
A Survey of Analysis Models and Methods in Website

Verification and Testing

Technical Report 2007-532

Manar Alalfi, James R.Cordy, and Thomas R. Dean

School of Computing
Queen’s University

Kingston, Ontario, Canada
{alalfi,cordy,dean}@cs.queensu.ca

February 2007

Abstract

Models are considered an essential step in capturing different system behaviors and in
simplifying any further analysis required to check or to improve the quality of software. Ver-
ification and testing of web software requires effective modelling techniques that address the
specific challenges of web applications. In this study we survey 21 different analysis mod-
elling methods used in website verification and testing. Based on our survey, a categorization,
comparison and evaluation for such models and methods is provided.

Contents

Abstract i

Table of Contents ii

List of Tables iv

List of Figures iv

1 Introduction 1

2 Website Modelling 1
2.1 Web Applications . 1
2.2 Web Services . 2
2.3 Challenges in Analysis and Modelling of Websites 3

3 Modelling 4
3.1 Desirable Properties for Website Modelling 4
3.2 Notation Employed by the Reviewed Modelling Methods 7

StateCharts . 7
Labelled Transition . 8
Specification and Description Language (SDL) 8
UML and OCL . 9
UML-based Web Engineering(UWE) 9
Alloy . 10
Directed Graph and CFG . 10
Finite State Machine (FSM) . 10
Rewriting System . 11

4 Comparison and Categorization Criteria 11
4.1 Feature Type . 11

Static Features . 11
Dynamic Features . 11
Interaction Features . 12

4.2 Notation . 12
4.3 Level of Modelling . 12
4.4 Application of the Model . 12
4.5 Is Source code Required? . 12
4.6 Model Optimization . 12
4.7 Tool Support . 13

ii

5 Survey and Comparison Results 13
5.1 Survey . 13

5.1.1 Static Modelling Methods . 15
Conallen [Con99] . 15

Tonella and Ricca [RT00] . 15
de Alfaro et al. [dA01] . 16
Alpuente el at.[ABF05] . 17

5.1.2 Interaction Modelling Methods 18
Graunke et al.[GFKF03] . 18
Licata and Krishnamurthi[LK04] . 19
Chen and Zhao [CZ04] . 20
Bordbar and Anastasakis [BA05] . 22

5.1.3 Static and Dynamic Modelling Methods(Hybrid) 23
Winckler and Palanque [WP03] . 23
FARNav[HH06] . 23
WTM [KLH00] . 25
May Haydar et al.[HPS04] . 26
FSMWeb [AOA05] . 27
Veriweb [BFG02] . 27
Sciascio et al. [SDMP03] . 29
Sciascio et al. [SDM+05][CMRT06] 30
Tonella and Ricca [TR04] . 30
Bellettini et al. [BMT04] . 32
Knapp and Zhang [ZBKK05] . 32
Ye Wu and Je Outt [WO02] . 33
Syriani and Mansour [SM03] . 35

5.2 Comparison Results . 36
5.2.1 Interaction behavior Modelling Methods 36
5.2.2 Navigation Modelling Methods 39
5.2.3 Content Modelling Methods . 46
5.2.4 Hybrid Modelling Methods . 46

6 Conclusions and Open Problems 48

References 49

iii

List of Tables

1 Desirable Properties for Website Modelling 5
2 Desirable Properties for Website Modelling (Cont.) 6
3 Survey Result (categorized according to feature type) 14
4 Examples on the properties checked by FARNav [HH06] 24
5 Survey Result (categorized according to modelling level) 37
6 Comparison Result . 38

List of Figures

1 Web Application Components [RC04] . 3
2 the web picture as described in [GFKF03] 19
3 Conceptual architecture of web browser as described in [CZ04] 21
4 Example on Ye Wu and Je Outt method [WO02] 35
5 MCWEB Web Site Modeling [dAHM01] . 41
6 ReWeb Web Site Modeling in [RT00] . 42
7 WAG Modeling [SDMP03] . 43
8 WAG Modeling [SDM+05] . 44
9 WAG Modeling [CMRT06] . 45

iv

1 Introduction

Web applications are becoming more complex. Complexity arises due to several factors, such
as a larger number of hyperlinks, more complex interaction, and increased use of distributed
servers. Modelling helps to manage the complexity of these systems. Several papers in
the literature have studied the problem of web applications modelling. Different models
have been proposed, while others have been adapted from existing modelling techniques
for other types of software. Modelling support is essential to provide an abstract view
of the application. It can help designers during the design phases by formally defining
the requirements, providing multiple levels of detail as well as providing support for testing
prior to implementation. Support from modelling can also be used in later phases to support
verification.

Most of the early literature concentrates on the process of modelling the design of web
applications. It proposes forward engineering-based methodologies designed to simplify the
process of building a highly interactive web applications. Other research uses reverse engi-
neering methodologies to extract models from existing web applications in order to support
their maintenance and evolution.

This survey studies a range of different analysis models that are currently applied in
the field of verification and testing of web applications. Design modelling methodologies
are outside the scope of our study. While reviewing different methods, we found that some
of literature focuses on modelling the navigational aspects of web applications. Others
concentrate on solving problems arising from user interaction with the browser in a way
that affects the underlying business process. Still others are interested in dealing with static
and dynamic behavior. In this paper, we attempt to categorize these methods according
to the level of web application modelling - navigation, behavior, and content. In each
category, methods are sorted according to the kind of notation employed by each method.
A comparison and evaluation of 21 different methods is described.

The rest of this paper is organized as follows: Section 2 gives a brief introduction into
web applications and web services, its then describes the challenges that affect the analysis
and modelling of web applications; Section 3 lists the desirable properties of web applica-
tion modelling and the notations employed by the reviewed modelling methods; Section 4
describes the set of comparison and categorization criteria used in our study. Section 5 gives
a brief summary and a comparative analysis of 21 modelling method. Finally, a conclusion
and open problems are given in Section 6.

2 Website Modelling

2.1 Web Applications

A Web application is a software application that is accessible via a thin client (i.e. web
browser) over a network such as the Internet or an intranet. A Web application is often

1

structured as a three-tiered application. The web browser represents the first tier; the web
server that uses some dynamic web content technology such as CGI, PHP, Java Servlets or
Active Server Pages(ASP), is the middle tier; and the application server that interacts with
the database and other web objects is considered the third tier.

Web applications render web pages, comprising different kinds of information such as text,
images, forms. Web pages can be static or dynamic. Static pages reside on a web server
that contains only HTML code, and an executable code that runs on the web browser and is
served by the web server; however, they do not need to be preprocessed by the application
server. Dynamic pages are modifiable, as a result of the execution of various scripts and
components at the server. These pages contain a mixture of HTML tags and executable
code, and are served by the application server.

Figure 1 shows the main components and elements in the process of web interaction. The
basic unit of this interaction is the Web page itself. It is sent to a browser from a Web
server, based on a request from that browser. The browser parses the information in the
HTML file, and the resulting user interface is displayed within the browser itself. The role
of the Web server is to listen for a request from the client, parse the request to determine
the page that the client requested and determine if it can fulfill the request directly, or if
the application server must be invoked. The web server serves directly static HTML pages;
multimedia content such as images, videos, or audio files; or it forwards the request to the
application server. The application server preprocesses dynamic (active) pages, integrates
data from various resources such as web objects or databases, and then it returns the result
to the web server as static HTML pages. The web server in turn returns the HTML page
to the requesting web browser, which displays it to the user. At this point, the server for-
gets everything about sending that file to the client, except for maybe placing an entry into
a log file. It is this ”connection-less” nature that gives a web server its scalability, but in
turn makes it a challenge to create meaningful applications without some additional support.

In our study we consider web application and web site as synonyms. Some researchers
consider website as a set of related web pages grouped together by some means, and existing
on a server, or within a folder on that server. Such pages are static pages that don’t contain
any dynamic feature in the sense that they don’t have to be processed by the application
servers. Here we are interested in all methods that propose models to capture different
properties related to the structure(navigation), behavior, and content of web applications;
and whether these properties are static, dynamic, or interaction.

2.2 Web Services

In this survey we do not consider Web services, which are a standardized way of integrating
web-based applications. Web services are primarily used as a means for businesses to com-
municate with each other and with clients, without intimate knowledge of each other’s IT
systems. All communication is in XML, and not tied to any operating system or program-

2

Figure 1: Web Application Components [RC04]

ming language. Web services don’t require the use of browsers or HTML, and don’t provide
the user with a GUI. This class of software is outside the scope of our study, but it may be
a future direction for our work.

2.3 Challenges in Analysis and Modelling of Websites

Web applications are evolving rapidly, using many new technologies, languages, and pro-
gramming models that are being used to increase the interactivity and the usability of web
applications. This inherent complexity brings challenges to modelling, analysis, testing,
verification and maintenance of this kind of software. Some of these challenges are:

• The diversity and complexity of the web application environment increases the risk
of non-interoperability and the complexity of integration. Web applications interact
with many components that run on diverse hardware and software platforms. They are
written in diverse languages; and they are based on different programming approaches
such as procedural, OO, interpreted, and hybrid languages like JSP. The client side
includes browsers, embedded scripting languages and applets. The server side includes
HTML, CGI, Java Server Pages (JSPs), Java Servlets, and .NET technologies. They all
interact with diverse back-end engines and other components that are found on the web
server or other computers behind the server. The integration of such components and
the web system in general is extremely loose and dynamically coupled, which provides

3

powerful abstraction capabilities to the developers, but makes analysis for testing and
verification extremely difficult.

• Another major challenge comes from the dynamic aspects, including dynamically gen-
erated client components, dynamic interaction among clients and servers, and the
continual changes in the system context and web technologies.

• Web applications may have several entry points, and users can engage in complicated
interactions that the web application cannot prevent. Web applications are often in-
terfaced to database systems and provide the same data to different users. In these
cases, applying access control mechanisms becomes an important requirement for safe
and secure access to web application resources, and the process of implementing and
applying such rules is considered a great challenge.

• Some information in web applications is transmitted through hidden fields and spe-
cial channels, due to the stateless behavior of the HTTP protocol. It’s considered a
challenge to have a precise analysis for web applications that takes into account this
information as well.

3 Modelling

3.1 Desirable Properties for Website Modelling

We can think of web applications from three orthogonal perspectives: web navigation, web
content and web behavior. Desirable properties of web applications can fall within these
three dimensions. Desirable properties can be classified into:

• Static navigation properties. Most of the early literature on web analysis and modelling
concentrates on dealing with static links, treating web applications as hypermedia
applications. It addresses checking of properties such as broken links, reachability
(e.g., return to the home page), consistency of frame structure, and other features
related to estimating the cost of navigation, such as longest path analysis.

• Dynamic navigation properties. This kind of analysis focuses on aspects that make the
navigation dynamic. That is, the same link may lead to different pages depending on
given inputs. The inputs could be user inputs transferred via forms, or system inputs
depending on some state in the server such as date, time, session information, access
control information or information in hidden fields.

• Interaction navigation properties. This kind of analysis focuses on properties that are
related to user navigation that happens outside the control of the web application,
such as user interaction with the browser. This includes features such as using the
back button, the forward button, and URL rewriting.

4

Fe
at

ur
e

m
od

el
ed

 o
r

pr
op

er
ty

 c
he

ck
ed

Fe

at
ur

e
or

 p
ro

pe
rt

y
D

es
cr

ip
tio

n
E

xa
m

pl
e

Fo
rm

ul
a

Fo
rm

ul
a

T
yp

e
R

ef
er

en
ce

B
ro

ke
n

lin
ks

A

bs
en

ce
 o

f b
ro

ke
n

lin
ks

 in
 th

e
w

eb
 si

te

Φ
1

=
A

G
(li

nk
 →

 E
X

 p
ag

e)
, f

or
 e

ac
h

lin
k

 in
 th

e
w

eb
 si

te
, a

 p
ag

e
ex

is
t

th
at

 is
 a

tta
ch

ed
 to

 it
 in

 th
e

ne
xt

 sa
te

.
C

TL

[S
D

M
P0

2]

R
ea

ch
ab

lit
y

T
he

re
 is

 a
t l

ea
st

 o
ne

 n
av

ig
at

io
n

pa
th

 fr
om

 th
e

st
ar

t p
ag

e
to

Q

ue
ue

 p
ag

e.

E
F

(P
ag

eV
ar

 =
 P

ag
eN

am
e)

, f
or

 e
xa

m
pl

e:
 E

F
(P

ag
e

=
Q

ue
ue

).
C

TL

[H
H

06
]

D
ea

d
E

nd

A
lo

ng
 a

ny
 p

at
h

fr
om

 st
ar

t p
oi

nt
 it

 is
 a

lw
ay

s p
os

si
bl

e
to

re

ac
h

Q
ue

ue
 p

ag
e.

 (Q
ue

ue
 p

ag
e

is
 r

ea
ch

ab
le

 fr
om

 a
ny

ot

he
r

pa
ge

.)

A
G

 E
F

(P
ag

eV
ar

 =
 p

ag
eN

am
e)

 f
or

 e
xa

m
pl

e:
 A

G
 E

F
(P

ag
e

=
Q

ue
ue

)
C

TL

[H
H

06
]

F
ra

m
es

 c
on

si
st

en
cy

–
D

up
lic

at
ed

 fr
am

e
na

m
es

 (a
 n

am
e

l t
ha

t o
cc

ur
s i

n
m

or
e

th
an

 o
ne

 fr
am

e
ta

g)
.

–
Fr

am
e

tr
ee

s d
ee

pe
r

th
an

 a
 fi

xe
d

th
re

sh
ol

d.

–
N

on
-e

xi
st

en
t l

in
k

ta
rg

et
s (

an
ch

or
s t

ag
s

<
a,

 l
>

 su
ch

th

at
 l

do
es

 n
ot

 a
pp

ea
r

in
 a

ny
 f

ra
m

e
ta

g)
. [

dA
01

]

 [
]

p,
 w

he
re

 p
 =

 d
up

lic
at

eF
ra

m
es

_m
ai

nW
 =

 =
 0

 du

pl
ic

at
eF

ra
m

es
_m

ai
nW

 is
 a

 B
oo

le
an

 v
ar

ia
bl

e
th

at
 is

 se
t t

o
Tr

ue
 if

tw

o
fr

am
es

 h
av

in
g

sa
m

e
na

m
e

ar
e

ac
tiv

e
si

m
ul

ta
ne

ou
sl

y.
 T

hi
s

pr
op

er
ty

 re
qu

ir
es

 th
e

ab
se

nc
e

of
 a

 fr
am

es
 e

rr
or

 w
he

re
 fr

am
es

 h
av

in
g

sa
m

e
na

m
es

 a
re

 n
ot

 a
ct

iv
e

si
m

ul
ta

ne
ou

sl
y

LT
L

[H
PS

04
]

F
or

m
 fi

lli
ng

Th
e

ab
ili

ty
 o

f m
od

el
in

g
fo

rm
_b

as
ed

 p
ag

es
, a

nd
 to

 p
op

ul
at

e
th

os
e

fo
rm

s w
ith

 d
iff

er
en

t v
al

ue
s a

ut
om

at
ic

al
ly

 o
r s

em
i-a

ut
om

at
ic

al
ly

.

St
at

ic

N
av

ig
at

io
n

Pr
op

er
tie

s

Lo
ng

es
t p

at
h

 T
he

 “
le

ng
th

”
of

 a
 p

at
h

co
ns

is
ts

 o
f

th
e

nu
m

be
r

of
 b

yt
es

, o
r

th
e

nu
m

be
r

of
 li

nk
s,

th
at

 m
us

t b
e

do
w

nl
oa

de
d

in
 o

rd
er

 to

fo
llo

w
 it

. I
n

M
C

W
E

B
, t

he
re

 is
 a

n
ex

te
ns

io
n

th
at

 e
na

bl
es

 th
e

co
m

pu
ta

tio
n

of
 th

e
lo

ng
es

t a
nd

 sh
or

te
st

 p
at

hs
 in

 a
 se

t o
f

w
eb

no
de

s.

