Technical Report No. 2007533
Deterministic Caterpillar Expressions*

Kai Salomaa
School of Computing, Queen’s University,
Kingston, Ontario K7L 3N6, Canada,
email: ksalomaa@cs.queensu.ca

Sheng Yu
Department of Computer Science, University of Western Ontario,
London, Ontario N6A 5B7, Canada,
email: syu@csd.uwo.ca

Jinfeng Zan
School of Computing, Queen’s University,
Kingston, Ontario K7L 3N6, Canada,
email: zan@cs.queensu.ca

May 22, 2007

Abstract

Caterpillar expressions have been introduced by Briiggemann-Klein and Wood for appli-
cations in markup languages. A caterpillar expression can be implemented as a tree walking
automaton operating on unranked trees. Here we give a formal definition of determinism of
caterpillar expressions that is based on the language of instruction sequences defined by the
expression. We show that determinism of caterpillar expressions can be decided in polynomial
time.

1 Introduction

Tree-walking automata have been used for the specification of context in structured documents
and for tree pattern matching, for references see e.g. [21, 22]. Differing from the classical tree
automata, these applications typically use unranked trees where the number of children of a given
node is finite but unbounded. In the unranked case, for example, when considering down moves of
a tree walking automaton the finite transition function cannot directly specify an arbitrary child
node where the automaton moves to.

Briiggemann-Klein and Wood [7, 8] introduced caterpillar expressions as a convenient tool to
specify style sheets for XML documents. For possible applications of caterpillar expressions see
also [13, 20, 23]. A caterpillar expression is, roughly speaking, a regular expression built from

*Work supported in part by the Natural Sciences and Engineering Research Council of Canada grants OGP0147224
(Salomaa) and OGP0041630 (Yu).

atomic instructions and such expressions provide an intuitive and simple formalism for specifying
the operation of tree walking automata on unranked trees. Each atomic instruction specifies the
direction of the next move or a test on the current node label. The sequences of legal instructions
define the computations of a tree walking automaton on an unranked input tree.

Concerning tree walking automata in general, it is easy to see that any tree language recognized
by a tree walking automaton is regular, and consequently the same holds for tree languages defined
by caterpillars. It has been a long-standing open question whether tree walking automata recognize
all regular tree languages. A negative answer was conjectured by Engelfriet et al. [11, 12] and finally
Bojairiczyk and Colcombet [3] have established this result. Neven and Schwentick [23] and Okhotin
et al. [24] have investigated restricted classes of tree walking automata and obtained negative
recognizability results for these classes.

Given a caterpillar expression a crucial question is whether the computation it defines is deter-
ministic. Recently Bojaniczyk and Colcombet [2] have shown that nondeterministic tree walking
automata cannot, in general, be simulated by the deterministic variant.

In their original paper Briiggemann-Klein and Wood discussed the notion of determinism only
informally and presented examples of deterministic caterpillars. Here we will give a formal definition
of determinism of caterpillar expressions in terms of the set of instruction sequences defined by the
expression. We show that determinism of caterpillar expressions can be decided in polynomial
time. The general algorithm is based on ideas that have been used to test code properties of
regular languages [1, 17]. We develop a more direct algorithm to test determinism of caterpillar
expressions where the corresponding instruction language has fixed polynomial density. Also, we
show that general caterpillar expressions have the same expressive power as nondeterministic tree
walking automata.

2 Preliminaries

We assume that the reader is familiar with the basic notions associated with regular expressions
and finite automata [18, 28|.

The set of words over an alphabet) is 2* and the empty word is A\. The length of a word
u € Q* is |u|. If u is nonempty, the first symbol of u is denoted first(u). The prefix-relation for
words over alphabet is denoted <, that is, for u,v € Q*, u <, v if and only if v = uwu' for some
u' € Q*. Similarly the “strict prefix” relation is denoted by <,. We denote u ~, v if u <, v or
v <p u. The longest common prefix of words u and v is denoted as lep(u,v). The left-quotient of
v by u, v\ v, is equal to w where uw = v if u <, v, and u \ v is undefined otherwise.

A nondeterministic finite automaton (NFA) is a tuple A = (Q, @, qo, F, §) where is the input
alphabet, @ is the finite set of states, gy € @ is the start state, F' C @ is the set of accepting states
and § C Q x Q x @ is the set of transitions. The language recognized by A is denoted L(A) C Q*.

The NFA A is said to be reduced if for any state ¢ € @) there is a path from gy to ¢ and a path
from ¢ to some accepting state. The NFA A a deterministic finite automaton (DFA) if for any
q € Q and b € Q there exists at most one ¢’ € @ such that (g,b,q") € 6. The nondeterministic and
deterministic finite automata recognize exactly the regular languages.

