairs of nodes they connect). The result
of the PB-operation is presented by the right-upper quadrant, where we have a
typed graph, and by the trace mapping between the right and left upper graphs.
In specifying the right upper graph, we have used the following notation: a pair
(a,X) ∈ S ×GT is denoted by a •X.
3.2 Some useful mechanisms. The example demonstrates some mechanisms
the PB-operation exhibits. The first one is the removal of elements: note that

9

elements c1, c2 and the two respective arrows to them have disappeared in the
PB-result because their type labels C and g are out of range of the base map-
ping. This well fits in the model translation context: being out of range of the
base mapping means that these constructs of the source metamodel are not in-
terpretable or useless from the viewpoint of the target metamodel, and the latter
does not need them.

Another important mechanism is duplication of elements. Because two nodes,
Y,Z, of the graph GT are mapped to the same node A in GS , and correspondingly
two arrows u, v are mapped to the same arrow f , the corresponding part of
the source graph S is duplicated in the result. This is also a quite reasonable
property in the context of model translation (see, e.g., also in [16]). Indeed, if two
constructs Y, Z of the target metamodel are interpreted by the same construct
A of the source metamodel, then for any source model containing elements of
type A, these elements must be duplicated because they should play two roles,
Y and Z, in the translated model.

v uX Y Z
g

f

A

B

(a2-b)•v :v

(a1-b)•v :v a1•X :X

b•Y :Y

a2•X :X

(a1-b)•u :u

a3•X :X

b•Z :Z

(a2-b)•u :u
:f

a1:A

b:B

a2:A

:f

a3:A

c1:C :g

c2:C :g trace mapping

base mapping

C

Fig. 4. Pull-back operation over graphs

3.3 The inverse pull-back problem. Sometimes, given the result of the
translation, we need to find the original sink whose pull-back provides this result.
In more detail, we are given the arrows τ and m as shown in Fig. 3(b), and we
need to find arrows m∗ and σ such that the entire square would be pull-back.
We will call this task the inverse pull-back or inverse translation problem.

10

4 Two examples: Extracting ER-diagrams from
SQL-table definitions

4.1 The first try and the lessons of the failure

It is evident that the ER-diagram in the right half of Fig. 2 is a precise coun-
terpart of the relational schema in the left half. The question is whether it is
possible to obtain this ER-diagram as a result of some algebraic operation with
the relational schema. Our discussion above suggests to specify a suitable base
mapping er2rel : MER → MRel between metamodels and then compute the ER-
model by pulling-back the corresponding arrow sink.

Indeed, if we believe that ER-diagrams can be extracted from SQL-table
definitions, then elements of the ER-metamodel MER (the target metamodel)
should be found in the relational (source) metamodel, MRel. Thus, there should
be a suitable mapping er2rel : MER → MRel sending ER-diagram constructs to
the respective relational constructs. The adjective “respective” is essential and
means that the mapping must be semantically meaningful. This latter condition
suggests to map nodes E-Node, Attribute and Type in the metamodel MER to,
respectively, nodes Table, Column and Type in the metamodel MRel, and arrows
’attr’ and ’type’ in MER to arrows ’clmn’ and ’type’ in MRel (see the lower part
of Fig. 5 and disregard the right-most extra part of MRel for a while; with a
color display, this part is shown by blue, in the black-white printing, the extra
nodes are blank and edges are thinner). Further, R-Nodes are somehow related
to foreign keys and we may try to map R-Node in MER to FKey node in MRel.
The question is where to map MER’s node Role?

Roles are links that connect R-nodes (FKeys in MRel) with corresponding E-
nodes (Tables in MRel). In metamodel MRel, such links are realized with arrows
’owned’ and ’refs’ and, thus, we would need to map the node Role to arrows.
Evidently, it would violate the basic structure-preserving property of graph mor-
phisms and make such a mapping illegal.

To manage the difficulty, we can reify the arrows in question by treating them
as mappings and building their graphs. Consider the arrow ’refs’. It denotes a
mapping from the set of FKey elements to the set of Table elements (find in the
model graph the two arrows labeled by ’:refs’, one of them is not shown).

11

N
a
m

e
s

C
lm

n
,

P
rs

,
M

rr
 a

n
d

A
tt
r

a
re

 a
b
b
re

vi
a
tio

n
s

fo
r

C
o
lu

m
n
,

P
e
rs

o
n
,

M
a
rr

ia
g
e

a
n
d
 A

tt
ri
b
u
te

 r
e
sp

.