T
o

fin
d

th
e

al
l-p

ai
r

lo
ng

es
t p

at
h

be
tw

ee
n

w
eb

no
de

s o
f a

 d
om

ai
n

∆
M

C
W

E
B

 p
os

t-
pr

oc
es

se
s t

he
 o

ut
pu

t o
f t

he
 fo

rm
ul

a,
 a

: h
om

e
pa

ge
 a

;
Po

st
(x

):
 w

eb
no

de
s r

ea
ch

ab
le

 b
y

fo
llo

w
in

g
on

e
ed

ge
 fr

om
 x

, i
n_

do

m
ai

n
∆ :

ho

ld
s f

or
 a

 w
eb

no
de

 w
 i

f t
he

re
 is

 a
n

U
R

L
pa

ge
 s

in
 w

su

ch
 th

at
 s

N
 c

on
ta

in
s t

he
 su

bs
tr

in
g

∆ ;

T
he

 c
om

pu
ta

tio
n

of
 th

e
al

l-p
ai

r
lo

ng
es

t p
at

h
ca

n
pr

ov
id

e
in

fo
rm

at
io

n
ab

ou
t t

he
 b

ot
tle

ne
ck

s i
n

th
e

na
vi

ga
tio

n
of

 a
 si

te
.

C
on

st
ru

ct
iv

e

µ
- c

al
cu

lu
s

[d
A

01
]

Sy
st

em
 in

pu
t

D
yn

am
ic

N

av
ig

at
io

n
U

se
r i

np
ut

T

o
m

od
el

 th
e

fe
at

ur
e

of
 h

av
in

g
th

e
ta

rg
et

 o
f t

he
 sa

m
e

na
vi

ga
tio

n
lin

k
de

te
rm

in
ed

 a
t r

un
 ti

m
e

de
pe

nd
in

g
on

 so
m

e
co

nd
iti

on
s p

ro
vi

de
d

th
e

by
 u

se
r,

 o
r

so
m

e
ki

nd
 o

f
au

to
m

at
ed

 p
ro

ce
ss

in
g

do
ne

 b
y

th
e

sy
st

em
.

Fo
r

ex
am

pl
e,

 so
m

e
lin

ks
 a

re
 a

va
ila

bl
e

if
th

e
us

er
 h

as
 so

m
e

ac
ce

ss
 r

ig
ht

s;
 se

ar
ch

 e
ng

in
es

 su
ch

 a
s G

oo
gl

e,
 w

hi
ch

 d
ep

en
ds

 o
n

us
er

’s
 k

ey
w

or
ds

 in
 g

en
er

at
in

g
a

do
cu

m
en

t c
on

ta
in

in
g

 d
yn

am
ic

al
ly

 g
en

er
at

ed
 li

nk
s f

or
 e

ac
h

do
cu

m
en

t c
or

re
sp

on
ds

 to
 th

e
us

er
’s

 k
ey

w
or

ds
.

In

te
ra

ct
io

n
N

av
ig

at
io

n
H

TM
L

+
us

er

op
er

at
io

ns

M
od

el
in

g
an

d
ch

ec
ki

ng
 th

e
us

er
 in

te
ra

ct
io

ns
 w

ith
 th

e
br

ow
se

 th
at

 m
ay

 a
ff

ec
t t

he
 b

us
in

es
s l

og
ic

 o
f w

eb

ap
pl

ic
at

io
n;

 th
is

 c
ou

ld
 in

cl
ud

e
m

od
el

in
g

th
e

ba
ck

 b
ut

to
n,

th

e
fo

rw
ar

d
bu

tt
on

, a
nd

 U
R

L
 r

ew
ri

tin
g.

 T
he

 fo
llo

w
in

g
se

qu
en

ce
 o

f s
te

ps
 g

en
er

at
es

 th
e

A
m

az
on

 b
ug

, a
 w

el
l

kn
ow

n
bu

g
ca

us
ed

 b
y

ig
no

ri
ng

 u
se

r
in

te
ra

ct
io

ns
 w

ith
 th

e
br

ow
se

r.

 St
ep

 1
: T

he
 sh

op
pi

ng
 c

ar
t o

f t
he

 u
se

r
is

 e
m

pt
y

an
d

th
e

us
er

 b
ro

w
se

s t
he

 w
eb

 si
te

.
St

ep
 2

: T
he

 u
se

r
ad

ds
 a

n
ite

m
 It

em
1

to
 th

e
sh

op
pi

ng
 c

ar
t.

St
ep

 3
: T

he
 u

se
r

de
ci

de
s t

ha
t h

e
do

es
 n

ot
 w

an
t t

o
bu

y
It

em
1

af
te

r
al

l,
bu

t i
ns

te
ad

 o
f d

el
et

in
g

it
fr

om
 th

e
sh

op
pi

ng
 c

ar
t h

e
pr

es
se

s t
he

 “
ba

ck
”

bu
tt

on
 to

 r
et

ur
n

to

th
e

pr
ev

io
us

 sh
op

pi
ng

 c
ar

t w
hi

ch
 is

 e
m

pt
y.

al
l s

: S
ta

te
 |

s.b
ro

w
se

r.
di

sp
la

y.
cH

as
It

em
s =

 s.
br

ow
se

r.
bl

.sc
H

as
It

em
s

 A
 m

aj
or

 re
qu

ir
em

en
t o

f t
he

 m
od

el
 i

s t
o

gu
ar

an
te

e
th

e
in

te
gr

ity
 o

f t
he

sy

st
em

 b
y

en
su

ri
ng

 th
at

 th
e

lis
t o

f i
te

m
s t

ha
t a

re
 d

is
pl

ay
ed

 o
n

th
e

br
ow

se
s

cu
rr

en
t w

eb
 p

ag
e

(c
H

as
It

em
s)

 is
 id

en
tic

al
 to

 th
e

co
nt

en
ts

 o
f t

he
 sh

op
pi

ng

ca
rt

 (
sc

H
as

It
em

s)
; b

l (
 b

us
sn

is
s l

og
ic

)
is

 a
n

ab
st

ra
ct

 c
la

ss
 th

at
 re

la
te

s
th

e
br

ow
se

r t
o

it’
s d

at
a

co
nt

en
t.

 U
si

ng
 A

llo
y

A
na

ly
ze

r o
ne

 c
an

 se
e

th
at

th

e
as

se
rt

io
n

fa
ils

.

A
llo

y

[B
A

05
]

Table 1: Desirable Properties for Website Modelling

5

Fe
at

ur
e

m
od

el
ed

 o
r

pr
op

er
ty

ch

ec
ke

d
Fe

at
ur

e
or

 p
ro

pe
rt

y
D

es
cr

ip
tio

n
E

xa
m

pl
e

Fo
rm

ul
a

Fo
rm

ul
a

T
yp

e
R

ef
er

en
ce

In
co

m
pl

et
e

W
P

T
he

 m
od

el
 sh

ou
ld

 e
nf

or
ce

 th
at

 so
m

e
in

fo
rm

at
io

n
is

 a
va

ila
bl

e
at

 a
 g

iv
en

 W
eb

pa

ge
, s

om
e

lin
ks

 b
et

w
ee

n
pa

ge
s d

o
ex

is
t

or
 e

ve
n

th
e

ex
is

te
nc

e
of

 th
e

W
eb

 p
ag

es

th
em

se
lv

es
.

 L
→

#r
 :I

f L
 is

 r
ec

og
ni

ze
d

in
 so

m
e

w
eb

pa

ge
 o

f W
, t

he
n

r
m

us
t b

e
re

co
gn

iz
ed

 in

so
m

e
w

eb
 p

ag
e

of
 W

 w
hi

ch
 c

on
ta

in
 th

e
m

ar
ke

d
pa

rt
 o

f r
.

m
em

be
r(

na
m

e(
X

),
su

rn
am

e(
Y

))
 →

 h
pa

ge
(n

am
e(

X
),

su
rn

am
e(

Y
),

 st
at

us
()

)
 If

 th
er

e
is

 a
 W

eb
 p

ag
e

co
nt

ai
ni

ng
 a

 m
em

be
r l

is
t,

th
en

 fo
r e

ac
h

m
em

be
r,

a
ho

m
e

pa
ge

 e
xi

st
s

co
nt

ai
ni

ng
 (a

t l
ea

st
) t

he
 n

am
e,

 th
e

su
rn

am
e

an
d

th
e

st
at

us
 o

f t
hi

s m
em

be
r.

R
ew

ri
tin

g-
ba

se
d

sp
ec

ifi
ca

tio
n

la
ng

ua
ge

[A
B

F
05

]
St

at
ic

 c
on

te
nt

pr

op
er

tie
s

In
co

rr
ec

t W
P

L
 →

er
ro

r
| C

If

 L
 is

 r
ec

og
ni

ze
d

in
 so

m
e

w
eb

 p
ag

e
of

W

 a
nd

 a
ll

th
e

ex
pr

es
si

on
s r

ep
re

se
nt

ed

in
 C

 a
re

 e
va

lu
at

ed
 to

 T
ru

e
(o

r
C

 is

em
pt

y)
, t

he
 w

eb
 p

ag
e

is
 in

co
rr

ec
t.

pr
oj

ec
t(

ye
ar

(X
))

 →
 e

rr
or

 |
X

 in
[0

 −
 9

]*
, X

 <
 1

99
0

 If
 th

er
e

is
 a

 W
eb

 p
ag

e
co

nt
ai

ni
ng

 a
 p

ro
je

ct
 y

ea
r,

w
he

re
 th

e
ye

ar
 is

 n
um

er
ic

 a
nd

 le
ss

 th
an

 1
99

0,
 it

sh

ou
ld

 b
e

re
pl

ac
ed

 w
ith

 e
rr

or
.

R
ew

ri
tin

g-
ba

se
d

sp
ec

ifi
ca

tio
n

la
ng

ua
ge

[A
B

F
05

]

In
co

m
pl

et
e

W
P

T
o

be
 a

bl
e

to
 c

he
ck

 th
e

sy
nt

ax
 a

nd
 se

m
an

tic
s (

sp
ec

ifi
ca

lly
 th

e
in

co
m

pl
et

e
pr

op
er

ty
) o

f d
yn

am
ic

al
ly

 g
en

er
at

ed
 c

on
te

nt
 th

at
 is

 r
es

ul
tin

g
fr

om
 th

e
ex

ec
ut

io
n

of
 sc

ri
pt

s b
y

th
e

ap
pl

ic
at

io
n

se
rv

er
.

N
on

e
of

 th
e

m
od

el
in

g
m

et
ho

ds
 d

id
 su

ch
 k

in
d

of
 c

he
ck

in
g.

In

co
rr

ec
t W

P
T

o
be

 a
bl

e
to

 c
he

ck
 th

e
sy

nt
ax

 a
nd

 se
m

an
tic

s (
sp

ec
ifi

ca
lly

 th
e

in
co

rr
ec

t p
ro

pe
rt

y)
 o

f d
yn

am
ic

al
ly

 g
en

er
at

ed
 c

on
te

nt
 th

at
 is

 r
es

ul
tin

g
fr

om
 th

e
ex

ec
ut

io
n

of
 sc

ri
pt

s b
y

th
e

ap
pl

ic
at

io
n

se
rv

er
.

N
on

e
of

 th
e

m
od

el
in

g
m

et
ho

ds
 d

id
 su

ch
 k

in
d

of
 c

he
ck

in
g.

N

ew
 c

on
ne

ct
io

n
To

 b
e

ab
le

 to
 m

od
el

 c
on

ne
ct

io
n

w
hi

ch
 it

’s
 so

ur
ce

 a
nd

 ta
rg

et
 is

 d
et

er
m

in
ed

 b
y

th
e

sy
st

em
 a

t r
un

 ti
m

e.
 F

or
 e

xa
m

pl
e

in
 a

n
el

ec
tr

on
ic

 b
oo

k
w

hi
ch

 h
as

 2
00

 c
ha

pt
er

s;
 li

nk
in

g
ea

ch
 o

ne

in
di

vi
du

al
ly

 in
 th

e
co

nt
en

t l
is

t i
s t

im
e

co
ns

um
in

g;
 ti

m
e

co
ul

d
be

 sa
ve

d
by

 u
si

ng
 a

n
al

go
ri

th
m

 th
at

 c
an

 u
se

 u
se

r s
el

ec
te

d
te

xt
 (i

n
th

e
co

nt
en

t l
is

t)
to

 a
ut

om
at

ic
al

ly
 li

nk
s t

he
 c

ha
pt

er

w
ith

 a
 ti

tle
 c

or
re

sp
on

di
ng

 to
 th

e
se

le
ct

ed
 te

xt
.

D
yn

am
ic

co

nt
en

t
pr

op
er

tie
s

N
ew

 c
on

te
nt

To

 b
e

ab
le

 to
 m

od
el

 n
ew

 g
en

er
at

ed
 c

om
po

ne
nt

s t
ha

t t
he

 u
se

r c
an

’t
de

te
rm

in
e

un
til

 ru
n

tim
e.

Se
rv

er
-s

id
e

ex
ec

ut
io

n
In

st
ru

ct
io

n

pr
oc

es
si

ng

C
lie

nt
-s

id
e

ex
ec

ut
io

n

If
 th

e
m

et
ho

d
is

 p
ro

vi
di

ng
 a

 m
od

el
 fo

r t
he

 c
od

e
th

at
 is

 b
ei

ng
 e

xe
cu

te
d

on
 th

e
cl

ie
nt

 o
r t

he
 se

rv
er

 si
de

, a
nd

 w
he

th
er

 th
e

m
et

ho
d

is
 a

bl
e

to
 sp

ec
ify

 th
e

lo
ca

tio
n

of
 su

ch
 e

xe
cu

tio
n;

 is

it
 h

ap
pe

ni
ng

 o
n

th
e

cl
ie

nt
 o

r t
he

 se
rv

er
 si

de
.

A
cc

es
s c

on
tr

ol

A
 m

em
be

r
ca

nn
ot

 h
av

e
ad

m
in

is
tr

at
or

fu

nc
tio

ns
 a

nd
 a

n
an

on
ym

ou
s u

se
r

ca
nn

ot

vi
ew

 p
ag

es
 b

el
on

gi
ng

 to
 a

 m
em

be
r

A
G

(m
em

be
r
→

 !a
ll)

; A
G

(n
oL

og
 →

 (
!p

ar
tia

lΛ
!a

ll)
)

A
ll:

 a
dm

in
is

tr
at

or
 fu

nc
tio

ns
; p

ar
tia

l:
m

em
be

r f
un

ct
io

ns
.

C
TL

[C
M

R
T0

6]

Se
cu

ri
ty

pr

op
er

tie
s

Se
ss

io
n/

co
ok

ie
.

T
o

ch
ec

k
w

he
th

er
 o

r
no

t t
he

 in
ac

tiv
e

pe
ri

od
 o

f t
he

 c
ur

re
nt

 se
ss

io
n

is
 o

ve
r

a
tim

e
lim

it,
 sa

y,
 5

 m
in

ut
es

. I
f t

he
 in

ac
tiv

e
pe

ri
od

 is
 g

re
at

er
 th

an
 th

e
tim

e
lim

it,
 th

e
H

T
T

P
re

qu
es

t m
us

t b
e

re
di

re
ct

ed
 to

 a
n

au
th

en
tic

at
io

n
pa

ge
 to

 v
er

ify
 th

e
us

er

ag
ai

n
fo

r
pr

ot
ec

tin
g

th
e

us
er

’s
 p

ri
va

cy
.