The density function of a language L C Q* is defined as gr(n) = |L N Q"|, n € IN. We recall
the following characterization of polynomial density regular languages from [27, 28], similar results
can be found also e.g. in [10].

Proposition 2.1 A regular language R over Q has density in O(n¥), k >0, iff R can be denoted
by a finite union of regular expressions of the form

WOUTWLUS - - - Uy {1 Wit 1, M<K (1)
where wi,u; € Q*,i=0,...m+1,j=1,...m+ L

We call finite unions of regular expressions as in (1), k-bounded regular expressions over €.

Below we still recall a few notions associated with trees and tree automata. General references
for tree automata are [9, 14] and aspects specific to unranked trees are discussed e.g. in [5].

The set of positive integers is IN. In the following 3 denotes always a finite alphabet that is
used to label the nodes of the trees. A tree domain D is a subset of IN* such that if u € D then
every prefix of u is in D and there exists m, > 0 such that for j € N, u-j € D iff j < m,. A
Y-labeled tree is a mapping ¢t : D — ¥ where D = dom(t) is a tree domain. If ¥ is a ranked
alphabet, each symbol o € ¥ has a fixed rank denoted rank(o) € IN, and the rank determines the
number of children of all nodes labeled by o. In the general case, when referring to unranked trees,
the label ¢(u) of a node u does not specify the number of children of u, m, (and there is no apriori
upper bound for m,). The set of X-labeled trees is denoted T%..

3 Caterpillars and determinism

Caterpillar expressions have been introduced in [7]. Here we present a somewhat streamlined
definition that includes only what will be needed below for discussing determinism.

Definition 3.1 Let 3 be a set of node labels for the input trees. The set of atomic caterpillar
instructions is

A =X U {isFirst,isLast,isLeaf,isRoot,Up, Left, Right, First, Last}. (2)
A caterpillar expression is a regqular expression over A.

An atomic instruction a € Y. tests whether the label of the current node is a. The instructions
isFirst, isLast, isLeaf and isRoot test whether the current node is the first (leftmost) sibling
of its parent, the last sibling, a leaf node or the root node, respectively. The above are the test
instructions.

The mowve instructions Up, Left, Right, First and Last, respectively, make the caterpillar to
move from the current node to its parent, the next sibling to the left, the next sibling to the right,
the leftmost child of the current node, or the rightmost child of the current node, respectively.

Let « be a caterpillar expression. By the instruction language of a, L(a), we mean the set of
all sequences of instructions over A that are denoted by the expression a (when « is viewed as an
ordinary regular expression). Below we define the configurations and computation relation associ-
ated with expression a. Intuitively, the computations can be viewed as a tree walking automaton
that, on an input tree ¢, implements all possible sequences of instructions w € L(«).

Formally, a t-configuration of « is a pair (u,w) where ¢ € T is the input tree, v € dom(t)
is the current node and and w € A* is the remaining sequence of instructions. The single step
computation relation between ¢-configurations is defined by setting (u,w) F (v',w') if w = cu’,
ce A, w' € A*, u,u’ € dom(t), and the following holds:

(i) If ¢ is a test instruction, ¢ returns true at node u € dom(t) and v’ = u.

(ii) If ¢ is one of the move instructions Up, Left, Right, First or Last then, respectively, u = u'7,
j € IN (u' is the parent of u), u = v(j + 1), ' = vj, v € IN*, j € IN («' is the sibling of
u immediately to the left), v = vj, v’ = v(j + 1), v € IN*, j € IN (v is the sibling of u
immediately to the right), v’ = ul (u' is the leftmost child of u), or ' = uj, j € IN and
u(j + 1) & dom(t) (u' is the rightmost child of u).

Let a be a caterpillar expression. The tree language defined by « is
T(a)={teTy | (Gwe L(a)) (\,w)F* (u,) for some u € dom(t) }.

Thus ¢t € T(a) if and only if some sequence of instructions denoted by a can be executed to
completion where the computation begins at the root of ¢ and ends at an arbitrary node of . The
definition could alternatively require that the caterpillar has to return to the root of ¢ at the end
of the computation.

Example 3.1 Let a,b € X.. Define a as the expression
(First - Right™)* - isFirst - (isLeaf - a - Right)(isLeaf - b- Right)(isLeaf - a - isLast).

The caterpillar o defines the set of trees that contain a node with precisely three children that are
all leaves and labeled, respectively, by a, b, a.

The behavior of a caterpillar expression is described using a tree walking automaton and,
conversely, we show that caterpillar expressions can simulate arbitrary tree walking automata. We
state the result below comparing the expressive power of caterpillar expressions and tree walking
automata only for tree languages over a ranked alphabet. Most of the work on tree walking
automata, e.g., [2, 12, 23], uses trees over ranked alphabets.