T
yp

e
 la

b
e
ls

 a
re

 n
o
t

sh
o

w
n

b
e
ca

u
se

 t
h
e

y
a

re
 g

iv
e

n
 b

y
th

e
 2

n
d

co
m

p
o
n

e
n
t

(a
ft
e
r

•)

:o
w

ne
d

:c
lm

n

: /
ow

ne
d

:fk
ey

(M
rr-

w
ife

)•
at

tr

(F
2-

Pr
s)

•o
w

ne
d

(F
1-

Pr
s)

•o
w

ne
d

(F
2-

M
rr)

•o
w

ne
d

(F
1-

M
rr)

•o
w

ne
d

(F
2-

M
rr)

•t
yp

e

(F
1-

M
rr)

•t
yp

e

: /
en

d

: /
en

d

:c
lm

n
:c

lm
n

:p
ke

y
:ty

pe

:re
fs

:ty
pe

:o
w

ne
d

:p
ke

y

Pe
rs

on
 :T

ab
le

pi
n:

C
lm

n

M
ar

ria
ge

 :T
ab

le

:1

D
at

e
:T

yp
e

In
t :

Ty
pe

:2

:c
lm

n

:ty
pe

:re
fs

:c
lm

n
w

ife
:C

lm
n

hu
sb

 :C
lm

n
:c

lm
n

:c
lm

n

F1
 :F

K
ey

F2

 :F
K

ey

D
at

e
:T

yp
e

In
t :

Ty
pe

bD
at

e:
C

lm
n

F1
•M

rr
:G

1

F2
•M

rr
:G

1

F1
•P

rs
:G

2

F2
•P

rs
:G

2

: /
ty

pe

: /
ty

pe

(F
1•

M
rr)

•R
ol

e

(F
2•

M
rr)

•R
ol

e

F1
 •

 R
-N

od
e

F2
 •

 R
-N

od
e

Pr
s

•
E-

N
od

e

M
rr

•
E-

N
od

e

(F
1-

Pr
s)

•t
yp

e

(F
2-

Pr
s)

•t
yp

e

w
ife

 •
 A

ttr

hu
sb

 •
 A

ttr

da
te

 •
 A

ttr

pi
n

•
At

tr

bD
at

e
•

At
tr

(P
rs

-b
D

at
e)

•a
ttr

tr
a

ce
a

bi
li

ty
 m

a
p

p
in

g

T
o
 a

vo
id

 c
lu

tt
e
r

so
m

e
 li

n
ks

 a
re

 n
o
t

sh
o

w
n

.
P

a
rt

ic
u
la

rl
y,

_
:/

e
n

d

fr
o

m
 F

1
:F

K
e

y
to

 F
1

•M
rr

 a
n
d
 F

1
•P

rs
;

_
:r

e
fs

 f
ro

m
 F

2
 t

o
 P

e
rs

o
n
 a

n
d

_
:o

w
n

e
d

a
n

d
 _

:f
ke

y
b

e
tw

e
e
n

 F
2
 a

n
d
 M

a
rr

ia
g
e
;

so
m

e

_
:t

yp
e

 li
n

ks
.

da
te

 :C
lm

n
(F

1•
Pr

s)
•R

ol
e

(F
2•

Pr
s)

•R
ol

e

:o
w

ne
d

/ty
pe

 =
 q

1
∪

 q
2

G
ra

ph
1

G
ra

ph
2

 G
ra

ph
1∪

 G
ra

ph
2

q1

 /o
w

ne
d

=
 p

1
∪

 p
2

 /e
nd

 =
 p

1-
1 ∪

 p
2-

1

1

at
tr

ba
se

 (
m

et
a

m
od

el
)

m
a

p
p

in
g

at
tr

0.
.1

p2
p1

*

2

q2

G
ra

p
h
 1

=
 {

(F
,T

)
∈

 F
K

e
y

×
 T

a
b
le

 |
T

 =
 F

.o
w

n
e

d
}

 /
/g

ra
p
h
 o

f
m

a
p
p

in
g
 o

w
n

e
d
:

