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Abstract. An evolving computation is one whose characteristics vary during its execution. These

variations have many di�erent origins and can manifest themselves in several ways. Thus, for example,

the parameters of a computation, such as the data it uses, may vary with time independently of the

computational environment in which the computation is carried out. Alternatively, it may be that the

data interact with one another during the computation thus changing each other's value irreversibly.

In this paper we describe a number of evolving computational paradigms, such as computations with

time-varying variables, interacting variables, time-varying complexity, and so on. We show that evolving

computations demonstrate the impossibility of achieving universality in computing, be it conventional

or unconventional.

1 Introduction

Il pensait que la cause universelle, ordinatrice et premi�ere �etait bonne.

Denis Diderot

The universe in which we live is in a constant state of evolution. People age, trees grow, the weather
varies. From one moment to the next, our world undergoes a myriad of transformations. Many of these
changes are obvious to the naked eye, others more subtle. Deceptively, some appear to occur independently
of any direct external inuences. Others are immediately perceived as the result of actions by other entities.

In the realm of computing, it is generally assumed that the world is static. The vast majority of compu-
tations take place in applications where change is thought of, rightly or wrongly, as inexistent or irrelevant.
Input data are read, algorithms are applied to them, and results are produced. The possibility that the data,
the algorithms, or even the results sought may vary during the process of computation is rarely, if ever,
contemplated.

In this paper we explore the concept of evolving computational systems. These are systems in which
everything in the computational process is subject to change. This includes inputs, algorithms, outputs,
and even the computing agents themselves. A simple example of a computational paradigm that meets this
de�nition of an evolving system to a limited extent is that of a computer interacting in real time with a
user while processing information. Our focus here is primarily on certain changes that may a�ect the data
required to solve a problem. We also examine changes that a�ect the complexity of the algorithm used in
the solution. Finally, we look at one example of a computer capable of evolving with the computation.

A number of evolving computational paradigms are described. In Sections 3, 4, and 5, time plays an
important role either directly or indirectly in the evolution of the computation. Thus, it is the passage of
time that may cause the change in the data. In another context, it may be the order in which a stage of an
algorithm is performed, that determines the number of operations required by that stage. In Sections 6 and
7, it is not time but rather external agents acting on the data that are responsible for a variable computation.
Thus, the data may be a�ected by a measurement that perturbs an existing equilibrium, or by a modi�cation
in a mathematical structure that violates a required condition. Finally, in Section 8 evolving computations
allow us to demonstrate that no computer, whether conventional or unconventional, can aspire to the title
of `universal', so long as its properties are �xed once and for all. Our conclusions are o�ered in Section 9.
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2 Computational Models

Like water runs around the rounding stone

time swims around the smoothing self

that polished becomes nothing but shine.

Gary Lark

It is appropriate at the outset that we de�ne our models of computation. Two generic models are intro-
duced in this section, one conventional and one unconventional. (A third model, a particular unconventional
computer{the accelerating machine{is de�ned in Section 4.3.) We begin by stating clearly our understanding
regarding the meaning of time, and our assumptions in connection with the speed of processors.

2.1 Time And Speed

Ô temps, suspends ton vol!

Alphonse de Lamartine

In the classical study of algorithms, the notion of a time unit is fundamental to the analysis of an
algorithm's running time. A time unit is the smallest discrete measure of time. In other words, time is
divided into consecutive time units that are indivisible. All events occur at the beginning of a time unit.
Such events include, for example, a variable changing its value, a processor undertaking the execution of a
step in its computation, and so on.

It is worth emphasizing that the length of a time unit is not an absolute quantity. Instead, the duration
of a time unit is speci�ed in terms of a number of factors. These include the parameters of the computation
at hand, such as the rate at which the data are received, or the rate at which the results are to be returned.
Alternatively, a time unit may be de�ned in terms of the speed of the processors available (namely, the single
processor on a sequential computer and each processor on a parallel computer). In the latter case, a faster
processor implies a smaller time unit.

In what follows the standard de�nition of time unit is adopted, namely: A time unit is the length of time
required by a processor to perform a step of its computation. Speci�cally, during a time unit, a processor
executes a step consisting of:

1. A read operation in which it receives a constant number of �xed-size data as input,
2. A calculate operation in which it performs a �xed number of constant-time arithmetic and logical calcu-

lations (such as adding two numbers, comparing two numbers, and so on), and
3. A write operation in which it returns a constant number of �xed-size data as output.

All other occurrences external to the processor (such as the data arrival rate, for example) will be set and
measured in these terms. Henceforth, the term elementary operation is used to refer to a read, a calculate,
or a write operation.

2.2 What Does It Mean To Compute?

The history of the universe is, in e�ect,

a huge and ongoing quantum computation.

The universe is a quantum computer.

Seth Lloyd

An important characteristic of the treatment in this paper, is the broad perspective taken to de�ne
what it means to compute. Speci�cally, computation is a process whereby information is manipulated by,
for example, acquiring it (input), transforming it (calculation), and transferring it (output). Any form of
information processing (whether occurring spontaneously in nature, or performed on a computer built by
humans) is a computation. Instances of computational processes include:

1. Measuring a physical quantity,
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2. Performing an arithmetic or logical operation on a pair of numbers, and
3. Setting the value of a physical quantity,

to cite but a few. These computational processes themselves may be carried out by a variety of means,
including, of course, conventional (electronic) computers, but also through physical phenomena [35], chemical
reactions [1], and transformations in living biological tissue [42]. By extension, parallel computation is de�ned
as the execution of several such processes of the same type simultaneously.

2.3 Conventional Model

Our generic conventional model of computation is the sequential computer, commonly used in the design
and analysis of sequential (also known as serial) algorithms. It consists of a single processor made up of
circuitry for executing arithmetic and logical operations and a number of registers that serve as internal
memory for storing programs and data. For our purposes, the processor is also equipped with an input unit
and an output unit that allow it to receive data from, and send data to, the outside world, respectively.

During each time unit of a computation the processor can perform:

1. A read operation, that is, receive a constant number of �xed-size data as input,
2. A calculate operation, that is, execute a �xed number of constant-time calculations on its input, and
3. A write operation, that is, return a constant number of �xed-size results as output.

It is important to note here, that the read and write operations can be, respectively, from and to the
model's internal memory. In addition, both the reading and writing may be, on occasion, from and to an
external medium in the environment in which the computation takes place. Several incarnations of this
model exist, in theory and in practice [40]. The result of this paper, to the e�ect that no �nite computer is
universal, applies to all variants.

2.4 Unconventional Model

In order to capture the essence of unconventional computation, we take a parallel computer as its generic
model. Our choice is quite appropriate as this model is representative of the widest possible range of con-
templated unconventional computers. Indeed, parallelism in one way or another is at the very heart of most
unconventional computers proposed to date, including for example, quantum computers, biological com-
puters (in vivo and in vitro), analog neural networks, chemical computers, and so on. Furthermore, the
computational problems to be studied in this paper, require a certain degree of parallelism for their success-
ful completion. Therefore, only an unconventional computer capable of parallel computing has any hope of
tackling these tasks. It is important to note, however, that our choice of a parallel computer as a generic
unconventional model is only for illustration purposes: Our result regarding the impossibility of achieving
universal computation applies independently of this choice. In this context, a parallel computer allows us to
underscore the fact that each computational problem we present is indeed solvable, though not by any puta-
tive universal computer (whether conventional or unconventional). For each problem, a computer capable of
n operations in a given time unit, and purporting to be universal, can perform a computation that demands
this many operations in that time unit, but not one requiring n+ 1 or more operations.