 Th

e
th

is
.S

es
si

on
 (

) i
s a

 fu
nc

tio
n

th
at

 re
tu

m
s a

 se
ss

io
n

ob
je

ct
 ;

s.1
na

ct
iv

e(
) i

s a
 fu

nc
tio

n
th

at

re
tu

rn
s t

he
 in

ac
tiv

e
pe

ri
od

 fo
r t

he
 se

ss
io

n
ob

je
ct

 s.
 T

he
 th

is
.re

di
re

ct
 (A

ut
h)

 sp
ec

ifi
es

 th
at

 th
e

H
TT

P
re

qu
es

t i
s r

ed
ir

ec
te

d
to

 th
e

A
ut

h
se

rv
er

-p
ag

e.

F
ir

st
-o

rd
er

lo

gi
c

[K
LH

00
]

Table 2: Desirable Properties for Website Modelling (Cont.)

6

• Static content properties. Consistency of the web page content with respect to syntax
and semantics.

• Dynamic content properties. This analysis requires the ability to check the syntax and
semantics of dynamically generated content that results from the execution of scripts
by the application server. Some technologies are able also to generate new connections,
some of which may be to a remote site. Also new web components could be generated
at run time, and these components must also be analyzed.

• Security properties. This issue is related to access control mechanisms that could be
employed on the web content or web links. This issue could also be employed on the
backend, as the database contains data reserved to specific users; non-authorized users
can not access such data. These properties are also tied to session control mechanisms.

• Instruction processing properties. This includes server and client side execution. We
can define client-side execution as any process changing the state of the application
without communication with the web server. Server-side execution is defined by all
instructions processed on a web server in response to a client’s request. A modeling
method should to be able to model these features and to recognize whether execution
is done on the server or on the client.

Table 1 and 2 provides an example for each of the above properties.

3.2 Notation Employed by the Reviewed Modelling Methods

• StateCharts

StateCharts [Har87] is a visual formalism that extends state diagrams for modelling
complex/reactive systems. StateCharts can be defined as a set of: states; transitions;
events; conditions and variables and their inter-relations. StateCharts propose three
basic structuring mechanisms extending the flat nature of state diagrams and increas-
ing its expressiveness, understandability and maintainability. The first two are critical
for web applications navigation modelling:

1. Hierarchy; is represented by the composition of nested states (XOR-states) thus
allowing an efficient use of transition arrows. XOR-states can have exclusively
one active sub-state at a time.

2. Orthogonality; is the decomposition of composite states into concurrent regions
representing independent modules in a system. Each concurrent region in an
AND-state is delimited by a dashed row. Like a XOR-state, each concurrent
region can have at most one active state at a time.

3. Broadcasting communication; is represented by events that are associated with
more than one transition. In that case, when an event happens, all transitions

7

associated with the triggered event are evaluated and executed if the guarding
conditions are true. In classical statecharts, activities and events are considered
to be instantaneous (they take no time to perform).

States in StateCharts can be initial, final and standard states. A standard state in
turn can be classified as a simple, orthogonal or hierarchal state. The operational
semantics for StateCharts are given by a sequence of steps. At each step the state
machine evaluates a single transition and may assume a new state configuration (the
set of currently active states). When an event happens, the system transmits it to the
transition associated to the triggered event. Then, the corresponding guard condition
is evaluated, and if it is true the state machine sets the target state as active. An
optional activity can be added to the transition label, indicating which activity will
take place when the transition happens.

• Labelled Transition Systems

Labelled transition [Wik]is a quadruple (State, Label,→, s0) where (i) State is the
set of possible states of the program computation; (ii) Label is a set of labels showing
the information about the state changes; (iii) →⊆ State × Label × State is a transi-
tion relation that describes the system evolution. (s,l,ś)∈→ expresses that the system
evolves from state s to state ś with the information of the state change described in l,
(iv), s0 ∈ State is the initial state.

• SDL

Specification and Description Language (SDL) is a specification language targeted
at the unambiguous specification and description of the behavior of reactive and dis-
tributed systems. Our description will focus on two aspects [FHvLP00].

– Agent is an extended finite communication state machine that has its own identity,
its own signal input queue, its own life cycle and a reactive behavior specification.
Three main parts exist on agent declarations: attributes, behavior, and internal
structure. Agents are composed of systems, blocks and processes. Processes are
used to specify the behavior of the system. Variables store data local to an agent
and they are owned by the agent’s state machine. They can be private, local, or
public. System is the entry point of the SDL specification. It includes a set of
blocks and channels. Blocks are connected to each other and to environment by
channels. A block can contain either a set of processes or a set of block substruc-
tures. A state machine is either in a state waiting for a signal or performing a
transition. A transition results in entering a new state or stopping the agent.

– Communication is based on signal exchanges that carry the signal name, user data
and sender identification. It requires a complete path from sender to receiver

8

that consists of channels, gates and connections. SDL processes communicate
with each other and with the environment by exchanging signals. Each process
instance in SDL owns a dedicated input port that allows received signals to be
queued until they are consumed or discarded by the process instance owner.

SDL supports modelling of non-determinism for transitions, postponing signals, and
condition signals. A Message Sequence Chart (MSC) describes a specific execution
sequence of the system. It shows how messages are passed between the instances.
Instances are described by vertical lines that define the temporal ordering of the events
related to the instance. An instance represents an SDL block, process or service.
Messages represent the interaction between instances or between an instance and the
environment. The message is described by a horizontal arrow. Conditions in MSC
represent a notion of state, which is represented by a hexagon. An action in MSC is
represented by a rectangle and it describes an internal activity of the instance.

• UML and OCL

UML [Wik] is a family of languages that is mainly used in the modelling and specifica-
tion of object-oriented systems. The UML defines a number of diagrams, some of which
depict the static structure of a system, while others the dynamic aspect. For example
UML class diagrams model the static structure of a system. Where the behavior of
the system can be described by OCL. OCL is a textual language that adds formalism
to UML diagrams. It can be used to define the behavior of a model (with the use of
preconditions and postconditions) or to express constraints (using invariants) on the
elements of a UML model.

• UML-based Web Engineering(UWE)

The UWE meta-model is designed as a conservative extension of the UML meta-model
(version 1.4). Conservative means that the modeling elements of the UML meta-model
are not modified e.g. by adding additional features or associations to the modeling el-
ement Class. All new modeling elements of the UWE meta-model are related by
inheritance to at least one modeling element of the UML meta-model. The authors
define for them additional features and relationships to other meta-model modeling
elements and use OCL constraints to specify the additional static semantics[KK03].

In UWE the content, navigation, presentation, and business process of web applica-
tion are recognized as separate concerns and modelled separately. The content of web
applications is modeled in a conceptual model where the objects that will be used in
the Web application are represented by instances of 〈〈 conceptual class 〉〉 which is a
subclass of the UML Class. Relationships between the objects are modelled by UML
associations between conceptual classes. The navigational path is modelled using a
navigational model, where each navigational node is represented by a 〈〈 navigational
class 〉〉 and is associated to a conceptual class containing the information of the node.

9

Navigational nodes are linked by associations. The business process logic of web ap-
plication is represented by a process model using the UML activity diagram where the
presentation model is used to sketch the layout of the web pages associated to the
navigational nodes.

• Alloy

Alloy [Jac02] is a textual modelling language based on first order predicate logic.
Entities in the model are described by Signatures which are similar to a UML Class
diagram. Signature can define fields, which are like attributes of classes in UML class
diagrams. Facts, Predicate and Assertion are three kinds of expressions defined by Al-
loy model. A Fact is an expression that every instance of a model satisfies. Predicates
and Functions are like functions in an object-oriented programming language. They
can be invoked from other parts of the model. Finally, an assertion is a statement that
the modeller wants to check for its validity. Alloy models can be analyzed by Alloy
Analyzer; counterexample is being generated by the analyzer if an assertion is violated.
State explosion problem is being controlled by introducing scoped analysis. A scope
determines the maximum number of instances the Alloy Analyzer probes to ensure
the validity of an assertion or to find the existence of counterexamples. If the Alloy
Analyzer fails to come up with a counterexample, the assertion may still be valid. The
bigger the scope is, the more confident the modeller is that his or her model is correct.

• Directed Graph and CFG
A directed graph or digraph G [Wik] is an ordered pair G: = (N,E) with

– N, a set of vertices or nodes,

– E, a set of ordered pairs of vertices, called directed edges, arcs, or arrows.

Many methods for web site analysis and verification use directed graph to model the
structure of the web site, where N represents a set of web pages and E represents a set
of links between the pages; this model is called Flat model.

The logical structure of the web application is represented by many static analysis-
based methods using control flow graph (CFG). Nodes in this graph represent com-
putational statements or expressions, the edges represent transfer of control between
nodes, and each possible execution path of the module has a corresponding path from
the entry to the exit node of the graph.

• FSM
A finite state machine (FSM) or finite state automata [Wik] is a model of behavior

composed of a finite number of states, a start state, an input alphabet, and a transi-
tion function that maps input symbols and current states to a next state, FSM can be
deterministic finite state machine (DFA) when it has at most one transition for each
symbol and state, while nondeterministic finite state machine (NDFA) transitions are
conditioned on no input symbol (a null) or more than one transition for a given symbol

10

and state. When NFA states are labeled with Boolean variables, which are the evalu-
ations of expressions in that state, and it may be extended with fairness constraints it
called Kripke structure. Finite state machines are widely used in modelling of appli-
cation behavior, design of hardware digital systems, software engineering, compilers,
network protocols, and the study of computation and languages.

• Rewriting Systems
A term rewriting system (TRS for short) [Wik] consists of a set of function symbols

and a set of rewriting rules in the form of l → r, where l and r are first order terms,
left-hand-side l is not a variable and, each variable occurring in r also occurs in l. The
execution of a rewrite system involves the repeated application of the rules to some
context. In each application, an occurrence of the left-hand side of a rule in the con-
text is replaced by the right-hand side. The execution terminates when no matching
rule can be found anymore. For example the following TRS defines multiplication over
natural numbers.

a(0, y) → y
a(s(x), y) → s(a(x, y))

m(0, y)→ 0
m(s(x), y) → a(y, m(x, y))

Here, a stands for addition and m stands for multiplication.

4 Comparison and Categorization Criteria

4.1 Feature Type

We note the web application features that are being captured by the proposed models,
and the properties that the modeling methods are capable of checking. These features are
categorized into static, dynamic and interaction features:

• Static Features. This includes static properties of web applications. It is mainly con-
cerned with links that connect an HTML page with other HTML pages. When the
user clicks on a static button or a static link, a request is sent to the server in order to
fetch a page. The server responds to the request by retrieving the required page from
its storage and sends it back to the client. In this scenario several properties can be
checked; these are related to static navigation and static content properties.

• Dynamic Features. These features include dynamic links and dynamic content proper-
ties. Dynamic links describe the connection between HTML pages and code that must
to be executed on the server in order to generate the required information, build it into
an HTML page, and return it to the client. The processing done by the server may
depend on input that is provided by the user or the system. User inputs are usually

11

sent by filling a form or by hidden fields in the HTTP request. System inputs depend
on the server state, such as server time, or on some kind of interaction with other re-
sources, such as database servers or web objects. The output could be constructed as
new content, or a link in a new HTML page. Properties that fall into this category are
those related to dynamic navigation properties, dynamic content properties, security
properties, and instruction processing properties.

• Interaction Features. This includes properties related to user interaction with the
browser. The browser’s influence on the navigation behavior of the web applications
should be taken into consideration while modelling or analyzing web applications, as
the web browser provides the interface to the web applications, and can change the
navigation behavior while a user browses a web application.

4.2 Notation

Modeling methods use different notations; some of them are formal, while others are either
semi- or informal. The main notations that are used by the methods reviewed in our study
are described in section 3.2.

4.3 Level of Modelling

Web application modelling can be viewed from different perspectives. We compare the
modelling methods here according to three basic levels: content, structure (navigation), and
behavior. These three levels in turn could have a static or a dynamic flavor.

4.4 Application of the Model

In our study we focus on methods that are concerned with modelling web applications for
the purpose of testing or verification; this also could include design verification.

4.5 Is Source code Required?

Modeling methods may require doing a white-box or a black-box analysis. This determines
whether or not the existence of the source code is required for the analysis. The kind of
analysis for each reviewed method is specified.

4.6 Model Optimization

Complex systems in general have a state explosion problem or they generate a large complex
model. In all cases such models need some sort of optimization. In web applications, this
problem becomes a major challenge to the success of any method that attempts to analyze
and model a scalable web system.

12

4.7 Tool Support

We list if the method being described is supported either with a proposed tool, or with a
preexisting tool.

5 Survey and Comparison Results

5.1 Survey

Our study resulted in two different views of the methods we surveyed, a general categoriza-
tion by modelling level, and a detailed comparison by property coverage.Table 5 summarizes
the first one, where the 21 methods are categorized according to the level of web application
modelling, as interaction behavior modelling methods, navigation modelling methods, con-
tent modelling methods and hybrid modelling methods (methods that model more than one
level).In each category, methods are sorted according to the notation used by the method.
At the same time, comparison between the methods was also done based on other criteria
such as: application for the method (analysis, testing, verification or some combination);
whether the source code is required for the analysis or not; the way the method solves the
state space explosion problem; and finally, whether there is tool support for the method.

13

Method
Name

Feature
type

Notation Level Application Source
code
required

Model
optimization

Tool support

[Con99] Static Extended UML Structure
(Navigation)

Analysis No No Rational Rose
Tools

[RT00] Static Directed graph Structure
(Navigation)

Analysis + can be use
for verification &
testing

Yes No ReWeb

[dA01]
 and
[dAHM01]

Static Directed graph
With Web Nodes

Structure
(Navigation)

Verification No No MCWeb

[ABF05] Static Partial rewriting Content WS verification
Tool(GVerdi)

Yes No GVerdi prototype

[GFKF03] Interaction Abstract model, use
lambda calculus

Interaction
Behavior

WA interaction with
the browser

No No prototype

[LK04] Interaction WebCFG Interaction
Behavior

Verification Yes Yes

Implement a model
checker

[CZ04] Interaction
+Static

Labeled transition Interaction + static
 (Navigations)

Testing and
verification

No Yes None

 [BA05] Interaction UML(WS structure)
OCL(behavior of
the model)

Interaction
Behavior

Verification for user
interaction(Amazon +
Orbitz bug)

No Yes UML2Alloy

[WP03]

Static +
dynamic

Extended
StateCharts

 Navigation Design verification Yes Yes SWCEditor

[HH06]
FARNav

Static +
dynamic

StateC harts Adaptive
Navegation

design and
implementation
Verification + testing

No Yes Existing SVM
model-checking
tools

[KLH00]
WTM

Static +
dynamic

Control flow graph,
data flow graph, and
finite state machines
OSD(object state
diagram)

Static and dynamic
Behavior, Dynamic
Navigation

Testing Yes No None

[HPS04] Static+
dynamic

System of
communicating
automata

Navigation +
Behavior

WA Verification No Yes Fame Work with
GUI + network
monitoring tool +
analysis tool

[AOA05]
FSMWeb

static +
dynamic

hierarchies of Finite
State Machines
(FSM)

Navigation +
Behavior

System level testing No Yes Prototype

[BFG02]
Veriweb

static +
dynamic

Directed graph Navigation +
Behavior

WS testing Yes Yes VeriSoft + web
Navigator +
ChoiceFinder +
SmartProfiles

[SDMP02] Static +
dynamic

Web graph Structure
(Navigation)

Verification No No AnWeb prototype

[SDM+05]
and

[CMRT06]

Static +
dynamic

WA graph +
extension to Kripke
structure

Structure
(Navigation)

WA design
Verification

No No WAVer + SMV
tools

[TR04]
And
[TR02]

Static +
dynamic

 (model navigation
layer) + CFG (client
& server code)

Structure
(Navigation) +
Behavior

Testing Yes No ReWeb + TestWeb

[BMT04] Static+
dynamic

UML-meta Model +
UML state diagram

 Structure
 (Navigation)

Analysis & Testing Yes No WebUML
prototype

[KZ06] Static +
dynamic

Extended UML
(UWE)

Navigation +
Behavior

Design Validation and
Verification

No No ArgoUWE +
Spin or UPPAAL

[WO02] Interaction
+ static +
dynamic

Regular expression Interaction +
dynamic Behavior

Can be used for
testing +
implementation +
impact analysis

Yes No None

[SM03] Static +
 dynamic

SDL Structure
(Navigation)

Testing and
verification

Yes No Existing SDL
Support tool

Table 3: Survey Result (categorized according to feature type)

14

5.1.1 Static Modelling Methods

1. Notation: Extended UML

Conallen extends UML to represent the additional features of WA [Con99]. The
aim of this work is helping designers, implementers, and architects to integrate mod-
eling web specific elements with the rest of the application model in a coherent and
complete way. In his approach, Conallen performs such extension by proposing new
constructs to UML, such as Stereotypes, Tagged values and Constraints. Stereotypes
in UML allow the definition of new semantics for a modeling element; Tagged values
represents new properties that can be associated to model elements; Constraints spec-
ify new conditions under which a model can be considered ”well-formed”. Stereotype
is used to define two types of web pages, client page and server page, where a web page
is modeled basically as a class with the semantics of client and server page defined
by stereotype. The relation between Server page and client page is defined using the
stereotype 〈〈build 〉〉, because the client page is usually created by the server. The
relationship between web pages is defined using the stereotype 〈〈 link 〉〉. Moreover
The HTML element, such as JavaScript, Java applets, AciveX controls, form, or frame,
is considered also as a stereotyped class. Tagged values are used to define the para-
meters that are passed along with a link request. The ”link” association tagged value
”Parameters” is a list of parameter names (and optional values) that are expected and
used by the server page that processes the request. Although this approach helps in
modeling all web application static and dynamic features, no specific modeling method
for any phase of web application is described. the Conallen model is considered the
basis of many analysis modeling methods.