F
K

e
y

→
 T

a
b
le

;
G

ra
p
h
 2

=
 {

(F
,T

)
∈

 F
K

e
y

×
 T

a
b
le

 |
T

 =
 F

.r
e
fs

}

 /
/g

ra
p
h
 o

f
m

a
p
p

in
g
 r

e
f:
 F

K
e

y
→

 T
a
b
le

;
p

1
,p

2
,q

1
,q

2
 a

re
 p

ro
je

ct
io

n
 m

a
p

p
in

g
s

o
f
th

e
 g

ra
p

h
s

a
b
o
ve

Pe
rs

on

F1 h u
sb

pi
n

:In
te

ge
r

bD
at

e
:D

at
e

M
ar

ria
ge

F2

w
ife

da
te

:D
at

e

w
ife

 :I
nt

eg
er

hu
sb

 :I
nt

eg
er

F
ig

.
5
.
M

o
d
el

tr
a
n
sl

a
ti

o
n

v
ia

p
u
ll
-b

a
ck

[(
X
•

Y
d
en

o
te

s
th

e
p
a
ir

(X
,Y

)]

12

The graph of this mapping is a set of pairs (F:FKey, T:Table) such that T=refs(F).
The metamodel of the construct is given by a node Graph2 together with two
projection arrows (p2, q2). Correspondingly, in the model we have two new nodes
F1•Person and F2•Person typed by Graph2. Similarly, we augment the meta-
model MRel with arrow span (Graph1,p1,q1) denoting the graph of the mapping
’owned’.
Then we take the union of these two graphs – note the node Graph1∪Graph2
together with the two double arrows denoting the corresponding inclusions. Fi-
nally, we define mappings /type and /owned from the union node by taking
the union of the respective projection mappings. Note also that since mappings
’refs’ and ’owned’ from FKey to Table have multiplicity one (are functional), the
projection mappings p1 and p2 are one-one. It follows then that mapping /end
def= p−1

1 ∪ p−1
2 has exactly multiplicity 2. Now we can complete our metamodel

mapping by sending node Role to node Graph1∪Graph2, and the arrows ’end’
and ’owned’ in MER to arrows ’/owned’ and ’/type’ in MRel. Note also that our
base mapping is not defined on arrow ’attr’ from R-Node to Attribute.

The final step is entirely automatic: having the typed graph S and the base
mapping specified in Fig. 5, we perform the PB-operation and get the typed
graph shown in the upper right quadrant together with a trace mapping. Since
the base mapping is injective (no two elements of MER are mapped to the same
element in MRel), computing the pull-back is fairly easy (see explanations in
sect. 3 for details). It results in the typed graph presented in the right upper
quadrant of Fig. 5. The ER-diagram in the right column of the figure presents
this typed graph in the conventional ER-diagram syntax.

This translation is almost strait-forward but perhaps the names of the two
diamonds need some explanation. For simplicity, in our ER-metamodel we as-
sumed that names of the elements are their identifiers. In a more accurate setting,
almost each of the nodes in the metamodels (besides FKey and Type) should
have an attribute ’name’ (presented by an arrow going out of the node to node
String). Then we could define that ’name’ attribute (arrow) of the node R-Node
is mapped to the composition of arrows ’clmn’;’name’ from FKey to String (via
node Column) in MRel.

Thus, the PB-operation has produced a syntactically valid ER-diagram but,
semantically, the result is disappointing: compare it with a a compact and se-
mantically transparent ER-diagram in Fig. 2. The cause of the failure is in the
improper definition of the base mapping: as soon as we map MER’s nodes R-Node
and Role to, respectively, nodes FKey and Graph1∪Graph2 in MRel, each foreign
key is interpreted as a binary diamond. To obtain a proper translation, we need
a deeper analysis of relational schemas, where the relation between primary and
foreign keys is taken into account.

4.2 The second try: a proper metamodel mapping is a key to
success

Our first attempt to translate relational schemas into ER-diagrams failed because
the mapping m : MER → MRel we used did not make a distinction between the

13

two essentially different types of tables. One, we may call it E-tables, is when
the primary key does not contain any foreign keys like, say, the attributes of
social security or personal identification numbers. The other, let us call them R-
tables, is when the primary key is composed from two or more foreign keys like
in our sample relational schema in Fig. 2. For simplicity, we will exclude from
consideration other cases but they can be treated as well in our framework (see
below). We must also consider the partition of foreign keys into those occurring
into the primary key of some table (p-foreign keys), and the others (np-foreign
keys). In the former case, the table is necessarily an R-table and the pf-keys
are the roles of the corresponding relationship. As for npf-keys, they are merely
references to other tables and thus, in the ER-model, are themselves modeled
by relationships. The roles attached to these latter relationships are just pairs
of the npf-key in question and its owning and referencing table names. Thus,
R-elements of the relational model are R-tables and np-foreign keys, and the
roles attached to them are pf-keys and pairs mentioned above. Having defined
these new E-, R- and Role-elements in the relational metamodel, we can build
another mapping from MER to MRel, which hopefully will determine a better
translation algorithm.