The parallel computer consists of n processors, numbered 1 to n, where n � 2. Each processor is of the
type described in Section 2.3. The processors are connected in some fashion and are able to communicate
with one another for exchanging data and results [2]. The exact nature of the communication medium among
the processors is of no consequence to the results described in this paper.

During each time unit of a computation a processor can perform:

1. A read operation, that is, receive as input a constant number of �xed-size data,
2. A calculate operation, that is, execute a �xed number of constant-time calculations on its input, and
3. A write operation, that is, return as output a constant number of �xed-size results.

As with the sequential processor, the input can be received from, and the output returned to, either the
internal memory of the processor or the outside world. In addition, a processor in a parallel computer may
receive its input from, and return its output to, another processor.
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2.5 A Fundamental Assumption

The analyses in this paper assume that all models of computation use the fastest processors possible (within
the bounds established by theoretical physics). Speci�cally, no sequential computer exists that is faster than
the one of Section 2.3, and similarly no parallel computer exists whose processors are faster than those of
Section 2.4. Furthermore, no processor on the parallel computer of Section 2.4 is faster than the processor
of the sequential computer of Section 2.3. This is the fundamental assumption in parallel computation. It is
also customary to suppose that the sequential and parallel computers use identical processors. We adopt this
convention throughout this paper, with a single exception: In Section 4.3 we assume that the unconventional
computer is in fact capable of increasing its speed at every step (at a pre-established rate, so that the number
of operations executable at every consecutive step is known a priori and �xed once and for all).

3 Time-Varying Variables

Le temps m'�echappe et fuit;

Alphonse de Lamartine

For a positive integer n larger than 1, we are given n functions, each of one variable, namely, F0; F1;
: : : ; Fn�1; operating on the n physical variables x0; x1; : : : ; xn�1; respectively. Speci�cally, it is required to
compute Fi(xi), for i = 0, 1, : : :, n� 1. For example, Fi(xi) may be equal to x2

i
.

What is unconventional about this computation, is the fact that the xi are themselves functions that
vary with time. It is therefore appropriate to write the n variables as

x0(t); x1(t); : : : ; xn�1(t);

that is, as functions of the time variable t. It is important to note here that, while it is known that the xi
change with time, the actual functions that e�ect these changes are not known (for example, xi may be a
true random variable).

All the physical variables exist in their natural environment within which the computation is to take
place. They are all available to be operated on at the beginning of the computation. Thus, for each variable
xi(t), it is possible to compute Fi(xi(t)), provided that a computer is available to perform the calculation
(and subsequently return the result).

Recall that time is divided into intervals, each of duration one time unit. It takes one time unit to evaluate
Fi(xi(t)). The problem calls for computing Fi(xi(t)), 0 � i � n� 1, at time t = t0. In other words, once all
the variables have assumed their respective values at time t = t0, the functions Fi are to be evaluated for all
values of i. Speci�cally,

F0(x0(t0)); F1(x1(t0)); : : : ; Fn�1(xn�1(t0));

are to be computed. The fact that xi(t) changes with the passage of time should be emphasized here. Thus,
if xi(t) is not operated on at time t = t0, then after one time unit xi(t0) becomes xi(t0 + 1), and after two
time units it is xi(t0 + 2), and so on. Indeed, time exists as a fundamental fact of life. It is real, relentless,
and unforgiving. Time cannot be stopped, much less reversed. (For good discussions of these issues, see [28,
45].) Furthermore, for k > 0, not only is each value xi(t0+k) di�erent from xi(t0), but also the latter cannot
be obtained from the former. We illustrate this behavior through an example from physics.

3.1 Quantum Decoherence

L'homme n'a point de port, le temps n'a point de rive;

Il coule, et nous passons!

Alphonse de Lamartine
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A binary variable is a mathematical quantity that takes exactly one of a total of two possible values at
any given time. In the base 2 number system, these values are 0 and 1, and are known as binary digits or
bits. Today's conventional computers use electronic devices for storing and manipulating bits. These devices
are in either one or the other of two physical states at any given time (for example, two voltage levels), one
representing 0, the other 1. We refer to such a device, as well as the digit it stores, as a classical bit.

In quantum computing, a bit (aptly called a quantum bit, or qubit) is both 0 and 1 at the same time.
The qubit is said to be in a superposition of the two values. One way to implement a qubit is by encoding
the 0 and 1 values using the spin of an electron (for example, clockwise, or \up" for 1, and counterclockwise,
or \down" for 0). Formally, a qubit is a unit vector in a two-dimensional state space, for which a particular
orthonormal basis, denoted by fj0i; j1ig has been �xed. The two basis vectors j0i and j1i correspond to
the possible values a classical bit can take. However, unlike classical bits, a qubit can also take many other
values. In general, an arbitrary qubit can be written as a linear combination of the computational basis
states, namely, �j0i+ �j1i; where � and � are complex numbers such that j�j2 + j�j2 = 1.

Measuring the value of the qubit (that is, reading it) returns a 0 with probability j�j2 and a 1 with a
probability j�j2. Furthermore, the measurement causes the qubit to undergo decoherence (literally, to lose
its coherence). When decoherence occurs, the superposition is said to collapse: any subsequent measurement
returns the same value as the one obtained by the �rst measurement. The information previously held in the
superposition is lost forever. Henceforth, the qubit no longer possesses its quantum properties and behaves
as a classical bit [33].

There is a second way, beside measurement, for decoherence to take place. A qubit loses its coherence
simply through prolonged exposure to its natural environment. The interaction between the qubit and its
physical surroundings may be thought of as an external action by the latter causing the former to behave
as a classical bit, that is, to lose all information it previously stored in a superposition. (One can also
view decoherence as the act of the qubit making a mark on its environment by adopting a classical value.)
Depending on the particular implementation of the qubit, the time needed for this form of decoherence to
take place varies. At the time of this writing, it is well below one second (more precisely, in the vicinity
of a nanosecond). The information lost through decoherence cannot be retrieved. For the purposes of this
example, the time required for decoherence to occur is taken as one time unit.

Now suppose that a quantum system consists of n independent qubits, each in a state of superposition.
Their respective values at some time t0, namely, x0(t0), x1(t0), : : :, xn�1(t0), are to be used as inputs to the
n functions F0, F1, : : :, Fn�1, in order to perform the computation described at the beginning of Section 3,
that is, to evaluate Fi(xi(t0)), for 0 � i � n� 1.

3.2 Conventional Solution

Le bonheur, c'est quand le temps s'arrête.

Gilbert Cesbron

A sequential computer fails to compute all the Fi as desired. Indeed, suppose that x0(t0) is initially
operated upon. It follows that F0(x0(t0)) can be computed correctly. However, when the next variable, x1,
for example, is to be used (as input to F1), the time variable would have changed from t = t0 to t = t0 + 1,
and we obtain x1(t0+1), instead of the x1(t0) that we need. Continuing in this fashion, x2(t0+2); x3(t0+3);
: : : ; xn�1(t0+n�1); represent the sequence of inputs. In the example of Section 3.1, by the time F0(x0(t0)) is
computed, one time unit would have passed. At this point, the n�1 remaining qubits would have undergone
decoherence. The same problem occurs if the sequential computer attempts to �rst read all the xi, one by
one, and store them before calculating the Fi.

