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ABSTRACT

This paper is intended as a survey of the state of the art of some branches of
Biomolecular Computing. Biomolecular Computing aims to use biological hardware
(bioware), rather than chips, to build a computer. We discuss the following three main
research directions: DNA computing, membrane systems, and gene assembly in cili-
ates. DNA computing combines practical results together with theoretical algorithm
design. Various search problems have been implemented using DNA strands. Membrane
systems are a family of computational models inspired by the membrane structure of
living cells. The process of gene assembly in ciliates has been formalized as an abstract
computational model. Biomolecular Computing is a field in full development, with the
promise of important results from the perspective of both Computer Science (models of
computation) and Biology (understanding biological processes).

1. Introduction

Virtually all computers we currently use are based on semiconductor technology.
Silicon semiconductors perform all computations in industry today. Although silicon
based computers improve rapidly, computational needs also increase, as ever more
complex problems can be formulated and wait to be solved. Searching for more
powerful computers, opens the door to researching utterly different technologies,
miniaturized to even elemental components (such as molecules or atoms). These
are expected to challenge the limits of current semiconductor technology.

Many existing physical and chemical systems in our natural environment are
surprising by their highly organized structure. None of them, however, can compete
with the simplest biological system. Any biosystem excels in terms of its complexity,
its design, the processes it performs, its adaptability to changing circumstances,
and so on. A colony of bacteria, a cell, or a cell complex can be viewed and
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studied as micro scale living (in vivo) biological systems. Subsequently, any chain of
interdependent biochemical processes affecting synthesized organic molecules also
forms a biological system (in vitro). In the latter case, organic molecules refer
to molecules of DNA, RNA, proteins, enzymes, and so on, which are not alive
themselves but play an active, indeed crucial, role in the life of a cell or body.
For example, a set of DNA strands in a water solution undergo transformations of
lengthening shortening, annealing, multiplication, and filtering. This yields a well
defined in vitro biological system.

The idea follows immediately: Could a biological system (a collection of cells)
work at a task defined by a human? Living organisms already accomplish vastly
complex tasks in nature, and do so reliably.

The goal of Biomolecular Computing is exactly this: To solve computational
problems using a biological system rather than a conventional computer [46]. When
a biosystem yields the “hardware”, aptly named “bioware” a new biocomputer is
born.

This survey presents results of Biomolecular Computing. It should be noted
that the latter is one of several research domains in which Biology and Computer
Science meet. Thus:

e The computational power of current computers is used to address biology
problems in Bioinformatics and Biomedical Computing.

e The design of algorithms has benefited from biology knowledge, by using bi-
ological principles or copying biological processes. Several classes of so called
biologically-inspired algorithms exist, such as Genetic Algorithms, Evolution-
ary Algorithms, Ant Colony Algorithms, and so on.

e Computers can be made of biological matter (DNA molecules, cells, cell
colonies, etc). The computational models are directly defined by the bioware
used and algorithms are designed to exploit these models. This is Biomolec-
ular Computing and the object of this paper.

2. DNA Computing

In DNA computing the computation is performed by DNA strands. The strands
are obtained synthetically. To execute a computation step means to apply some
lab manipulation technique to the DNAs in a test tube. The strands act both as
processors and memory units. Experiments using DNA computing have solved NP-
complete problems in linear time, covering an exponential space in parallel. The
strength of DNA computing is huge parallelism in a relatively small physical space,
due to the molecular size of the computation units.

The DNA, Deoxyribonucleic Acid, is a long, linear molecule. It consists of
a chain of nucleotides held together by phosphodiester bonds. Each nucleotide
contains one of four bases: A (adenine), C (cytosine), T (thymine), and G (guanine).
As the rest of the nucleotide is invariably the same (a phosphate and a sugar), the
DNA chain, or strand, can be fully described by the sequence of bases. The bases A
with T, and C with G respectively, are Watson-Crick complementary. This means



that, complementary bases brought into proximity form hydrogen bonds and tend
to remain together. Because of the hydrogen bond attraction, two strands with
pairwise complementary bases, stick together forming a double helix. A double
helix DNA molecule is also called a double stranded DNA molecule (dsDNA). The
simple, one strand DNA is a single stranded DNA molecule (ssDNA).

2.1. Molecular Operations

Nowadays, DNA strands are commonly manipulated in the lab. Several stan-
dard techniques are used in DNA computing to perform a DNA computation. The
following is a list of the most common DNA processes and techniques used in DNA
computing.

1.

annealing and denaturation. As already mentioned, complementary DNA
strands tend to stick together forming dsDNA. This process is called anneal-
ing. dsDNAs are stable at low temperatures, lower than 35° C. When heated
to 65° C, the hydrogen bonds are broken and the dsDNAs are separated into
ssDNAs. This separation is called denaturation.

. repairing nicks. A nick is a broken phosphodiester bond. Consider two

ssDNA strands that both anneal to a longer complementary ssDNA strand.
By annealing they are brought side by side, but their sugar-phosphate back-
bone link is missing. Nicks are repaired by an enzyme: DNA ligase. DNA
ligase added to a DNA solution repairs broken nicks.

multiplying DNA using polymerase chain reaction (PCR). PCR is a
common method to create copies of dsDNA. The technique applies to short
strands, up to 10 kb (kilo base pairs). One PCR cycle performs the following
steps. The dsDNA strands are denaturated. Primers (small ss complemen-
tary to the ends of the DNA strand) are attached to the ssDNA. The enzyme
DNA polymerase copies the rest of the strand. Hence the number of DNA
strands is doubled. This cycle is repeated 20-35 times, which increases the
quantity of DNA exponentially.

measuring the length of DNA molecules using gel electrophoresis.
The length of a ss molecule is the number of nucleotides in the strand. This
length can be determined using gel electrophoresis. DNA is an acid and there-
fore electrically charged. In an electric field, DNA molecules tend to migrate
towards the positive electrode. The migration medium is a gel. The gel slows
down the larger molecules, whereas small molecules travel faster. In fact, the
distance traveled by a molecule in the gel is proportional to its size (length).
Thus, the length of the molecule is determined by its position in the gel.