A precise description of the required manipulations with the relational meta-
model is presented in Fig. 6. The upper part shows a part of the relational
metamodel extended with new elements – blank nodes and thin edges (pairs of
arrows), each of which is provided with a definition of its semantic meaning in
the lower part of the figure.

A precise interpretation of these definitions is as follows. Any relational
schema over the metamodel MRel assigns sets [[Tables]], [[Column]] and [[FKey]]
to the basic nodes and mappings [[clmn]], [[refs]] and so on to the arrows. The
definition assigned to a new element E (a node or arrow) says how to compute
its semantic meaning [[E]] (a set or mapping) from sets and mappings assigned
to either basic or new elements introduced prior to E. (By the abuse of nota-
tion, in these definitions we write E instead of [[E]]). In other words, the new
elements are derived by applying the corresponding operations in contrast to the
initial elements of the metamodel, which we call basic. Thus, Fig. 6(a) presents a
derivable augmentation of (a part of) the relational metamodel derQ2MRel, where
Q2 refers to the set of operations (queries) used in the derivations (in our sec-
ond attempt, hence, Q2). Now we can define a better relational interpretation
of the ER-metamodel by defining the mapping er2rel2 : MER → derQ2MRel be-
tween the metamodels as specified in the following table (only nodes are shown):
MER E-Node R-Node Role Attribute Type
derQ2MRel E-Table R-Element Role-Element nfColumn Type

Any relational schema, i.e., a model S over MRel, can be extended to a model
derQS over the metamodel derQMRel in a unique way by actually performing op-
erations specified in Q. That is, given a set of derivations/queries Q, any mapping
σ : S → MRel can be uniquely extended to a mapping in σQ : derQS → derQMRel.
In fact, we have already performed such a procedure in sect. 4.1, Fig. 5, where
we used another set of operations Q1 ⊂ Q2. Now, having the sink of graph mor-

14

phisms σQ2 : derQ2S → derQ2MRel and er2rel2 : MER → derQ2MRel, it is just an
exercise in computing the pull-back to show that the PB-image of the relational
model in Fig. 2 on the right is exactly the ER-diagram in that Figure on the
left. Thus, given a proper ER-to-Rel metamodel interpretation, the pull-back
operation computes the desired result.

(a) The extended metamodel (derived elements are blue, nodes are blank and edges are thin)
E-Table = { T∈Table | T.pkey ∩ (∪ T.fkey) = ∅
R-Table = {T ∈Table | T.pkey = ∪ F for some F ⊂ T.fkey with card(F) > 1 }
for RT∈R-Table, RT.pfkey = F used in the definition above
pFkey = ∪{ RT.pfkey | RT∈ R-Table} with evident rt-owned and pfkey mappings
npFKey = FKey – pFKey
nfColumn = {C∈ Column | C∉ F.clmn for all F∈ FKey }
Graph 1={(F,T) ∈ FKey × Table | T = F.owned} (graph of mapping owned: FKey → Table)
Graph 2={(F,T) ∈ FKey × Table | T = F.refs} (graph of mapping ref: FKey → Table)
p1,p2,q1,q2 are projection mappings of the graphs above
G1∪G2 = Graph1 ∪ Graph2
for G∈G1∪G2, G.np-type=G.q1 if G∈Graph1 and G.q2 otherwise
for G∈G1∪G2, G.np-owned = G.p1 if G∈Graph1 and G.p2 otherwise
for F∈npFKey, F.np-end = {F.p1-1, F.p2-1}
Role-Element = pFKey ∪ (G1∪G2)
for Ro∈Role-Element, Ro.type = Ro.refs if Ro∈pFKey and Ro.np-type otherwise
R-Element = R-Table ∪ npFKey
for Re∈R-Element, Re.end = Re.pfkey if Re∈R-Table and Re.end=np-end otherwise

