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Abstract

Recommender systems make suggestions about products or services based on matching
known or estimated preferences of users with properties of products or services (content-
based), properties of other users considered to be similar (collaborative filtering), or some
hybrid approach. Collaborative filtering is widely used in E-commerce. To generate accurate
recommendations in collaborative filtering, the properties of a new user must be matched
with those of existing users as accurately as possible. The available data is very large, and
the matching must be computed in real time. Existing heuristics are quite ineffective.

We introduce novel algorithms that use “positive” nearest-neighbor matching, that is
they find neighbors whose attribute values exceed those of the new user. The algorithms use
singular value decomposition as a dimension-reduction technique, and match in a collection
of lower-dimensional spaces. Although singular value decomposition is an obvious approach
to dimension reduction, it requires some care to work effectively in this setting. Performance
and quality of recommendations are measured using a movie database. We show that
reasonable matches can be found in time O(m log n), using O(nm) storage space, where n
is the number of users and m the number of attributes or products for which users may
express preferences. This is in contrast to “approximate nearest neighbor” techniques that
require either time or storage exponential in m.



1 Introduction

Recommender systems employ discovery techniques to suggest/recommend products and
services during a real-time customer interaction. They are based on information filtering,
interacting with users, and learning their preferences. Recommender systems have achieved
widespread success in E-commerce. They are implemented today by companies that provide
services such as clustering of web pages for search engine returns, proactive loading of web
pages (anticipation), expertise networks, psychographics, suggestions and recommendations
(e.g. movies at MovieLens.org [28], products at Amazon.com [25], eating places, newspaper
articles, dating services, stocks, medical advice, and jokes).

A recommendation is based on ratings previously given by a user to products and ser-
vices, and possibly on other information from the user’s profile; for example, age, gender,
and occupation. A recommender system’s main challenge is to predict ratings for products
that have not yet been seen by a user. Recommender systems employ different techniques
that are usually classified, based on the recommendation approach used, into three main
categories:

• Content-based approach: the user is recommended products that have com-
monalities with products she has rated highly in the past (e.g. in movies:
actor, director, genre, language, and production company);

• Collaborative filtering (or personalization) approach: the user is recommended
products that other users with similar preferences have previously liked;

• Hybrid approach: a combination of content-based and collaborative filtering
methods.

We focus here on collaborative filtering, although the same algorithms can be adapted
for use with content-based recommenders. The aim of collaborative filtering is to automate
the process of people recommending products to one another by shifting from an individual
method of recommendation to a collective one. Hence, the system must find an efficient
solution to the problem of matching a user’s preferences (query-tuple) against a large number
of user-product ratings to determine the best recommendation. This problem is commonly
known as the matching problem.

This paper presents two matching algorithms for recommender systems that use Sin-
gular Value Decomposition (SVD) [15]. The known preference data is transformed, in a
preprocessing stage, so that the high-dimensional space of preferences for many possible
products and services is projected into a low-dimensional space. When a recommendation
is to be made, the (new) user’s known preferences are mapped into the same low-dimensional
space, producing values that can be rapidly compared with those of other users. The first
algorithm implements this idea using a single singular value decomposition to create the
low-dimensional space, while the second uses projections from randomly weighted versions
of the global preference data.

An experimental system is used to evaluate the performance and quality of our algo-
rithms, compared with other matching techniques. We show that, in practice, reasonable
matches to a query can be found in time O(m log n) where n is the number of users and
m the number of attributes (products or services). This is in contrast to “approximate”
nearest-neighbor techniques, which require either time or storage exponential in m.

Section 2 reviews existing approaches to recommender systems and discuss their ca-
pabilities and limitations. Section 3 reviews approaches to the nearest-neighbor matching
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problem. Section 4 describes our new algorithms. Section 5 describes the experimental con-
figuration. Section 6 describes the results and evaluates the performance of our algorithms
compared to some baseline algorithms. Finally we draw some conclusions.

2 Existing Approaches and their Limitations

There have been many approaches to recommender systems developed in the literature since
the mid 1990’s, using one or more recommendation techniques.

Content-based systems, as mentioned earlier, recommend products similar to those that
a user liked in the past. Hence, various candidate products must be compared with prod-
ucts previously rated by the user to find the best-matching product(s) and recommend
them. Content-based systems work best for products with easily captured features, such as
keywords in texts, or musical features in music recommending systems such as Pandora.