Features modelled: client pages, server pages, hyperlinks, forms, frames, JavaScript,
Java applets, AciveX controls.

Tool support: Rational Rose tools.

2. Notation: Directed graph.

Ricca, in his PhD thesis adapts an approach to analyze, test, and restructure web
application based on a reverse engineering paradigm [Ric04]. He didn’t propose mod-
els and formalisms to support the design of web applications; instead, based on the
assumption that a web application already exists, he investigates different well es-
tablished methods for the analysis, testing and re-structuring of traditional software
systems, adapting them to the case of Web applications. In [RT00] web application is
modelled as a graph; nodes and edges are split into different subsets. Nodes subsets
are a set of all web pages; a set of frames for one web page; and a set of all frames.
Edges are also split into three subsets according to the kind of target node; a set of hy-
perlinks between pages or a relation showing the composition of web page into frames;

15

a set of the relations between frames and pages; as they show which page in which
frame is loaded; and a set of relations showing the loading of a page into a particular
frame. The name of the frame is given as a label next to the link. This model is
implemented in ReWeb. The ReWeb [RT01b] tool consists of three modules: a Spider,
an Analyzer and a Viewer. The Spider downloads all pages of a target web site, start-
ing from a given URL and providing the input required by dynamic pages, and then
it builds a model of the downloaded site. The Analyzer uses the UML model of the
web site and the downloaded pages to perform several analyses. Since the structure
of a Web application can be modelled with a graph, as a reinterpretation of the UML
model, several known analysis, working on graphs, such as flow analysis and traversal
algorithms can be applied. The Viewer provides a Graphical User Interface (GUI) to
display the Web application view as well as the textual output (reports) of the analyses.

Tool support: ReWeb.

Features modelled: ReWeb checks for Static Navigation properties (broken links,
reachablity, frames consistency), general graph analysis properties such as longest path,
also ReWeb check for cloned pages, which happened When the HTML structure of a
page is replicated.

3. Notation: Extended Directed graph (Webgraph).

de Alfaro et al. model web as a graph with webnodes for vertices, they call it
webgraph [dA01], [dAHM01]. A webnode is a hierarchical frame structure, generated
by the grammar webnode::= URLpage(name webnode)*. Where an URLpage is the
result of fetching a given URL from the Web with a GET method, and each pair (name
webnode) consists of the name of a subframe, and of the subframe content. The edges
of the graph correspond to links between web pages; the destination webnode is ob-
tained by updating the frame structure as specified by the HTML standard. Taking
webnodes, rather than URLpages as vertices of the graph enables an accurate rep-
resentation of the frame structure of pages. Moreover, since webnodes correspond to
pages as displayed by a browser, they lead to a natural connectivity analysis of the web.
de Alfaro [dA01] verifies properties written in a slightly restricted µ−calculus over that
model. This technique allows checking many path properties over static web sites such
as the password-page property(there is no access to secure pages until the user is signed
in), and to present errors as paths through the web model that violate a given property.

Tool support: MCWeb.

Features modelled: Check for static navigation proprieties(broken links, reacha-
bility, frame consistancy), general graph analysis properties such as cost-of-traversal.

16

4. Notation: Partial rewriting.

Alpuente et al. in [ABF05] propose a methodology to verify web sites w.r.t. syn-
tactic as well as semantic properties, GVerdi –the graphical evolution of the VERDI
system– implements a rule based specification language for specifying properties of web
sites, its a verification technique for automatically checking whether the conditions are
fulfilled, and helping to repair faulty web sites; it allows to detect incorrect and in-
complete/missing web pages. In this method, web page are modeled as a ground term.
Consequently, a web Site is defined as a finite collection of ground terms of a suitable
term algebra, a web specification is a triple (R, IN, IM) where

• R is a set of user’s function definitions

• IN is a set of correctNess rules

• IM is a set of coMpleteness rules

Correctness Rules:

l → error p C

if l is recognized in some web page of W and all the expressions represented in C are
evaluated to True (or C is empty), the web page is incorrect.
e.g. project(year(X)) → error p Xin[0− 9]∗, X < 1990.

Completeness Rules:

l →]r

if l is recognized in some web page of W, then r must be recognized in some web page
of W which contain the marked part of r.
e.g. member(name(X), surname(Y)) → hpage(name(X), surname(Y), status()).

This method is being applied only for static web sites, and suitable for recognizing pat-
terns inside semi-structured documents. GVERDI includes a parser for semi-structured
expressions and Web specifications, and several modules implementing the graphical
user interface, the partial rewriting mechanism and the verification technique. The
system allows the user to load a Web site directory together with a Web specification.
Additionally, he\she can inspect the loaded data and finally check the Web pages w.r.t
the Web site specification.

Tool support: GVERDI (Graphical VErification and Rewriting for Debugging Inter-
net Sites)
Features modelled: (consistency properties) Incorrect + incomplete web pages

17

5.1.2 Interaction Modelling Methods

The abilities of the user to click on the back button in the browser, or to clone a
window and submit a request from each clone, or to interact with any browser button
or functionality, are called user interactions or user operations. Two well known bugs
are generated as a result of this problematic behavior, the Orbitz and the Amazon bugs.
The Orbitz Bug is generated according to a sequence of user operations that exposes an
actual bug in the flight-reservation program of Orbitz.com [LK04] as described bellow:

Step 1 a user enters the desired dates and destination of his flight; he is then presented
with a page listing possible flights, including Flight A and Flight B.

Step 2 he clicks a link to open the description of Flight A in a new browser window.

Step 3 he was not particularly enthused about that flight, he returns to the list of
flights, and clicks a link to load the description of Flight B, again in a new browser
window.

Step 4 he decide that Flight A was better after all, he switches back to the window
still on the screen showing Flight A, and submits the form, causing a page con-
firming his reservation to be displayed. The result is Orbitz incorrectly makes a
reservation on Flight B.

The Orbitz property asserts the absence of this bug: the flight described on the page
that the user submits in Step 4 (which is called the flight-displayed) should be the
same as the actual flight for which his reservation is made (the flight-reserved).

Amazon property [LK04], which is drawn from a desired property of Amazon.com:
once the user selects a book to purchase, it should be contained in his shopping cart.
In particular, the user should be able to select books in two different browser windows
and have both appear in his cart, but this means that the cart will not also satisfy the
Orbitz property. Researchers are aware of this kind of problem and try to include user
operations in their proposed web application models.

5. Notation: Abstract Model (Lambda calculus)

Graunke et al. devise a model that is dedicated to detect data inconsistency prob-
lems, such as the Orbitz bug [GFKF03]. However, these inconsistency problems are
only detected dynamically through changes to the server’s run-time system. The model
also statically discovers abuses of the values filled into form fields. These bugs are a
result of user interaction with the browser, or with the application. The presented
model has four characteristics. First, it consists of a single server and a single client,
because the authors wish to study the problems of sequential Web interactions. Sec-
ond, it deals exclusively with dynamically generated web pages, called forms, to mirror
HTML’s sub-language of requests. Third, the model allows the consumer to switch
among web pages arbitrarily; this suffices to represent the problem in Orbitz bug and

18

similar phenomena. Finally, the model is abstract with respect to the programming
language so that different alternatives can be experimented on. In this paper lambda
calculus was used for forms and basic data, though the authors consider that Clas-
sic Java also could be used. Rewriting rules on web configurations is being used to
reflect interaction behavior these rules are:fillform, switch, submit.Figure 2 describe
the proposed model. The proposed model lacks several properties such as ignoring

 Figure 2: the web picture as described in [GFKF03]

client side storage such as ”cookies”; not addressing any security concern; and not
addressing concurrency problems, as they just study sequential web interaction.

Tool support: the authors implement a prototype for their method.

Features modelled: interaction between browsers and the business logic, abuse of
values filled into form field.

6. Notation: Abstract Model in [GFKF03] + WebCFG (augmented control-flow graph)

Licata and Krishnamurthi in [LK04] describe a model checker designed to iden-
tify errors in web software. A technique for automatically generating novel models of
web programs from their source code was presented. These models include the addi-
tional control flow enabled by user operations. In this technique, the authors exploit a
constraint-based approach to avoid over-approximating this control flow and to reduce
the size of the model. Further, they presented a powerful base property language that
permits specification of useful web properties, along with several property idioms that
simplify specification of the most common web properties. The authors model a web
program P by its web control-flow graph (WebCFG). The WebCFG is an augmented
control-flow graph (CFG). User interactions control flow are being added to the model
to build a sound verification tool. The authors reduce user operations to primitive user
operations proposed by Graunke et al.[GFKF03]. All traditional browser operations
can be expressed in this calculus, they just account for switch and submit. Then they
construct the WebCFG completely automatically from the source of a web program

19

using a standard CFG construction technique followed by a simple graph traversal
to add the post-web-interaction nodes and the web-interaction edges. The resulting
model and properties are checkable by language containment, they are compatible with
existing algorithms that supports ”constraint” automata, the authors can automati-
cally generate constraints that rule out all the non-infeasible forward paths. This work
doesn’t address the concurrency issues resulting from multiple simultaneous accesses
to a server by different clients.

Model optimization: remove some WebCFG states that are not labeled without
affecting results, where they use such technique on a web application case study, and
were able to reduce state number from 17,000 to 300 states.

Tool support: the authors implement their own model checker.

Features modelled: proving properties of interactive web sites by discovering user-
operation-related bugs, as well as providing a method for verifying all-paths properties
of interactive web sites.

7. Notation: Labelled transition system

Chen and Zhao in [CZ04] use labelled transition to model web system, depend-
ing on the conceptual architecture of a web browser as shown in Figure 3. They model
the user’s interactions with web browsers; the history stack and its impact on the nav-
igation; the local cache and its influence on the freshness of the web pages; and the
authentication sessions. The proposed model is described as follows:

The Integrated Model: states

• a page ID to denote the current page - an additional error page err: reached for
example, when attempting to access a secure page without an open session.

• a history stack variable for the current status of the URLs contained in history
stack. Since in our case there is a one-to-one relationship between a URL and a
page id, it is a stack of page ID’s

• a variable of a set of page ID’s to denote the current status of the locally cached
pages.

• a Boolean variable to denote whether the authentication session is currently open.

The Integrated Model: labels L = {(l,f) p l∈ A ∪ {back,forward,entry,err},f=fresh or
cache}
- entry: user types in the URL
- back, forward, entry are from browser’s interface
- err: navigation is directed to a special error page err

20

Figure 3: Conceptual architecture of web browser as described in [CZ04]

- fresh/cache: whether the accessed page is from origin server or from local cache.
- A: represent a finite set of symbols for user’s actions including SignIn and SignOut

Now given a page navigation diagram (P, EP, SP, CP,A,⇒),where P, EP, SP, CP are
the finite sets of ID’s of the pages, entry pages, secure pages and cashable pages re-
spectively; A to represent a finite set of symbols for user’s actions including SignIn
and SignOut, and ⇒∈ P ∪ A ∪ P represent the navigation relation. Let HS(P) de-
note the set of history stacks of P. Then the labeled transition system is a quadruple
(S, L,→, S0), where

- S ⊆ (P ∪ err)×HS(P ∪ err)× 2P ×Boolean;
− S0 ∈ S is the initial state;
- L ⊆ (A

⋃
{back, forward, entry, err)} × {fresh, cache}

The transition relation → is defined as the least relation satisfying 20 structural rules.
an example for a transition rule of user sign in action:

(p,SignIn,q)∈→
∧

inChache(lc,q)=true
〈p,hs,lc,guard〉(SignIn,cache)

−−−−−−−−−−−→
〈q,push(hs,q),lc,true〉

If the user can sign-in from page p into page q and q is in the cache, then there is a tran-
sition from the current state p to the one with page q, where q is put into the history
stack. In the ending state, the guard is set true to indicate that the session for au-
thentication is now open. The label on the transition shows that this is a sign-in action.

21

State space reduction: by rendering a reasonable model, abstracting away as much
un-related detail as possible, they considered only the navigation behavior influenced
by session control and browser caching mechanism.

Features modelled: user’s interactions with web browsers, the history stack and
its impact on the navigation, the local cache and its influence on the freshness of the
web pages, and the authentication sessions. Dynamic links are not being considered in
the assumed page navigation diagram, and for the functionality provided by session/-
cookie techniques, the authors have chosen only the session control.

8. Notation: UML (ADI + OCL)+ Alloy.

Bordbar and Anastasakis in [BA05] are interested in identifying bugs such as the
Amazon bug and the Orbitz bug, which are created as a result of the interaction be-
tween browsers and the business logic. The method makes use of UML class diagrams
to model the static structure of a web application, where the behavior of the system
is being described via OCL. To analyze the model, the PIM (platform independent
model) of web application has to be refined and abstracted to create a new PIM,
which is called Abstract Description of Interaction (ADI). The ADI is a class diagram
with a set of OCL constraints, and pre- and post-condition expressions, that describe
the interaction of the browser and the business logic in an abstract way. The ADI
model can be translated to a model in Alloy and analyzed by the Alloy Analyzer. The
authors have implemented the transformation from the UML to Alloy in a tool called
UML2Alloy, the transformation process starts by creating a UML model of the system
in a UML CASE tool, such as ArgoUML, then exporting the UML model to an XMI
format, XMI –which stands for XML Metadata Interchange– is an OMG standard used
by most UML tools to store, import and export UML models. UML2Alloy implements
the transformation and generates an Alloy model from the XMI file. The Alloy model
of the system can then be analyzed with the Alloy Analyzer. This method requires
a manual effort to construct the ADI model from the PIM; the construction process
needs the projection of the PIM, and the deletion of the unrelated model elements.

Model optimization: The authors address the problem of state space explosion,
by creating an abstract view for the part of the model of the system, which depicts
the interaction between the user and the business logic. They also can use state space
reduction techniques in Alloy analyzer (scoped analysis).

Tool support: UML2Alloy, where they intended to create a tool to generate the
ADI by semi-automated methods, using refactoring methods.

Features modelled: interaction between browsers and the business logic.