(b) Definitions of derived elements

Fig. 6. Metamodel of relational schemas extended with derived elements to map to it
the ER-metamodel

15

5 Algebra of reverse engineering

5.1 Divide and conquer: algebra vs. heuristics.

The examples we considered suggest the following general pattern for model
translation and reverse engineering. We need to translate models over some
(source) metamodel MS to models over another (target) metamodel MT . The
key to the entire process is in a suitable interpretation of MT -elements by MS-
elements. However, setting a proper interpretation may need augmenting the
source metamodel with new derived elements corresponding to those elements
in MT , whose MS-counterparts are not immediately recorded in MS but can
be derived from them by applying suitable algebraic operations. The latter are
nothing but queries to the metamodel MS , if we understand models as data and
metamodel as their schema. Thus, we need to find a set Q of queries against
metamodel MS such that the corresponding extension derQMS allows a seman-
tically justified mapping m : MT → derQMS .

This is the most non-trivial part of the problem: it needs a solid understand-
ing of the semantics of both metamodels and their relationships, of the goals of
the translation and of the relevant pragmatic aspects. Algebraic (like any other
formal) procedures provide a proper output only when they are supplied with a
proper input (for example, an adequate and semantically meaningful metamodel
mapping mentioned above). Specifying such an input could be non-trivial and
require heuristic efforts; often, this is the main issue in the problem in question.
Yet having an algebraic formal model helps here too in that it provides a clear
specification of what should be the output of the heuristic procedures.

Legend for node & arrow objects:

 Input objects for the entire procedure are
black and filled/bold;
 Objects produced by heuristic procedures are
green and filled/bold;
 Objects computed automatically are
blue and blank/thin.
 The dashed grey line separates the
declarative part (under it) from the procedural
part (above it)

these three items are green

S

MS

 derQS

 derQMS

[alg.Expansion]

MT
m

T
σ τ

m*

[PB]σ Q

Fig. 7. Algebra and heuristics in model translation

However complex the heuristic initial phase of the process could be, we as-
sume that it is accomplished and its results are presented by a pair (Q,m) with
Q a set of queries to MS and m : MT → derQMS a metamodel mapping. After
this pair is set, everything else in translating any MS-model to an MT -model is
automatic. Given an arbitrary model σ : S → MS over the source metamodel, we
extend it with derived elements by executing queries specified by derQMS . The
result is an extended model σQ : derQS → derQMS . The next step is to apply
the PB-algorithm to the arrow sink (derQMS , σQ, m). The algorithm returns an
arrow span (T, τ,m∗), which we interpret as the translated model τ : T → MT

16

together with the traceability mapping m∗ : T → derQS. Our discussion is sum-
marized in Fig. 7.

5.2 Model translation as view computation.

Figure 7 shows that there are two algebraic procedures embodied into model
translation: algebraic augmentation/expansion of models (querying) and pull-
back (retyping), and they both need convenient and effective mechanisms to
be implemented in RE-tools. An important observation in this respect is that
together the two steps amount to a quite ordinary database procedure called
view computation. The model S is data over the schema MS , metamodel MT

is a view schema and the model T is the (materialized) view. Hence, the entire
procedure can be well implemented with a DBMS having an effective engine
of complex query evaluation. It seems that this possibility of employing the
database theory and tools for RE is not well explored. Of course, an important
issue is how expressive the query language should be in order to provide proper
interpretations/mappings between metamodels in practically interesting cases.1

5.3 Scope of applicability.

How universal is model representation by typed directed graphs? Though ap-
plicability of this pattern is surprisingly broad, there are two important limi-
tations. The first is structural: we can imagine reasonable cases of graph-based
metamodels, whose graphical structure is richer than simple graphs. Typical ex-
amples are 2- and n-graphs (where in addition to arrows between nodes there
are arrows between arrows, 2-arrows, and so on); reflexive graphs (where each
node in the metamodel is supplied with one or more special arrows with a fixed
meaning, e.g., identity arrow or idle transitions and the like); hypergraphs or,
say, attributed graphs. The notion of pull-back and the corresponding machinery
can be readily expanded for these and similar graph-based structures via the
notion of presheaf topos, see [8] for some details.