Many techniques for content-based recommendations have been used including informa-
tion retrieval approaches [30], Bayesian classifiers [29, 13], and machine learning techniques
[34]. There are also some techniques used that have been borrowed from the text retrieval
community, such as ‘adaptive filtering’ [45, 49] and ‘threshold setting’ [40, 48].

Content-based recommender systems suffer from many limitations [2]:

• New user problem: for the system to understand and accurately match a user’s
preferences, the user has to rate a sufficient number of products;

• Limited content analysis: due to the limited features that are explicitly asso-
ciated with products in the recommendation system;

• Over-specialization: the system cannot recommend products that are different
from anything the user has rated before, since the system can only find
products that score highly against a user preferences.

The collaborative filtering approach was proposed [7, 21, 47, 1] to address these lim-
itations by computing personalized recommendations, based on other users with similar
preferences. It is the best known technique today and has achieved success in computing
personalized recommendations for E-commerce and information access applications, such
as GroupLens [39, 23], Video Recommender [18], Ringo [44], PHOAKS system [46], Ama-
zon.com book recommender, IBM Clever search engine [10], Jester jokes recommender [14],
and QuestionBuddy recommender [11].

A wide variety of different implementations of collaborative filtering recommendation
and prediction algorithms are used, for example:

• Naive Bayesian model and Bayesian Networks;
• Graph partitioning;
• Network analysis [32];
•machine learning techniques (e.g. clustering, decision trees, and artificial neural

networks);
• The Average Link clustering algorithm [16];
• Clustering algorithm for categorical attributes (ROCK [17]).

The different implementations of collaborative filtering recommendation techniques can
be grouped into the two general classes, heuristic-based and model-based, and in some cases
a combination of the two [47, 36]. In heuristic-based algorithms [39, 44], the value of an
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unknown rating for a product is computed based on the collection of products previously
rated by other users, using some form of aggregate of the ratings. The aggregate, in its
simplest form, can be the average of all ratings for a specific product. However, the most
common approach is to compute a weighted sum of co-rated products between a user and all
of his neighbours, where the weight function is essentially a distance measure representing
the similarity between users. The weights help influence the prediction in favor of similar
users, which allows for differentiation between user similarity levels, and hence the ability
to find a set of “nearest neighbours” for each user, in addition to simplifying the rating es-
timation procedure. Many approaches are used to compute the similarity measure between
users, where the most popular are correlation-based, cosine-based, and mean squared differ-
ence measure (described in [44]). Since the similarity measure is based on the intersection of
co-rated products, it will not work well in computing the similarity between users whenever
there are relatively few user ratings.

On the other hand, model-based algorithms [21, 1, 20, 19] predict unknown ratings
based on a model, learned from the underlying dataset using statistical and machine learning
techniques. For example, clustering can be applied to the user-rating matrix, and predictions
computed within clusters. However, many partitioning algorithms have a bias towards equal-
sized partitions or clusters with particular geometry, while hierarchical clusterers such as
Average Link and ROCK [17] produce a lot of single-item clusters. Another limitation of
clustering approaches is that each user can be clustered into a single category. This will affect
the recommender application when users are expected to be clustered into several categories
at once. Other limitations are scalability and mixed results on prediction accuracy.

A different approach is to reduce the inherently high dimensionality of the user-rating
matrix and match in a lower-dimensional setting. One way to do this is proposed by Billsus
and Pazzani [6] in a machine learning framework. They first transform the ratings matrix
entries to boolean values representing two classes, ‘like’ and ‘dislike’, by treating each non-
zero entry as ‘1’, which does not reflect how much a user liked or disliked a product. Then a
feature extraction technique (singular value decomposition) is used to reduce the boolean-
matrix dimensionality, after removing all attributes (products) with less than 2 entries.
The reduced space is then used to train a neural network (feed-forward neural network) to
generate predictions. However, they do not provide supportive theoretical evidence for their
results, nor a computational complexity evaluation.