Theorem 3.1 Let Y be a ranked alphabet. Caterpillar expressions define the same sets of 2-labeled
trees as the nondeterministic tree walking automata.

Proof. We need to show only how to simulate a tree walking automaton A by a caterpillar
expression. We denote the set of states of A as () and m is the maximum rank of elements of X.
The transitions of A are defined as a set of tuples (q,0,7,¢'), where ¢ € @Q is the current state,
o € X is the current node label, j € {0,1,...,rank(c)} is the direction of the next move and ¢' € Q
is the state after the move. Here “0” is an up move and “”, 1 < 4 < rank(c), denotes a move to
the th child.

Denote 2 = @ x £ x {0,1,...,m} x Q. The set of semi-computations of A is the regular
language Ls. C Q* that consists of all words w; - - - wg, where w; € € is a tuple that represents a
transition of A, i = 1,...,k, and 7 (wy) is the start state of A, m4(wy) is an accepting state of A
and m4(w;) = m1(wit1), i = 1,...,k — 1. Here 7; is the projection to the jth component.

Any accepting computation of A corresponds to a word of Lg. but, conversely, words of Ly,
need not represent an accepting computation since the definition of L, requires only that the
computation is locally correct and does not verify that the number of up moves does not exceed
the number of down moves. However, the language L, will give the following correspondence with
instruction languages defined by caterpillar expressions.

Let A be as in (2) and define a mapping f : Q* — A* by setting

o - First - (Right)?~! if 1 < j < rank(o),

oc-Upifj=0. (3)

flg,0,5,4) = {

Now the language f(Ls.) is regular and hence it is denoted by some caterpillar expression «g..
The instruction sequences of L(as.) correspond to semi-computations of A where we have deleted
the state information, and any v € L(as.) can be completed to a semi-computation according
to the correspondence (3). As observed above, a semi-computation need not represent a correct
computation of A due to the possibility of trying to make an up move at the root of the tree. In
this situation also the execution of the corresponding sequence of caterpillar instructions obtained
via the function f gets blocked. This means that w € L. encodes a valid computation on ¢t € Tx;
iff the sequence of caterpillar instructions f(w) can be successfully executed on ¢. Hence T'(a) is
exactly the tree language recognized by A. ®

The result of Theorem 3.1 can be straightforwardly extended for unranked trees assuming we
extend the operation of tree walking automata to unranked trees in some reasonable way, e.g.,
the down moves could be made only to the first or last child and then the automaton could make
moves to the closest sibling node. The proof of Theorem 3.1 didn’t use several of the caterpillar
instructions. For example, the test isLeaf is not needed because on ranked trees this property
can be decided by looking at the node label. Similarly, (deterministic) tree walking automata on
unranked trees would need a mechanism to detect whether the node is a leaf. For unranked trees
the details of the simulation would depend on the precise definition of the tree walking automaton
model.

Next we turn to the notion of determinism. By definition, a caterpillar expression can be
simulated by a tree walking automaton [8, 12, 24] and, intuitively, we say that a caterpillar is
deterministic if the computation performing the simulation is deterministic. This operational defi-
nition was used by Briiggemann-Klein and Wood [7, 8] to deal with the notion of determinism.

In order to, for example, algorithmically decide determinism of given caterpillar expressions, it
is necessary to have a more direct definition of determinism in terms of the sequences of instructions
denoted by an expression.

Let A be the set of atomic instructions given in Definition 3.1. Let ¢t € Ty be arbitrary. We
say that instruction ¢ € A is successfully ezecuted at node u € dom(t) if there exist w € A* and
u' € dom(t) such that (u,cw) - (u',w). (Without loss of generality we could choose w to be \.)

Definition 3.2 Let ¢,d € A. We say that instructions ¢ and ¢ are mutually exclusive if either
(i) ¢, € T and c # ¢, that is, c and ' are tests on distinct symbols of 2, or,

(i1) {c,d'} is one of the sets {First,isLeaf}, {Last,isLeaf}, {Up,isRoot}, {Left,isFirst}, or
{Right,isLast}.

The following lemma can be verified by a straightforward case analysis.

Lemma 3.1 For any ¢,c € A, ¢ # c, the following two conditions are equivalent.
(i) There exists t € Ts, and u € dom(t) such that ¢ and ¢’ can be successfully executed at node u.

(ii) The instructions ¢ and ' are not mutually exclusive.

In order for a caterpillar expression « to define a deterministic computation, we require that in
computations controlled by o on any input tree there cannot be a situation where the computation
could successfully execute two different instructions as the next step. Formally, we define the notion
of determinism associated with caterpillar expressions as follows.