The second “beyond-graphs” case is when not all morphisms σ : S → MS

represent models (though each legal model is still a morphism). To exclude un-
wanted morphisms, we need to add constraints to the graph-based structure MS .
Such constraints can be also treated diagrammatically in a special language of di-
agram predicates, and in this way we come to a structure called generalized sketch
[9]. An important (and easy) result is that if a morphism σ : S → MS is a legal
model, the base mapping m : MT → MS is a sketch morphism (i.e., is compatible
with the constraints embodies into MT and MS), and (T, τ,m∗) = PB(S, σ, m),
then morphism τ is also a legal model. Thus, if the base mapping is compatible
with constraints, the PB-procedure transforms legal models into legal models.
To summarize, the PB-pattern works well far beyond the modeling framework
of simple typed graphs.
1 It is closely related to the data exchange problem, which lately has been actively

studied by the database community [12].

17

References

[1] Paolo Atzeni, Paolo Cappellari, and Philip A. Bernstein. Model-independent
schema and data translation. In EDBT, pages 368–385, 2006.

[2] P. Bernstein. Applying model management to classical metadata problems. In
Proc. CIDR’2003, pages 209–220, 2003.

[3] P. Bernstein, A. Halevy, and R. Pottinger. A vision for management of complex
models. SIGMOD Record, 29(4):55–63, 2000.

[4] Jean Bézivin, Salim Bouzitouna, Marcos Didonet Del Fabro, Marie-Pierre Ger-
vais, Frédéric Jouault, Dimitrios S. Kolovos, Ivan Kurtev, and Richard F. Paige. A
canonical scheme for model composition. In Arend Rensink and Jos Warmer, ed-
itors, ECMDA-FA, Lecture Notes in Computer Science, pages 346–360. Springer,
2006.

[5] K. Czarnecki and S. Helsen. Classification of model transformation approaches.
In K. Czarnecki, editor, 2nd OOPSLA03 Workshop on Generative Techniques in
the Context of MDA, 2003.

[6] Z. Diskin. Mathematics of generic specifications for model management. In Rivero,
Doorn, and Ferraggine, editors, Encyclopedia of Database Technologies and Ap-
plications, pages 351–366. Idea Group, 2005.

[7] Z. Diskin. Metamodel-independent schema and data merge: Towards syntax-
semantics integration in generic model management. Technical Report 2006-
522, School of Computing, Queen’s University, Kingston, ON, Canada, 2006.
http://www.cs.queensu.ca/TechReports/reports2006.html.

[8] Z. Diskin, J. Dingel, and H. Liang. Scenario integration via higher-order graphs.
Technical Report 2006-517, School of Computing, Queen’s University, Kingston,
ON, Canada, 2006. http://www.cs.queensu.ca/TechReports/reports2006.html.

[9] Z. Diskin and B. Kadish. Variable set semantics for keyed generalized sketches:
Formal semantics for object identity and abstract syntax for conceptual modeling.
Data & Knowledge Engineering, 47:1–59, 2003.

[10] Z. Diskin and B. Kadish. Generic model management. In Rivero, Doorn, and Fer-
raggine, editors, Encyclopedia of Database Technologies and Applications, pages
258–265. Idea Group, 2005.

[11] K. Ehrig, E.Guerra, J. de Lara, L. Lengyel, T.Levendovszky, U.Prange,
G.Taentzer, D.Varró, and S.Varró-Gyapay. Model transformation by graph trans-
formation: A comparative study. In MTiP 2005, Int.Workshop on Model Trans-
formations in Practice (Satellite Event of MoDELS 2005), 2005.

[12] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data exchange: semantics and query
answering. Theoretical Computer Science, 336(1), 2005.

[13] Martin Gogolla. Exploring ER and RE Syntax and Semantics with Metamodel
Object Diagrams. In Uffe K. Wiil, Peter J. Nürnberg, and David L. Hicks, editors,
Metainformatics Symposium (MIS’2005). Springer, Berlin, LNCS, 2006.

[14] S. Melnik, P. Bernstein, A. Halevy, and E. Rahm. Supporting executable mappings
in model management. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pages 167–178, New York, NY,
USA, 2005. ACM Press.

[15] M.Grosse-Rhode, F.Presicce, and M. Simeoni. Formal software specification with
refinements and modules of typed graph transformation systems. J. Comput. Syst.
Sci., 64(2):171–218, 2002.

[16] Laurence Tratt. Model transformations and tool integration. Software and System
Modeling, 4(2):112–122, 2005.

18

