
Technical Report No.2006-522

Metamodel-independent schema & data
integration: Towards joining syntax and

semantics in generic model management. ?

Zinovy Diskin

School of Computing, Queen’s University,
Kingston, Ontario, Canada
{zdiskin}@cs.queensu.ca

Abstract. The paper presents a mathematical framework, in which the
main concepts of schema and data integration can be specified both se-
mantically and syntactically in an abstract datamodel independent way.
We first define what are schema matching and integration semantically,
in terms of sets of instances and mappings between them. We also define
schema matching and integration syntactically, and introduce a proce-
dure (the how) for computing the integration of matched schemas ac-
cording to the syntactical definition in fairly abstract terms. The main
theorem of the paper states that the result of syntactical integration sat-
isfies the semantic definition and, hence, does produce what we really
need.
Viewed in a broader perspective, the framework developed in the paper
integrates the syntactical and semantical sides of model management
and, particularly, reveals a remarkable duality between them. The results
of the paper can then be seen as an (important yet) particular case of
this general duality theory.

? Research supported by the Latvian Council of Science (Grant #05.1526), OCE Cen-
tre for Communications and Information Technology and IBM CAS Ottawa.

1 Introduction: motivating discussion, relation to other
works and an outline of the approach

1.1 What this paper is about

Schema and data integration is a classical problem for the database theory,
with an enormous literature devoted to it. The majority of works in the field is
focused on the procedures of working with syntactical objects (schemas and their
transformations) while their semantics is left implicit. It is usually hoped that
everything is well on the semantic side too, but without explicit models of the
semantic aspects, this hope remains a subject of belief rather than verification.1

Semantic issues become especially actual, if not crucial, in the heterogenous
situation, when data and schemas in essentially different datamodels need to be
integrated. Lately, Semantic web, data warehousing and enterprize integration
systems dramatically increased the interest in heterogeneous data integration
and exchange, and in their theoretical support as well. Not surprisingly, it has
caused the turn to semantics in the field [10, 3, 18, 8, 9, 13].

However, there is a hidden obstacle in working with semantics of schema
integration (often also called model merge), and other model management (MMt)
operations. Consider two data schemas, say, relational, S and T , with the sets of
instances inst(S) and inst(T). Suppose that these two sets are countable and
hence there is a bijective mapping b between them. We can say that schemas S
and T are equally instance capable. However, bijection b provides no meaningful
information about the relative information capacities of the schemas because, as
noted in [15], “... schema instances with no intuitive relationship between them
are allowed to be associated via the mapping”.

The situation radically changes when we first take a mapping between schemas,
p : S → T , that we consider as an interpretation or simulation of T -elements by
S-elements. Then any instance of T can be also considered as an instance of S
by “composition” with p (this construction will be precisely defined in the pa-
per). The result is that we have a mapping [[p]] : inst(T) → inst(S). Now, if it is
known that [[p]] is a bijection, it gives us much more information about relative
information capacity of schemas S and T than an “accidental” bijection b above.
Still, however, we cannot assert that S and T are equally information capable
because the inverse mapping, ([[p]])−1 : inst(S) → inst(T), is “semi-accidental”.
If this inverse mapping would be the [[−]] image of some interpretation between
the schemas, that is, ([[p]])−1 = [[r]] for some mapping r : T → S, then we would
have a meaningful (interpretable) isomorphism between the instance sets of the
schemas and could say that they have equal information capacities.

Is the class E = {f : inst(T) → inst(S) | f = [[p]] for some p : S → T } of ex-
pressible mappings is big enough to cover all meaningful cases? The answer is
negative since there are many interesting and practically useful interpretations

1 This consideration is of course well understood in the community, and the focus
on syntax is caused by the infamous difficulties of building semantic models, not
because their value is underestimated.

2

between schemas not covered by the class of plain interpretations p as above.
Namely, we can consider an interpretation that assigns to elements of schema S
elements computed by queries over schema T rather than elements of T as such.
In fact, such interpretations are well known under the name of views (to schema
T), and we will denote them by, say, double arrows v : S ⇒Q T with Q referring
to the query language in question. In this way we come to a class of expressible
mappings EQ = {f : inst(T) → inst(S) | f = [[v]] for some v : S ⇒Q T }, which
is much broader than E if the query language Q is expressive enough.

In fact, many recent works in data integration and exchange do consider the
class EQ but do not infer it from the class of syntactically defined view mappings.
The latter are considered either semi-formally like in [10] or formally but within
the relational data model as in [9], or the syntactical side is at all disregarded
as in [13]. Thus, the case of generic (datamodel independent) formalism, where
both the syntactical and semantic sides of the issue are modeled, is not covered
in the literature. Note that this problem was explicitly stated in [3] as one of
the most important issues in the generic MMt, and it is the problem where the
present paper is intended to contribute.