Since the function according to which each xi changes with time is not known, it is impossible to recover
xi(t0) from xi(t0 + i), for i = 1, 2, : : :, n � 1. Consequently, this approach cannot produce F1(x1(t0)),
F2(x2(t0)), : : :, Fn�1(xn�1(t0)), as required.

3.3 Unconventional Solution

La montre molle est une invention de Salvador Dali,

particuli�erement adapt�ee aux horaires souples et aux journ�ees �elastiques,
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mais inutilisable quand les temps sont durs.

Marc Escayrol

For a given n, any computer capable of performing n calculate operations per step, can easily evaluate
the Fi(xi(t0)), all simultaneously, leading to a successful computation.

Thus, a parallel computer consisting of n independent processors may perform all the computations at
once: For 0 � i � n� 1, and all processors working at the same time, processor i computes Fi(xi(t0)). In the
example of Section 3.1, the n functions are computed in parallel at time t = t0, before decoherence occurs.

4 Time-Varying Computational Complexity

We are time's subjects, and time bids be gone.

William Shakespeare

In traditional computational complexity theory, the size of a problem P plays an important role. If P has
size n, for example, then the number of operations required in the worst case to solve P (by any algorithm)
is expressed as a function of n. Similarly, the number of operations executed (in the best, average, and
worst cases) by a speci�c algorithm that solves P is also expressed as a function of n. Thus, for example,
the problem of sorting a sequence of n numbers requires 
(n logn) comparisons, and the sorting algorithm
Quicksort performs O(n2) comparisons in the worst case.

In this section we depart from this model. Here, the size of the problem plays a secondary role. In fact,
in most (though not necessarily all) cases, the problem size may be taken as constant. The computational
complexity now depends on time. Not only science and technology, but also everyday life, provide many
instances demonstrating time-varying complexity. Thus, for example:

1. An illness may get better or worse with time, making it more or less amenable to treatment.
2. Biological and software viruses spread with time making them more di�cult to cope with.
3. Spam accumulates with time making it more challenging to identify the legitimate email \needles" in

the \haystack" of junk messages.
4. Tracking moving objects becomes harder as they travel away from the observer (for example, a spaceship

racing towards Mars).
5. Security measures grow with time in order to combat crime (for example, when protecting the privacy,

integrity, and authenticity of data, ever stronger cryptographic algorithms are used, that is, ones that
are more computationally demanding to break, thanks to their longer encryption and decryption keys).

6. Algorithms in many applications have complexities that vary with time from one time unit during the
computation to the next. Of particular importance here are:
(a) Molecular dynamics (the study of the dynamic interactions among the atoms of a system, including

the calculation of parameters such as forces, energies, and movements) [18, 39], and
(b) Computational uid dynamics (the study of the structural and dynamic properties of moving objects,

including the calculation of the velocity and pressure at various points) [11].

Suppose that we are given an algorithm for solving a certain computational problem. The algorithm
consists of a number of stages, where each stage may represent, for example, the evaluation of a particular
arithmetic expression (such as c a+b). Further, let us assume that a computational stage executed at time
t requires a number C(t) of constant-time operations. As the aforementioned situations show, the behavior
of C varies from case to case. Typically, C may be an increasing, decreasing, unimodal, periodic, random,
or chaotic function of t. In what follows we study the e�ect on computational complexity of a number of
functions C(t) that grow with time.

It is worth noting that we use the term stage to refer to a component of an algorithm, hence a variable
entity, in order to avoid confusion with a step, an intrinsic property of the computer, as de�ned in Sections
2.1 and 4.3. In conventional computing, where computational complexity is invariant (that is, oblivious to
external circumstances), a stage (as required by an algorithm) is exactly the same thing as a step (as executed
by a computer). In unconventional computing (the subject of this paper), computational complexity is a�ected
by its environment and is therefore variable. Under such conditions, one or more steps may be needed in
order to execute a stage.
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4.1 Examples Of Increasing Functions C(t)

The fundamental things apply

As time goes by.

Herman Hupfeld

Consider the following three cases in which the number of operations required to execute a computational
stage increases with time. For notational convenience, we use S(i) to express the number of operations
performed in executing stage i, at the time when that stage is in fact executed. Denoting the latter by ti, it
is clear that S(i) = C(ti).

1. For t � 0, C(t) = t+ 1. Table 1 illustrates ti, C(ti), and S(i), for 1 � i � 6.

Stage i ti C(ti) S(i)

1 0 C(0) 1

2 0 + 1 C(1) 2

3 1 + 2 C(3) 4

4 3 + 4 C(7) 8

5 7 + 8 C(15) 16

6 15 + 16 C(31) 32

7 31 + 32 C(63) 64

Table 1. Number of operations required to complete stage i when C(t) = t+ 1.

It is clear in this case that S(i) = 2i�1, for i � 1. It follows that the total number of operations performed
when executing all stages, from stage 1 up to and including stage i, is

iX
j=1

2j�1 = 2i � 1:

It is interesting to note that, while C(t) is a linear function of the time variable t, for its part S(i) grows
exponentially with i� 1, where i is the number of stages executed so far. The e�ect of this behavior on
the total number of operations performed is appreciated by considering the following example. When
executing a computation requiring logn stages for a problem of size n, 2logn � 1 = n� 1 operations are
performed.

2. For t � 0, C(t) = 2t. Table 2 illustrates ti, C(ti), and S(i), for 1 � i � 5.

Stage i ti C(ti) S(i)

1 0 C(0) 20

2 0 + 1 C(1) 21

3 1 + 2 C(3) 23

4 3 + 8 C(11) 211

5 11 + 2048 C(2059) 22059

Table 2. Number of operations required to complete stage i when C(t) = 2t.

In this case, S(1) = 1, and for i > 1, we have:

S(i) = 2

Xi�1

j=1
S(j)

:
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Since S(i) >
Pi�1

j=1
S(j); the total number of operations required by i stages is less than 2S(i), that is,

O(S(i)).
Here we observe again that while C(t) = 2C(t� 1), the number of operations required by S(i), for i > 2,
increases signi�cantly faster than double those required by all previous stages combined.

3. For t � 0, C(t) = 22
t
. Table 3 illustrates ti, C(ti), and S(i), for 1 � i � 3.

Stage i ti C(ti) S(i)

1 0 C(0) 22
0

2 0 + 2 C(2) 22
2

3 2 + 16 C(18) 22
18

Table 3. Number of operations required to complete stage i when C(t) = 22
t
.

Here, S(1) = 2, and for i > 1, we have:

S(i) = 22

Xi�1

j=1
S(j)

:

Again, since S(i) >
P

i�1
j=1

S(j); the total number of operations required by i stages is less than 2S(i),
that is, O(S(i)).
In this example, the di�erence between the behavior of C(t) and that of S(i) is even more dramatic.
Obviously, C(t) = C(t � 1)2, where t � 1 and C(0) = 2, and as such C(t) is a fast growing function
(C(4) = 65536, while C(7) is represented with 39 decimal digits). Yet, S(i) grows at a far more dizzying
pace: Already S(3) is equal to 2 raised to the power 4� 65536.

The signi�cance of these examples and their particular relevance in unconventional computation are
illustrated by the paradigm in the following section.

4.2 Computing With Deadlines

tiempo tiempo tiempo tiempo.

Era Era.

C�esar Vallejo

Suppose that a certain computation requires that n functions, each of one variable, be computed. Speci�-
cally, let f0(x0); f1(x1); : : : ; fn�1(xn�1); be the functions to be computed. This computation has the following

characteristics:

1. The n functions are entirely independent. There is no precedence whatsoever among them; they can be
computed in any order.