. fishing out known substrands using magnetic bead separation. Given

a solution with various different strands of DNA, magnetic bead separation
extracts the molecules that contain a certain substrand. The method uses
the annealing property of complementary strands. The complement of the
substrand of interest is attached to a magnetic bead. This complement is
called the probe. Under proper temperature conditions, a great majority of



Figure 1: The graph in Adleman’s experiment.

target molecules will attach to the probes on the beads. The beads are then
taken out of the solution by an electric field.

6. reading out the sequence of nucleotides. The DNA sequencing method
designed by Fred Sanger (around 1970) determines the sequence of the four
bases in a ss DNA. New complementary DNA single strands are synthesized
from the original by the action of polymerase. Sanger’s method terminates
the copied molecules at all intermediate lengths. This is done by chemi-
cally altered nucleotides (dideoxynucleotides). The sugar in these nucleotides
lacks the hydroxyl group and thus cannot further extend the phosphodiester
bond. Reading the different lengths determines the position of the modified
nucleotides and consequently their bases.

2.2. Adleman’s Ezperiment

DNA computing was pioneered by an experiment believed to be the first com-
puter built from DNA molecules. Leonard Adleman [2], in 1994, showed that manip-
ulating DNA is equivalent to running the implementation of an abstract computa-
tion. He applied the well established DNA properties and manipulation techniques
described above to perform the computation. It turns out that using these sim-
ple techniques is enough to solve the well known NP-complete Hamiltonian path
problem. A Hamiltonian path in a graph is a path starting in a designated source
vertex, ending in a designated destination vertex, and visiting all other vertices
exactly once. The Hamiltonian path problem means to search for a Hamiltonian
path in a graph. For a graph with n vertices, no algorithm is known for solving
the Hamiltonian path problem in time linear in n. The only known solution is to
enumerate all possible paths, which requires O(n!) time.

Adleman’s experiment effectively solved the Hamiltonian path problem on a
small instance of a graph. The graph is given in fig. 1. It contains seven vertices



and the goal is to find a Hamiltonian path starting in vertex 0 and ending in
vertex 6. It can be verified visually that the only Hamiltonian path in fig. 1 is
0-1-2-3-4-5-6.

The algorithm is an exhaustive search of all paths in the graph. Each DNA
molecule represents one path. The algorithm [3] is short and elegant:

Given a graph with n vertices,
1. Generate a set of random paths through the graph.
2. For each path in the set:

(a) Check whether that path starts at the start vertex and ends with the
end vertex. If not remove that path from the set.

(b) Check whether that path passes through exactly n vertices. If not, re-
move that path from the set.

(¢) For each vertex, check if that path passes through that vertex. If not,
remove that path from the set.

3. If the set is not empty, then report that there is a Hamiltonian path. If the
set is empty, report that there is no Hamiltonian path.

It remains to explore how DNA can implement the simple algorithm described
above.

The first step is easily solved, if the input (the graph) is encoded in an advan-
tageous way. The graph, vertices and edges, have to be translated to DNA strands.
This is the point where Watson-Crick complementarity gets fully exploited. Each
primitive, vertex or edge, is encoded in a ss DNA of twenty nucleotides. Consider
for the graph in fig. 1, that the seven vertices are encoded by some arbitrary, dis-
tinct ss DNA strands, of length 20 each. We denote that sequence of nucleotides
for vertex i: m;1mi2m;3...n420. In particular, the strands ng,i1n0,2n0,3...10,20 and
N1,1M1,2M1,3...N1,20 represent the vertices 0 and 1 respectively. The edges are en-
coded depending on the already existing vertices’ strands. Let nucleotide 7 be the
complement of nucleotide n. The strand representing the directed edge (4, j) is con-
structed as follows: the first half (10 nucleotides) of the edge are the complement of
the second half of vertex ¢; the second half (next 10 nucleotides) of the edge are the
complement of the first half of vertex j. Therefore, the edge (4, 5) is represented by
the ss DNA T;117i,12.-T4,20M5,17,2..-0j,10- In particular, for the edge (0,1) in fig.
1 the strand is ﬁ0’11ﬁ0,12...ﬁ0,20ﬁ1,1ﬁ1,2...ﬁ1,10.

The advantage of this encoding can be seen immediately. Vertex 0 anneals to
edge (0,1) (fig. 2) and the second half of edge (0,1) anneals to vertex 1 (fig. 3).
Vertex 1 has been appended to vertex 0. DNA ligase, the enzyme specialized in
repairing nicks, takes care to bind the two strands by the necessary phosphodiester
bond. The new single strand 0 — 1 containing vertex 0 and vertex 1 shows that
there exists a path from 0 to 1.

The initial test tube is a water solution containing many copies of each vertex
and edge of the graph. When the test tube is shaken, vertices anneal to edges
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edge (0,1)

Figure 2: Vertex 0 annealed to edge (0,1).

vertex O vertex 1
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edge (0,1)

Figure 3: Vertex 1 appended to vertex 0 by annealing to edge (0,1).

| vertex 2 | vertex3 | vertex2 |vertex3  |vertex2 |
| edge (2,3) | edge (3,2) | edge (2,3) | edge (3.2) |

Figure 4: The path2 -3 -2 -3 - 2.

[vertex 0 [vertex1 [vertex2 [vertex3 [vertex4 [vertex5 |vertex6 |
| edge (0,1) | edge (1,2) | edge (2,3) | edge (3,4) | edge (4.5) | edge (5,6) |

Figure 5: The Hamiltonian path 0 —1—-2—-3 -4 -5 —6.



forming valid paths in the graph. Fig. 4 shows the path 2 —3 — 2 — 3 — 2, fig.
5 shows the Hamiltonian path 0 — 1 —2 -3 —4 — 5 — 6. If there are sufficiently
many copies of each primitive, the probability that a particular path (here the
Hamiltonian path) has been formed is close to 1.