1.2 Why category theory.

A major obstacle in approaching the problem is in a generic formal model of
the notion of view mapping. Indeed, it is clear from the discussion above that
it has to involve a generic notion of query language. There are many particular
query languages, and many of them are very well understood formally (with
the relational algebra RA as a notable example). However, it is not easy to
formulate what a query language is in general. In other words, what is that
hypothetic abstract formal pattern/definition of the notion, which would include
as particular special cases such languages as, say, RA, SQL, XQuery and, say,
graph-based languages for querying graph-based data schemas like UML or ER
diagrams? As a query language is a (suitably defined) algebra, the problem can
be reformulated in pure mathematical terms as “what is an algebra in general”?
Although algebra is as ancient as mathematics, and plenty of useful and perfectly
formal algebraic notions were developed, figuring out what algebra is in general
and building the corresponding formal framework turned out to be a highly
non-trivial problem. It was solved relatively recently (in the sixties-seventies) in
the mathematical Category Theory (CT), see [12] for a detailed presentation of
the ideas and [2] for a compendium of useful results. This formal framework is
usually called categorical algebra (CA).

An idea directly suggested by CA and heavily employed in this paper is to
consider a view “mapping” v : S ⇒Q T as an ordinary (elements to elements)
mapping between schemas, v : S → derqT , where derqT is a suitable augmen-
tation of schema T with derived elements computed by some query q against
schema T . Roughly, schema derqT can be thought of as the union of schema
T and the schema of the query q. For example, think of adding to relational
schema T new tables defined by a relational query q. In fact, a similar idea was
used in [4, 3], where query expressions were assigned directly to the mappings

3

between schemas rather than to the target schemas. An essential benefit of the
derqT -approach is that view “mappings” become ordinary mappings that can
manipulated in the ordinary way. (Note also that schema integration is really
saturated with mappings of the form v : S → derqT , since it is a typical situa-
tion of schema overlapping when elements of one schema correspond to elements,
which are not immediately presented in another schema but can be derived in
it by posing suitable queries, see [5] for a detailed discussion).

On the other hand, the original MMt-idea of attributing query expressions
to mappings rather than schemas can also be useful, because it allows us to
consider two different views to the same schema T as two different arrows to
the same target node. A consistent realization of this idea is also possible, but
it requires us to respect some delicate issues in working with arrows, and here
categorical algebra provides guidance that is difficult to overestimate. Note that
developing a convenient machinery for working with arrows coupled with query
expressions was also listed in [3] as an important MMt problem.

To summarize, a theoretical support for current schema and data integration
and exchange problems needs a sufficiently abstract framework, where both the
syntactical and the semantic sides of the issue would be consistently modeled in
a generic way. The main difficulty in building such a framework is in a generic
model of the syntactical side (query languages and views). Though a few crucial
ideas have already appeared in the literature and are known to the community,
their consistent, accurate and well-formalized presentation seems to be absent
so far.2 On the other hand, many necessary concepts and a respective machinery
are already developed in categorical algebra (CA). What should thus be fruitful
for the problems in question (and for generic MMt on a whole as well) is to
adapt CA-constructs to the field and explore how useful their application might
be. This is a broad agenda (still to be justified), and the present paper makes
an initial step; an earlier and less systematic attempt can be found in [6].

1.3 About the presentation and results

Category theory (CT) is notorious even in pure mathematics for an excessively
abstract nature of its constructs3; this is the payment for the capability to for-
malize such notions as “algebra in general” or “xxx in general”. Any author
willing to present categorical machinery for a non-categorical audience is forced
to sail between the Scylla of being formally perfect yet overloaded with exces-
sive technical details, and the Charybdis of being intuitively understandable but
formally approximate with many important formal details omitted. The present
author has chosen a path closer to the latter monster (but hopefully not in a
dangerous proximity to be entirely eaten by “warm and fuzzy” imprecision :-).
Our route in the paper will be as follows.

2 The paper [1] does present a formal framework for encompassing both syntax and se-
mantics of model management but the treatment is a way too abstract; particularly,
derived information/querying is not considered at all.