Definition 3.3 Let « be a caterpillar expression over A. We say that « is deterministic if the
following implication holds. If wciwy and weawe are in L(a) where w, w1, we € A*, c1,¢0 € A,
c1 # ¢, then ¢1 and co are mutually exclusive.

The definition says that for any instruction sequences w and w’ defined by « that are not prefixes
of one another, the pair of instructions following the longest common prefix of w and w' has to be
mutually exclusive. Note that if w,w’ € L(a) where w is a proper prefix of w', this corresponds
to a situation where the corresponding tree walking automaton has reached an accepting state
after simulating the instructions of w and the tree walking automaton can execute further moves.
According to our definition this does not constitute an instance of nondeterminism. By Lemma 3.1,
Definition 3.3 coincides with the operational definition of determinism discussed earlier.

Note that the condition of Definition 3.3, strictly speaking, depends only on the instruction
language of . In the following, when there is no confusion, we say that a language L C A*
is deterministic if L satisifies the condition of Definition 3.3. Also, we note that it might seem
that determinism of caterpillar expressions is related to unambiguity of regular expressions [4, 6].
However, it is not difficult to verify that deterministic expressions need not be unambiguous or vice
versa.

The caterpillar of Example 3.1 is obviously nondeterministic. The subexpression (First-Right*)*
involves choices between instructions First and Right, and these allow the caterpillar to move from
the root to an arbitrary node.

Example 3.2 [7] Define ayray to be the expression
First* - isLeaf - (Right - First* - isLeaf)* - isLast - (Up - (Right - First* - isLeaf)* - isLast)* - isRoot

Here the subexpression First* - isLeaf finds the leftmost leaf of the tree. Next the subexpression
(Right - First* - isLeaf)* - isLast finds the leftmost leaf of the current subtree that is the last child of
its parent. The process is then iterated by going one step up in the subexpression (Up-...-isLast)*
and in this way it can be verified that the expression ai.,, defines a computation that traverses an
arbitrary input tree in depth-first left-to-right order.

Furthermore, it is easy to verify that airay is deterministic. In the notations of Definition 3.3
possible pairs of instructions ¢, ¢ that may occur in the instruction sequences are {First, isLeaf},
{Right, isLast} and {Up, isRoot} and these are all mutually exclusive.

In Theorem 3.1 we have seen that general caterpillar expressions can simulate nondeterministic
tree walking automata. The morphism f used in the proof of Theorem 3.1, roughly speaking,
erases the state information from encodings of (semi-)computations and the instruction language
(C A*) corresponding to a deterministic tree walking automaton need not be deterministic in the
sense of Definition 3.3. On the other hand, the deterministic caterpillar expression considered in
Example 3.2 can traverse an arbitrary input tree which indicates that it may not be very easy to
show that some particular tree language (recognized by a deterministic tree walking automaton)
cannot be defined by any deterministic caterpillar expression.

Open problem 3.1 Do the deterministic tree walking automata define a strictly larger family of
tree languages than the tree languages defined by deterministic caterpillar expressions?

4 Deciding determinism

First we develop a reasonably efficient algorithm to decide determinism of k-bounded caterpillar
expressions, that is, expressions where the instruction language has polynomial density. This
algorithm is based only on structural properties of the caterpillar expressions. Afterwards we
consider an algorithm to test determinism of general expressions.

Let A be as in (2). In the following k¥ € IN is fixed and we consider caterpillar expressions that
are sums of expressions of the form

330?/T$1y§$2"'y:n+137m+1, wiayjeA*7 y]#Aa Z.:Oa"'am'i_]-a j:]-a"'am-l_]-a mSk (4)

Note that above the assumption y; # A can be made without loss of generality. If « is as above,
by the length of @ we mean |a| = |zo| + X7 |zivi-
We say that an expression (4) is normalized if

foreach 1 <i<m+1, lep(zs,y) = A, (5)
z; # X, for each 1 <i < m. (6)

Lemma 4.1 Consider an arbitrary expression o of length n as in (4) and let k be the constant
bounding m. The expression a can be written as the sum of O(n*) normalized expressions each
having length O(k - n).

Proof. Let a be as in (4). Corresponding to a subexpression y;z; of § we can find an equivalent
‘left-shifted” expression

LS(y; i) = 2(y;)" =i (7)

where lep(yi, z}) = A. If y; is not a prefix of z; we denote lep(y;, z;) = z and choose z(y'z)*z’ as
the right side of (7), where y; = 29/, z; = zz'. If y; is a prefix of z; (i.e., above 3’ = X), we first
write yfz; as zz*z' and then apply the process iteratively to the expression z*z'.