Step 2 is done in parallel on all paths-strands in the test tube. Paths starting
with the source 0 and ending with the destination 6, step 2a, are weeded out using
PCR. Paths of the length of 7 vertices are separated using gel filtering: the gel
corresponding to 7 x 20 = 140 nucleotides is cut out and used further. Step 2c
loops over all vertices in the graph (excluding the source and destination). For each
vertex, all paths that contain that vertex are extracted by magnetic bead separation
and used further. After step 2, only Hamiltonian paths remain in the test tube:
paths of length 7, visiting all vertices.

In step 3, the DNA sequence of the strand left in the tube, if any, is read out
using Sanger’s sequencing method.

The algorithm described above is in the category of exhaustive search algo-
rithms. The search space for finding the Hamiltonian path is the set of all possible
paths in the graph. This space is inspected in parallel. All paths are tested for
Hamiltonian validity at once. Although, Adleman spent seven days in the lab to
perform the molecular operations manually, the number of computation steps re-
quired by the algorithm is linear in the number of vertices of the graph. This result
is remarkable, since the best sequential algorithm known needs exponential time.
The polynomial-time complexity of Adleman’s implementation is accomplished by
the massive parallelism that computations using DNA strands can achieve. Every
DNA strand represents one path in the search space. As one molecule represents one
path, a test tube has the potential of holding a huge number of paths. 10'®> — 10'7
strands of DNA are routine in a small test tube experiment [45]. In fact, the search
space is exponential in the number of vertices. Thus, the algorithm works in lin-
ear time, but needs to cover an exponential space. This space can be inspected in
linear time due to the exponential parallelism of the algorithm. Note that, there
is no constant bound on the number of threads to be executed in parallel. The
parallelism depends on the size of the problem, in particular the number of threads
executed in parallel is exponential in the number of vertices.

Note that this algorithm is not perfect [3]. The Hamiltonian path is not guar-
anteed to be generated in the first step. There is a degree of nondeterminism in
generating the paths. An edge (i,j) may stick to any occurrence of the vertex i
and respectively the vertex j, possibly favoring some paths. If the paths in step 1
are generated randomly enough and if the set of initial primitives is large enough,
then the probability is high that the algorithm will give a correct answer.

3. Exploiting Parallelism

The prospect of having a DNA computer built, means to have regular and
easy access to performing 10'5 — 10'7 operations in parallel. This number is huge
compared to what can reasonably be expected from conventional parallel computers.
It also has the potential of sweeping large search spaces at once. Pioneering with
Adleman’s contribution, exhaustive search algorithms, based on DNA computing,
have been designed for several NP-complete problems. Adleman’s exhaustive search



procedure does not necessarily apply as such to the other NP-complete problems,
as the translation into DNA operations is not obvious or straightforward.

Lipton [35] solves the well-known satisfiability problem (SAT) using the same
algorithmic steps. Consider a boolean expression that contains only variables, the
connectives AND, OR, and NOT, and parentheses. An assignment of TRUE or
FALSE to all variables, that makes the entire boolean expression true, is an as-
signment that satisfies the expression. The SAT problem is a decision problem, it
aims to determine whether there exists an assignment that satisfies a given boolean
expression. Lipton’s algorithm finds such an assignment, if it exists, or gives a
negative answer otherwise. The ingenuity of the algorithm consists in translating
the boolean formula into a graph. The paper considers boolean formulas of the
following types:

1. a conjunction of m clauses, where a clause is a disjunction of a fixed number
of literals (boolean variables or negated boolean variables).

2. any boolean formula containing negation, and, or, and parentheses.

In both sub-cases, the DNA computer works in linear time in the length of the
boolean formula.

As there is an equivalence between general boolean formulas and contact net-
works [49], these networks also find their solution in Adleman’s exhaustive search
[35]. Contact networks are oriented graphs with a designated source and destina-
tion vertex. Edges are assigned boolean variables or their negation. The source is
connected to the destination, if there exists an assignment to the variables, such
that all edges on the connecting path are true.

Chang et al. [15] design an algorithm to solve the maximum independent set
problem. The algorithm finds the maximum sized subset V' of vertices in a graph,
such that no two vertices in V' are connected by an edge. The execution time is
linear in the number of edges.

Ouyang et al. [37] solve the maximum clique problem and also manage a prac-
tical implementation for a graph with 6 vertices. The maximum clique is a subset
of vertices of maximum size such that the resulting subgraph defined by these ver-
tices is fully connected. The algorithm is linear in the number of edges of the
complementary graph.

A different algorithmic solution to the Hamiltonian path problem is found in
Beaver’s paper [8]. Although the general idea is the same, namely parallel ex-
haustive search of an exponential space, the procedure is different. A text inser-
tion/deletion method is used to test for visiting every node. This method tem-
porarily lengthens the DNA strands and selects correct strands according to their
length. The final reading out of the path first reduces the number of Hamiltonian
paths existing in the final water solution. This is useful as standard sequencing
techniques work only on homogeneous solutions. The number of paths is reduced
by selecting the path that visits the smallest numbered vertex. Thus, this method
is better suited for Hamiltonian path problems with multiple solution paths.

Boneh et al. [12] designed an algorithm for breaking the Data Encryption Stan-
dard (DES). This is a real life problem. DES is an encryption procedure. It encrypts



64 bit messages with a 56 bit key. The algorithm finds the secret key by searching
all keys exhaustively. The key that produces the desired encryption is separated
from the rest. For a chosen plain-text attack, with the preparation in advance of
the solution containing all key encodings, DES could be broken in one day. The
algorithm assumes error free molecule operations. This is unrealistic for the size of
the problem (2%¢ keys).

4. Practical Considerations

Building a DNA computer remains an open challenge. Adleman’s experiment
stands as the first instance of a DNA computer ever built in reality. The method
has been confirmed by Kaplan [30] who repeated the experiment.

Several research groups have implemented small instances of the SAT prob-
lem. All implementations are exhaustive search algorithms. Their execution time
is polynomial in the number of variables and they search an exponential space in
parallel.