22

5.1.3 Static and Dynamic Modelling Methods(Hybrid)

9. Notation: StateWebCharts (extended StateCharts)

Winckler and Palanque in [WP03] extend statecharts to the StateWebCharts
(SWC) notation which provides dedicated constructs for modelling specificities of states
and transitions in web applications. Their aim is to provide a visual notation easy-to-
apply for web designers, and formal enough to be subject of automatic verification, thus
supporting designers’ activity throughout the design process, most elements included
in SWC notation aim at providing explicit feedback about the interaction between
users and the system. Currently, SWC is mainly used to describe the navigation be-
tween documents rather than interaction between objects. One of the contributions of
the proposed SWC notation is that, it makes explicit in the models the points where
users interact with the application, with respect to those where the system drives and
controls the navigation.

Model optimization: SWC takes benefit from the multilevel hierarchy of classi-
cal StateCharts to better manage large web applications.

Tool support: SWCEditor

Features modelled: navigational modelling, web link type support, user driven nav-
igation, system driven navigation, dynamic content generation, frames.

10. Notation: StateCharts

Han and Hofmeister present FARNav (a Formal Approach for Rich Navigation
modelling) approach [HH06], that uses StateCharts to formally model adaptive nav-
igation, and show how important properties of a navigation model are verified using
existing model-checking tool (SMV). StateChart is converted into CTL (input language
for SMV). To model adaptive navigation, the authors use parallel (ANDed) substates.
The main substate contains a state machine having one state per web page, and transi-
tions between pages for the navigation links. When a web application has only simple
(no adaptive) navigation, this substate comprises the entire navigation model. The
state machine for the Page Navigation substate is created as follows:

State: Each web page is a separate state. It is up to the developer to determine
what constitutes a distinct web page in an application. Transition: When the user
can reach one page from another, there is a transition between the corresponding
states. The transition has a label with the form: event [guard]/action; only the event

23

is mandatory. It describes a user action that causes a request to be sent to the server,
and the subsequent response from the server. It can also describe a request generated
by the browser, e.g. a timeout. The guard allows a transition to fire only when a mode
has a particular value. For example, it can say that the user must be LoggedOn to fire
this transition.

Table 4: Examples on the properties checked by FARNav [HH06]

Model optimization: to scale the model the authors take benefit from the multilevel
hierarchy of classical StateCharts to better manage large web applications, and they
suggest a future work to deal with this problem by using hierarchal substates, or slicing
on StateCharts, but they did not provide any further details.

Tool support: using existing model-checking tool (SMV).

Features modelled: Adaptive navigation; all features that can be checked for navi-
gation but taking into account some events and conditions such as user state, examples
on properties checked by FARNav are shown in Table 4.

24

11. Notation: control flow graph, data flow graph, and finite state machines, object state
diagram

Kung et al. in [KLH00] propose a model that extends traditional test models, such
as control flow graph, data flow graph, and finite state machines to web applications
for capturing their test-related artifacts. Based on the proposed test model, test cases
for validating web applications can be derived automatically. In this methodology,
both static and dynamic test artifacts of a web application are extracted to create a
Web Test Model (WTM) instance model. Through the instance model, structural and
behavioral test cases can be derived systematically to benefit test processes. Test ar-
tifacts are represented in the WTM from three perspectives: the object, the behavior,
and the structure.

• From the object perspective, entities of a web application are represented using
object relation diagram (ORD) in terms of objects and inter-dependent relation-
ships. In particular, an ORD = (V, L, E) is a directed graph, where V is a set of
nodes representing the objects, L is a set of labels representing the relationship
types, and (E ⊂ V xV xL) is a set of edges representing the relations between the
objects, There are three types of objects in WTM: client pages, server pages, and
components, to accommodate the new features of web applications, new relation-
ship types are introduced in addition to those in the object-oriented programs.
The new relationship types, navigation, request, response, and redirect are used
to model the navigation, HTTP request/ response, and redirect relations intro-
duced by web applications, respectively. Thus, in the ORD, the set of labels L =
I, Ag, As, N, Req, Rs, Rd, where I: inheritance, Ag: Aggregation, As: association.

• From the behavior perspective, a page navigation diagram (PND) is used to depict
the navigation behavior of a web application. The PND is a finite state machine
(FSM). Each state of the FSM represents a client page. The transition between
the states represents the hyperlink and is labeled by the URL of the hyperlink.
The PND of a web application can be constructed from an ORD. To deal with the
dynamic navigation (the construction of client pages can be dynamic at runtime
based on the data submitted along with the HTTP requests or the internal states
of the application. Hence, the same navigation hyperlink may lead to different
client pages). To model this behavior a guard condition enclosed in brackets is im-
posed on the transition in the PND. The guard condition specifies the conditions
of the submitted data or internal system states that must be true in order to fire
the transition. To detect the errors related to navigation behavior a navigation
test tree is employed. A navigation test tree is a spanning tree constructed from a
PND, by analyzing the tree; they can check some properties, such as reachability
and deadlock, of the navigation behavior. At the same time, a set of object state
diagrams (OSDs) are used to describe the state behavior of interacting objects.
The OSD is similar to StateChart. It can represent the state-dependent behavior

25

of an object in a web application. The state-dependent behavior for an aggregate
object then can be modeled by a composite OSD (COSD) of the corresponding
OSDs.

• The structure perspective of the WTM is to extract both control flow and data
flow information of a Web application. To capture control flow and data flow
information, the Block Branch Diagram (BBD) and Function Cluster Diagrams
(FCD) are employed in the WTM. The BBD is similar to a control flow graph. It is
constructed for each individual function of a Web application to describe the con-
trol and data flow information, including the internal control structure, variables
used/defined, parameter list, and functions invoked, of a function. Therefore, the
BBD can be used for traditional structural testing of each individual function;
the FCD is a set of function clusters within an object. Each function cluster is a
graph G = (V,E), where V is a set of nodes representing the individual functions
and E ⊂ V × V, is a set of edges representing the calling relations between the
nodes.

Features modelled: reachability and deadlock, dynamic navigation, client and server
script execution, session control properties, e.g. To check whether or not the inactive
period of the current session is over a time limit, say, 5 minutes. If the inactive period is
greater than the time limit, the HTTP request must be redirected to an authentication
page to verify the user again for protecting the user’s privacy.
(∃s ∈ Session)((s = this.Session() ∧ s.Inactive() > 5) → this.redirect(Auth))
The this.Session () is a function that returns a session object; s.Inactive() is a function
that returns the inactive period for the session object s. The this.redirect (Auth)
specifies that the HTTP request is redirected to the Auth server-page.

12. Notation: Communicating automaton FSM

May Haydar et al. in [HPS04] devise an algorithm to convert the observed be-
havior, which they called a browsing session, into an automata based model. In case
of applications with frames and multiple windows that exhibit concurrent behavior,
the browsing session is partitioned into local browsing sessions, each corresponding to
the frame/window/frameset entities in the application under test. These local sessions
are then converted into communicating automata. The constructed models can also
be used for other purposes such as documenting, testing, and maintenance of web ap-
plications. They did an implementation for a framework which includes the following
steps: The user defines some desired attributes through a graphical user interface prior
to the analysis process. These attributes are used in formulating the properties to
verify on the application. A monitoring tool intercepts HTTP requests and responses
during the navigation of the Web Application Under Test (WAUT). The intercepted
data are fed to an analysis tool, that continuously analyzes the data in real time (online

26

mode), incrementally builds an internal data structure of the automata model of the
browsing session, and translates it into XML-Promela. The XML-Promela file is then
imported into aSpin, an extension of the Spin model checker. ASpin then verifies the
model against the properties, furthermore the model checking results include counter-
examples that facilitate error tracking.

Model optimization: by partially analyzing the model (system of communicating
automata).

Tool support: a framework that is composed of; GUI to collect desirable proper-
ties from the user, network monitoring tool to intercept HTTP request and response,
analysis tool that builds the communicating automata based on the received data. The
model is fed into aSpin for verification.

Features modelled: reachability properties; deadlocks and livelocks; frames behav-
ior related properties, and their mixture; form filling, as well as various intricate and
thus difficult to detect properties related to the concurrent behavior of the different
entities of the WA. Properties can also be attribute-related where the user specifies
some desired features based on page attributes.

13. Notation: FSM

FSMWeb [AOA05] builds hierarchies of Finite State Machines (FSMs) that model
subsystems of the web applications. This approach which aims to testing web applica-
tions proceeds in two phases. Phase 1 builds a model of the web application. This is
done in four steps: (1) the web application is partitioned into clusters, (2) logical web
pages are defined, (3) FSMs are built for each cluster, and(4) an Application FSM is
built to represent the entire web application. Phase 2 then generates tests from the
model defined in Phase 1.

Model optimization: by using hierarchical collection of aggregated FSMs with con-
straints.

Tool supprt: FSMWeb prototype.

Features modelled: modeling and testing of static links (HTML/ HTML), dynamic
links (HTML/software), dynamically created HTML (software / HTML), User/time
specific GUIs (software + state / HTML), software connections.

27

14. Notation: Directed graph

In Veriweb[BFG02] Systematic Web-site exploration is performed under the con-
trol of VeriSoft, a previously existing tool for systematically exploring the state spaces
of concurrent/reactive software systems. In VeriSoft the state space of the system
is defined as a directed graph that represents the combined behavior of all the com-
ponents of the system being tested. Paths in this graph correspond to sequences of
operations (scenarios) that can be observed during executions of the system. In web
site the state space is the set of web pages (statically or dynamically generated) in the
site that can be reached from some initial page, so reachable pages are the states of
the web-site state space, while the set of possible actions from a given page determined
by ChoiceFinder defines the set of transitions from the corresponding state.

Whenever a new web page is reached and a new set of possible actions is determined;
VeriSoft records this set of actions and executes one of them. The process is recursively
repeated on the next page until some depth in the state space (i.e., number of succes-
sive actions) is reached. At that point, VeriSoft re-initializes the state of the web-site
and starts executing a new scenario from that initial state. By repeating this process,
all possible execution paths of a web application up to the given depth can eventually
be exercised and checked.

Since the state space of a web site can be huge in practice, VeriWeb supports var-
ious techniques and heuristics to limit the size of the part of the state space being
searched. Three main tasks are involved in exploring paths in a web site: search-
ing (i.e., determining the set of possible actions and systematically go through these),
execution (i.e., executing actions), and error handling (i.e., detecting and reporting
errors), VeriWeb allows checking for many different types of errors, from errors in an
isolated web page (e.g., the presence of a string pattern for an error, conformance to
accessibility guidelines), to errors that involve a navigation path (e.g., constraints on
length of the deepest paths in the site)

Model optimization: The level of pruning can be tuned by defining SmartProfiles,
and profile policies (search constraints); restricting the search by not following URLs
outside of a set of domains; eliminating links that match some pre-defined set of regular
expressions; and setting a limit on the number of links to be followed in each page. A
possible optimization is to record Visited URLs and prevent the search from exploring
successors from the same URL more than once. In the current prototype, they rely on
VeriSoft to limit the depth of the search and guarantee the termination of the search
process.

28

Features modelled: the authors deal with pages that contain forms and client-side
scripts; check three type of errors:

navigation (execution) errors, such as : page not found; unsuccessful form submis-
sion; and constraints on length of the deepest paths in the site.
Page errors(application specific errors), such as ”cannot connect to database”;
”invalid customer”; constraints that must hold throughout the web site such as all
pages must contain a navigation bar.
Error logging, is performed at three different levels: by VeriSoft (error traces);by the
Navigator(Smart-Bookmarks); and by the web Proxy (Cache of pages retrieved).

15. Notation: Extended directed graph (Webgraph)

Sciascio et al. state that due to complexity of the hypertextual structure of the
web, a web application cannot be modeled using a simple graph structure where nodes
represent pages and arcs represent hyperlinks [SDMP02],[SDMP03]. Using frames,
makes a window be composed by several pages. To solve this question the authors
identified a new kind of object in a web application and consequently a new kind of
state in the model, which is the ”window” state. A generic window could be divided
into one or more frames, where one or more web pages can be loaded. Sciascio et al.,
represent the system as a Kripke structure and model a web site as a Webgraph. Model
checking is reformulated as checking that each initial state satisfies the specifications.
They adopt Computation Tree Logic (CTL) as language to define the properties to
be verified. The proposed formal method has been deployed in AnWeb, a tool for
automatic support in the design of web applications. The tool provides an interface to
the NuSMV model checker. The system parses the HTML source code of web pages,
including code for dynamic pages, builds the model in NuSMV input language and
provides the proper CTL specifications to the NuSMV tool.

Tool support: AnWeb

Features modelled: the authors provide examples on checking static properties such
as broken links, reachability, frames Consistency, and for dynamic features they pro-
vide a model for the generation of dynamic pages (pages which redirect the navigation
depending on conditions in the input form, and not those whose content is automati-
cally generated by getting data from databases and processing user input.) However,
they do not provide any examples on how to check the dynamic features.

29

16. Notation: FSM

Sciascio et al. in [SDM+05] and [CMRT06] try to answer another essential ques-
tion in WA modelling, that is to distinguish between links connecting to other web
pages, and links triggering an action of the server, for example, the download of a file
or login operations). Hence, the authors extend the WA model to include ”action”
states representing actions performed in a specific web page, typically said ”Server
Page”. In [SDM+05] , WAs are modeled as FSM where pages, links, windows and
actions are states. The authors also proposed a mathematical model of a WA parti-
tioning the usual Kripke structure into windows, links, pages and actions. Then they
specify properties to be checked in a temporal logic, Computation Tree Logic (CTL).
Verification is performed by adapting the NuSMV model checker to the proposed for-
malism. An implemented system embeds a parser to perform the automated parsing
of the XMI output of the UML tool, and to automatically build the NuSMV model to
be verified with respect to specifications.
In [CMRT06] Castelluccia at al. introduce a tool (WAVer) that is able to transform
UML diagrams in XMI files, and to turn them into corresponding web application
graphs (WAGs). Then the tool translates the WAG in a NuSMV model, which is
finally used as input for the model checker NuSMV. It automatically performs verifi-
cation of CTL specifications.

Tool support: WAVer.

Features modelled: in addition to those features supported by AnWeb, Sciascio
et al. in [SDM+05]are able to check some properties of web application design such as:

- to check whether the access to private page occurs through a login; e.g. we must find
some private information after a login action.

In WAVer [CMRT06]the model is extended to be able to check some properties related
to access control such as:

- administrator can access to resources belongings to every authorized user.

17. Notation: UML meta model + CFG.

Tonella and Ricca [TR04] propose a two-layer-model for modelling and analyzing
web application. The first layer ”higher level”, models the structure of a web applica-
tion in terms of its composing pages and its navigation links. The first layer model is
obtained according to the approach descried in [TR02], and that by extracting a UML
instance model of web application based on a proposed UML-meta model in [TR02];
a static analysis for the HTML code that is dynamically generated by the server pro-
grams is performed. The Web application model produced in this way can be enriched
with the transition probabilities, obtained from the statistical information dumped

30

by the Web server during execution. This approach has some weaknesses, there are
some cases where the web server needs an additional tracing mechanism. These cases
happened when caching is interposed between client and server, because this part of
user navigation is not visible in the access log, and has to be reconstructed heuristi-
cally. Moreover, the input values passed to the server programs are not visible in the
access log, if parameter passing is by POST instead of GET. In this approach, the
input values used during model extraction are not being generated automatically. The
source code running on the browser(e.g., Javascript and Applets),and that executed by
the web server are not analyzed currently. Their analysis would allow treating these
components as white-boxes.
The second layer ”low level” model, is being obtained by considering the execution
flow followed at the server and client side. In this model, nodes in the control flow
model of a web application represent the statements that are executed either by the
web server, or by the client (Internet browser). Edges represent control transfer. Since
the execution on the server involves one (or more) server side languages (e.g., PHP and
SQL), and the execution on the client involves additional languages (such as HTML and
JavaScript), the control flow model has different node kinds (”colors”), according to
the programming language of the respective statements. In addition to the sequential;
deterministic control transfer, possibly controlled by conditional or loop statements;
some statements in web application determine the ”registration” of functions or script-
s/pages with respect to given graphical events.In order to perform the required analysis
and testing, two prototyping tools are implemented ReWeb and TestWeb. TestWeb
[RT01b] consists of two modules: the Test generator and the Test Executor. The Test
generator is able to generate test cases from the UML model of a Web application.
The user has to add some information to the UML model produced by ReWeb to pre-
pare it for testing purposes. The user also has to choose a test criterion. The Test
generator computes the path expression of the model and uses it to generate sequences
of test cases which satisfy the coverage criteria chosen by the user. Input values in
each URL sequence are left empty by the Test generator, and the user has to fill them
in; those values include: specification of the page type when the distinction between
static and dynamic pages cannot be obtained automatically, variables for each dynamic
page whose content depends on some input value and attached conditions to the edges
whose existence depends on the input values.