3 called abstract nonsense during CT’s early days

4

We will begin with a few simple notational conventions and semantic defi-
nitions in sections 2 and 3, including, particularly, a revised definition of infor-
mation capacity (IC-)equivalence between schemas introduced in [15]. We need
it for a correct formulation of schema integration results because we show that
the integrated schema is defined up to IC-equivalence. Generic considerations of
semantics are not too hard, and the definitions in these sections are almost com-
pletely formal. The main body of the paper is in sections 4 and 5 where a simple
example of relational schema integration is discussed. However, the way we will
discuss this particular example is, in fact, categorical and hence ready to be made
generic (datamodel independent). Namely, we will formulate our particular re-
sults in terms of graphs, whose nodes denote schemas and arrows are mappings
between them. Other necessary constructions we encounter in the example are
also formulated in the graph-based terms of diagram operations and predicates,
and mappings between graphs (functors). Though for this particular example
such a generality may seem somewhat excessive (yet all constructs will appear
quite naturally and with a clear relational interpretation), it is justified by the
readiness of the framework for a truly generic reformulation. Indeed, all that we
need to do for this end is (a) to make our graph-based arrangement complete
and consistent (thus entirely eliminating all the peculiarities of the relational
datamodel) and (b) to interpret everything in abstract terms by considering
nodes and arrows as schemas and their mappings in an arbitrary datamodel.
“Arbitrary” here means arbitrary in a very wide class including the relational,
XML, graph-based (ER, UML and the like) and many other datamodels.4 Of
course, a complete realization of the task (a) needs a lot of formal details, and
an accurate formal description is omitted due to space limitations. Some outline
of the formal picture can be found in [6], a full description will appear elsewhere
taking the present paper as a motivation.

Among results presented in the paper are
(i) a quite general pattern for specifying correspondences between schemas

to be integrated (in both syntax and semantics);
(ii) independent semantic and syntactical definitions of schema integration;
(iii) a theorem stating that the semantic and syntactic definitions (ii) have

the same extension and, hence, any algorithm computing the merge according
to the syntactic definition will produce what we really need semantically;

(v) a general framework showing a remarkable duality between the syntactical
and semantic sides of schema integration.

2 Preliminary definitions and notational conventions

In this section we outline a framework of necessary definitions in a semi-formal
style. Making them perfectly formal may itself be non-trivial, part of this work
will be done later. Syntactically, a schema (relational, ER-diagram, DTD, UML
4 Category theory allows us to formally specify the class of datamodels to which

specifications presented in the paper are applicable, and this class turns out to be
really broad and encompassing all models listed above and more,see [?] for details.

5

class diagram) is a structured finite set of elements or items. Semantically, the
fundamental assumption is that a non-empty consistent schema S has a non-
empty set of instances, inst(S). Instances will be denoted by small bold letters,
maybe, indexed, like, e.g., i1 or k. Many our formulas will be much more readable
with another notation for the set inst(S), namely, [[S]]. Thus, expressions inst(S)
and [[S]] are synonyms. A reasonable use of synonymous notation can greatly
facilitate readability and hopefully does not create real problems.

Given two schemas S, T , expression [[S]] ∼= [[T]] means that there is some
uniquely defined/canonic/meaningful isomorphism between the two sets rather
than an “accidental” bijection. Particularly, if two schemas are isomorphic via
some isomorphism i : S

∼=−→ T (syntactical details are irrelevant), the sets of
instances are canonically isomorphic by the isomorphisms [[i]] : [[T]]

∼=−→ [[S]]
and

[[
i−1

]]
: [[S]]

∼=−→ [[T]], and we may write [[S]] ∼= [[T]]. We will also write
i : S ∼= T or just S ∼= T to denote isomorphism of schemas.

A query to schema S is an expression/term q in some query language, which is
formed by S-items and operation symbols of the language; syntactical details of
these expressions are again irrelevant. What matters is that q has its own schema
Sq and that it is a query against S, we write this as q : Sq Ã S. Semantically, a
query is a mapping [[q]] : [[S]] → [[

Sq
]]

(note the reversal of the arrow), where
a mapping means a single-valued totally-defined mapping (function). Following
a common practice, we will often write just q instead of [[q]]. We write q(i) or
i.q or iq for the result of applying the query to instance i (of course, the same
notation will be used within the same formula).

Note that every query q gives rise to a mapping [[q]] between instances but
the converse is not true. Given two schemas S, T , a mapping f : [[S]] → [[T]] is
called expressible if there is a query q : Sq Ã S whose schema is isomorphic to
T , i : T ∼= Sq , and such that f = [[q]] .. [[i]], where .. denotes the operation of
mapping composition.

The difference between ordinary and expressible mappings between instance
sets is a fundamental issue for the subject. Particularly, it motivates the fol-
lowing reformulation of the notion of schema equivalence w.r.t. their informa-
tion capacities discussed in [15]. Two schemas S1,S2 are called equivalent w.r.t.
their information capacities or IC-equivalent, S1 ≡ S2, if there are two queries
q1 : Sq1 Ã S1 and q2 : Sq2 Ã S2 such that

(i) i1 : S2
∼= Sq1 , [[i1]] : [[Sq1]]

∼=−→ [[S2]];

(ii) i2 : S1
∼= Sq2 , [[i2]] : [[Sq2]]

∼=−→ [[S1]];
(iii) and mappings ([[q1]] .. [[i1]]) : [[S1]] → [[S2]] and ([[q2]] .. [[i2]]) : [[S2]] → [[S1]]
set an isomorphism between [[S2]] and [[S1]].