Another dimensionality reduction approach, proposed by Sarwar et al. [42], suggests that
sparsity should be removed in the data by filling the null entries in the ratings matrix with the
average ratings for a product (or the average ratings for a user).They then use singular value
decomposition to produce a low-dimensional representation of the original space. A rating
for a user is predicted by regenerating that user’s properties from the reduced space, but
with altered ratings due to the decomposition. However, they don’t provide any theoretical
foundation for why the average ratings for a product (over all users) would be a good
representation of the missing product rating and, if it is, then why not simply present this
value as the prediction. Their other approach for generating recommendations reduces the
original matrix to a low-dimensional space, then computes a neighbourhood in that space.
A recommendation is made using the neighbours’ opinions about products they purchased.
However, the approach only considers user preference data as binary values by treating each
non-zero entry as ‘1’, which again does not reflect how much (or if) a user liked a product,
but only if she consumed it or not. Furthermore, they only evaluated their work, empirically,
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based on the quality of recommendations, with no regards to performance. This work is
similar to one of our proposed techniques (the basic model). However our approach has no
restrictions on the user-preference data types, and enables to compute recommendations in
roughly linear time.

Hofmann used a statistical technique called probabilistic Latent Semantic Analysis (pLSA)
[19, 20] for collaborative filtering. The approach used has some similarities with clustering
methods such as distributional clustering, but differs in that the users are not partitioned
into groups and user communities can overlap. It also bears close relation to dimension-
reduction methods and matrix decomposition techniques, but differs in that it offers a
probabilistic semantics and can build on statistical techniques for inference and model
selection. However, the aspect model used in pLSA was reported to suffer from severe
over-fitting problems, where the number of parameters grows linearly with the number of
documents (objects). Other approaches suggested extending the traditional collaborative
filtering heuristics by incorporating contextual information. For example, [1] used (in a
movie recommendation application) information like when, where, and with whom a movie
is seen.

For a collaborative filtering system to be accurate, it needs a large number of users to
express their opinions about a relatively large number of products. Then new users’ prefer-
ences need to be matched with those of existing users as accurately as possible. The available
data is very large, and the matching must often be computed in real time. This creates the
main challenge for existing collaborative filtering systems. Collaborative recommender sys-
tems have overcome some of the shortcomings of content-based systems. However, they still
have their own limitations [5, 24], as described below.

New user problem. The same problem as for content-based systems. This problem
can be addressed using hybrid recommendation approaches, or other alternative approaches
[38, 47] that use techniques based on product popularity, product entropy, user personaliza-
tion, or their combinations to determine the most informative products (to the system) the
new user should rate;

New product problem. For a collaborative system to recommend a product, it has
to be liked (rated) by a sufficient number of users. The hybrid recommendation approach
can also be use to address this problem;

Sparsity. Datasets in recommender applications are usually sparse as the number of
existing ratings is much smaller than the number of possible ratings. One solution to this
problem is to use user profiling information when calculating similarity (sometimes called
“demographic filtering” [35]), for example, gender, age, area code, and employment infor-
mation. Another approach [21] to overcome the sparsity problem use associative retrieval
framework and related spreading activation algorithms on users’ past transactions and feed-
back to find transitive associations among them. A different approach was used in [42, 6]
that employs a dimensionality reduction technique to reduce the dimensionality of sparse
user-rating matrices;

Scalability. Currently, most recommender sites collect implicit preferences in people’s
actions [33]. Take for example the Amazon.com bookshop. For each book a user looks
at or buys, it offers a list of related books that were bought by the same people. Peo-
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ple who ordered these books have implicitly expressed their preference for the books they
bought versus the books they didn’t buy. However, for the collaborative filtering systems
to be accurate, it needs thousands of people to express their opinions about a relatively
large number of preference options (usually dozens). Computations required by existing
collaborative-filtering systems in matching users’ properties will dramatically increase with
the (steady) growth of users and products in web-based recommender systems, resulting in
serious scalability problems.

Finally, there are the hybrid approaches to recommender systems that combine content-
based and collaborative methods [37, 43, 5, 27, 35], which helps to overcome some of the
previously mentioned challenges. However, such approaches increase the complexity of the
matching problem as they usually use more expressive rating language.

The requirements of real-time recommendations add additional challenges to the al-
ready complicated matching problem. The information filtering process in recommender
systems requires an efficient matching algorithm with high throughput and scalability. For
algorithms to be efficient, they have to achieve a good balance between effectiveness and
performance. Clearly, the magnitude of this problem increases with respect to the number
of users and products (attributes), as matches must be done in real-time. A recommender
system must ensure the timely prediction of ratings upon demand.