2. Computing fi(xi) at time t requires C(t) = 2t operations, for 0 � i � n� 1 and t � 0.
3. There is a deadline for reporting the results of the computations: All n values f0(x0); f1(x1); : : : ;

fn�1(xn�1) must be returned by the end of the third time unit, that is, when t = 3.

It should be easy to verify that no sequential computer, capable of exactly one constant-time operation
per step (that is, per time unit), can perform this computation for n � 3. Indeed, f0(x0) takes C(0) = 20 = 1
time unit, f1(x1) takes another C(1) = 21 = 2 time units, by which time three time units would have elapsed.
At this point none of f2(x2); f3(x3); : : : ; fn�1(xn�1) would have been computed.

By contrast, an n-processor parallel computer solves the problem handily. With all processors operating
simultaneously, processor i computes fi(xi) at time t = 0, for 0 � i � n � 1. This consumes one time unit,
and the deadline is met.

The example in this section is based on one of the three functions for C(t) presented in Section 4.1.

Similar analyses can be performed in the same manner for C(t) = t + 1 and C(t) = 22
t
, as well as other

functions describing time-varying computational complexity.
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4.3 Accelerating Machines

Avec le temps...

avec le temps, va, tout s'en va.

L�eo Ferr�e

In order to put the result in Section 4.2 in perspective, we consider a variant on the models of computation
described thus far. An accelerating machine is a computer capable of increasing the number of operations
it can do at each successive step of a computation. This is an unconventional{though primarily theoretical{
model with no existing implementation (to date!). It is widely studied in the literature on unconventional
computing [10, 12, 14, 43, 44, 46]. The importance of the accelerating machine lies primarily in its role in
questioning some long held beliefs regarding uncomputability [13] and universality [7].

It is important to note that the rate of acceleration is speci�ed at the time the machine is put in service
and remains the same for the lifetime of the machine. Thus, the number of operations that the machine can
execute during the ith step, is known in advance and �xed permanently, for i = 1; 2; : : :.

Suppose that an accelerating machine is available which can double the number of operations that it can
perform at each step. Such a machine would be able to perform one operation in the �rst step, two operations
in the second, four operations in the third, and so on. How would such an extraordinary machine fare with
the computational problem of Section 4.2?

As it turns out, an accelerating machine capable of doubling its speed at each step, is unable to solve the
problem for n � 4. It would compute f0(x0), at time t = 0 in one time unit. Then it would compute f1(x1),
which now requires two operations at t = 1, also in one time unit. Finally, f2(x2), requiring four operations
at t = 2, is computed in one time unit, by which time t = 3. The deadline has been reached and none of
f3(x3); f4(x4); : : : ; fn�1(xn�1) has been computed.

In closing this discussion of accelerating machines we note that once an accelerating machine has been
de�ned, a problem can always be devised to expose its limitations. Thus, let the acceleration function be
�(t). In other words, �(t) describes the number of operations that the accelerating machine can perform at
time t. For example, �(t) = 2�(t � 1), with t � 1 and �(0) = 1, as in the case of the accelerating machine
in this section. By simply taking C(t) > �(t), the accelerating machine is rendered powerless, even in the

absence of deadlines.

5 Rank-Varying Computational Complexity

Dans l'ordre naturel comme dans l'ordre social,

il ne faut pas vouloir être plus qu'on ne peut.

Nicolas de Chamfort

Unlike the computations in Section 4, the computations with which we are concerned here have a com-
plexity that does not vary with time. Instead, suppose that a computation consists of n stages. There may be
a certain precedence among these stages, that is, the order in which the stages are performed matters since
some stages may depend on the results produced by other stages. Alternatively, the n stages may be totally
independent, in which case the order of execution is of no consequence to the correctness of the computation.

Let the rank of a stage be the order of execution of that stage. Thus, stage i is the ith stage to be executed.
In this section we focus on computations with the property that the number of operations required to execute
a stage whose rank is i is a function of i only. For example, as in Section 4, this function may be increasing,
decreasing, unimodal, random, or chaotic. Instances of algorithms whose computational complexity varies
from one stage to another are described in [15]. As we did before, we concentrate here on the case where the
computational complexity C is an increasing function of i.

When does rank-varying computational complexity arise? Clearly, if the computational requirements grow
with the rank, this type of complexity manifests itself in those circumstances where it is a disadvantage,
whether avoidable or unavoidable, to being ith, for i � 2. For example:

1. A penalty may be charged for missing a deadline, such as when a stage s must be completed by a certain
time ds.



10

2. The precision and/or ease of measurement of variables involved in the computation in a stage s may
decrease with each stage executed before s.

3. Biological tissues may have been altered (by previous stages) when stage s is reached.
4. The e�ect of s� 1 quantum operations may have to be reversed to perform stage s.

5.1 An Algorithmic Example: Binary Search

La fausse modestie consiste �a se mettre sur le même rang que les autres

pour mieux montrer qu'on les d�epasse.

Sully Prudhomme

Binary search is a well-known (sequential) algorithm in computer science. It searches for an element x
in a sorted list L of n elements. In the worst case, binary search executes O(logn) stages. In what follows,
we denote by B(n) the total number of elementary operations performed by binary search (on a sequential
computer), and hence its running time, in the worst case.

Conventionally, it is assumed that C(i) = O(1), that is, each stage i requires the same constant number of
operations when executed. Thus, B(n) = O(logn). Let us now consider what happens to the computational
complexity of binary search when we assume, unconventionally, that the computational complexity of every
stage i increases with i. Table 4 shows how B(n) grows for three di�erent values of C(i).

C(i) B(n)

i O(log2 n)

2i O(n)

22
i

O(2n)

Table 4. Number of operations required by binary search for di�erent functions C(i).

In a parallel environment, where n processors are available, the fact that the sequence L is sorted is of
no consequence to the search problem. Here, each processor reads x, compares one of the elements of L to x,
and returns the result of the comparison. This requires one time unit. Thus, regardless of C(i), the running
time of the parallel approach is always the same.

5.2 The Inverse Quantum Fourier Transform

Je ne comprends pas qu'on laisse entrer les spectateurs des six premiers rangs

avec des instruments de musique.

Alfred Jarry

Consider a quantum register consisting of n qubits. There are 2n computational basis vectors associated
with such a register, namely,

j0i = j000 � � �00i;
j1i = j000 � � �01i;

...
j2n � 1i = j111 � � �11i:

Let jji = jj1j2j3 � � � jn�1jni, be one of these vectors. For j = 0; 1; : : : ; 2n� 1, the quantum Fourier transform
of jji is given by

(j0i+ e2�i0:jn j1i)
 (j0i+ e2�i0:jn�1jn j1i)
 � � � 
 (j0i+ e2�i0:j1j2 � � � jn j1i)
2n=2

;

where
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1. Each transformed qubit is a balanced superposition of j0i and j1i,
2. For the remainder of this section i =

p�1,
3. The quantities 0:jn; 0:jn�1jn; : : : ; 0:j1j2 � � � jn; are binary fractions, whose e�ect on the j1i component

is called a rotation, and
4. The operator 
 represents a tensor product; for example,

(a1j0i+ b1j1i)
 (a2j0i+ b2j1i) = a1a2j00i+ a1b2j01i+ b1a2j10i+ b1b2j11i:
We now examine the inverse operation, namely, obtaining the original vector jji from its given quantum

Fourier transform.