A graph means a directed graph with the possibility of several arrows between
the same two nodes (multigraph). We will often deal with the following two
configurations of nodes and arrows: spans, which are pairs of arrows with a
common source, and cospans, which are pairs of arrows with a common target.

If S is a data schema (relational, ER-diagram, DTD, UML class diagram)
and name is the name of its element (table, column, node), we write name@S

6

to distinguish it from equally named elements of other schemas. If schemas or
mappings are computed by some formal operation/automatic procedure, we call
them derived. In our diagrams, derived objects are depicted with dashed blue
(grey in black-white printing) lines.

3 Instance-based semantics of schema integration

When we consider instances of different schemas, it is useful to explicate their
synchronization/simultaneity relationship. We can do that by introducing some
hypothetical “world schema” W such that all instances of any ordinary database
schema S can be considered as the corresponding projections of the “world in-
stances”. In other words, for any schema S there is a mapping wS : inst(W) → inst(S).
This world schema will not, of course, occur in our syntactical procedures but is
useful for formulating some important semantic conditions.

Now consider two simple relational schemas in the top part of Fig. 1. The
schema S1 consists of two tables, Orders and Hardware, each having three
columns whose names are written under the table names. The second schema
consists of one three-column table Customer. Suppose that somehow we know
that the set of customers referred to by schema S2 is exactly the set of those
customers for schema S1, who ordered products of vendor “HP”. This latter set
can be computed by an evident query q1 specified in schema derq1

S1 in Fig. 1.
In addition, for these two sets of customers, the columns custName@S1 and
name@S2 must contain the same values.5

Semantically, these conditions mean that if k is a world instance and ij =
k.wSj (j = 1, 2) are the corresponding (synchronized) local instances, then the
equality i1.q1 = i2.q2 holds. Here qj : S0 Ã Sj , j = 1, 2 are the queries described
in the conditions and S0 is their common schema (see Fig. 1). In other words,
the conditions state the commutativity of the triangle diagram (1) in Fig. 2
3.1 Definition: problem of schema matching, semantically. Given two
schemas S1,S2 called local, the schema match problem is to find a pair of queries
qj : S0 Ã Sj (j = 1, 2) with a common schema S0 = Sq1 = Sq2 such that diagram
(1) in Fig. 2 commutes. In such a case, the triple (cospan) Q = (S0, q1, q2) of type(
[[S1]]

q1→ [[S0]] ←q2 [[S2]]
)

is called a semantic match for the pair (S1,S2).
As the world instances are only imaginary entities, in practice we cannot

formally check the commutativity condition. Nor can we formally check whether
a cospanQ captures all or just part of the overlapping between the local schemas.
Schema matching is a heuristic activity providing the input information for the
integration algorithm but not its formal part. Of course, it does not exclude a
possibility of building special schema matching algorithms based on inductive
learning and other similar techniques developed in AI (see [11, 17] for some
results).

5 How can we obtain such a knowledge is, of course, a special issue considered in the
discipline of schema matching in-between databases, AI and pragmatics, see [17] for
a survey and [7] for a brief discussion.

7

mapping v2

schema S1*=
���

q1S1
Orders Hardware T=ππππc,cN (σσσσ vend=”HP”(Ord ⊗⊗⊗⊗Hdw))

customer# product# col1=customer-proj
custName prodName col2=custName-proj

product# vendor

schema S0
HP-customer

customer#

name

schema S2
Customer

customer#

name

bDate

schema S*ΣΣΣΣ
Orders Hardware HP-Customer

customer# product# customer# = col1 of T

name prodName name = col2 of T

product# vendor bDate

schema S2
Customer

customer#

name

bDate

 schema S1
Orders Hardware

customer# product#

custName prodName

product# vendor

��� ���	
���	� ����	
�
�� ��
�� �	
��

�� ����� ��� ������ ������� ��	
� 	� (S0,r1,r2)

	�� ���� ���

S*ΣΣΣΣ = S1 ⊕⊕⊕⊕(S0,r1,r2) S2

�������� ������� ������

mapping r1 mapping r2 query q1

schema SΣΣΣΣ
Orders Hardware HP-Customer

customer# product# customer#

name prodName bDate

product# vendor

mapping v1

Constraint C: ππππc (σσσσ vend=”HP”(Ord ⊗⊗⊗⊗Hdw) = ππππc(HP-Cust)

Fig. 1. Example of schema integration. [Derived elements are shaded
(and blue in color print) . In long expressions, names of tables and
columns are abbreviated by few letters.]