Liu et al. [36] implemented a 3-SAT problem (clauses contain three variables
at most) with four variables (64 solution candidates). They used surface-based
chemistry. The set of solution candidates (DNA molecules) after being synthesized,
are attached to a surface. The testing of the candidates is done in cycles, each
cycle tests one clause. In each cycle, candidates that fail the test are removed
from the surface by an endonuclease enzyme. The method has the potential of
being automated. Unfortunately, the molecular operations, including reading out
the final result have quite high error rates (approx. 4% per operation). These affect
the scalability of the solution. Another implementation with DNA of a 4-variable
SAT is found in Yoshida and Suyama [53]. Here the search procedure is breadth
first.

The paper by Faulhammer et al. [21] implicitly solves the SAT problem in their
implementation of the chess “Knight problem”. Given an n X n chess-board, the
knights are to be placed on the board so that no knight is attacking any other.
The no-attack constraint is expressed as a boolean formula. A successful knight
configuration is equivalent to a truth assignment satisfying the boolean formula.
The Knight problem was practically solved for n = 3 and the algorithm runs on
RNA molecules rather than DNA. The algorithm searches exhaustively a space of
1,024 solution candidates.

Though still an exhaustive search algorithm, Sakamoto et al. [47] implement the
3-SAT problem in an autonomous manner. Autonomous molecular computations,
described by Hagiya [26], consist of a succession of autonomous molecular reactions.
The first step in Adleman’s experiment, generating the paths in the graph, is con-
sidered an autonomous computation step. The paths are formed autonomously by
annealing reactions. These reactions are based on the DNA molecular structure
only and do not need any further control from the outside. For the 3-SAT problem,
the logical constraints have to be encoded into the DNA sequence. Thus, the algo-
rithmic steps do not depend on the particular instance of the 3-SAT formula to be
checked. The algorithm performs exactly the same steps for any boolean formula
to be checked for satisfiability. It is only the initial data, the initial pool of DNA
strands, that depend on the specific boolean formula. All other implementations of



the SAT problem (including Adleman’s Hamiltonian path implementation) are not
autonomous. The autonomous procedure presented in [47] is based on the property
of ssDNA strands to form hairpins, if two long enough subsequences are comple-
mentary along the strand. These hairpin forming strands are erroneous solutions,
that assign true to both a variable a and its negation (complement) —a. Hairpin
strands are removed from the solution by enzymatic digestion. The success rate of
this approach is lower than that of implementations using common molecular biol-
ogy techniques. Nevertheless, the algorithm does not depend on the length of the
formula, nor does it depend on the number of variables and is therefore a constant
time algorithm. This is a major difference. The implementation used a 6-variable,
10-clause instance on the 3-SAT. The algorithm distinguished among 3'° = 59, 049
candidate solutions from the initial test tube.

The largest implementation of Lipton’s solution to the SAT problem can be
found in Braich et al. [13]. This implementation solved the 3-SAT problem for 20
variables. The algorithm searched a space of 1,048, 576 possible truth assignments.
It used a simplified version of the sticker model. The sticker model or system will
be defined in section . The model relies on DNA’s annealing property. The only
operation used in Braich’s implementation is separation based on a subsequence.
The experiment performed 24 separation operation. Error analysis reveals a 0.87
probability of a correct strand surviving a separation step. The probability of 1
incorrect strand being accidentally retained in one step is at most 3.75 x 10~%. The
authors suggest that the size of the problem can be increased by using periodic
PCR amplifications for error correction [11].

With the intention of extending the applicability of the DNA computer, Guarnieri
et al. [23] implement a method to add nonnegative numbers. The procedure com-
putes each bit of the sum iteratively, using the property of DNA polymerase to
extend a DNA strand starting from a primer. The length of the DNA strand hold-
ing the result is proportional to the value of the numbers added. Practical results
are presented for adding two binary digits. The algorithm shows the capacity of
DNA to add, but it falls short of two desirable characteristics. First, the implemen-
tation does not allow for iterative addition of several numbers, the algorithm adds
exactly two numbers and the result cannot be reused as further input. Second, ad-
dition cannot be performed in parallel, thus the basic advantage of DNA computing
is not exploited.

4.1. Dealing with Errors

Unfortunately, DNA manipulations are error prone. Especially in view of practi-
cal algorithms with thousands of lines, errors accumulate, rendering results useless.

Boneh et al. [11] analyze two sources of errors in exhaustive search algorithms.
First, the extraction operation (usually bead separation) may fail (typically by 5%)
to extract all matching DNA strands or it may mistakenly extract faulty strands
(again typically 10~%%). Secondly, DNA strands decay in time, they have a half-life
in the order of weeks. Both sources of error, naturally decrease the probability to
have a solution strand in the final test tube. To remedy this shortcoming, the paper
proposes applying PCR every several steps. Thus, the survival probability of the
solution strands can be increased from virtually 0 to over 50 %. This method can



be applied to decreasing volume algorithms and turns them into constant volume
algorithms. In addition, the paper offers a novel method (the double encoding
scheme), subject to laboratory testing, to improve bead separation. The idea is to
encode the separation templates two times, rather than once, along the strands in
the search space. This means that, matching strands have now two sites to attach
to the bead, thus hopefully increasing their extraction probability.

Ouyang et al. [37] effectively computed the maximal clique of a graph with six
vertices. They depicted two sources of error with which they practically had to deal
with. First, PCR produces some single stranded DNA, rather than double strands,
which cannot be cut by restriction enzymes. The remedy is to digest (destroy)
the ssDNA. The second source comes from incomplete splicing by the restriction
enzyme. Repeating the digestion-PCR process reduces the ratio of uncut strands.
On the other hand, point mutations are tolerated by the algorithm. The paper also
considers improving DNA manipulation: using different polymerases and using an
automatic device to accelerate readouts.

Shah et al. [48] describe a potential experiment to find a substring pattern along
a single DNA strand. It finds the number of occurrences of the pattern together
with their position in the strand.