Each of previously discussed recommendation models supports some features of recom-
mender system, but they all have limitations, and none has the generality to efficiently find
the best match between multiple matching users/products profiles.

In the next section we will discuss the matching problem in detail, and map it to the
nearest-neighbor problem.

3 Nearest-Neighbor Problem

What makes matching difficult as recommender systems grow larger and more complex is
that each user-tuple can consist of a potentially large number of product ratings (attributes),
and a user may want recommendations for any of these attributes. Let the number of
users be n and the number of attributes be m. In a recommender system setting, it is not
implausible for n to be in the thousands and m to be in the hundreds. The matching problem
in collaborative-filtering recommender systems is to find the user-tuple, < r1, r2, ..., rm >
where ri is the rating for product i, that best matches a query-tuple with the same structure,
among perhaps several hundred possible matches.

There is an obvious geometric interpretation of the problem in which each user tuple
and each query tuple are points in an m-dimensional space. When finding a match in
recommender systems, there is little point in trying for an absolute best match, since an
exact match does not provide new information to be recommended. The goal here is to find
the nearest neighbor of the query tuple – but with the extra difficulty that the value of each
of the user-tuple attributes must be no smaller than the value of the corresponding attribute
for the query. Call this the “positive nearest-neighbor” problem. We are only interested in
points that are further away from the origin than the point corresponding to the query, but
we want to find, among them, the point that is nearest to the query.
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3.1 Positive Nearest-Neighbor

For the positive nearest-neighbor problem, a candidate user tuple should have all of its
attributes greater than or equal to those of the corresponding query attributes, and at least
one attribute value is rated favorably while its corresponding attributed in the query is
unrated. We refer to such a user tuple as feasible. This guarantees that a tuple contains
new information to be recommended. When a feasible user-tuple is found, the system will
recommend to the query user some or all of those attributes (products) that have been
(highly) rated by the selected user, but not the query user.

Given a query tuple, there is an obvious brute-force algorithm for finding the best positive
nearest-neighbor (user tuple) with time complexity O(nm). This is expensive, given that
n could be very large and recommendation decisions need to be made for each query tuple
submitted to the system.

3.2 Related Algorithms and Data Structures

Answering nearest-neighbor queries efficiently, especially in high dimensions, is a difficult
problem. Many proposals have been made using different data structures to represent the
data and clever algorithms to search them.

For a small number of dimensions m, simple solutions suffice: when m = 1, sorting
the list of values and using binary search works effectively; when m = 2, computing the
Voronoi diagram for the point set and then using any fast planar point location algorithm
to locate the cell containing the query point also works. For larger m, say m > 10, the
complexity of most methods grows exponentially as a function of m. Dobkin and Lipton
[12] seem to be the first to give an upper bound for the time required to search for a
nearest neighbor, O(2m log n) query time, and O(n2m+1

) preprocessing time and storage
space. Most of the subsequent improvements and extensions (e.g., [8, 26, 3]) require a query
time of Ω(f(m) log n), where f(m) (sometimes hidden) still denotes an exponential function
of m.

One of the most widely used algorithms relies on the k-d tree [41], a data structure that
hierarchically decomposes space into a relatively small number of cells (buckets), such that
no cell contains too many objects, and providing fast access to any point by position. To
search for a nearest-neighbor in a k-d tree, the k coordinates of the query point are used to
traverse the tree until the cell containing the point is found. An exhaustive search is then
used to scan the points inside the cell to identify the closest one. The average case analysis
of heuristics using k-d trees for fixed dimension m requires O(n log n) for preprocessing and
O(log n) query time. Although k-d trees are efficient in low dimensions, their query time
increases exponentially with increasing dimensionality. The constant factors hidden in the
asymptotic running time grow at least as fast as 2m, depending on the distance metric
used. This is because, in high dimensions, “the query hypersphere tends to intersect many
adjacent buckets leading to a dramatic increase in the number of points examined” [31].