Conventional Solution Since the computation of each of j1; j2; : : : jn�1 depends on jn, we must begin by

computing the latter from j0i + e2�i0:jn j1i . This takes one operation. Now jn is used to compute jn�1

from j0i+ e2�i0:jn�1jn j1i in two operations. In general, once jn is available, jk requires knowledge of jk+1;,
jk+2; : : : ; jn, must be computed in (n � k + 1)st place, and costs n � k + 1 operations to retrieve from

j0i+ e2�i0:jkjk+1 � � � jn j1i, for k = n� 1; n� 2; : : : ; 1: Formally, the sequential algorithm is as follows:

for k = n downto 1 do

jjki  1p
2

� j0i
e2�i0:jkjk+1 � � � jn j1i

�
for m = k + 1 to n do

if jn+k+1�m = 1 then

jjki  jjki
 
1 0

0 e�2�i=2n�m+2

!

end if

end for

jjki  jjki 1p
2

�
1 1
1 �1

�
end for.

Note that the inner for loop is not executed when m > n. It is clear from the above analysis that a sequential
computer obtains j1; j2; : : : ; jn in n(n+ 1)=2 time units.

Unconventional Solution By contrast, a parallel computer can do much better in two respects. Firstly,
for k = n; n� 1; : : : ; 2, once jk is known, all operations involving jk in the computation of j1; j2; : : : ; jk�1,
can be performed simultaneously, each being a rotation. The parallel algorithm is given below:

for k = 1 to n do in parallel

jjki  1p
2

� j0i
e2�i0:jkjk+1 � � � jn j1i

�
end for

jjni  jjni 1p
2

�
1 1
1 �1

�
for k = n� 1 downto 1 do
if jk+1 = 1 then
for m = 1 to k do in parallel

jjmi  jjmi
 
1 0

0 e�2�i=2n�m+1

!

end for

end if

jjki  jjki 1p
2

�
1 1
1 �1

�
end for.
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The total number of time units required to obtain j1; j2; : : : ; jn is now 2n� 1.

Secondly, and more importantly, if decoherence takes place within � time units, where 2n � 1 < � <

n(n + 1)=2, the parallel computer succeeds in performing the computation, while the sequential computer
fails [34].

6 Interacting Variables

If we take quantum theory seriously as a picture of what's really going on,

each measurement does more than disturb:

it profoundly reshapes the very fabric of reality.

Nick Herbert

So far, in every one of the paradigms that we have examined, the unconventional nature of the computa-
tion was due either to the passage of time or to the order in which an algorithmic stage is performed. In this
and the next section, we consider evolving computations that occur in computational environments where
time and rank play no role whatsoever either in the outcome or the complexity of the computation. Rather,
it is the interactions among mutually dependent variables, caused by an interfering agent (performing the
computation) that is the origin of the evolution of the system under consideration.

The computational paradigm to be presented in this section does have one feature in common with those
discussed in the previous sections, namely, the central place occupied by the physical environment in which
the computation is carried out. Thus, in Section 3, for example, the passage of time (a physical phenomenon,
to the best of our knowledge) was the reason for the variables acquiring new values at each successive time
unit. However, the attitude of the physical environment in the present paradigm is a passive one: Nature
will not interfere with the computation until it is disturbed.

Let S be a physical system, such as one studied by biologists (for example, a living organism), or one
maintained by engineers (for example, a power generator). The system has n variables each of which is to be
measured or set to a given value at regular intervals. One property of S is that measuring or setting one of its
variables modi�es the values of any number of the system variables unpredictably. We show in this section
how, under these conditions, a parallel solution method succeeds in carrying out the required operations
on the variables of S, while a sequential method fails. Furthermore, it is principles governing such �elds
as physics, chemistry, and biology, that are responsible for causing the inevitable failure of any sequential
method of solving the problem at hand, while at the same time allowing a parallel solution to succeed. A
typical example of such principles is the uncertainty involved in measuring several related variables of a
physical system. Another principle expresses the way in which the components of a system in equilibrium
react when subjected to outside stress.

6.1 Disturbing The Equilibrium

All biologic phenomena act to adjust: there are no biologic actions other than adjustments. Adjustment is

another name for Equilibrium. Equilibrium is Universal, or that which has nothing external to derange it.

Charles Fort

A physical system S possesses the following characteristics:

1. For n > 1, the system possesses a set of n variables (or properties), namely, x0; x1; : : : ; xn�1. Each of
these variables is a physical quantity (such as, for example, temperature, volume, pressure, humidity,
density, electric charge, and so on). These quantities can be measured or set independently, each at a
given discrete location (or point) within S. Henceforth, xi, 0 � i � n� 1, is used to denote a variable as
well as the discrete location at which this variable is measured or set.

2. The system is in a state of equilibrium, meaning that the values x0, x1, : : :, xn�1 satisfy a certain global
condition G(x0, x1, : : :, xn�1).
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3. At regular intervals, the state of the physical system is to be recorded and possibly modi�ed. In other
words, the values x0; x1; : : : ; xn�1 are to be measured at a given moment in time where G(x0, x1, : : :,
xn�1) is satis�ed. New values are then computed for x0; x1; : : : ; xn�1, and the variables are set to these
values. Each interval has a duration of T time units; that is, the state of the system is measured and
possibly updated every T time units, where T > 1.

4. If the values x0; x1; : : : ; xn�1 are measured or set one by one, each separately and independently of the
others, this disturbs the equilibrium of the system. Speci�cally, suppose, without loss of generality, that
all the values are �rst measured, and later all are set, in the order of their indices, such that x0 is �rst
and xn�1 last in each of the two passes. Thus:

(a) When xi is measured, an arbitrary number of values xj , 0 � j � n � 1, will change unpredictably
shortly thereafter (within one time unit), such that G(x0, x1, : : :, xn�1) is no longer satis�ed. Most
importantly, when i < n�1, the values of xi+1; xi+2; : : : ; xn�1, none of which has yet been registered,
may be altered irreparably.

(b) Similarly, when xi is set to a new value, an arbitrary number of values xj , 0 � j � n� 1, will change
unpredictably shortly thereafter (within one time unit), such that G(x0, x1, : : :, xn�1) is no longer
satis�ed. Most importantly, when i > 0, the values of x0; x1; : : : ; xi�1, all of which have already been
set, may be altered irreparably.

This last property of S, namely, the way in which the system reacts to a sequential measurement or
setting of its variables, is reminiscent of a number of well-known phenomena that manifest themselves in
many sub�elds of the physical and natural sciences and engineering [8]. Examples of these phenomena are
grouped into two classes and presented in what follows.

Uncertainty In Measurement The phenomena of interest here occur in systems where measuring one variable
of a given system a�ects, interferes with, or even precludes the subsequent measurement of another variable
of the system. It is important to emphasize that the kind of uncertainty of concern in this context is in
no way due to any errors that may be introduced by an imprecise or not su�ciently accurate measuring
apparatus.

1. In quantum mechanics, Heisenberg's uncertainty principle puts a limit on our ability to measure pairs
of `complementary' variables. Thus, the position and momentum of a subatomic particle, or the energy

of a particle in a certain state and the time during which that state existed, cannot be de�ned at the
same time to arbitrary accuracy [9]. In fact, one may interpret this principle as saying that once one of
the two variables is measured (however accurately, but independently of the other), the act of measuring
itself introduces a disturbance that a�ects the value of the other variable. For example, suppose that at a
given moment in time t0 the position p0 of an electron is measured. Assume further that it is also desired
to determine the electron's momentum m0 at time t0. When the momentum is measured, however, the
value obtained is not m0, as it would have been changed by the previous act of measuring p0.