Tool support: ReWeb, TestWeb.

Features modelled:in addition to those properties checked in ReWeb, Client side
execution and Server side execution are modeled.

31

18. Notation: UML meta model + UML state diagram.

Bellettini et al. in [BMT04] propose a web application reverse-engineering tool We-
bUml, which is used to extract UML models (in particular class and state diagrams)
with minimal user interactions. The meta-model that is being used to represent web
application class diagram is similar to the Conallen model and like the Tonella and
Ricca model. Class diagrams are used to describe the structure and the components of
web application (e.g., forms, frames, Java applets, input fields, cookies, scripts, etc.),
while state diagrams are used to represent the behavior and the navigational structures
(client-server pages, navigation links, frames sets, inputs, scripting code flow control,
etc.). To build state diagram; the first operation in such construction consists of
class diagram analysis to define application components that have fundamental states
for web application evolution. The next step examines components to search for the
events that change the state of the component itself, such as inputs inserted values,
function scripting call, mouse clicks, etc... WebUml uses a mix of techniques based on
source code static and dynamic analysis. Static analysis is performed through simple
parsers based on a pattern matching scanner. Dynamic analysis is performed through
source code mutational techniques combined with simulated web application execu-
tion. WebUml analyzes client side pages by elaborating the information extracted in
the class diagram constructor modules, and if necessary (e.g., for active Web pages)
applies specific static code analysis in order to define details about the client-side dy-
namic characteristics (scripting code, dynamic links, etc.). Server pages analysis is a
Server pages analysis is a combination of: source code mutation, application execu-
tions WebUml dialogue with Web server) and traditional source code analysis. This
technique avoids heavy language analysis, but needs the implementation of a simple
map of mutant operators. The generated UML models may seem crowded, but they
are also very rich in information.

Tool support:WebUML.

Features modelled:modeling of client-server pages, navigation links, frames sets,
form inputs, scripting code flow control. This model is intended to be used in a testing
tool that is under construction (TestUML).

19. Notation:UML-based Web Engineering(UWE).

Knapp and Zhang in [KZ06] propose a systematic method of merging the separate
models of web application into one integrating model by using graph transformation
rules. The transformation is done from the context of UWE meta-model (navigational
model and business model) into a UML state machine. First they transform the navi-
gation model into a basic state machine, and then they integrate the business processes
into this state machine as submachine states. The final model includes the static nav-

32

igation structure as well as the dynamic behavior of a web application model. The
authors choose the final model to be in the UML state machine because there are tools
that do the conversion from this model into input models for the model checkers SPIN
and –for real time state machine – UPPAAL.

This method uses UML-based Web engineering methodology (UWE), which is a design
methodology. The features that this method is able to capture are the same as those
captured by UWE; as well as those features that appear as a result of the integration
process proposed by this method. UWE is able to model the static navigation of the
web application by its navigational model; where the behavioral modeling is only men-
tioned with respect to defining the sequence of navigation by mean of constraints. The
only dynamic features are currently modeled by the dynamic presentation model and
that by employing UML StateCharts for describing the activation of navigation. The
authors present three examples for using the model checker over their final model; they
check for page reachablity and for session control properties.

Tool support: ArgoUWE, Hugo/RT(translates state machines, collaborations, and
assertions into input models for the model checkers SPIN), Spin.

Features modelled: page reachablity and session control properties over the inte-
grated model.

20. Notation: Regular Expressions.

Ye Wu and Je Outt in [WO02] are interested in modeling the dynamic aspects of
web application and specifically the dynamic interaction among clients and servers, and
dynamically generated client components. Thus this method assumes that clients and
servers interact through HTML pages. The technique is based on identifying atomic
elements, which are defined as a static HTML file or a section of a server program that
prints HTML and has an ”all-or-nothing property”, that is, either the entire section
is sent to clients or none of the section is sent. An atomic element may be a constant
HTML section, or it may be an HTML section that has a static structure but may
contain content variables. A content variable is a program variable that provides data
to the HTML page but not structure. These elements are dynamically combined to
create composite web pages using sequence, selection, aggregation, and regular expres-
sions. For a server program consisting of four atomic elements this method computes
all possible complete HTML files that can be generated by the component using the
following composition rule : P → p1.(p2 | p3)∗.p4.
The actual dynamic composition is affected by the control flow of the server compo-
nent.The authors also provide a definition for the dynamic interaction, which can be
represented by a set of transition rules.

33

if p and q are composite sections and s is a servlet or other software these transitions
can be:

• Link Transition p ⇒ q: Invoking a link in p causes a transition to q from the
server to the client. If p can invoke one of several static or dynamic pages, q1,
q2, . . . , qk, then the link transition is represented as p → q1 p q2 p ... p qk.
Link transition can be an HTML link defined via the < A > tag, or an action
link defined in a < FORM > section.

• Composite Transition s → p: The execution of s causes p to be produced and
returned to the client. The servlet s will normally be able to produce several
composite web pages, which can be represented as s → p1 p p2 p ... p pk.

• Operational Transition p ⇀ q: The user can inject new transitions out of the
software’s control by pressing the back button or the refresh button.

Based on the above definition, a web application W is modeled as a triple {S, C, T},
where S is the start page, C is a set of composition rules for each server component,
and T is a set of transition rules. An example of such approach is described in Figure
4, in this example a small application includes query servlet(A), and another servlet
that processes the email to the instructor, which is not shown in the figure; HTML file
(B); the approach model is shown in (C).
The testing relies on the descriptions of the web software behavior to define tests as

sequences of user interactions that begins with the start page, and uses composition
and transition rules to reach the desired page, this sequence is called derivation. For
example, there are several derivations for the case when a student enters an incorrect
ID password pair:
S ⇒ GradeServlet → p1.p3.p4 ⇒ S
S ⇒ GradeServlet → p1.p3.p4 ⇒ SendMail...
S ⇒ GradeServlet → p1.p3.p4 ⇀ PreviousS ⇒
GradeServlet → p1.p2.p4 ⇒ S

A major advantage of this model is that, it relies on the principles of HTTP and HTML
construction, thus it is independent of software implementation technology. The model
includes only Java servlet components and doesn’t deal with other technologies such
as XML, JSP,ASP. The model was also built on the assumption that webapplications
are based on HTTP, which is a stateless protocol, so it did nothing to deal with session
control mechanisms such as cookies.

Features modelled: modeling and testing for static navigation properties, dynamic
navigation properites, user operations, server and client side execution.

34

A

B

C

 Figure 4: Example on Ye Wu and Je Outt method [WO02]

21. Notation:SDL.

Syriani and Mansour in [SM03] use the SDL model of a web application to rep-
resent all the web pages of the system and their relationships with each other. Each
web page is represented by an agent, and the hyperlinks between pages are represented
by signals. A hyperlink in a web application represents a navigational path through the
system. This relationship is represented in the SDL model with a signal sent through
a channel association. The signals may contain parameters. For example, such para-
meters may contain user name and passwords that are sent within the signals to login
to a server. This link association originates from a client page and points to either a
client or a server page. The procedure embodied in both the client and the server can
be modelled using composite states. This is done by modelling the transition from one
state to another in order to control the internal procedures of both the client and the
server. These steps may contain input signals, output signals, procedure calls, etc. A
Message Sequence Chart can be used to model the sequence steps of moving between
agents or states. If a client is accessing a server, a communication signal is fired. Upon
receiving this signal, the server should reply back with another signal. The contents
of this signal can also be specified. This model helps in verifying the consistency of
a web application implementation with it’s specification. The authors include only
one example of how to use the existing Testing and Test Control Notation (TTCN)
of the SDL to verify that the implementation of the web application conforms to it’s
specification, and that by generating test cases. For example, if there is a login request

35

which is controlled by time - so that a time interval is added to the representation.
They check if the client receives a response of either login-confirm or login-error that
satisfies the specification of the web application and within the time interval, then the
test passes; else if time out happened the test fails; if other responses are received,
nothing happened until time out

Tool support: use techniques and tools that support SDL.

Features modelled: the approach models pages; hyperlinks; static and dynamic
navegation.

5.2 Comparison Results

In this work we present two comparative studies. Table 5 shows the first one, where 21
methods are categorized according to the level of web application modelling into interaction
behavior modelling methods; navigation modelling methods; content modelling methods
and hybrid modelling methods(methods that models more than one level). In each category
methods are sorted according to the notation used by each method. At the same time a
comparison between these methods is done based on other criteria such as: application for
the method either for testing or for verification; whether the source code is required for the
analysis or not; the way the method solves the state space explosion problem; and finally,
according to whether there is a tool that supports these methods or not.

The second comparison, shown in Table 6, aims at a comparison of the more specific
details between methods in the same category in particular, and with other methods in
other categories in general. The comparison is based on a combination of feature type and
the level of web application modeling, using the comparison criteria outlined in Section 3 as
desirable properties for web site modeling.

In the remainder of this section we discuss and compare the characteristics of the methods
summarized in these tables. Our presentation is organized by the levels in Table 5, that is,
we first discuss interaction modelling methods, then navigation modelling methods, followed
by content modelling methods and finally hybrid methods. The categories are not disjoint;
some methods are discussed more than once since they have aspects that address multiple
levels.

5.2.1 Interaction behavior Modelling Methods

Dealing with user operations (interactions) is very important. Such interactions are prob-
lematic, for example: clicking the back button forces the computation to resume at a prior
interaction point; submitting multiple clones then clicking the back button causes compu-
tations at the same interaction point to resume many times. These operations happen on
the browser and are not reported to the web application. Consequently, the web applica-
tion will be affected in an unexpected manner, so any modelling methods that do not take

36

Method
Name

Feature
type

Notation Level Application Source
code
required

Model
optimization

Tool support

[GFKF03] Interaction Abstract model, use
lambda calculus

Interaction Behavior WA interaction with the
browser

No No Prototype

[LK04] Interaction WebCFG Interaction Behavior Verification Yes Yes

Implement a model
checker

[CZ04] Interaction
+Static

Labeled transition Interaction + static
 (Navigations)

Testing and verification No Yes None

 [BA05] Interaction UML(WS structure)
OCL(behavior of the
model)

Interaction Behavior Verification for user
interaction(Amazon +
Orbitz bug)

No Yes UML2Alloy

[ABF05] Static Partial rewriting Content WS verification
Tool(GVerdi)

Yes No GVerdi

[Con99] Static Extended UML Structure
(Navigation)

Analysis No No Rational Rose Tools

[BMT04] Static +
dynamic

UML-meta Model +
UML state diagram

 Structure
 (Navigation)

Analysis & Testing Yes No WebUML

[RT00] Static Directed graph

Structure
(Navigation)

Analysis + can be use for
verification & testing

No No ReWeb

[dA01]
 and
[dAHM01]

Static Directed graph
With Webnodes

Structure
(Navigation)

Verification No No MCWeb

[SDMP02] Static +
dynamic

Web graph Structure
(Navigation)

WA design Verification No No AnWeb

[SDM+05]
and
[CMRT06]

Static +
dynamic

(WAG)WA graph +
extension to Kripke
structure

Structure
(Navigation)

WA design Verification No No WAVer + SMV tools

[WP03]

Static +
dynamic

Extended StateCharts Structure
(Navigation)

Design
Verification

Yes Yes SWCEditor

[HH06]
FARNav

Static +
dynamic

StateC harts Adaptive
Navigation

design and
implementation
Verification + testing

No Yes Existing SVM model-
checking tools

[SM03] Static +
dynamic

SDL Structure
(Navigation)

Testing and verification Yes No Existing SDL
Support tool

[KLH00]
WTM

Static +
dynamic

Control flow graph, data
flow graph, and finite
state machines OSD(
object state diagram)

Static and dynamic
Behavior, Dynamic
Navigation

Testing Yes No None

[BFG02]
Veriweb

static +
dynamic

Directed graph Navigation + Behavior WS testing Yes Yes VeriSoft + web
Navigator +
ChoiceFinder +
SmartProfiles

[HPS04] Static+
dynamic

System of
communicating
automata

Navigation + Behavior WA Verification No Yes Fame Work with
GUI + network
monitoring tool +
analysis tool

[AOA05]
FSMWeb

static +
dynamic

hierarchies of Finite
State Machines (FSM)

Navigation + Behavior System level testing No Yes Prototype

[WO02] Interaction
+ static +
dynamic

Regular expression Interaction + dynamic
Behavior

Can be used for testing +
implementation + impact
analysis

Yes No None

[TR04]
And
[TR02]

Static +
dynamic

 (model navigation
layer) + CFG (client &
server code)

Structure
(Navigation)+
Behavior

Testing Yes No ReWeb + TestWeb

[KZ06] Static +
dynamic

Extended UML
(UWE)

Structure
(Navigation) +
Behavior

Design Validation and
Verification

No No ArgoUWE +
Spin or UPPAAL

Table 5: Survey Result (categorized according to modelling level)

37

D
es

ir
ab

le
 F

ea
tu

re
s o

f
W

eb
 a

pp
lic

at
io

n
M

od
el

in
g

St
at

ic
 N

av
ig

at
io

n
Pr

op
er

tie
s

D
yn

am
ic

N

av
ig

at
io

n
In

te
ra

ct
io

n
N

av
ig

at
io

n
St

at
ic

 c
on

te
nt

 p
ro

p.

D
yn

am
ic

 c
on

te
nt

 p
ro

pe
rt

ie
s

In
st

ru
ct

io
ns

pr

oc
es

si
ng

Se

cu
ri

ty
 p

ro
pe

rt
ie

s
 M

et
ho

d
N

am
e

B
ro

ke
n

lin
ks

R

ea
ch

ab
lit

y
F

ra
m

es

co
ns

is
te

nc
y

F
or

m

fil
lin

g
Lo

ng
es

t
pa

th

Sy
st

em

in
pu

t
U

se
r

in
pu

t
H

TM
L

+
us

er

op
er

at
io

ns

In
co

m
pl

et
e

W
P

In
co

rr
ec

t
W

P
In

co
m

pl
et

e
W

P
In

co
rr

ec
t

W
P

N
ew

co

nn
ec

tio
n

N
ew

co

nt
en

t
Se

rv
er

-
si

de

ex
ec

ut
io

n

C
lie

nt
-

si
de

ex

ec
ut

io
n

A
cc

es
s

co
nt

ro
l

Se
ss

io
n/

co
ok

ie
s

[G
FK

F0
3]

Y

Y

[L
K

04
]

Y

Y

[C
Z0

4]

Y

Y

Y

Y

Y

 [B

A
05

]

Y

[A
B

F0
5]

Y

Y

[C
on

99
]

[B
M

T
04

]
Y

Y

Y

Y

Y

Y

Y

[R
T

00
]

Y

Y

Y

[D
a0

1]
 a

nd

[d
A

H
M

01
]

Y

Y

Y

Y

[S
D

M
P0

2]

Y

Y

Y

Y

Y

[S
D

M
+0

5]

Y

Y

Y

Y

Y

Y

[C
M

R
T

06
]

Y

Y

Y

Y

Y

Y

Y

[W
P0

3]

Y

Y

Y

Y

Y

Y

Y

[H
H

06
]

FA
R

N
av

Y

Y

Y

Y

Y

[S
M

03
]

Y

Y

Y

Y

[K
L

H
00

]
W

T
M

Y

Y

Y

Y

Y

Y

Y

Y

[B
FG

02
]

V
er

iw
eb

Y

Y

Y

Y

Y

Y

Y

Y

[H
PS

04
]

Y

Y

Y

Y

Y

Y

[A
O

A
05

]
FS

M
W

eb
`

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

[W
O

02
]

Y

Y

Y

Y

Y

Y

Y

Y

Y

[T
R

04
]

A
nd

[
[T

R
02

]

Y

Y

Y

Y

Y

[K
Z0

6]

Y

Y

Y

Table 6: Comparison Result

38

into account this kind of behavior are considered incomplete and unrealistic. Researchers
are aware of this kind of problem and try to include user operations in their proposed web
application models.