The complexity of exact nearest neighbor search led to the “approximate” nearest-
neighbor problem: finding a point that may not be the nearest-neighbor to the query point,
but is not significantly further away from it than the true nearest neighbor. Several ap-
proximate nearest-neighbor algorithms have been developed (e.g. [9, 22, 4]) and some were
able to achieve significant improvements in running time. However, such heuristics either
use substantial storage space, or have poor performance when the number of dimensions is
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greater than log n.
Hence, k-d trees and similar approaches do not seem viable, either in theory or in practice,

for finding the nearest, or approximate-nearest, neighbour in high dimensions. Furthermore,
searching for a ‘positive’ nearest-neighbour means that the performance of such algorithms
becomes even worse. For example, the positive nearest-neighbour may be quite far from the
query point, with many closer but infeasible objects. After the point closest to the query
has been found (requiring time logarithmic in n at best), searching outwards for subsequent
candidate positive-nearest neighbors can require time logarithmic in n for each step. In
practice, if not asymptotically, this makes current heuristics expensive for this problem.

This suggests using a technique that can transform the high-dimensional space of the
dataset into lower-dimensional subspaces. One such powerful technique is Singular Value
Decomposition (SVD).

3.3 Singular Value Decomposition (SVD)

We have already noted the natural geometric interpretation of a list of tuples describing
users. If we regard such a list as an n ×m matrix, then the singular value decomposition
can be regarded as transforming the original geometric space into a new one with the
following useful property: the first axis of the new space points along the direction of
maximal variation in the original data; the second axis along the direction of maximal
variation remaining, and so on.

Let A be the n×m matrix representing the users. Then the singular value decomposition
of matrix A is given by

A = USV T (1)

where T indicates matrix transpose. If matrix A has r linearly-independent columns (r is
the rank of A), then U is an n× r orthogonal matrix (i.e. UT U = I, identity matrix), S is
an r×r positive diagonal matrix whose elements (called singular values) are non-increasing,
s1 ≥ s2 ≥ sr > 0, and V T is an orthogonal r × m matrix. Each row of U gives the
coordinates of the corresponding row of A in the coordinate system of the new axes (defined
by V ). This representation is commonly known as thin SVD.

The complexity of computing the SVD of a matrix is n2m + m3. Since the number of
attributes, m, is typically much smaller than the number of users’ tuples, n, the complexity
in practice is O(n2m). The space required to store the data structure is O(mr + r2 + rn).

One of the most useful properties of an SVD is that the matrices on the right-hand
side can be truncated by choosing the k largest singular values and the corresponding k
columns of U and k rows of V T . In particular, the truncated matrix Uk represents each
user in k dimensions – but these dimensions capture as much as possible of the variation in
the original data and so are a faithful representation of the high-dimensional data in fewer
dimensions. Since the importance of information captured in the dimensions of U decreases
as the dimensions increase, we can think of choosing k < r as removing the redundant
dimensions and, hence, reducing the noise in the original matrix.I In this setting, ‘noise’
reflects the uncertainty of users about their ratings, and the variability that they typically
show from day to day.

The truncated matrices can be multiplied together as follows:

Ak = UkSkVk
T (2)
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where matrix Ak is the best rank-k approximation (closest in the least squares sense) to the
original matrix A. Hence the projection(s) described by an SVD are, in a strong sense, the
best for spreading objects in a way that reveals their maximum variation. The problem is
that typical data is both extremely sparse and close to a high-dimensional hypersphere, so
that the theoretical benefits of SVD can only be turned into practical benefits by careful
attention to implementation details.

This paper presents efficient matching algorithms for recommender systems. We show
that a tuple of m properties can be encoded by a single value using SVD, given suitable
normalization of the data. Matching a query tuple to appropriate user tuples requires
encoding the query attributes, and then searching a ranked list of these values. We also
propose a technique that produces highly accurate recommendations by using a collection
of SVD decompositions, in which each decomposition uses data independently weighted by
random scalars.This provides several different projections of the data, which tends to reveal
the most important latent structure.

4 Algorithms

The difficulty of designing efficient algorithms for the nearest-neighbour problem in di-
mensions higher than two suggests using singular value decomposition (SVD) technique to
transform high-dimensional space into a simpler low-dimensional space.

The projection(s) described by an SVD are, in a strong sense, the best for spreading
objects in a way that reveals their maximum variation. Although SVD is a natural way
to approach dimensionality reduction, its theoretical performance is difficult to realize in
practice. The problem is that typical data is both extremely sparse and close to a high-
dimensional hypersphere, so that the theoretical benefits of SVD can only be turned into
practical benefits by careful attention to implementation details.