More generally, if a is as in (4) we define the left-shifted expression LS(«a) to be the expression ob-
tained from o by applying this operation iteratively from right to left. That is, first yy, 1Ty 41 is re-
placed by LS(yy1Zm+1) = 2m+1(Yms1) " Ting1s then yp (Tm2zm41) is replaced by LS(y;, (mzm+1)),
and so on.

The left-shift operation eliminates from « subexpressions y; z; where y; and z; have a nonempty
common prefix, that is, for LS(a) the condition (5) holds. Note that LS(«) is of the form (4) since
in (7) yi # X\ always when y; # \.

Using the above left-shift operation we define an inductive process to write a as a sum of
normalized expressions. At the end we describe the upper bound estimates for the number and the
size of the components.

By applying the left-shift operation we can guarantee that « as in (4) satisfies the property (5).
Let 1 < 4 < m be the largest index such that z; = A. (Note that condition (6) only tries to
prevent “consecutive stars” and (6) allows the possibility that z,,11 = A.) We call 4 the largest
index of consecutive stars and proceed by induction on ¢. Denote 8 = zoy] -y zi—1, 7 =
Tit1¥Yi2 " Yms1Tm1-

If y; = y;41, we can write o = By y}, v simply as By;y. This expression satisfies (5) and the
largest index j with xz; = A is strictly less than 7. In the following we can assume that y; # yi41-

We consider separately the cases y; %, vit1, ¥i <p ¥Yi+1 and y;+1 <, ;. In the first two cases

we write
= By;yiY = BYiY + BY; Yir1Yi1 Y- (8)
The expression LS(8y;) satisfies (5), and when LS(B8y;~y) is written in form (4), the largest index

of consecutive stars is strictly less than 4.
In the following we show how to handle the expression § = By y; 115,17

L yi #p i1z Now yi = 293, Yir1 = 2¥ip1 Ui i1 # A 16p(Yj, ¥i1) = A Thus we can write
in the form
B2(Yi2) Yip 1 Vin
and the above expression satisfies (5) and there the largest index of consecutive stars is strictly
less than 4.

2. y; <p yiy1: We write y; = 2122, 22 # X where y; 11 = (2122)" 2123, 7 > 1, lep(22, 23) = A. That
is, ¥;+1 has a prefix consisting of r copies of y; and z; is the longest common prefix of the
remaining suffix of y;11 and y;.

In this case ¢ can be written in the equivalent form

B(z122)" 21(2221) " 23Y; 1 1Y 9)

Here we have two subcases. (a) Assume that z3 # A. Now since z9 # A, and lep(zg, 23) = A,
it follows that applying the left-shift operation to (9) we have reduced the largest index of
consecutive stars. (The left-shift operation would change only the “prefix” [3(z122)"21 of the
expression (9).)

(b) Secondly, we consider the case z3 = A. Now if 2129 = 2921, then by the Lyndon-
Schiitzenberger theorem [26], z; and 2 are both powers of some word v, and hence we can
write also y; = v?, ;11 = v®, for some t,s > 0. This means that in the original expression «
we can replace y;yr | by (v*' + ...+ v*)(v%)* where 0 <z < ... <z, <t+s.

In the following we then assume that z1z9 # 2921. In this case we write the expression (9)
(and remembering z3 = A, y; 11 = (2122)"21) as

B(z122)" 21(2221) "y + B(2122)" 21(2221) " (2122)" 21Y;117-

In the first expression of the sum we have reduced the number of stars. In the second
expression the largest index of consecutive stars remains i. Since 2021 %, (2122)"21, the
second expression is of the type handled in case 1. above.

3. Finally we consider the case y; 41 <p ¥;- Symmetrically to the above case 2. we can now write
Yirl = 2122, 22 # A, Yi = (2122)" 2123, lep(ze, 23) = A. (10)

Instead of (8) we write
@ = BYiy + Byfyis1y + - + By vl + By v vEa - (11)

In the first 7+ 1 terms appearing on the right side of (11) we have reduced the total number of
stars. Hence applying the left-shift operation produces an expression that satisfies (5) where
the largest index of consecutive stars is strictly less than 3.

It is sufficient to consider the last expression in the sum on the right side of (11). When
substituting the notations (10) this expression becomes

B((z122)" 2123) " (z122)" T (2122) "y = Blz122) 21 (23(2122) 21) * 22 (21 22) - (12)

If z3 # A, and recalling that zo # A, lep(zg,23) = A, the right side of (12) satisfies (5) and
there we have reduced the largest index of consecutive stars.

It remains to consider the case z3 = A. If 2120 = 2921, the words z; and zy are powers
of the same word and the expression is handled exactly as in 2. above. Assume then that
2129 # z221. Now the right side of (12) can be written as

B(z122)" 21 ((2122)" 21) 20y + B(2122)" 21 ((2122)" 21) " 22(2122) (21 22) ™.