8

3.2 Definition: problem of schema integration, semantically. Given a
cospan Q of matched schemas as above, find a span G = (G, g1, g2) of type(
[[S1]] ←g1 [[G]]

g2→ [[S2]]
)
, where G is a schema called global and gj : [[G]] → [[Sj]],

(j = 1, 2) are two queries to it from the local schemas, gj : Sj Ã G, such that
triangle diagram (2) in Fig. 2 commutes.

Evidently, there may be many global spans satisfying the condition above.
We say that a global span (G!, g!1, g!2) is exact or (exactly) integrates the local
schemas modulo their match Q, if it possesses the following universal property
in the totality of all global spans: for any global span (G, g1, g2), there is a
uniquely defined query mapping ! : [[G]] → [[G!]] making all diagrams in Fig. 2
commutative.

Input data
(schema

matching)

Output data:
Universal
property

Merge

(a) Semantically
(arrows are mappings between sets)

 (b) Syntactically (arrows are view
morphisms between schemas)

v2

g2 g1

!

w2 w1

q1 q2

g!1

inst(S0)

inst(S1) inst(S2)

g!2

(1)

inst(G!)

inst(G)

(2)

inst(W)

r1 r2

v1

(1)

S1 S2

S0

 S*ΣΣΣΣ

W

 [merge]

[cover]

Fig. 2. Schema integration

Note a principle distinction of the schema integration problem from that
of schema matching: in the former, we can formulate commutativity and uni-
versality conditions and check them without the imaginary world instances. In
fact, these conditions define a binary predicate Merge(X ,Y) over the universe
of spans of the specified type, and a span G = (G, g1, g2) integrates the local
schemas matched by a cospan Q iff the sentence Merge(Q,G) is true, we write
|= Merge(Q,G).

The universal property allows us to prove that the integrated schema, if it
exists, is uniquely determined up to its information capacity.

3.3 Proposition. If G! = (G!, g!1, g!2) and G!! = (G!!, g!!1, g!!2) are two integra-
tions of a cospan Q, that is, |= Merge(Q,G!) and |= Merge(Q,G!!), then G! and
G!! are IC-equivalent, G! ≡ G!!.

Proof. Universality of G! provides the existence of a unique query ! : [[G!!]] → [[G!]]
and universality of G!! provides !! : [[G!]] → [[G!!]]. Commutativity of the respec-
tive diagram means that these query mappings are mutually inverse.

9

Note that definition 3.2 is declarative/denotational rather than operational:
it does not give an algorithm of actual building the integrated schema nor does
it give any evidence that such a schema actually exists.

Now we are going to put our abstract semantic definitions on hold for a while
and consider the example in Fig. 1 in quite concrete syntactical terms.

4 Example of schema integration, syntactically

4.1 Match and merge

Our first step is to specify the match/correspondence between schemas syntacti-
cally rather than semantically. To this end, we augment schema S1 with a derived
table T with columns col1, col2 computed as prescribed by query q1 specified
in Fig. 1 (the derived elements are shaded). We denote the augmented schema
by derq1

S1 or S1
∗. We then introduce a new schema S0 with the only table

HP-Customer and show how this table is represented in the local schemas. This
work is done by schema mappings rj : S0 → Sj

∗ = derqj
Sj (j = 1, 2) targeted

into local schemas augmented with derived elements (for our particular exam-
ple, S2

∗ = S2). Following category theory, we will call such mappings Kleisly
morphisms. Thus, now the correspondence information is specified by a span
R = (S0, r1, r2) of type

(
derq1

S1 ←r1 S0
r2→ derq2

S2

)
. In contrast to seman-

tic match Q (which is a cospan), arrows in the span R are purely syntactic
entities: they map schemas as sets of elements rather than sets of instances.

The span R can be thought of as a set of equalities between local schema el-
ements like col1@S1

∗ = customer#@S2 and col2@S1
∗ = name@S2, which should

be used to eliminate unnecessary duplication of schema elements in their merge.
A natural next step is to merge the augmented local schemas disjointedly and
then factorize the merge modulo the equalities. The latter means that we glue
together those elements which are images of the same element in schema S0.
Roughly speaking, it will make the resulting schema S∗Σ a disjoint union of the
three components:

(1) S∗Σ ∼= (S1
∗ \ S0)] S0] (S2

∗ \ S0).

Speaking more accurately, we need to consider the corresponding mapping be-
tween schemas, and consider the result of integration to be a cospan S∗ =
(S∗Σ , v1, v2) specified in Fig. 1, see also Fig. 3 (ii).