2. In digital signal processing the uncertainty principle is exhibited when conducting a Fourier analysis.
Complete resolution of a signal is possible either in the time domain t or the frequency domain w, but
not both simultaneously. This is due to the fact that the Fourier transform is computed using eiwt: Since
the product wt must remain constant, narrowing a function in one domain, causes it to be wider in
the other [19, 41]. For example, a pure sinusoidal wave has no time resolution, as it possesses nonzero
components over the in�nitely long time axis. Its Fourier transform, on the other hand, has excellent
frequency resolution: It is an impulse function with a single positive frequency component. By contrast,
an impulse (or delta) function has only one value in the time domain, and hence excellent resolution. Its
Fourier transform is the constant function with nonzero values for all frequencies and hence no resolution.

Other examples in this class include image processing, sampling theory, spectrum estimation, image coding,
and �lter design [49]. Each of the phenomena discussed typically involves two variables in equilibrium.
Measuring one of the variables has an impact on the value of the other variable. The system S, however,
involves several variables (two or more). In that sense, its properties, as listed at the beginning of this section,
are extensions of these phenomena.
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Reaction To Stress Phenomena in this class arise in systems where modifying the value of a parameter
causes a change in the value of another parameter. In response to stress from the outside, the system
automatically reacts so as to relieve the stress. Newton's third law of motion (\For every action there is an
equal and opposite reaction") is a good way to characterize these phenomena.

1. In chemistry, Le Châtelier's principle states that if a system at equilibrium is subjected to a stress, the
system will shift to a new equilibrium in an attempt to reduce the stress. The term stress depends on the
system under consideration. Typically, stress means a change in pressure, temperature, or concentration
[36]. For example, consider a container holding gases in equilibrium. Decreasing (increasing) the volume of
the container leads to the pressure inside the container increasing (decreasing); in response to this external
stress the system favors the process that produces the least (most) molecules of gas. Similarly, when the
temperature is increased (decreased), the system responds by favoring the process that uses up (produces)
heat energy. Finally, if the concentration of a component on the left (right) side of the equilibrium is
decreased (increased), the system's automatic response is to favor the reaction that increases (decreases)
the concentration of components on the left (right) side.

2. In biology, the homeostatic principle is concerned with the behavior displayed by an organism to which
stress has been applied [37, 48]. An automatic mechanism known as homeostasis counteracts external
inuences in order to maintain the equilibrium necessary for survival, at all levels of organization in
living systems. Thus, at the molecular level, homeostasis regulates the amount of enzymes required in
metabolism. At the cellular level, it controls the rate of division in cell populations. Finally, at the
organismic level, it helps maintain steady levels of temperature, water, nutrients, energy, and oxygen.
Examples of homeostatic mechanisms are the sensations of hunger and thirst. In humans, sweating and
ushing are automatic responses to heating, while shivering and reducing blood circulation to the skin
are automatic responses to chilling. Homeostasis is also seen as playing a role in maintaining population
levels (animals and their prey), as well as steady state conditions in the Earth's environment.

Systems with similar behavior are also found in cybernetics, economics, and the social sciences [25]. Once
again, each of the phenomena discussed typically involves two variables in equilibrium. Setting one of the
variables has an impact on the value of the other variable. The system S, however, involves several variables
(two or more). In that sense, its properties, as listed at the beginning of this section, are extensions of these
phenomena.

6.2 Solutions

Que de temp perdu �a gagner du temps.

Paul Morand

Two approaches are now described for addressing the problem de�ned at the beginning of Section 6.1,
namely, to measure the state of S while in equilibrium, thus disturbing the latter, then setting it to a new
desired state.

Simplifying Assumptions In order to perform a concrete analysis of the di�erent solutions to the com-
putational problem just outlined, we continue to assume in what follows that the time required to perform
all three operations below (in the given order) is one time unit:

1. Measuring one variable xi, 0 � i � n� 1,

2. Computing a new value for a variable xi, 0 � i � n� 1, and

3. Setting one variable xi, 0 � i � n� 1.

Furthermore, once the new values of the parameters x0; x1; : : : ; xn�1 have been applied to S, the system
requires one additional time unit to reach a new state of equilibrium. It follows that the smallest T can be
is two time units; we therefore assume that T = 2.
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A Mathematical Model We now present a mathematical model of the computation in Section 6.1.
Recall that the physical system has the property that all variables are related to, and depend on, one
another. Furthermore, measuring (or setting) one variable disturbs any number of the remaining variables
unpredictably (meaning that we cannot tell which variables have changed value, and by howmuch). Typically,
the system evolves until it reaches a state of equilibrium and, in the absence of external perturbations, it
can remain in a stable state inde�nitely.

Formally, the interdependence among the n variables can be modeled using n functions, g0; g1; : : : ; gn�1,
as follows:

x0(t+ 1) = g0(x0(t); x1(t); : : : ; xn�1(t))

x1(t+ 1) = g1(x0(t); x1(t); : : : ; xn�1(t))

...

xn�1(t+ 1) = gn�1(x0(t); x1(t); : : : ; xn�1(t)):

These equations describe the evolution of the system from state (x0(t); x1(t); : : : ; xn�1(t)) at time t to state
(x0(t + 1); x1(t + 1); : : : ; xn�1(t + 1)), one time unit later. While each variable is written as a function of
time, there is a crucial di�erence between the present situation and that in Section 3: When the system
is in a state of equilibrium, its variables do not change over time. It is also important to emphasize that,
in most cases, the dynamics of the system are very complex, so the mathematical descriptions of functions
g0; g1; : : : ; gn�1 are either not known to us or we only have rough approximations for them.

Assuming the system is in an equilibrium state, our task is to measure its variables (in order to compute
new values for these variables and set the system to these new values). In other words, we need the values
of x0(t0); x1(t0); : : : ; xn�1(t0) at moment t = t0, when the system is in a stable state.

We can obtain the value of x0(t0), for instance, by measuring that variable at time t0 (noting that the
choice of x0 here is arbitrary; the argument remains the same regardless of which of the n variables we choose
to measure �rst). Although we can acquire the value of x0(t0) easily in this way, the consequences for the
entire system can be dramatic. Unfortunately, any measurement is an external perturbation for the system,
and in the process, the variable subjected to measurement will be a�ected unpredictably.

Thus, the measurement operation will change the state of the system from (x0(t0); x1(t0); : : : ; xn�1(t0))
to (x00(t0); x1(t0); : : : ; xn�1(t0)), where x

0
0(t0) denotes the value of variable x0 after measurement. Since the

measurement process has a non-deterministic e�ect upon the variable being measured, we cannot estimate
x00(t0) in any way. Note also that the transition from (x0(t0); x1(t0); : : : ; xn�1(t0)), that is, the state before
measurement, to (x00(t0); x1(t0); : : : ; xn�1(t0)), that is, the state after measurement, does not correspond to
the normal evolution of the system according to its dynamics described by functions gi, 0 � i � n� 1.