In the first expression of the sum we have reduced the number of stars. Since (z122)"21 %)
292129, the second expression of the sum is of the type handled in case 1. above.

The value of 7 is bounded by k and, at each stage, the inductive process branches into two subex-
pressions except that in (11) we branch into r + 2 subexpressions, where r € O(n). Thus, O(n¥) is
a very rough upper bound for the total number of expressions. Each stage of the inductive process
increases the length of the expression at most by adding a new factor y; or y; 1. Hence the size of
each of the resulting expressions is bounded by O(k -n). ®

Let a be as in (4). We say that « is well-behaved if z; # X implies that first(y;) and first(z;)
are mutually exclusive, 1 <7 <m + 1.

Note that always y; # A. If « is normalized,then x; can be the empty word only when ¢ = m+ 1.
When considering prefixes of L(a), where « is normalized, after the last symbol of y; the next symbol
can be one of first(y;) and first(z;) and these are known to be distinct. Hence the following lemma
is immediate.

Lemma 4.2 If a as in (4) is normalized and deterministic, then a is well-behaved.

Due to Lemmas 4.1 and 4.2, in order to test determinism of k-bounded expressions it is sufficient
to consider sums of well-behaved normalized expressions. Consider two well-behaved normalized
k-bounded caterpillar expressions over A,

Q= ToYiT1 Y1 Tmtls B = UoVTUL Vg Ugr1, Mg S k. (13)

We describe an algorithm TestNormalizedExpr to test whether or not « + [is deterministic
where @ and [are as in (13). By Lemma 4.2 it is sufficient to determine whether there exist
wq € L(a) and wg € L(B) such that

w, and wg violate the condition of determinism. (14)

Intuitively, the algorithm works as follows. We are dealing with longest common prefixes of z, and
zg where z, is a prefix of L(a) and zg is a prefix of L((), and the algorithm tries to find a situation
where the longest common prefix can be extended by two symbols that are not mutually exclusive.
In case z, is a prefix of zg the algorithm can expand z, by appending a word y, or z,, 1 <r <m+1
where the algorithm keeps track of the current index r. (If zg is a prefix of z,, we have a symmetric
situation.) Since « is normalized, y, and z, are nonempty and first(y,) # first(z,). This means

that only one of the expanded words can be in the prefix relation with zg and only this option
will need to be pursued further. Only in the case where z, = 25 there can be two distinct ways
to expand the words where the algorithm doesn’t get the answer “right away”, and the number of
this type of instances is bounded by 2k.

We introduce the following notation:

(i) Y(i1,...,1%,) :xoyilxly?---wr,lyi’, 1<r<m+4+1,4%4>0,b=1,...,7.
(i) V(j1,---,7s) :uovglulv?---us_lygs, 1<s<q+1,5%>0,b=1,...,s.

A word Y (i1, ...,%,) (respectively, V(j1,...,7s)) is a prefix of a word in L(«) (respectively, in L(53)).
Note that if r < m + 1 then Y (i1,...,%,,0) =Y (i1,...,%,)z;, and the words V(j1,...,Js) satisfy a
similar property.

We say that the indez of a pair of words (Y (i1,...,4r), V(ji,...,4s)) is (r,s). Note that since
a is normalized, always when r # r' we have Y (i1,...,4,) # Y (i|,...,i,) independently of the
parameters i1,...,% and #},...,i,,. The V-words have the analogous property since £ is normalized
and this means that the index of a pair of words is uniquely defined.

The algorithm uses a method Compare(w;,ws) that for given wy,ws € A* finds their longest
common prefix and looks at the following symbols of w; and we. Only in the case where w; is a
prefix of wy or vice versa, Compare(w;,ws) does not directly give an answer, and the algorithm
has to continue comparing possible continuations of w; and ws.

The algorithm begins by comparing Y (0) = 2o and V(0) = ug. For the general case, we consider
a method call

Compare(Y (i1,...,ir), V(j1,...Js)), 7ms>1. (15)

of the recursive algorithm. The essential idea will be that the algorithm employs a counter that
keeps track of the number of recursive calls (15) that have taken place since the index was changed.
Consider a method call (15) where the index of the of the argument words is (r, s). If this is followed
by a sequence of compare method calls where the index of each pair of argument words remains
(r,s), this means that we are consecutively appending copies of y, to Y (i1,...,4,) and copies of
vs to V(Jj1,-.-,Js), and the resulting words Y (i1,...,%, + b), V(j1,.-.,4s + ¢) always remain in
the prefix relation. Recall that when the argument words are not in the prefix relation, the next
compare method call gives a definitive answer. Thus, if we have a sequence of |y, |+ |vs| method calls
where the index remains (r, s), the computation must be in a cycle. (A more detailed description
of the choices after a recursive call (15) and why we can bound the counter by |y, |+ |vs| is included
in the Appendix.)