To finish integration, we need to remove from S∗Σ derived (shaded) items.
Unfortunately, in general this process is not trivial since removal derived items
may violate some structural requirements to schemas. For instance, in our exam-
ple, removing the derived column cutomer# will leave the table HP-Customer
without its primary key. Hence, we forced to keep it in the schema but then add
to it a corresponding integrity constraint (see Constraint C in Fig. 1).

Thus, an important final part of the integration procedure should be a special
procedure of schema normalization. The latter is aimed at finding some schema

10

SN with minimal redundancy but equivalent to the merge schema in the follow-
ing sense: each element of the merge schema SΣ

∗ can be derived from SN (no
information is lost) and conversely, each element of SN is derivable from SΣ

∗

(nothing extra is acquired). It is easy to see that our schema SΣ can be further
normalized but a detailed discussion goes beyond the goals of this paper.

(i) Specifying correspondence (ii) Merge (push-out) operation (iii) Normalization

S1

derq1S derq2S

S2 S0

r2 r1

S1

derq1S1 derq2S2

S2 S0

v1 v2

 [merge]

S*ΣΣΣΣ

[cover]

eΣ eN [≅]

SN

S*ΣΣΣΣ derqΣΣΣΣ S*ΣΣΣΣ

derqN SN

Fig. 3. Schema integration syntactically

4.2 Towards abstraction: Views as Kleisly morphisms

Consider Fig. 3 where we make a step to abstraction from peculiarities of our
relational example and present the syntactical procedures above in an abstract
graph-based notation. Nodes denote schemas considered as sets of elements and
arrows are mappings between them; hooked arrows denote set inclusions. Label
merge denotes the operation of disjointed union of the two schemas followed by
factorization according to the “equalities” specified by span R = (S0, r1, r2).
The result is a merge cospan SΣ = (S∗Σ , v1, v2). In the linear notation we can
write this as SΣ = merge(R).

We see that arrows of the form v : Sv → derqS play a fundamental role in
schema integration (it was also noted in [5]). In fact, such arrows formally model
the well-known notion of view (with Sv being the view schema). This interpre-
tation suggests the following useful rearrangement of our notation.

In the view specification as above, we can attribute the reference to query q
to the very arrow rather than to its target and rewrite the view expression as
vq : Sv ⇒ S, where the double arrow⇒ denotes a mapping into derqS rather than
S.6 Particularly, two different views to schema S with the same schema Sv1 = Sv2

will be two different arrows with the same target. We will call these double arrows
view mappings or, following the terminology adopted in category theory, Kleisly
mappings/morphisms. Note that queries become trivial view/Kleisly arrows for
which derqS = S] Sq and the view mapping v is nothing but the canonical
embedding of Sq into S] Sq . Thus, our query arrows Ã are just special view

6 To be accurate, we need to attach to the arrows a reference to the query language.
Since our query language is fixed, we omit the reference.

11

arrows. With view mappings, the procedure of schema integration is specified in
Fig. 2(b).

5 Syntax and semantics together: united yet dual

Diagrams in Fig. 2 present our work with the relational example in a compact
and observable way way. We at once note a remarkable similarity between the
semantic and syntactic sides of the issue. However, so far these sides are not
related. The diagram (a) presents a definition, that is, a predicate Merge(X ,Y)
over spans in the universe of instance sets and view/query mappings. However,
it does not give any procedural clue to how to find the integrated spans nor
proves their existence. In contrast, diagram (b) is procedural: it refers to an
operation/procedure merge that, given an input span R = (S0, r1, r2), computes
its merge, a cospan SΣ = (S∗Σ , v1, v2). We will briefly write it as SΣ = merge(R).

The major question is how the syntactical and semantic sides of schema
integration are related. Particularly, what is semantic meaning of our merge
cospan SΣ built syntactically? Can we extract from it a global span semantically
integrating schemas as defined in definition 3.2? These are the questions to be
answered in this section.

5.1 Instances as mappings

In our syntactical section 4 we worked with mappings between relational schemas.
These mappings send table names to table names and column names to column
names preserving the columns’ domains and the containment relation between
tables and columns. The key to specifying syntax-semantics relationships is an
observation that schema instances can be also considered as schema mappings.
Let our relational schemas be created over some set D of basic domains/SQL
types. Consider a huge relational schema U, whose ”table names” are all possi-
ble tables populated with data values from D, that is, all relations over D. The
”column names” are the columns of data values, that is, the projection mappings
of the relations. Then instances i of schema S can be considered as mappings
i : S → U into U. 7

Given a query q against S, any S-instance can extended to an instance
derq i : derqS → U in a unique way. In more detail, we first extent i to an in-
stance derq i : derqS → derqU homomorphically by substitution. Then we use a
special nature of schema U: since U’s elements have actual contents (extension)
over which queries really operate, any query q(u1...un) over U can be evaluated
to a real element (ie, a relation) in U; it gives rise to a mapping αq : derqU → U.
Finally, composition of this mapping with derq i gives a mapping from derqS
to U, which by an abuse of notation we also denote by derq i. Conversely, any
instance i : derqS → U can be reduced to its projection ieS : S → U. In this way
we set a canonical isomorphism between sets inst(S) and inst(derqS) and show
that schemas S and derqS are IC-equivalent (as it should be).