However, because the equilibrium state was perturbed by the measurement operation, the system will
react with a series of state transformations, governed by equations de�ning the gi. Thus, at each time unit
after t0, the parameters of the system will evolve either towards a new equilibrium state or perhaps fall into
a chaotic behavior. In any case, at time t0 + 1, all n variables have acquired new values, according to the
functions gi:

x0(t0 + 1) = g0(x
0
0(t0); x1(t0); : : : ; xn�1(t0))

x1(t0 + 1) = g1(x
0
0(t0); x1(t0); : : : ; xn�1(t0))

...

xn�1(t0 + 1) = gn�1(x
0
0(t0); x1(t0); : : : ; xn�1(t0)):

Consequently, unless we are able to measure all n variables, in parallel, at time t0, some of the values
composing the equilibrium state

(x0(t0); x1(t0); : : : ; xn�1(t0))

will be lost without any possibility of recovery.
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Conventional Approach The sequential computer measures one of the values (x0, for example) and by so
doing it disturbs the equilibrium, thus losing all hope of recording the state of the system within the given
time interval. Any value read afterwards will not satisfy G(x0, x1, : : :, xn�1).

Similarly, the sequential approach cannot update the variables of S properly: Once x0 has received its
new value, setting x1 disturbs x0 unpredictably.

Unconventional Approach A parallel computer with n processors, by contrast, will measure all the
variables x0; x1; : : : ; xn�1 simultaneously (one value per processor), and therefore obtain an accurate reading
of the state of the system within the given time frame. Consequently,

1. A snapshot of the state of the system that satis�es G(x0, x1, : : :, xn�1) has been obtained.
2. The new variables x0; x1; : : : ; xn�1 can be computed in parallel (one value per processor).
3. These new values can also be applied to the system simultaneously (one value per processor).

Following the resetting of the variables x0; x1; : : : ; xn�1, a new equilibrium is reached. The entire process
concludes within T time units successfully.

6.3 Distinguishability In Quantum Computing

Ne laissez jamais le temps au temps. Il en pro�te.

Jean Amadou

We conclude our study of interacting variables with an example from quantum computation. In Section
3.1 we saw that a single qubit can be in a superposition of two states, namely j0i and j1i. In the same way,
it is possible to place an entire quantum register, made up of n qubits, in a superposition of two states.
The important point here is that, unlike the case in Section 3.1, it is not the individual qubits that are in a
superposition, but rather the entire register (viewed as a whole).

Thus, for example, the register of n qubits may be put into any one of the following 2n states:

1p
2
(j000 � � � 0i � j111 � � �1i)

1p
2
(j000 � � � 1i � j111 � � �0i)

...
1p
2
(j011 � � �1i � j100 � � �0i):

These vectors form an orthonormal basis for the state space corresponding to the n-qubit system. In

such superpositions, the n qubits forming the system are said to be entangled: Measuring any one of them
causes the superposition to collapse into one of the two basis vectors contributing to the superposition.
Any subsequent measurement of the remaining n � 1 qubits will agree with that basis vector to which
the superposition collapsed. This implies that it is impossible through single measurement to distinguish
among the 2n possible states. Thus, for example, if after one qubit is read the superposition collapses to
j000 � � �0i; we will have no way of telling which of the two superpositions, 1p

2
(j000 � � �0i + j111 � � �1i); or

1p
2
(j000 � � �0i � j111 � � �1i); existed in the register prior to the measurement.

The only chance to di�erentiate among these 2n states using quantum measurement(s) is to observe the n
qubits simultaneously, that is, perform a single joint measurement of the entire system. In the given context,
joint is really just a synonym for parallel. Indeed, the device in charge of performing the joint measurement
must posses the ability to \read" the information stored in each qubit, in parallel, in a perfectly synchronized
manner. In this sense, at an abstract level, the measuring apparatus can be viewed as having n probes. With
all probes operating in parallel, each probe can \peek" inside the state of one qubit, in a perfectly synchronous
operation. The information gathered by the n probes is seen by the measuring device as a single, indivisible
chunk of data, which is then interpreted to give one of the 2n entangled states as the measurement outcome.

It is perhaps worth emphasizing that if such a measurement cannot be applied then the desired distin-
guishability can no longer be achieved regardless of how many other measuring operations we are allowed



17

to perform. In other words, even an in�nite sequence of measurements touching at most n� 1 qubits at the
same time cannot equal a single joint measurement involving all n qubits. Furthermore, with respect to the
particular distinguishability problem that we have to solve, a single joint measurement capable of observing
n� 1 qubits simultaneously o�ers no advantage whatsoever over a sequence of n� 1 consecutive single qubit
measurements [31, 32].

7 Computations Obeying Mathematical Constraints

The more constraints one imposes, the more one frees one's self. And the

arbitrariness of the constraint serves only to obtain precision of execution.

Igor Stravinsky

In this section we examine computational problems in which a certain mathematical condition must
be satis�ed throughout the computation. Such problems are quite common in many subareas of computer
science, such as numerical analysis and optimization. Thus, the condition may be a local one; for example, a
variable may not be allowed to take a value larger than a given bound. Alternatively, the condition may be
global, as when the average of a set of variables must remain within a certain interval. Speci�cally, for n > 1,
suppose that some function of the n variables, x0; x1; : : : ; xi; : : : ; xn�1; is to be computed. The requirement
here is that the variables satisfy a stated condition at each step of the computation. In particular, if the
e�ect of the computation is to change xi to x

0
i
at some point, then the condition must remain true, whether

it applies to xi alone or to the entire set of variables, whatever the case may be. If the condition is not
satis�ed at a given moment of the computation, the latter is considered to have failed.

Our concern in what follows is with computations that �t the broad de�nition just presented, yet can
only be performed successfully in parallel (and not sequentially). All n variables, x0; x1; : : : ; xi; : : : ; xn�1;
are already stored in memory. However, modifying any one of the variables from xi to x

0
i
, to the exclusion of

the others, causes the required condition (whether local or global) to be violated, and hence the computation
to fail.

7.1 Mathematical Transformations

Il n'y a que le temps qui ne perde pas son temps.

Jules Renard

There exists a family of computational problems where, given a mathematical object satisfying a certain
property, we are asked to transform this object into another which also satis�es the same property. Further-
more, the property is to be maintained throughout the transformation, and be satis�ed by every intermediate
object, if any. Three examples of such transformations are now described.

Geometric Flips The object shown in Fig. 1(a) is called a convex subdivision, as each of its faces is a
convex polygon. This convex subdivision is to be transformed into that in Fig. 1(b).

The transformation can be e�ected by removing edges and replacing them with other edges. The condition
for a successful transformation is that each intermediate �gure (resulting from a replacement) be a convex
subdivision as well. There are n edges in Fig. 1(a) that can be removed and replaced with another n edges
to produce Fig. 1(b), where n = 12 for illustration. These are the \spokes" that connect the outside \wheel"
to the inside one. However, as Fig. 1(c) illustrates, removing any one of these edges and replacing it with
another creates a concavity, thus violating the condition [6, 29].

Map Coloring A simple map is given consisting of n contiguous regions, where n > 1. Each region is a
vertical strip going from the top edge to the bottom edge of the map. The regions are colored using two
colors, red (R) and blue (B), in alternating fashion, thus:

: : : RBRBRBRBRBRBRBRBRB : : :
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(a) (b) (c)

Fig. 1. Subdivision: (a) origin, (b) destination, (c) with a concavity.

It is required to re-color this map, such that each region previously coloredR is now coloredB, and conversely,
each region previously colored B is now colored R, thus:

: : : BRBRBRBRBRBRBRBRBR : : :

The condition to be satis�ed throughout the recoloring is that no two adjacent regions are colored using the
same color, and no third color (beside R and B) is ever used. It is clear that changing any one color at a
time violates this requirement [24].