We have developed two algorithms for solving the nearest-neighbour matching problem:
basic SVD-based Search (bSVDS ), and Random-Weighted SVDS (rwSVDS ). The algorithms
integrate a ranking scheme with pruning functions, and work in two stages: a preprocessing
stage and a run-time stage.

4.1 Basic SVDS (bSVDS)

The bSVDS algorithm is our basic technique. The algorithm works in two stages: a pre-
processing stage and a run-time stage.

The natural similarity (proximity) metric is Euclidean distance – a user tuple is a good
match for a query tuple if the Euclidean distance between them is small (and the user-tuple
attributes meet or exceed the query requirements in the original space). However, it is not
clear that this simple metric is the most useful in practice – it seems likely that the fit
for some attributes will always be more important than for others. This could be handled
by some kind of weighting of attributes (and equivalently dimensions) but the right way
to do this is application-dependent and will probably require more real-world experience.
However, for now, we consider all attributes equally and use Euclidean distance as our
quality metric.

In algorithm (bSVDS ) only one low-dimensional matrix is created and searched for a
match to the query. We first preprocess the set of user tuples by computing the SVD of
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the original matrix A, then truncate the result to one dimension (i.e. k = 1 in equation
2). The resulting list is sorted by increasing values of u1. Each element of this list encodes
the values of all of the attributes of the corresponding user in a manner that maximizes the
variation among users – it ‘spreads’ them as far apart as possible along this newly created
dimension.

In practice, we observed a sharp drop in the singular values after the first dimension,
so we can set k = 1 without being concerned that we are losing major components of the
preference structure.

When a query arrives at the recommender system, it must be mapped into the corre-
sponding space of U , and a value created that can be compared to the encoded values. By
re-arranging the SVD decomposition equation we get:

U = AV S−1 (3)

In other words, points of A can be mapped into the transformed space by multiplying
them by V S−1. This same multiplication can be applied to query tuples to compute their
coordinates in the transformed space. Since we have truncated the SVD at k = 1, this
mapping requires only the first column of V and the first singular value, and therefore takes
time O(m).

After the transformation maps the query tuple to a single value, the value is compared
to the user values using binary search to find the user with the closest value. This user’s
tuple may not be feasible (it is similar to the query tuple in the original A matrix but one
or more of its attributes is smaller than the corresponding requirement of the query). In
this case, the ranked list is searched in a zigzag fashion from the original entry, by choosing
the next closest value on either side of it, until a feasible user tuple is found.

4.2 Random-Weighted SVDS (rwSVDS)

Algorithm rwSVDS is an extension to bSVDS ; instead of using a single search list to predict
the positive nearest-neighbor point, it uses multiple search lists. The global nearest neighbor
is derived from the search result over all lists.

Weighting of attributes offsets their importance, and hence changes the main variations
captured in the first dimensions of the decomposition. If we can understand how the ran-
dom scatter of the data arise in our experimental system, we may be able to calculate the
appropriate weighting factors based on theory. However, if we expect the random scatter of
the data to vary along the distribution curve, then we may weight points differentially.

The random-weighted SVDS (rwSVDS ) uses a set of 3 decision lists to predict the
nearest-neighbour point. In a dataset A, let the number of objects be n and the number of
attributes of an object be m. Each search list in rwSVDS is constructed using the following
algorithm:

• Create a vector w of size m of random weighting scalars in (0..1];
• Multiply (dot product) vector w into rows of matrix A. This minimizes the

quantities in the columns differently;
• Project the resulting matrix into low dimensions using the SVD technique to

generate the U space;
• Truncate U to one-dimensional space;
• Rank the list by sorting.
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This process is repeated 3 times to generate 3 one-dimensional search lists, based on the
differently weighted matrices.

When a query is submitted to the system, the same process is applied to it to correspond
to each search list.T The same w weighting vector that was used on the objects in a certain
list, is used on the query to generate the weighted tuple. Then the selection process trans-
forms each query weighted tuple into the U space of each SVD, then searches all 3 ranked
lists in a concurrent fashion to find a common match. The first feasible user tuple to have
been found on all 3 lists is reported as the best match.