4.2. Is DNA the only option?

Stuart Kurtz et al. [33] talk about dropping DNA altogether, in the quest for
a more feasible molecule. Unfortunately only in a theoretical stage, they propose a
molecule that is a generalization of DNA, RNA, and protein. They claim that such a
molecule, the computational nucleic acid (CNA), is indeed chemically feasible. CNA
would replicate like DNA. Even more surprising, a mechanism similar to protein
transcription would allow the reading out of a CNA molecule and then based on its
encoding, a new CNA is created. This would be a computation step. Nevertheless,
CNA still waits to be synthesized, before any attempt on error evaluation of the
computation steps can be made.

5. The Theoretical Models

How much can a DNA computer do? Is it theoretically at least as good as a
conventional computer?

The operations a DNA computer performs are defined by the DNA manipulation
techniques used. A strand of DNA represents the physical support for a string. DNA
operations translate into string operations. A whole variety of mathematical models
[44] have been formalized depending on the set of DNA operations the model allows.

5.1. The Sticker System

The mathematical model most faithful to Adleman’s experiment is the sticker
system. Here, computational data are encoded in double stranded (ds) DNA. These
ds blocks of DNA, also called dominoes, can have single stranded (ss) overhangs
on either or both ends (see fig. 6). The sticker system has only one generic op-
eration: the sticking operation. Two ds DNA strands can stick together forming
one, longer ds strand, provided their ends match according to the Watson-Crick
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Figure 6: The operation of sticking.
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Figure 7: The splicing operation.

complementarity rule.

This system, though very simple in its definition, turns out to be complex
enough. In fact, the generative capacity of the sticker system [31] is in the cat-
egory of recursively enumerable languages. The expressive power of the sticker
system is equivalent to the Turing Machine.

5.2. The Splicing System

Based on a different DNA technique is the splicing system. Splicing means
recombining two ds DNA strands after cutting them at a certain site (see fig. 7).
Endonuclease enzymes are specialized in cutting the DNA at a site determined by
a specific sequence of oligonucleotides. Head [29] and Paun [41] have defined a
formal computability model based on the splicing operation. In [42], the generative
power of the splicing system is investigated. The system is equivalent to the Turing
Machine.

6. Technical Limitations

Our understanding of the life process at the molecular level is necessary to appre-
ciate and use the bioware in our “computer”. Molecular biology and cell biology give
clear explanations to the following: The replication of DNA, the replication of RNA,
and the synthesis of a protein from its gene through translation and transcription
[34]. These are potential building blocks of computational units of biocomputers.
Phenomena like genome remodeling [10] and RNA editing [50] are uncontrollable
and partially understood and as such are inappropriate to be used in this field.

For decades, the Turing Machine (TM) has conceptually been linked to what we
accept to be a computation. The Turing Machine initially has the input on its tape;
it performs a series of state transitions and produces the solution on a (dedicated)



output tape. In this classical view, computing with a biological system means to
direct the biological or chemical development of the system from an initial state
to an intended final state. The initial state represents the input of the problem
encoded in some molecules. The final state contains the solution to the problem,
retrievable from the structure of some molecule.

Nevertheless, current research formulates paradigms that challenge the TM
model. Simple theoretical abstractions of potential applicative interest have been
shown to require unconventional approaches. Models for which parallelism is in-
herent in their constitution exhibit computational transitions that a TM cannot
simulate. Such problems have been described in geometry [6] (constraint driven
transformations), in dynamic settings [5] (time varying data), in system control [7]
(preventing a system from entering a chaotic, uncontrollable state).

The physical realization of a biocomputer promises processing units of molecular
size. A DNA molecule acts like a processor or memory unit. In both cases, the size'
is orders of magnitude smaller than for conventional computers. As such, huge
parallelism can be obtained in a biocomputer of small size. Therefore, biological
computational models can address inherently parallel computations.

Some advantages of using bioware have been found from the very beginning.
Adleman [3] talks about the molecular size of the processing units, about the huge
parallelism obtained in a common test tube, and the efficiency of ligation operations
in terms of energy. The table below [4] compares characteristics of the biocomputer
to the conventional computers today.

Conventional | DNA
Computer Computer

Storage
(space

for one bit 10'2 nm?® 1 nm
0or 1)

Speed

(millions
of instructions | 103 10 (test tube full)
per second)

Energy

(number of
operations 10° 2 x 10"
per joule)

TThe mass of a DNA strand with n nucleotides is computed by the following formulas: 304 x n+ 79
a.m.u. (atomic mass units) for a single stranded DNA molecule and 607 x n + 158 a.m.u. for a
double stranded DNA molecule.

Thus, the weight of a single stranded DNA with 20 nucleotides is 304 x 20 + 79 &~ 6000. This
means that 1g contains 1020 DNA molecules.
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Figure 8: A system of membranes.

7. Membrane Computing

With membrane computing [40], we enter the realm of biologically inspired com-
putation models. A biological system acts as a computer. For example, the cell is
well studied in terms of its structure, life, and transformations in time. Then, based
on some cell characteristics, a mathematical model is derived. The mathematical
model mimics some processes of the cell. This model becomes the new computa-
tional model and is aimed to be able to perform computations, hopefully with a
better performance than conventional models.

Note that the field of biology inspired computing models aims to create new
models of computation. Such a model would naturally compete with established
conventional models, like the Turing Machine. The field is not concerned with every
form of computation inspired from biology. In particular, it does not model bio-
logical processes as algorithms or applications in general. Genetic and evolutionary
algorithms [20,52] and Neural Computing [51] are not included in biology inspired
computing models.

The founder of membrane systems, Gheorghe Piun [40], was inspired by the
membranes surrounding cells and cell organelles. Cells have an outer skin mem-
brane. Cell components are also identified by a separating membrane: the nucleus,
the Golgi Apparatus (for protein processing), mitochondria, and various vesicles.
Paun designed an abstract computational model using a hierarchy of membranes
(fig. 8). Each membrane separates a region. Membranes can be created and de-
stroyed during the computation. When a membrane is created, a new region is also
created. When a membrane is destroyed, two regions are fused together.

According to the biological analogy, chemical molecules are generally contained
by a certain membrane region. They do not freely migrate among membrane re-
gions. The membrane can be completely impenetrable for certain molecules, or
else, some molecules can penetrate a membrane according to certain restrictive
rules. Nevertheless, chemicals of the same region can react / interact freely with
any other chemicals of the region. The mathematical equivalent of molecules are
symbols (a, b, ¢, ...). Membrane regions are multi sets of such symbols (ex. a?b®c?
- meaning 2 copies of a, 5 copies of b, and 3 copies of c).