Rewriting Systems From an initial string ab, in some formal language consisting of the two symbols a
and b, it is required to generate the string (ab)n, for n > 1. Thus, for n = 3, the target string is ababab. The
rewrite rules to be used are:

a! ab

b ! ab:

Throughout the computation, no intermediate string should have two adjacent identical characters. Such
rewrite systems (also known as L-systems) are used to draw fractals and model plant growth [38]. Here we
note that applying any one of the two rules at a time causes the computation to fail (for example, if ab is
changed to abb, by the �rst rewrite rule, or to aab by the second) [24].

7.2 Conventional Solution

With all the xi in its memory, suppose without loss of generality that the sequential computer obtains x00.
This causes the computation to fail, as the set of variables x00, x1, x2, : : :, xn�1 does not satisfy the global
condition. Thus, in Section 7.1, only one edge of the subdivision in Fig. 1(a) can be replaced at a time. Once
any one of the n candidate edges is replaced, the global condition of convexity no longer holds. The same
is true in Sections 7.1 and 7.1, where the sequential computer can change only one color or one symbol at
once, respectively, thereby causing the adjacency conditions to be violated.

7.3 Unconventional Solution

For a given n, a parallel computer with n processors can easily perform a transformation on all the xi
collectively, with processor i computing x0

i
. The required property in each case is maintained leading to a

successful computation. Thus, in Section 7.1, n edges are removed from Fig. 1(a) and n new edges replace
them to obtain Fig. 1(b), all in one step. Similarly in Section 7.1, all colors can be changed at the same time.
Finally, in Section 7.1, the string (ab)n is obtained in logn steps, with the two rewrite rules being applied
simultaneously to all symbols in the current intermediate string, in the following manner: ab; abab; abababab;
and so on. It is interesting to observe that a successful generation of (ab)n also provides an example of a
rank-varying computational complexity (as described in Section 5). Indeed, each legal string (that is, each
string generated by the rules and obeying the adjacency property) is twice as long as its predecessor (and
hence requires twice as many operations to be generated).
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8 The Universal Computer Is A Myth

Every �nitely realizable physical system can be perfectly simulated

by a universal model computing machine operating by �nite means.

David Deutsch

The Principle of Simulation is the cornerstone of computer science. It is at the heart of most theoretical
results and practical implements of the �eld such as programming languages, operating systems, and so on.
The principle states that any computation that can be performed on any one general-purpose computer can
be equally carried out through simulation on any other general-purpose computer [17, 20, 30]. At times, the
imitated computation, running on the second computer, may be faster or slower depending on the computers
involved. In order to avoid having to refer to di�erent computers when conducting theoretical analyses, it is
a generally accepted approach to de�ne a model of computation that can simulate all computations by other
computers. This model would be known as a Universal Computer U . Thus, Universal Computation, which
clearly rests on the Principle of Simulation, is also one of the foundational concepts in the �eld [16, 21, 22].

Our purpose here is to prove the following general statement: There does not exist a �nite computational
device that can be called a Universal Computer. Our reasoning proceeds as follows. Suppose there exists a
Universal Computer capable of n elementary operations per step, where n is a �nite and �xed integer. This
computer will fail to perform a computation requiring n0 operations per step, for any n0 > n, and consequently
lose its claim of universality. Naturally, for each n0 > n, another computer capable of n0 operations per step
will succeed in performing the aforementioned computation. However, this new computer will in turn be
defeated by a problem requiring n00 > n0 operations per step.

This reasoning is supported by each of the computational problems presented in Sections 3{7. As we have
seen, these problems can easily be solved by a computer capable of executing n operations at every step.
Speci�cally, an n-processor parallel computer led to a successful computation in each case. However, none of
these problems is solvable by any computer capable of at most n�1 operations per step, for any integer n > 1.
Furthermore, the problem size n itself is a variable that changes with each problem instance. As a result,
no parallel computer, regardless of how many processors it has available, can cope with a growing problem
size, as long as the number of processors is �nite and �xed. This holds even if the computer purporting to
be universal is endowed with an unlimited memory and is allowed to compute for an inde�nite amount of
time.

The preceding reasoning applies to any computer that obeys the �niteness condition, that is, a computer
capable of only a �nite and �xed number of operations per step. It should be noted that computers obeying
the �niteness condition include all \reasonable" models of computation, both theoretical and practical, such
as the Turing Machine [26], the Random Access Machine [40], and other idealized models, as well as all of
today's general-purpose computers, including existing conventional computers (both sequential and parallel),
as well as contemplated unconventional ones such as biological and quantum computers [5]. It is clear from
Section 4.3 that even accelerating machines are not universal.

Therefore, the Universal Computer U is clearly a myth. As a consequence, the Principle of Simulation
itself (though it applies to most conventional computations) is, in general, a fallacy. In fact, the latter
principle is responsible for many other myths in the �eld. Of particular relevance to parallel computing, are
the myths of the Speedup Theorem (speedup is at most equal to the number of processors used in parallel),
the Slowdown Theorem, also known as Brent's Theorem (when q instead of p processors are used, q < p, the
slowdown is at most p=q), and Amdahl's Law (maximum speedup is inversely proportional to the portion
of the calculation that is sequential). Each of these myths can be dispelled using the same computations
presented in this paper. Other computations for dispelling these and other myths are presented in [4].
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9 Conclusion

First, you know, a new theory is attacked as absurd; then it is admitted

to be true, but obvious and insigni�cant; �nally it is seen to be so important

that its adversaries claim that they themselves discovered it.

William James

An evolving computation is one whose characteristics vary during its execution. In this paper, we used
evolving computations to identify a number of computational paradigms involving problems whose solution
necessitates the use of a parallel computer. These include computations with variables whose values change
with the passage of time, computations whose computational complexity varies as a function of time, compu-
tations in which the complexity of a stage of the computation depends on the order of execution of that stage,
computations with variables that interact with one another and hence change each other's values through
physical processes occurring in nature, and computations subject to global mathematical constraints that
must be respected throughout the problem solving process. In each case, n computational steps must be
performed simultaneously in order for the computation to succeed. A parallel computer with n processors
can readily solve each of these problems. No sequential computer is capable of doing so. Interestingly, this
demonstrates that one of the fundamental principles in computing, namely, that any computation by one
computer can be simulated on another, is invalid. None of the parallel solutions described in this paper can
be simulated on a sequential computer, regardless of how much time and memory are allowed.

Another consequence of our analysis is that the concept of universality in computing is unachievable.
For every putative universal computer U1 capable of V (t) operations at time unit t, it is always possible
to de�ne a computation P1 requiring W (t) operations at time unit t to be completed successfully, where
W (t) > V (t), for all t. While U1 fails, another computer U2 capable of W (t) operations at time unit t
succeeds in performing P1 (only to be defeated, in turn, by a computation P2 requiring more than W (t)
operations at time unit t). Thus, no �nite computer can be universal. That is to say, no machine, de�ned
once and for all, can do all computations possible on other machines. This is true regardless of how V (t)
is de�ned, so long as it is �xed : It may be a constant (as with all of today's computers), or grow with
t (as with accelerating machines). The only possible universal computer would be one that is capable of
an in�nite number of operations per step. As pointed out in [5] the Universe satis�es this condition. This
observation agrees with recent thinking to the e�ect that the Universe is a computer [23, 27, 47, 50]. As stated
in [17]: \[T]hink of all our knowledge-generating processes, our whole culture and civilization, and all the
thought processes in the minds of every individual, and indeed the entire evolving biosphere as well, as being
a gigantic computation. The whole thing is executing a self-motivated, self-generating computer program."
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