These algorithms could easily be extended to include user profile data such as age,
gender, geography region, and zip codes.

5 Experimental Configuration

5.1 Dataset

In our experiments we used a dataset collected from MovieLens. We use the most extensive
dataset available for download. Each user used in our experiments has at least 20 movie
ratings (attributes) in the original dataset. Ratings are made on a 5-star scale (whole-star
ratings only), with larger values denoting higher appreciation, and 0 indicating an unrated
movie. Each result is the average over 70 runs.

5.2 Baseline Algorithms

For comparison purposes, we also consider a ranking algorithm that uses the sum of the
attributes as the value for ranking. We call it the SUM-based Search algorithm (SUMS ).
The advantage of the sum is that any user tuple whose sum is smaller than the sum of the
requirements of a query tuple cannot possibly be feasible. We compute the sum of attributes
for each user tuple and sort the list based on the sum of ratings. The sum is also computed
for each query tuple. Then binary search is used to find the user tuple closest in sum to it,
and a feasible user-tuple is searched for in the manner described above. Algorithm SUMS
will in practice perform best when the magnitudes of typical attributes are about the same
– this can be arranged by normalizing if necessary.

Both our SVDS algorithms and SUMS algorithm have similar properties: both require
O(nm) storage for the ranking information (since the full set of attributes must be checked
for feasibility); for both, the cost of binary search is O(log n), and for both the cost of
computing the fit between a query tuple and a user tuple is O(m). The preprocessing
required for SVDS is more expensive. However, this cost is amortized over all the matches
of queries to users. The performance difference between the two rankings depends on how
many list elements must be examined to find a feasible match, and on the quality of such
a match. The best way to assess the computational tasks associated with finding a feasible
user tuple is to observe the actual runs and analyze the quality of the results, as we will do
in Section 6.

We also compare our algorithms’ effectiveness with that of randomly selecting users
until a feasible one is found (call this simple algorithm RAND), and with exhaustive search.
RAND provides a baseline for the number of probes required to find a good solution, while
exhaustive search provides a baseline for how good a solution is possible.
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5.3 Evaluation Metrics

To assess the quality of a solution, we use the Euclidean distance as the metric for measuring
proximity to the query point. We determine the number of probes required to search for a
matching user-point, varying the following parameters:

• Number of users
• Number of ratings

The main performance measures of interest are the cost of finding a match, and the
quality of this match:

• Cost – measured in number of probes needed to find a match, including the
cost of binary search (where applicable);

• Sub-Quality – the Euclidean distance from the match point found by the
algorithm to the query point;

• Sub-Optimality-Ratio – the ratio of the solution found by an algorithm to the
optimal solution;

For each combination of experiments, the fraction of user tuples that are feasible (sat-
isfying positive nearest-neighbor) for a query are held to approximately 5%. This, in our
view, models the most plausible scenario. If feasible matches are extremely scarce, then
exhaustive search is the best matching technique, although users may find such a system
too frustrating to use because of the delay. On the other hand, if the fraction of feasible
users is large, then the system is hugely under-utilized which is also an unlikely scenario.

The feasibility fraction is forced by generating query tuples in the following way. Ap-
proximately 5% of the user tuples are selected at random and their pointwise minimum
is used as a query tuple. This query tuple, by construction, is feasible for at least 5% of
users but could, of course, be feasible for a much larger fraction. We aim to create and use
queries that are feasible for between 3 and 7% of user tuples, so if the feasibility is too high,
a subset of the current user tuples are selected, and the process repeated until the feasibility
percentage falls into this range.

5.4 Normalization

Our experience has been that SVD, despite its theoretical determination of the optimal
projection of the data, does not perform well in practice without careful normalization.
Normalization is a process of centering and scaling the dataset. We normalize the data by
zero-centering each column using fixed mean 3, as this is the middle point of the rating
range. The fixed mean is subtracted from the non-zero entries only. By this normalization,
neutral opinions are treated the same as a non-opinion (expressed originally as 0). This
behavior is plausible since it means that both possibilities are interpreted as providing no
extra information about a movie’s quality. The net effect is to add more weight to strongly
positive and negative opinions.