Graunke et al. in [GFKF03] try to detect data inconsistency problems, such as the Or-
bitz bug. They detect these problems dynamically through changes to the server run-time
system. They propose an abstract model where they encode user operations using rewriting
rules; in addition their method is able to detect other inconsistency problems that are related
to form filling. Licata and Krishnamurthi, in [LK04], built a model checker which benefits
from Graunke et al. model in order to reduce user operations into two main rules: submit
and switch. Their method is different from Graunke et al. in that it is a static method and
can provide guarantees about all possible execution sequences by building a CFG to model
the web application. User operations are added to the CFG, extending it to what is called
WebGFGA.

Bordbar and Anastasakis in [BA05] create an abstract model (ADI) to depict the inter-
actions between the browser and the business logic. This model consists of four classes: the
browser with its functionality; the business logic that relates to the browser and its data
content; the data that are exchanged between the server and the browser; and the generic
functionality of the web page that contains data which could be altered from the user in-
terface. While Licata and Krishnamurthi in [LK04] build their own model checker, Bordbar
and Anastasakis use Alloy analyzer in order to find the interaction bugs. The main difficulty
of this method is the process of building the ADI model from the Platform Independent
Models (PIM) of web applications which are large and complex. The construction process
needs the projection of the PIM and the deletion of the unrelated model elements, which is
currently done manually.

Chen and Zhao in [CZ04] model the user’s interactions with web browsers using a much
more complete model; as well as modelling the back button, forward button and URL rewrit-
ing functionalities, the method is different from other methods in its ability to represent
history stack and its impact on the navigation, the local cache and its influence on the
freshness of the web pages, and the authentication sessions. While this method builds a nav-
igational model taking into account the interaction with the browser, dynamic links are not
being taken into account in the assumed page navigation diagram, and in the functionality
provided by session/cookie techniques, the authors have chosen only the session control.

5.2.2 Navigation Modelling Methods

Conallen [Con99] proposes an extension of the UML notation to represent web application
components with both dynamic and static features. He does not present a modelling method
for any of the web application development phases. On the other hand, his extension was

39

the basis of many modelling methods that are applied in different phases of web develop-
ment. The main benefit of the method is the feature which allows representation of all the
components of a web application using a standard UML notation.

Like Conallen, Tonella and Ricca [TR02] proposed a UML- Meta model to model web
application, and specifically for static navigation. The main difference between the two ap-
proaches is that Conallen’s model aims at describing the web application from the design
point of view, where he didn’t propose a method for the design nor for the navigation of a
web application. While Tonella and Ricca use their model in a reverse engineering method,
in order to extract a model for the web application for the aim of maintenance and evolu-
tion. So their aim by their model is the analysis rather than the design, and specifically on
modeling and analyzing the navigation features.

The Tonella and Ricca Method is semiautomatic; it needs a lot of user interaction to com-
plete the process of model extraction, there are some cases where the web server needs an
additional tracing mechanisms; these cases occur when caching is interposed between client
and server and has to be reconstructed heuristically. Moreover, the input values passed to
the server programs are not visible in the access log, if parameter passing is done by POST
instead of GET. In this approach, the input values used during model extraction are not
being generated automatically, though they need extensive user interactions. The source
code running on the browser (e.g., Javascript and Applets), and that executed by the web
server are not analyzed currently. Their analysis would allow treating these components as
white-boxes.

Bellettini et al. [BMT04] use a model similar to Canollen and like the Tonella and Ricca
model to extract an instance of this model from the analyzed web application, but it’s dif-
ferent from the Tonella and Ricca method in that WebUML needs a minimal user interaction.

Castelluccia et al. [CMRT06] and Sciascio et al. [SDM+05] use the Canollen model in
order to build a diagram for the web application, where the aim of this work is to do verifica-
tion for the design of WA. In order to apply model checking techniques on any model, it has
to be formal, so the authors implement in this work a component which did the conversion
between UML diagram in XMI format into WAG, where WAG is translated into SMV model
which is given as input to the NuSMV model checker, this component is called XMI2SMV.

A similar conversion idea was applied by Bordbar and Anastasakis in [BA05] which was
described previously in the interaction modeling methods. They propose a tool UML2Alloy,
but in this case the conversion is being done from a UML diagram into the Alloy model,
which can then be model checked.

40

Home

Page2 Page1

page1

page4 page3

frame1frame2

composed of

Home

frame1

page2 page3

page4
page5

frame2

E1

E2

E1E3

Figure 5: MCWEB Web Site Modeling [dAHM01]

UML diagrams provide a valid support to verify WA requirements; however, they need
to be turned into a formal model; so other researchers prefer to start with a formal model
rather than doing the conversion. In MCWEB [dAHM01] the authors model the web appli-
cation using a web graph, instead of the simple, directed graph model (flat model) with web
pages as nodes and links due to an anchor and frame (sub-frame) tags as edges. Their model
supports natural connectivity analysis of the web, where webnode takes into account the
hierarchical frame structure of the web page. Based on this model de Alfaro verifies desired
properties expressed in constructive µ− calculus against static web applications. MCWEB
tool downloads a web site from a given URL and builds an abstract representation of it in
the form of a graph, figure 5 shows an example of the structure of a web site in this model.

Like de Alfaro, Ricca and Tonella [RT00] try to solve the issue of hierarchical frame
structure of the web page but in a different way. In their model nodes and edges are split
into different subsets. Nodes subsets are a set of all web pages; a set of frames for one web
page; and a set of all frames. Edges are also split into three subsets according to the kind
of target node; a set of hyperlinks between pages or a relation showing the composition of
web page into frames(E1); a set of the relations between frames and pages; as they show
which page in which frame is loaded(E2); and a set of relations showing the loading of a
page into a particular frame(E3). The name of the frame is given as a label next to the
link. This model is implemented in ReWeb, This tool can download and analyze a web site,
and also provides graphical user interface for searching and navigating in the results. It’s
mainly proposed for the purpose of understanding web application, but later on, it’s used
to generate a UML model that is fed into TestWeb, a tool proposed by Ricca and Tonella
[RT01b] for the purpose of web application testing. ReWeb is applied on static web pages
with or without frame structure.

Figure 6 depicts an example of web site structure. The links between page3 and page5, and

41

Home

Page2 Page1

page1

page4 page3

frame1frame2

composed of

Home

frame1

page2 page3

page4
page5

frame2

E1

E2

E1E3

Figure 6: ReWeb Web Site Modeling in [RT00]

between page4 and page5 are normal navigation connections between HTML pages (El).The
link between Home and frame1, frame2 represents the internal organization of page1 into
the two frames frame1 and frame2 (El). The links between frame1 and page2 and between
frame2 and page3 indicate that the pages initially loaded into frame1 and frame2 are re-
spectively page2 and page3 (E2). Finally, the dashed edge connecting page2 to page4 and
labelled with frame2 (E3) is used to show that a link in page2 does not result in the navi-
gation within frame1 toward a different page, but rather produces the loading of page4 into
frame2, with no regard to the page currently loaded into frame2.

Sciascio et al. in [SDMP02],[SDMP03]solve the same issue by proposing a new state -
window-to correspond to a page that could be divided into one or more frames where one
or more web pages can be loaded, so each node can be window, page or link, as in figure 7.
In this work scripts are modelled, where client side scripts are modelled as static pages. For
server-side scripts they consider modelling the dynamism of redirection action depending on
user input (form). Other dynamic features that require white-box analysis for the scripts,
such as server contact with the database and other resources, are not considered in this work;
such pages are considered static pages.

Where in [SDM+05] Sciascio et al. extend the previous model by adding actions to the
set of states. So web applications are modelled as FSM where pages, links, windows and

42

w1

p3p2

l1

p1

l2

p4
w2

l3

Figure 7: WAG Modeling [SDMP03]

actions are states as in figure 8.

WAG is extended in WAver tool [CMRT06]. Castelluccia et al. added some important
features related to WA access policies. The extension was made by assigning some resources
to two categories of users:

• Authorized users: they can view specific areas of the WA not accessible to anonymous
users;

• Administrators: they can insert or cancel a new user, view the list of authorized users
and access all the resources of the WA.

The WAG example becomes as in figure 9. after the model extension. By introducing this
extension the Sciascio et al. model is able to represent an important feature related to access
control, and is able to verify properties related to this feature using axioms formulated by
CTL. The Sciascio et al method’s main advantage is its ability to perform ”a priori” verifi-
cation of web application design by applying the verification process to the UML-design of
web application in a single automated process using a verification tool WAver.

In general, graph-based models can be used to verify page reachability, dominators of the

43

Flow_23

Flow_22

Flow_21

Flow_18

F

Flow_14Flow_13

1

Prcs_3

2

Prcs_4

3

Prcs_5

4

Prcs_6

5

Prcs_7

6

Prcs_8

7

Prcs_9

8

Prcs_10

9

Prcs_11

10

Prcs_12

Home Action Login Error login

Window1

Page2Page1index

Page2 link

Window 2 Link

Window2

Figure 8: WAG Modeling [SDM+05]

navigation path, navigation path length, strongly connected components, broken links and
frame errors. Also it is possible to do pattern matching to find out if the navigation model
contains a diamond structure, tree structure or index structure.

Winckler and Palanque in [WP03] create an extension of StateCharts into what they call
StateWebCharts, so their work is similar to Conallen’s in that it creates an extension to
an existing notation StateCharts instead of UML in the Conallen case; thus, they can help
designers in building a formal model of web application that can be directly model-checked
where the UML model can’t. Currently SWC is used to describe the navigation between doc-
uments rather than the interaction between objects. They also create a tool - SWCEditor-
that supports their proposed notation and helps designers create, edit, visualize and simulate
SWC models.
Han and Hofmeister [HH06] also use a formal model for the navigation of web application.
Their method (FARNav) uses StateCharts to model the adaptive navigation (web applica-
tions that can semi-automatically improve their organization and presentation by learning
from visitor access patterns). They create their model by observing the behavior of the web
application; and treating screens that provide a similar type of content as one web page.
They try to scale their model by making use of the hierarchical feature of StateCharts.
Like Sciascio et al. their model is converted into SMV model language CTL to be verified
according to some axioms. They didn’t propose an approach for the conversion into the
SMV model like Sciascio et al.; they used an existing approach which has translation rules

44

Figure 9: WAG Modeling [CMRT06]

45

of each element of a StateChart model. As FARNav uses StateCharts, the limitations of
state machines’ modelling capabilities make it difficult to verify certain properties that are
easy to verify with a graph-based model such as de Alfaro , Sciascio et al, and Ricca and
Tonella methods. For example, it is difficult to count the length of the navigation path with
this approach. In addition none of the above models support adaptive navigation, or the
automatic verification of adaptive navigation.

Syriani and Mansour in [SM03] use SDL to model the web application system; they are
able to model pages, hyperlinks, behavior of the web page on the client side and the server
side, client-server and distributed-server communication. They rely on SDL tools to do the
testing for their model and to help them in verifying the consistency of a web application
implementation with it’s specification.

5.2.3 Content Modelling Methods

Few works address the semantic verification of web sites which is related to checking the
completeness and correctness properties of the content of the web application. The only
method that we present in our paper which tackles this issue is proposed by Alpuente et al.
[ABF05] this work performs such checking by proposing a rewriting-based method to check
only static web sites; we can recognize from Table 2 that there is a need for methods that
perform such kinds of verification for both static and dynamic web content.

5.2.4 Hybrid Modelling Methods

Some researchers try to model the web application as a whole, taking into account all the
modelling levels of this application, and try to solve the problem of state space explosion in
some way; such as the model in FSMWeb [AOA05]. In this method, rather than building
a flat model, it uses the idea of clustering related web pages into a logical web page, and
then it builds hierarchies of finite state machines for the resulting logical web pages. The
FSMWeb model is able to capture many static and dynamic features, but is still not able
to cope with all the required features such as user operations (interactions), and security
issue properties. An effort is needed to generate the logical web pages automatically as it is
generated in the current method manually.

Another effort is proposed by May Haydar et al. [HPS04], where a system of communi-
cating automata is generated to model local browsing sessions. These represent partitions of
browsing sessions that are captured at run time from the observed behavior of static pages,
dynamic pages with form filling (with GET and POST methods), frames and frameset behav-
ior, multiple windows, and their concurrent behavior. This work also lacks the completeness
property, as a consequence of not capturing other dynamic features, user operations, and
security issue properties.

In VeriWeb [BFG02], Benedikt et al. present a dynamic navigation testing tool for web

46

applications. The main difference between VeriWeb and FSMWeb is that VeriWeb’s testing
is based on graphs where nodes are web pages and edges are explicit html links, and the size
of the graphs is controlled by a pruning process. In contrast FSMWeb is based on FSM and
uses hierarchies of FSM to reduce the state space size. VeriWeb is able to deal with static
pages, forms and client-side scripts.

Ye Wu and Je Outt, in [WO02], present a modelling technique for web applications based
on regular expressions. They model the behavior of web applications, consisting of merely
dynamically generated pages for the purpose of functional testing. This work is different
from FSMWeb, Haydar et al, and VeriWeb in its ability to deal with user operations, and
its need of the source code for the analysis.

On the other hand, some works try to model web application from more than one level
by using separate models. Tonella and Ricca propose a 2 layer-model [TR04]; the first layer
is a UML model of web application for high level abstraction. This layer model is based
entirely on static html links and does not incorporate any dynamic aspects of the software.
The second layer is represented by multicolor CFG and is obtained by white-box analysis
supported with information extracted from the access log of the server while the application
is under execution. This work is different from FSMWeb and May Haydar et al. in that it
performs white-box analysis and uses multiple models. This work is different also from May
Haydar et al. in not being able to model the concurrent behavior of frames and multiple
windows

In WTM [KLH00] Kung et al. developed their method based on multiple models of the
applications under test. The models include Object Relation Diagrams, Object State Dia-
grams, a Script Cluster Diagram, and a Page Navigation Diagram. FSMWeb and Haydar et
al methods are different from this work in that those methods do not require the source code
to be available; their models are built depending on logical web pages rather than physical
web pages, and they use the enhanced single FSM model instead of multiple models. Re-
garding implemented features, Kung et al. is different from FSMWeb in not being able to
deal with dynamically generated web pages, and from Haydar et al. in not being able to
deal with the concurrent behavior of multiple windows.

Even so WTM, Tonella and Ricca, Ye Wu and Je Outt in methods use a white-box ap-
proach in the analysis of web application, the navigational model obtained by Tonella and
Ricca is static, whereas in WTM and Ye Wu and Je Outt the model is dynamic.

While these methods –WTM, Tonella and Ricca– try to model web applications using more
than one model, the integration of those models and the validation of their interaction are
not described clearly. In contrast, Knapp and Zhang [KZ06] propose a systematic approach
to integrate a model for web application from separate models. They do this by using graph
transformation rules on the UML-based Web Engineering meta-model to generate UML

47

state machine, which includes the static navigation in addition the dynamic behavior. The
final model can then be validated formally, though this model still lacks checking of many
dynamic properties, security issue properties, and interactions properties.