7 Add a few words about integrity constraints.

12

Now let v : Sv → derqS be a view (Kleisly mapping) to schema S, and i : S → U
be an S-instance. By extending i to derq i : derqS → U and then composing it
with v, we obtain an Sv-instance v .. derq i : Sv → U. In this way any view map-
ping v between schemas gives rise to a mapping between the corresponding
instance sets going in the opposite direction. We will denote this mapping by
[[v]], that is, [[v]](i) def= v .. derq i.

Thus, any schema S is assigned with its sets of instances [[S]], and any view
mapping v : Sv → derqS gives rise to the mapping [[v]] : [[S]] → [[Sv]] (note the
reversal of arrows). Then any configuration/diagram C in the universe of schemas
and view mappings between them is mapped to a similar yet dual (with reversed
arrows) configuration [[C]] in the universe of sets (of instances) and functions
between them. Particularly, a correspondence span R = (S0, r1, r2) between
schemas S1,S2 is mapped to a matching cospan [[R]] = ([[S0]], [[r1]], [[r2]]). Ta-
ble 1 summarizes these observations.

Table 1. Syntax-vs-semantics duality, I

Syntax Schema,
S

View mapping,
v : Sv → derqS or v : Sv ⇒ S

Correspondence span,

S1 ⇐===
r1

S0 ===
r2⇒ S2

Semantics Instance set,
[[S]]

Query mapping,
[[v]] : [[S]] → [[Sv]]

Match cospan,

[[S1]]
[[r1]]→ [[S0]] ←[[r2]]

[[S2]]

The following theorem adds to the table the column about schema integra-
tion.
5.1 Theorem: syntax-vs-semantics duality, II. Let S1,S2 be two schemas
with a correspondence span

R = (S0, r1 : S0 ⇒ S1, r2 : S0 ⇒ S2) between them, and cospan
SΣ = (SΣ , v1 : S1 ⇒ SΣ , v2 : S2 ⇒ SΣ) is the result of syntactical integration

(in the universe of schemas and view mappings), SΣ = merge(R). Then the state-
ment |= Merge([[R]], [[SΣ]]) is true. In other words, our syntactical integration
procedure produces a semantically required result.

Proof. Let SΣ =
(

S1 ===
v1⇒ SΣ ⇐===

v2
S2

)
be the merge cospan of some cor-

respondence span R =
(

S1 ⇐===
r1

S0 ===
r2⇒ S2

)
as defined in sect. 4, SΣ =

merge(R). Then the following two lemmas hold.
5.2 Lemma: a universal property of syntactic schema merge. For any

other cospan SΣ
′ =

(
S1 ===

v′1⇒ SΣ
′ ⇐===

v′2 S2

)
making a commutative square

with R, there is a uniquely defined view mapping ! : SΣ ⇒ SΣ
′ making all the

diagrams involved commutative. In other words, the merge cospan is minimal
among all cospans making the diamond R♦S ′ commutative.
Proof. Consider the structure of merge schema in the presentation (1) on p.10.

13

5.3 Lemma: an element-wise specification of [[SΣ]]. Let PB([[R]]) denotes
the following set specified element-wise (ie, via its elements):

PB([[R]]) def= {(i1, i2) ∈ [[S1]]× [[S2]] | [[r1]](i1) = [[r2]](i2)} .

Then there is a canonically defined isomorphism [[SΣ]] ∼= PB([[R]]).

Proof. By definition of functor [[.]],

PB([[R]]) = {(i1, i2) ∈ [[S1]]× [[S2]] | r1 .. i1 = r2 .. i2 }
Then for any pair (i1, i2) ∈ PB([[R]]) there exists a unique mapping ! : SΣ → U by
the universal property of SΣ (Lemma 5.2). It gives rise to a mapping f1: PB([[R]]) → [[SΣ]].
Conversely, if k : SΣ → U is an instance of SΣ , it gives rise to the pair of instances
vj..k ∈ [[Sj]], j = 1, 2. It makes a mapping f2: [[SΣ]] → PB([[R]]). Owing to uni-
versality, these mappings are mutually inverse and, hence, [[SΣ]] and PB([[R]])
are canonically isomorphic, [[SΣ]] ∼= PB([[R]]).