One call of the compare method (15) uses linear time as a function of the argument word
lengths. The length of the arguments of (15) can be longer than the input length n = |a| + |3]-
We have observed that in the arguments of (15) we can always restrict i,,j5 < |yr| + |vs| and hence
Y (i1, ---,ir)|, [V (1, -, Js)| € O(n?). Strictly speaking, according to the above description, one
branch of the computation makes O(n) calls to the compare method, but by keeping track of the
current positions in prefixes of L(a) and L(3) the total time of one branch of the computation can
also be bounded by O(n?).

The computation may branch into two cases when in a recursive call (15) we have Y (i1, ...,4,) =
V(j1,---,Js). (This corresponds to case 4 in the more detailed description given in the Appendix).
With a fixed index (r, s) this branching needs to be done only once. Putting all the above together
we have seen that the algorithm operates in time 22¢ . O(n?).

Combining Lemma 4.1 with the algorithm TestNormalizedExpr we get the following:

10

Proposition 4.1 Let A be as in (2) and k is fized. Given a k-bounded caterpillar expression «
over A (i.e., a is a sum of arbitrarily many ezxpressions as in (4)) we can decide in polynomial
time whether or not o is deterministic.

Note that the time bound of TestNormalizedExpr to decide determinism of a sum of normalized
expressions is of the form f(k)O(n?). In the time bound the function f depends exponentially on
k but, since the branching occurs only when the current prefixes coincide, in fact, on most inputs
the running time should be essentially better. Arbitrary k-bounded expressions need to be written
as sums of normalized expressions (according to Lemma 4.1) and the worst-case behaviour of the
algorithm of Proposition 4.1 would not be better than the behaviour of the general algorithm we will
discuss below. The algorithm of Proposition 4.1 may be useful in cases where the input expressions
are in a normalized form.

To conclude this section we show that determinism can be decided in polynomial time also for
general caterpillar expressions. Given a caterpillar expression « it would not be difficult to verify
whether or not « satisfies the condition of Definition 3.3 assuming we can construct the minimal
DFA for the instruction language of a. However, this approach would result in an exponential time
algorithm due to the exponential worst-case blow-up of converting a regular expression to a DFA.

Here we give an algorithm to test determinism that is based on the state-pair graph associated
with a reduced NFA recognizing the instruction language of a. The construction relies on ideas
that have been used to test code properties of regular languages [1, 17].

Definition 4.1 Let A = (,Q,qo, F,d) be an NFA. The state-pair graph of A is defined as a
directed graph G 4 = (V, E) where the set of nodes is V = Q x Q and the set of Q-labeled edges is

E={((p,q9),b, (0", d")) | (p,b,p") € 6,(q,b,¢') €5, beQ}.

Lemma 4.3 Assume A = (A,Q, qo, F,0) is a reduced NFA with input alphabet A as in (2). The
language L(A) is not deterministic if and only if there exist p,q € Q such that

(i) The state-pair graph G 4 has a path from (qo,q0) to (p,q).

(ii) There exist c1,c2 € A, ¢1 # ¢, such that (p,c1,p’) € 6 and (q,c2,q") € § for some p',q' € Q,
and c1,co are not mutually exclusive.

Proof. First assume that L(A) is not deterministic in the sense of Definition 3.3. Thus, there
exist w,wy,ws € A*, ¢1,c9 € A, ¢1 # co, where ¢; and ¢y are not mutually exclusive, such that
we;w; € L(A), 1 = 1,2. Let C; be an accepting computation of A on the word wc;w;, and let p;
be the state of C; after reading the prefix w. This means that in the graph G4 the node (p1,p2)
is reachable from (qg, qo) and a transition on ¢; is defined in state p;. Thus, the conditions (i) and
(ii) hold.

Conversely, assume that p,q,p’,¢' € Q and c1,c2 € A are as in (i) and (ii). Since G 4 has a path
from (qo,qo) to (p,q) there exists w € A* such that both p and g are reachable from ¢y on word
w. Since A is reduced, there exists wy (respectively, wy) that reaches an accepting state from p’
(respectively, ¢'). Thus weiwy , weowy € L(A) and L(A) is not deterministic. ™

In the second part of the proof, note that we require that (p, g) is reachable from (go, g) in the
graph G 4 whereas the accepting states can be reached from p’ and ¢’ along computations of A not
necessarily along the same word.

11

Lemma 4.4 Given a caterpillar expression « of size n over an alphabet A as in (2) we can con-
struct in time O(n?log*n) the state-pair graph G4 of an NFA A that recognizes the instruction
language L(a) of a.