Chemical reactions are translated into production rules. For example, ca — cv,
means the element a is transformed into the element v in the presence of the catalyst
¢. Production rules are region specific.

The membrane system evolves by applying its production rules. All membrane
regions evolve simultaneously, according to a global clock. In each time unit, in
each region, all rules that can be applied, are applied nondeterministically, in a
maximally parallel manner. The system halts when no further rules can be applied.
The output is read either from the environment (outside the skin membrane) or as
the content of some nondestructible membrane.

7.1. Variants of membrane systems

The basic system as described above allows for many extensions.

Evolution-communication P systems [14] rely on the property of biological mem-
branes to act like filters. They make the passage of certain substances possible,
but are impermeable for others. The mechanism of coupling molecules allows two
molecules to pass a membrane as long as they pass it together, using a specific
protein channel. In a symport transition, the molecules cross the membrane in the
same direction, while an antiport transition requires the molecules to cross in oppo-
site directions. Formally, (ab,in) or (ab,out) are symport rules, and (a, out;b,in)
is an antiport rule. It turns out that using only communication rules, the system
is as powerful as the Turing machine [22]. Colson et al. [16] consider indicators of
the form 4n;, where j is a membrane label. Hence, objects can be teleported at any
distance in the membrane structure.

P systems with active membranes allow the membrane structure to evolve dy-
namically during the computation. Besides the basic rules by which objects evolve
and move in the membrane structure, a rule can dissolve a membrane or it can di-
vide an elementary membrane in two. An interesting characteristic of these systems
is that they can increase the number of membranes exponentially in linear time.
This has been used to design algorithms for NP-complete problems in polynomial
or even linear time, using exponential space.

In the basic P system, objects are atomic, denoted by letters (a, b, etc.). Exten-
sions of membrane systems are obtained by simply considering structured objects.
As such, a membrane may contain multisets of strings, trees, arrays, etc. For strings,
depending on the rules, the system can be rewriting P systems or splicing P sys-
tems. An important property yields string rules of rewriting with replication [32].
These rules have the form: a « (uy,tary)||(u2,tars)||-..||(un, tar,), which means
that a string zjaxs is rewritten into n strings ziui T2, T1u2x2, ..., T1u,T2 into their
destination regions tary, tars, ..., tar,. Thus, exponential space can be obtained
again in linear time.

In the basic model, the membrane structure is a treelike hierarchy. Tissue-like
P systems define a different structure. The idea comes from tissues built up of
cells. These cells communicate, if adjacent, via protein channels. Equivalently,
membranes (in this case cells) are nodes in a graph. Connected cells communicate
via symport and antiport rules. An even more general system is given by population
P systems [9]. This system aims to model skin tissue, populations of bacteria,
and colonies of ants. It allows cells to communicate, proliferate, die, change their



characteristics, and behavior. Daughter cells inherit the links with the neighboring
cells of the parent.
Comprehensive information about P systems can be found on the web [1].

7.2. Using Membrane Systems for Computationally Hard Problems

We have seen a few membrane systems with the capability of creating exponen-
tial space in polynomial (linear) time: P systems with membrane division, mem-
brane creation, or string replication.

Algorithms have been designed for NP-complete problems. They run in poly-
nomial time, with the tradeoff of exponential space. In particular, algorithms exist
for

—_

. the SAT problem [43,54].
2. the Hamiltonian path problem [54].

3. the subset-sum problem [24]. Given a finite set A, a weight function w : A —
N and a constant k& € N, determine whether or not there exists a subset
B C A such that w(B) = k.

4. the knapsack problem [38].

5. the QSAT problem [25]. Given a boolean formula ¢(z1,Z2, ..., Z,) in conjuc-
tive normal form, determine whether or not the (existential) fully quantified
formula ¢* = 311VY22...Qnznep(21, ..., ), where @, is I for n odd and V for
n even, is satisfiable. The QSAT problem is actually a PSPACE-complete
problem. Solving QSAT on a Turing machine requires polynomial space in
the number of boolean variables with no time restrictions.

8. Gene Assembly in Ciliates

In the previous sections, we have presented computation systems that either used
bioware as the basic technology, as in DNA computing, or were based on theoretical
models inspired from biology, as in membrane computing. In both systems, one
characteristic, so obvious that it goes unnoticed, is that they are human designed.
Gene assembly on the other hand is a computing device naturally used by ciliates.
Genes can be viewed as strings. As such, gene assembly basically is a mechanism to
compute the original string from a scrambled version. The unscrambling process is
formalized by only four simple operations. Nevertheless, these four operations are
able to unscramble any permutation of the original string. A monograph of gene
assembly in ciliates is found in [18].

Ciliates are unicellular organisms. Unlike most other organism of the kind,
they have two functionally different nuclei: the micronucleus and the macronucleus.
The macronucleus is genetically active during the normal activity of the cell. It
provides the genes to be transcribed into messenger RNA and then be translated
into proteins. The micronucleus is active only during sexual cell mating. Under
adverse circumstances, mainly lack of food, a colony of ciliates may decide towards



genel gene 2 gene3

Figure 9: Genes along the chromosomal DNA of the micronucleus.
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Figure 10: The micronuclear gene encoding actin in Sterkiella nova.

cell mating, rather than cell division. This is in the hope of producing genetically
more resistant offspring. During cell mating a new macronucleus is formed using the
genetic material from two different micronuclei. The final genes, though, belonging
to the macronucleus are put together after a complex process of gene assembly.