When summing the attributes in the SUMS algorithm, neutral values are treated as
zeros. Also when assessing the quality of a solution, the Euclidean distance to the query
point is calculated based on the zero-centered values instead of the original raw values.
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6 Results and Discussion

We now study the effect of varying the number of users and attributes (movies) on the
search cost and quality of the solutions given by different algorithms. First, we compare the
random-weighted SVDS algorithm (rwSVDS ) to the RAND and SUMS algorithms.

Figure 1 plots the number of probes (left column) required to find a positive-nearest-
neighbor (feasible) user-tuple for each query, and the sub-quality of this match (right col-
umn). Plots (a) and (b) show the number of probes required by rwSVDS and the sub-quality
for a range of users and attribute, plots (c) and (d) show the same for SUMS, and plots (e)
and (f) show those for RAND.

It is clear from the figures that algorithm rwSVDS achieves much better results than
RAND and SUMS. It requires, on average, fewer than half of the probes that SUMS requires,
with the peak performance at around 100 users and 40 attributes, where it requires only a
fifth as many probes. It also outperforms RAND, requiring about a fourth of the probes on
average, and less than a tenth of the probes for small numbers of users and attributes.

Algorithm SUMS, on the other hand, performs better than RAND by an average of 20%
fewer probes in almost all settings, peaking at 50% fewer probes for small number of users.
However, for large numbers of users and attributes, SUMS falls behind RAND by requiring
about 15% more probes.

We observe that, as the number of users and attributes increase, the search cost increases
for all algorithms, but very slowly for rwSVDS, as it becomes harder to find a solution point
with the required attributes.

As for the quality of the solution, Figures 1(b), 1(d), and 1(f) show that rwSVDS finds
better-quality matches than RAND and SUMS for all parameter settings – an average of 4.6
times better quality than SUMS, and 16 times better than RAND. Although SUMS requires
many more probes and finds lower-quality matches than rwSVDS, it still finds better-quality
matches than RAND for all parameter settings.

Figure 2 plots the sub-optimality ratio of the solution found by rwSVDS in comparison to
the optimal solution point. This ratio is close to 1, showing that rwSVDS achieves almost
optimal solutions. Although the sub-quality for rwSVDS (Figure 1(b)) increases slightly
with the number of attributes, the sub-optimality ratio stays the same. This is due to the
increased Euclidean distance to the query point, even for the optimal match.

For algorithm bSVDS, Figure 3 plots the number of probes (left column) and the sub-
quality (right column). Algorithm bSVDS requires twice as many probes as rwSVDS in
most settings, except for small numbers of attributes. However, it maintains a superior
performance compared to SUMS and RAND. As for the match quality, there is no significant
difference from rwSVDS.

From the results above, we see that the random-weighted SVDS (rwSVDS ) achieves the
best-quality matches of near optimal and better overall performance compared to bSVDS.
In comparison to SUMS and RAND it also achieved, by far, better cost and better solution
quality.

7 Conclusions

There are several critical research challenges in the development of recommender systems
that support services for web-based interactive applications. One of these challenges is the
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Figure 1: Search cost and sub-quality for: (a) and (b) rwSVDS, (c) and (d) SUMS, (e) and
(f) RAND
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discovery of an effective matching algorithm that is scalable and reasonably effective in
providing good matches between user-query preference criteria and available user/product
profiles. As the number of users and products increase, solutions that are cheap to implement
but still provide reasonably good matches are required. To our knowledge, none of the
existing matching algorithms is an attractive candidate.

The apparent difficulty in designing effective (approximate) nearest-neighbour techniques
that are efficient in the worst-case runtime, with respect to both query time and space, comes
from having high dimensions. We proposed using a technique that can transform a high-
dimensional space into a lower dimensional space, namely Singular Value Decomposition
(SVD).

Singular value decomposition (SVD) is a natural way to approach dimensionality reduc-
tion, but its theoretical performance is difficult to realize in practice. This approach does
not work well when applied naively.

We have presented two collaborative filtering techniques based on SVD. Our algorithms
use SVD as a preprocessing step to project user properties into low-dimensional spaces.
Careful normalization, and the use of multiple projections based on random weighting of
attributes result in one-dimensional lists that can be searched, in practice, in only a constant
number of probes beyond the basic binary search required to find the right part of the list.
The overall complexity of matching is O(m log n), even for the positive nearest neighbor
case.
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