We are looking for a model that is able to capture all the desirable features of web ap-
plication at all modelling levels, as well as being able to validate such a model using model
checking. To the best of our knowledge such a model does not exist, but may be obtained
by integrating some of the existing modelling techniques. In addition, web applications have
the property of low observability, and that is due to the difficulty of tracking some outputs.
Usually the output that is sent back to the user as html documents is being analyzed, but
there is also another kind of output such as changing state on the server or in the database,
and sending messages to other web applications and services; until now there is no research
which address this issue.

6 Conclusions and Open Problems

Little work has been done to compare different modelling methods in the field of web devel-
opment. To the best of our knowledge this is the first study which focuses on the process
of giving a comprehensive review and a comparative study of modelling methods that are
currently applied in the field of verification and testing, while all previous works was focusing
on the development process in general, and on the design phase in particular.

Comprehensive reviews and comparative studies such as ours can help in highlighting
the areas that need further research, and may help new researchers who are interested in
the area to quickly get an idea of what has been done, and what could be done. This is
especially so if the study is able to provide them with the strong and the weak points for
each method, which may give them ideas on how to combine the strong points in a unified
improved new modelling method.

We have surveyed 21 modelling methods that are currently applied in the field of ver-
ification and testing. A categorization and a comparative study were made according to
two sets of criteria, and summed up into two tables. We found that this field is still in its
infancy, while there is much that has been done in this area of research, up until now there
is no complete modelling method that is able to capture all the desirable properties of web
applications at all modelling levels. An integration of different modelling methods may be
required in order to generate a new model that could be verified using model checking.

There is also a need for work on security modelling techniques that are able to deal with
the complex, distributed structure of web applications, taking into account the concurrent
access to web servers and the other resources that are attached to them.

48

References

[ABF05] Maŕıa Alpuente, Demis Ballis, and Moreno Falaschi. A rewriting-based frame-
work for web sites verification. Electr. Notes Theor. Comput. Sci, 124(1):41–61,
2005.

[AOA05] Anneliese Amschler Andrews, Jeff Offutt, and Roger T. Alexander. Testing web
applications by modeling with fsms. Software and System Modeling, 4(3):326–
345, 2005.

[BA05] Behzad Bordbar and Kyriakos Anastasakis. MDA and analysis of web applica-
tions. In Dirk Draheim and Gerald Weber, editors, Proceedings of the Trends in
Enterprise Application Architecture, volume 3888 of Lecture Notes in Computer
Science, pages 44–55. Springer, 2005.

[BFG02] Michael Benedikt, Juliana Freire, and Patrice Godefroid. Veriweb: Automati-
cally testing dynamic web sites. In Proceedings of the 11th International World
Wide Web Conference, Hawai, U.S.A., May 2002.

[BMT04] Carlo Bellettini, Alessandro Marchetto, and Andrea Trentini. Webuml: reverse
engineering of web applications. In SAC, pages 1662–1669, 2004.

[CMRT06] Daniela Castelluccia, Marina Mongiello, Michele Ruta, and Rodolfo Totaro.
Waver: A model checking-based tool to verify web application design. Electr.
Notes Theor. Comput. Sci., 157(1):61–76, 2006.

[Con99] J. Conallen. Modeling web application architectures with UML. Communica-
tions of the ACM, 42(10):63–71, 1999.

[CZ04] Jessica Chen and Xiaoshan Zhao. Formal models for web navigations with
session control and browser cache. In ICFEM, pages 46–60, 2004.

[dA01] Luca de Alfaro. Model checking the world wide web. In Gérard Berry, Hubert
Comon, and Alain Finkel, editors, Proceedings of the Computer Aided Verifi-
cation, 13th International Conference, CAV 2001, Paris, France, July 18-22,
volume 2102 of Lecture Notes in Computer Science, pages 337–349. Springer,
2001.

[dAHM01] Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang. MCWEB:
A model-checking tool for web site debugging. In Proceedings of the WWW
Posters, pages 86–87, 2001.

[DN06] Joumana Dargham and Sukaina Al Nasrawi. FSM behavioral modeling ap-
proach for hypermedia web applications: FBM-HWA approach. In Proceedings
of the Advanced International Conference on Telecommunications and Interna-
tional Conference on Internet and Web Applications and Services, pages 199–
204. IEEE Computer Society, 2006.

49

[dOFT+01] de Oliveira, Maria Cristina Ferreira, Turine, Marcelo Augusto Santos, Masiero,
and Paulo Cesar. A statechart-based model for hypermedia applications. ACM
Transactions on Information Systems, 19(1):28–52, 2001.

[FHvLP00] Joachim Fischer, Eckhardt Holz, Martin von Löwis, and Andreas Prinz. Sdl-
2000: A language with a formal semantics. In Rigorous Object-Oriented Meth-
ods, 2000.

[FLMM04] P. Fraternali, P. L. Lanzi, M. Matera, and A. Maurino. Exploiting conceptual
modeling for web application quality evaluation. In Proceedings of the 13th
international conference on World Wide Web, pages 342 – 343, 2004.

[Fra99] Piero Fraternali. Tools and approaches for developing data-intensive web ap-
plications: a survey. ACM Computing Surveys, 3:227–263, 1999.

[GFKF03] Paul T. Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias
Felleisen. Modeling web interactions. In Pierpaolo Degano, editor, Proceedings
of the Programming Languages and Systems, 12th European Symposium on
Programming, ESOP 2003, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-
11, 2003, volume 2618 of Lecture Notes in Computer Science, pages 238–252.
Springer, 2003.

[Gin02] Athula Ginige. Web engineering: managing the complexity of web systems
development. In Proceedings of the 14th International Conference on Software
Engineering and Knowledge Engineering, pages 721–729, 2002.

[GN04] Ekaterina Gorshkova and Boris Novikov. Use of statechart diagrams for mod-
eling of hypertext. Programming and Computer Software, 30(1):47–51, 2004.

[Har87] D. Harel. Statecharts: A visual formalism for complex system. Science of
Computer Programming, 8(3):231–274, 1987.

[HH06] Minmin Han and Christine Hofmeister. Modeling and verification of adaptive
navigation in web applications. In ICWE, pages 329–336, 2006.

[HPS04] May Haydar, Alexandre Petrenko, and Houari A. Sahraoui. Formal verification
of web applications modeled by communicating automata. In David de Frutos-
Escrig and Manuel Núñez, editors, Proceedings of the Formal Techniques for
Networked and Distributed Systems - FORTE 2004, 24th IFIP WG 6.1 Inter-
national Conference, Madrid Spain, September 27-30, 2004, volume 3235 of
Lecture Notes in Computer Science, pages 115–132. Springer, 2004.

[Jac02] Daniel Jackson. Alloy: A new technology for software modelling. In Tools and
Algorithms for the Construction and Analysis of Systems, 8th International
Conference, TACAS 2002 April 8-12, 2002, Proceedings, page 20, 2002.

50

[KBP00] M. Kitajima, M. H. Blackmon, and P. G. Polson. A comprehension-based model
of web navigation and its application to web usability analysis. In Proceedings
of the HCI’00 Conference on People and Computers XIV, Usability and System
Evaluation, pages 357–374, 2000.

[KK03] Nora Koch and Andreas Kraus. Towards a common metamodel for the devel-
opment of web appliactions. In ICWE, pages 497–506, 2003.

[KLH00] David Chenho Kung, Chien-Hung Liu, and Pei Hsia. An object-oriented web
test model for testing web applications. In COMPSAC, pages 537–542, 2000.

[KR02] Chanwit Kaewkasi and Wanchai Rivepiboon. WWM: A practical methodology
for web application modeling. In Proceedings of the International Computer
Software and Applications Conference, pages 603–608. IEEE Computer Society,
2002.

[Kri05] Shriram Krishnamurthi. Web verification: Perspective and challenges. In Maŕıa
Alpuente, Santiago Escobar, and Moreno Falaschi, editors, Proceedings of the
First International Workshop on Automated Specification and Verification of
Web Sites (WWV 2005), March 14-15, 2005 Valencia, Spain, volume DSIC-
II/03/05, pages 3–8. Departamento de Sistemas Informaticos y Computacion,
Universidad Politecnica de Valencia, 2005.

[KZ06] Alexander Knapp and Gefei Zhang. Model transformations for integrating and
validating web application models. In Modellierung, pages 115–128, 2006.

[LFP+02] Giuseppe A. Di Lucca, Anna Rita Fasolino, F. Pace, Porfirio Tramontana,
and Ugo de Carlini. Comprehending web applications by a clustering based
approach. In Proceedings of the International Workshop on Program Compre-
hension, pages 261–270. IEEE Computer Society, 2002.

[LHYT00] Karl R. P. H. Leung, Lucas Chi Kwong Hui, Siu-Ming Yiu, and Ricky W. M.
Tang. Modeling web navigation by statechart. In Proceedings of the Inter-
national Computer Software and Applications Conference, pages 41–47. IEEE
Computer Society, 2000.

[LK04] Daniel R. Licata and Shriram Krishnamurthi. Verifying interactive web pro-
grams. In Proceedings of the IEEE International Conference on Automated
Software Engineering, pages 164–173. IEEE Computer Society, 2004.

[LKHH00] Chien-Hung Liu, David Chenho Kung, Pei Hsia, and Chih-Tung Hsu. Structural
testing of web applications. In Proceedings of the International Symposium on
Software Reliability Engineering, pages 84–96. IEEE Computer Society, 2000.

[LKHH01] Chien-Hung Liu, David Chenho Kung, Pei Hsia, and Chih-Tung Hsu. An
object-based data flow testing approach for web applications. International

51

Journal of Software Engineering and Knowledge Engineering, 11(2):157–179,
2001.

[Mil03] Craig S. Miller. Modeling web navigation: Methods and challenges. In Bamshad
Mobasher and Sarabjot S. Anand, editors, Proceedings of the Workshop on
Intelligent Techniques for Web Personalization, volume 3169 of Lecture Notes
in Computer Science, pages 37–52. Springer, 2003.

[PMdO99] Fabiano Borges Paulo, Paulo Cesar Masiero, and Maria Cristina Fierreira
de Oliveira. Hypercharts: Extended statecharts to support hypermedia speci-
fication. IEEE Transactions on Software Engineering, 25(1):33–49, 1999.

[PTdOM98] Fabiano B. Paulo, Marcelo Augusto S. Turine, Maria Cristina F. de Oliveira,
and Paulo C. Masiero. XHMBS: A formal model to support hypermedia spec-
ification. In Kaj Grønbæk, Elli Mylonas, and III Frank M. Shipman, edi-
tors, Proceedings of the 9th ACM Conference on Hypertext and Hypermedia
(HYPER-98), pages 161–170, New York, 1998. ACM Press.

[RC04] Peter Rob and Carlos Coronel. Database Systems: Design Implementation And
Management. Course Technology, fifth edition edition, January 2004.

[Ric04] Filippo Ricca. Analysis, testing and re-structuring of web applications. In
Proceedings of the International Conference on Software Maintenance, pages
474–478. IEEE Computer Society, 2004.

[Ric05] Filippo Ricca. Hyperlinks analysis in multilingual web applications. In Pro-
ceedings of the International Workshop on Web Site Evolution, pages 57–62.
IEEE Computer Society, 2005.

[RT00] Filippo Ricca and Paolo Tonella. Web site analysis: Structure and evolution.
In Proceedings of the International Conference on Software Maintenance, pages
76–86, 2000.

[RT01a] F. Ricca and P. Tonella. Analysis and testing of web applications. In Proceedings
of the 23rd International Conference on Software Engineering, pages 25–36.
IEEE Computer Society Press, 2001.

[RT01b] Filippo Ricca and Paolo Tonella. Building a tool for the analysis and testing
of Web applications: Problems and solutions. In Proceedings of the Tools and
Algorithms for the Construction and Analysis of Systems Genova,Italy, volume
2031, pages 373–388, 2 - 6 April 2001.

[SDM+05] Eugenio Di Sciascio, Francesco M. Donini, Marina Mongiello, Rodolfo Totaro,
and Daniela Castelluccia. Design verification of web applications using sym-
bolic model checking. In David Lowe and Martin Gaedke, editors, Proceedings
of the Web Engineering, 5th International Conference, ICWE 2005, Sydney,

52

Australia, July 27-29, 2005, volume 3579 of Lecture Notes in Computer Sci-
ence, pages 69–74. Springer, 2005.

[SDMP02] Eugenio Di Sciascio, Francesco M. Donini, Marina Mongiello, and Giacomo
Piscitelli. Anweb: a sytem for automatic support to web application verification.
In Proceedings of the 14th international conference on Software engineering and
knowledge engineering , Ischia,Italy, pages 609–616, July 14-19 2002.

[SDMP03] Eugenio Di Sciascio, Francesco M. Donini, Marina Mongiello, and Giacomo
Piscitelli. Web applications design and maintenance using symbolic model
checking. In Proceedings of the European Conference on Software Maintenance
and Reengineering, pages 63–72. IEEE Computer Society, 2003.

[SFC98] P. David Stotts, Richard Furuta, and Cyrano Ruiz Cabarrus. Hyperdocuments
as automata: Verification of trace-based browsing properties by model checking.
ACM Trans. Inf. Syst, 16(1):1–30, 1998.

[SM03] Joe Abboud Syriani and Nashat Mansour. Modeling web systems using SDL.
In Adnan Yazici and Cevat Sener, editors, Proceedings of the Computer and
Information Sciences - ISCIS 2003, 18th International Symposium, Antalya,
Turkey, November 3-5, 2003, volume 2869 of Lecture Notes in Computer Sci-
ence, pages 1019–1026. Springer, 2003.

[SN02] P. David Stotts and Jaime Navon. Model checking cobweb protocols for veri-
fication of HTML frames behavior. In Proceedings of the International World
Wide Web Conference, pages 182–190, 2002.

[SRBJ96] Daniel Schwabe, Gustavo Rossi, Barbosa, and Simone D. J. Systematic hyper-
media application design with OOHDM. In Proceedings of the Seventh ACM
Conference on Hypertext, Models of Hypermedia Design and Evaluation, pages
116–128, 1996.

[TR02] Paolo Tonella and Filippo Ricca. Dynamic model extraction and statistical
analysis of web applications. In Proceedings of the International Workshop on
Web Site Evolution, pages 43–52. IEEE Computer Society, 2002.

[TR04] Paolo Tonella and Filippo Ricca. A 2-layer model for the white-box testing of
web applications. In Proceedings of the International Workshop on Web Site
Evolution, pages 11–19. IEEE Computer Society, 2004.

[WBFP05] Marco Winckler, Eric Barboni, Christelle Farenc, and Philippe Palanque. What
kind of verification of formal navigation modelling for reliable and usable web
applications? In Proceedings of the First International Workshop on Automated
Specification and Verification of Web Sites (WWV’2005) , Valencia, Spain,
pages 33–36. LNCS, 14-15 mars 2005.

53

[Wik] The free encyclopedia Wikipedia. http://en.wikipedia.org/wiki/, last access
november 2006.

[WO02] Ye Wu and Je Outt. Modeling and testing web-based applications. Technical
report, George Mason University, 2002.

[WP03] Marco Winckler and Philippe A. Palanque. Statewebcharts: A formal de-
scription technique dedicated to navigation modelling of web applications. In
DSV-IS, pages 61–76, 2003.

[ZBKK05] Gefei Zhang, Hubert Baumeister, Nora Koch, and Alexander Knapp. Aspect-
oriented modeling of access control in web applications. In Mohamed Kandé,
Dominik Stein, Omar Aldawud, Tzilla Elrad, Jeff Gray, and Jörg Kienzle, edi-
tors, 6th International Workshop on Aspect-Oriented Modeling, March 2005.

54