In the micronucleus, the DNA chromosomial molecule is very long [28]. There
are long sequences of nongenetic DNA between genes (see fig. 9). Each gene, in
turn, is split into several segments called macronuclear destined segments, or M DS.
The space between two M DS’s are noncoding segments, called internally eliminated
segments, or I ES. Moreover, the M DSs do not necessarily appear in the order of
the final gene, but are permuted in some apparently arbitrary way. Fig. 10 shows the
micronuclear gene encoding actin protein in the bacterium Sterkiella nova. Actin
has 9 encoding sequences, M DSs, and they come scrambled: 3,4,6,5,9,2,1,8. Note
that M DS, is written out backwards in the micronucleus, shown as 2 in the figure.
These sequences have to be rearranged in the canonic order for the macronucleus:
1,2,3,4,5,6,7,8,9.

During gene assembly, 25000 genes are put together. The (new) macronucleus
contains short strands of DNA, one gene per strand. Each gene-sized strand is
replicated to hundred of thousands of copies.

Pointers have the mission to show the correct sequence of M DSs. Genes are
assembled by homologous recombination of pointers. Suppose M DS, is to follow
M DS; in the assembled gene. There exists a small sequence of 3 to 20 nucleotides,
called pointer, at the beginning of M DS;1; this sequence is identical to the end
of MDS; (fig. 11). These pointers show where two contiguous M DSs have to
meet. When M DS, is assembled to M DS;, the pointers are staggeredly cut by
restriction enzyme and reassembled such that only one copy of the pointer exists in

MDS; | IES; | MDS;,,
ACATTTC ACATTTC
TGTAAAG TGTAAAG
pointer pointer

Figure 11: Pointer showing where recombination has to take place.
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Figure 12: Two contiguous MDSs after their pointer has been used.
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Figure 13: loop recombination with direct repeat: (a) before operation. (b) after
the operation is completed.

the final gene (fig. 12). Once a pointer has been used, it ceases to act as a pointer
any more.

8.1. Molecular operations

Although gene MDSs can come scrambled in any way, actually only a small
set of operation types [39] is necessary to convey the capability of processing the
canonic form from any arbitrary scrambling. The gene assemble process uses three
operations: loop recombination (ld), hairpin recombination (hi), and double loop
recombination (dlad).

1. 1d - loop recombination - The pair of pointers marking this operation lie with
the same orientation on the DNA strand (fig. 13 (a)). The sequence between
the two pointers is excised and thrown away. The shortened, useful DNA
strand contains exactly one copy of the pointer (fig. 13 (b)).

2. hi - hairpin recombination - The pair of pointers, marking this operation,
lie in opposite directions (inverted) on the DNA strand (fig. 14 (a)). The
sequence between the two pointers appears inverted after the operation (fig.
14 (b)). Both copies of the pointer sequence are retained by the final strand,
though they do not act as pointers any further.
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Figure 14: hairpin recombination with inverted repeat: (a) before operation. (b)
after the operation is completed.
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Figure 15: double loop recombination with direct pointers: (a) before operation.
(b) after the operation is completed.



3. dlad - double loop recombination - This operation is defined by two pairs of
pointers. They appear alternatively (fig. 15 (a)) on the DNA strand. The two
sequences surrounded by different pointers are switched and their direction
remains unchanged (fig. 15 (b)). Again, all pointer copies are retained, but
they cease to act as pointers.

8.2. Mathematical Models

The gene assembly process described above uses a few molecular recombination
operations. These operations have been formalized into three formal models [27],
using the following frameworks: MDS descriptors, legal strings, and overlap graphs.
All three models are equivalent, in that they describe the unscrambling of a gene
and they can do so with any arbitrarily permuted gene.

1. M DS descriptors. The first formalization of gene assembly uses the macronu-
clear destined segments (M DS), as such, to formally describe the state of the
gene and the sequence of operations performed to bring a gene in canonic
form. M DSs are identified by their index, which represents their position
in the canonic gene. For example, M DS5; will be the third segment in the
final gene. The segments that have no genetic meaning, that is internally
eliminated segments (I ESs), are indexed by their position in the initial mi-
cronuclear gene. The succession of segments as they appear in the gene, is
called an M DS arrangement. In the arrangement M and I denote M DS and
IES respectively. For the actin gene shown in fig. 10 the M DS arrangement
is

M Iy My I, M I3 Mg Iy My Is Mo Is My I My Ig Mg

A composite M DS, M; ;, is formed when the intermediate M DSs are already
assembled: M;, M;y1,..., M; are already contiguous.

The M DS arrangement representation can be simplified. M DS descriptors
keep only the delimiting pointers, as a pair (¢,7). The pointers at the begin-
ning and the end of the genes have special names b and e. For any singular
MDS (M;), the delimiting pointers are denoted ¢ and i + 1. The following
are examples of M DS descriptors: M; — (i,i + 1), My — (b,2), the last
MDS: My — (9,¢), and a composite M; ; — (i,j + 1). A gene is completely
arranged, if it is of the form (b, e) or (g,b).

The M DS descriptor for actin (fig. 10) is
(3,4)(4,5)(6,7)(5,6)(7,8)(9,€)(3,2)(b,2)(8,9)

The gene assembly operations (1d, hi, dlad) can actually be easily expressed
with M DS descriptors. Generally, when an assembly operation is applied to
an M DS descriptor, then either one pointer or two pointers are used up and
disappear from the descriptor. In particular, one pointer is eliminated from
the descriptor for 1d and hi, and two pointers are eliminated in the case of
dlad.



Let &; be an arbitrary subsequence of an M DS descriptor. Then
ldp (61 (qa p) (pa T)62) =4 (qa T)(SQ

applies a loop recombination (1d) on the pointer p,

hip(01(q, )82 (T, D)d3) = 61(q,7)0203

applies a hairpin recombination (hi) on the pointer p, and

dladp,q(‘sl (p,71)02(q,72)03(r3,0)04(r4,q)05) = 6104(r4,72)03(r3,71)0205

applies the double loop recombination (dlad) on pointers p and ¢g. Note
that the 3 formulas above do not show all combinations of formulas in which
the operations apply. Though all other forms are similar to the above, an
exhaustive list can be found in [27].