Now let span G! =
(
[[S1]] ←g!1 [[G!]]

g!2→ [[S2]]
)

integrates cospan [[R]] as
defined in definition 3.2, that is, |= Merge([[R]],G!). The universality property of
G! together with lemma 5.3 imply the existence of mapping ! : [[PB([[R]])]] → [[G!]].
On the other hand, we have a mapping [g!1, g!2] : [[G!]] → [[S1]]× [[S2]]. Since the
diamond in Fig. 2(a) is commutative, and the set PB([[R]]) contains all pairs in
[[S1]]×[[S2]] for which we have commutativity, the image of mapping [g!1, g!2] will
be inside PB([[R]]). Thus, in fact we have a mapping [g!1, g!2] : [[G!]] → PB([[R]]).
By commutativity of the diagrams involved, these mappings are mutually inverse
and hence PB([[R]]) ∼= [[G!]]. Lemma 5.3 now implies [[SΣ]] ∼= [[G!]] Q.E.D.

The result of Theorem 5.1 can be presented in the following (typically cate-
gorical) way.
5.4 Corollary. Let SchemaSpan, SetSpan, SchemaCospan and SetCospan
denote universes of spans and cospans in the universes of schemas and sets, re-
spectively. Then the following diagram is commutative:

Syntax: SchemaSpan
merge .. norm→ SchemaCospan

Semantics:

instanceSet↓
SetCospan

[[.]]↓
Merge

→ SetSpan

[[.]]↓

Here Merge denotes the operation of semantic merge (Definition 3.2) up to IC-
equivalence (Proposition 3.3), merge is the operation of syntactic merge and
norm is the operation of schema normalization (Section 4.2) also determined up
to IC-equivalence. Commutativity of this diagram is a formal explication of the
duality between syntax and semantics, and a formal semantic justification of
syntactical integration algorithms.

14

References

[1] S. Alagic and P. Bernstein. A model theory for generic schema management. In
Proc. DBPL’2001, 2001.

[2] M. Barr and C. Wells. Toposes, Triples, Theories. Springer, 1985.
[3] P. Bernstein. Applying model management to classical metadata problems. In

Proc. CIDR’2003, pages 209–220, 2003.
[4] P. Bernstein, A. Halevy, and R. Pottinger. A vision for management of complex

models. SIGMOD Record, 29(4):55–63, 2000.
[5] B. Cadish and Z. Diskin. Heterogenious view integration via sketches and equa-

tions. In Foundations of Intelligent Systems, 9th Int.Symposium, Springer LNAI
#1079, pages 603–612, 1996.

[6] Z. Diskin and B. Kadish. A graphical yet formalized framework for specifying view
systems. In Advances in Databases and Information Systems, pages 123–132, 1997.
ACM SIGMOD Digital Anthology: vol.2(5), ADBIS’97.

[7] Z. Diskin and B. Kadish. Generic model management. In Rivero, Doorn, and
Ferraggine, editors, Encyclopedia of Database Technologies and Applications, pages
258–265. Idea Group, 2005.

[8] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data exchange: Semantics and query
answering. In Proc. Int. Conf. on Database Theory, ICDT, 2003.

[9] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data exchange: semantics and query
answering. Theoretical Computer Science, 336(1), 2005.

[10] M. Lenzerini. Data integration: A theoretical perspective. (Invited tutorial). In
21st ACM Symposium on Principles of database systems, pages 233–246, 2002.

[11] J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching with Cupid.
In 27th VLDB Conference, Roma,Italy, 2001.

[12] E. Manes. Algebraic Theories. No.26 in Graduate Text in Mathmetics. Springer
Verlag, 1976.

[13] S. Melnik, P. Bernstein, A. Halevy, and E. Rahm. Supporting executable mappings
in model management. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pages 167–178, New York, NY,
USA, 2005. ACM Press.

[14] R. Miller. Using schematically heterogeneous structures. In SIGMOD ’98: Pro-
ceedings of the 1998 ACM SIGMOD international conference on Management of
data, pages 189–200, New York, NY, USA, 1998. ACM Press.

[15] R. Miller, Y. Ioannidis, and R. Ramakrishnan. The use of information capacity in
schema integration and translation. In R. Agrawal, S. Baker, and D. Bell, editors,
19th International Conference on Very Large Data Bases, pages 120–133, 1993.

[16] R. Miller, Y. Ioannidis, and R. Ramakrishnan. Schema equivalence in heteroge-
neous systems: bridging theory and practice. Information Systems, 19(1):3–31,
1994.

[17] E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching.
VLDB Journal, 10(4):334–350, 2001.

[18] Y. Velegrakis, R. Miller, and L. Popa. Mapping adaptation under evolving
schemas. In Proc. 29th VLDB, 2003.

15