. legal strings. With legal [18] strings an even simpler model than M DS
descriptors is obtained. An M DS descriptor is transformed into a legal string
by dropping the parentheses (the pair construct) and the beginning and end
pointers (b and e). The result is a string. Also operationally, legal strings
behave like strings. For actin, the legal string is

3445675678932289

Note that each legal string contains two copies of the same index. If the legal
string contains a and the inverse @ then a is positive in the string; otherwise a
is negative. A legal string is realistic, if it is the equivalent of a realistic M DS
descriptor (or arrangement).

Two pointers, p and ¢, are said to overlap, if exactly one copy of q appears
between the two copies of p. For example, in the string

w = 352654736724

4 and 2 overlap, whereas 4 and 7 do not overlap.

The molecular operations translate into three string rules. Let u; be a legal
string.

a e string negative rule, snr, (equivalent to eliminates a negative
The string negati le, , (equivalent to 1d) eliminat gati
pointer p.
snrp(u1ppus) = uius

(b) The string positive rule, spr, (equivalent to hi) eliminates a positive
pointer p and inverts the substring between the two occurrences of the
pointer.

sprp(u1pu2pus) = u1lizus

(¢) The string double rule, sdr, (equivalent to dlad) eliminates 2 pointers p
and ¢ that overlap and switches the substrings defined by the pointers’
overlapping.

sdry o (u1pusquspusqus) = uiuauzusUs



a b c

Figure 16: (a) An overlap graph. (b) After applying gprs on the graph in (a). (c)
After applying gdra 3 on the graph in (a).

3. overlap graphs [19]. The following abstract model of the gene assembly
molecular operations can be graphically interpreted. In fact, these molecular
operations are modeled as graph transformations. The graph represents the
state of the scrambled gene. A ready assembled gene corresponds to the empty
graph.

There exists a direct transformation of legal strings into overlap graphs. Both
use the same pointer concepts. The vertices of the graph represent pointers.
Moreover, the graph is signed, in that, each vertex carries the sign + or —. A
vertex p is positive (p1), if the pointer p is positive in the legal string, and p is
negative (p~) otherwise. Two vertices p and ¢ are connected in the graph, if
the pointers p and ¢ overlap in the legal string. The definition of the graph’s
edges has given the name of this abstract model, namely overlap graphs.

Fig. 16 (a) shows the overlap graph for the following legal string:

w = 352654736724

For signed graphs, the molecular operations affect the number of vertices and
also the set of edges. Every operation removes one or two vertices. Sev-
eral edges can be affected by a single molecular operation: they are either
added or removed. The following graph operations counterpart the molecular
operations:

a) The graph negative rule (equivalent to 1d) removes an isolated vertex
b,
provided the vertex is negative (p~). The isolated vertex p means p does
not overlap with any other pointer.

(b) The graph positive rule (equivalent to hi) applies to a positive vertex
p. The vertex is removed and all vertices in its neighborhood N (p) are
affected. All vertices in the neighborhood switch signs. All edges in the
neighborhood are complemented: for any two vertices ¢, € N(p), if they
were connected by an edge, their edge is removed, whereas if they were
not adjacent, a new connecting edge is added. Consider, for example,
vertex 47 in fig. 16 (a). Vertex 4% has three neighbors: N(4T) =



{27,37,67}. The graph positive rule applied on 4% results in the graph
given in fig. 16 (b). Note that 2+, 3%, and 6 have changed signs.

(¢) The graph double rule (equivalent to dlad) is applied to two adjacent
vertices p and ¢, if p and ¢ are both negative. The rule eliminates both
vertices and affects their neighbors. All signs remain unchanged. Nev-
ertheless, the rule changes the overlapping among vertices in the neigh-
borhoods N(p) and N(q). Every edge whose ends are in N(p) and N(q)
respectively are complemented, with the exception of an edge with both
ends in N(p) N N(q). Fig. 16 (c) shows the result of applying the graph
double rule to the vertices 3~ and 2~ of fig. 16 (a).

Note that template guided gene assembly [17] is a different mathematical model
to describe the same process of gene assembly in ciliates. In this model, DNA
strands are recombined under the guidance of templates. Templates are small ss
DNAs that have to be present during gene assembly. They describe a pointer neigh-
borhood, where a recombination is to take place. It is not clear, from experiments,
which model, template guided recombination or pointer based recombination, better
describes reality.

9. Conclusion

This work has presented Biomolecular Computing in terms of theoretical studies
and practical results. All three branches, namely, DNA computing, membrane
computing and gene assembly in ciliates, rely on strong, well-defined mathematical
models. They all promise the capacity of computing everything a Turing machine
does. In terms of practical realisation of a computing device, DNA computing
engages the largest efforts to bring forth a viable, either large or limited applicability,
computer. Membrane computing can recommend itself only with simulations on
standard computers; implementations of P systems in living cells seem to be far from
realisation. In terms of practical implementation, the situation of gene assembly in
ciliates is the most interesting, as the system is already implemented naturally in
unicellular organisms. The process of gene assembly is not controllable by humans
though. The table below shows a summary of the comparison of three Biomolecular
Computing branches.

Mathematical | Practical Human
model implementations | designed
DNA computing | Yes Yes Yes
Membrane Yes No Yes
computing
Ciliates Yes Yes No

The long term goal of DNA computing is to have DNA computers with wider
applicability. All experiments today are small procedures with small size input data.



To make the transition towards reasonable size applications means to solve several
technical open issues:

1. Although many molecular manipulation techniques are standard, they have
less than 100 % accuracy. These errors tend to accumulate and become sig-
nificant for longer programs. There is a need of even a small set of automated,
accurate molecular manipulation techniques.

2. Scalability is an issue in all implementations so far. The exhaustive search

procedures use exponential space for a give input size. Therefore, implemen-
tations are very sensitive to even small increases in the input. Managing larger
implementations of already existing procedures is challenging.

3. All search algorithms implemented generate the input data probabilistically.

The solution strand is not guaranteed to be created in the initial data pool.
A new technique that would generate all candidate solutions deterministically
would be welcome.

4. Finally, most algorithms, researched theoretically and also implemented, are

search algorithms. It is not clear, whether DNA computing could efficiently
address other types of computation. In particular, it is an open question what
super-Turing computation problems can be answered by DNA algorithms.
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