Proof. For a having size n we can construct an NFA (without e-transitions) with O(n - (logn)?)
transitions and the transformation can be done in time O(nlogn + m) where m is the size of
the output [16, 19, 25]. The NFA can be reduced and the corresponding state-pair graph can be
constructed in square time in the size of the NFA. ®

Note that if A is considered to be fixed, the upper bound for the regular expression—to-NFA
conversion can be improved [15, 25]. Combining the results of Lemma 4.3 and 4.4 with any graph
reachability algorithm we have:

Theorem 4.1 Given an alphabet A as in (2) and a caterpillar expression o over A we can decide
in polynomial time whether or not a is deterministic.

References

[1] J. Berstel and D. Perrin, Theory of Codes, Academic Press, Inc., 1985.

[2] M. Bojaniczyk and T. Colcombet, Tree walking automata cannot be determinized, Theoret.
Comput. Sci. 350 (2006) 164-173.

[3] M. Bojanczyk and T. Colcombet, Tree-walking automata do not recognize all regular lan-
guages, in Proc. of STOC’05, (ACM 2005), pp. 234-243.

[4] R.V. Book, S. Even, S. Greibach and G. Ott, Ambiguity in graphs and expressions, IEEE
Trans. on Computers 20 (1971) 149-153.

[6] A. Briiggemann-Klein, M. Murata and D. Wood, Regular tree and regular hedge languages
over unranked alphabets, Technical Report HKUST-TCSC-2001-0, The Hongkong University
of Science and Technology, 2001.

[6] A. Briiggemann-Klein and D. Wood, One-unambiguous regular languages, Inform. Computa-
tion 142 (1998) 182-206.

[7] A. Briggemann-Klein and D. Wood, Caterpillars: A context-specification technique, Mark-up
Languages: Theory & Practice 2 (2000) 81-106.

[8] A. Briggemann-Klein and D. Wood, Caterpillars, context, tree automata and tree pattern
matching, in Developments in Language Theory, DLT’99, eds. G. Rozenberg and W. Thomas,
(World Scientific, 2000), pp. 270-285.

[9] H. Comon, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison and M. Tommasi, Tree Automata
Techniques and Applications, available at http://www.grappa.univ-lille3.fr /tata (1997).

[10] S. Eilenberg, Automata, Languages, and Machines, Vol. A, Academic Press, New York, 1974.
[11] J. Engelfriet and H.J. Hoogeboom, Tree-walking pebble automata, in Jewels are forever, eds.
J. Karhuméki, H. Maurer, G. Paun and G. Rozenberg, (Springer-Verlag, 1999), pp. 72-83.

12

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

J. Engelfriet, H.J. Hoogeboom and J.P. van Best, Trips on trees, Acta Cybern. 14 (1999)
51-64.

H. Fernau, Learning XML grammars, in Machine Learning and Data Mining in Pattern Recog-
nition, MLDM’01, Lect. Notes Comput. Sci. 2123, (Springer, 2001) pp. 73-87.

F. Gécseg and M. Steinby, Tree languages, in Handbook of Formal Languages, Vol. 3, eds. G.
Rozenberg and A. Salomaa, (Springer-Verlag, 1997), pp. 1-68.

V. Geffert, Translation of binary regular expressions into nondeterministic e-free automata
with O(nlogn) transitions, J. Comput. System Sci. 66 (2003) 451-472.

C. Hagenah and A. Muscholl, Computing e-free NFA from regular expressions in O(n log?(n))
times, R.A.I.R.O. Theoret. Inform. Appl. 34 (2000) 257-277.

Y.-S. Han, K. Salomaa and D. Wood, Intercode regular languages, Fund. Informaticae 76
(2007) 113-128.

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computa-
tion, Addison-Wesley, 1979.

J. Hromkovi¢, S. Seibert, T. Wilke, Translating regular expressions into small e-free nondeter-
ministic automata, J. Comput. System Sci. 62 (2001) 565-588.

P. Kilpelainen and D. Wood, SGML and XML document grammars and exceptions, Inform.
Computation 163 (2001) 230-251.

T. Milo, D. Suciu and V. Vianu, Typechecking for XML transformers. J. Comput. System Sci.
66 (2002) 66-97.

M. Murata, D. Lee and M. Mani, Taxonomy of XML schema languages using formal language
theory. ACM Trans. Internet Technology 5, 2005.

F. Neven and T. Schwentick, On the power of tree walking automata. Inform. Computation
183 (2003) 86-103.

A. Okhotin, K. Salomaa and M. Domaratzki, One-visit caterpillar tree automata. Fund. Inf.
52 (2002) 361-375.

G. Schnitger, Regular expressions and NFA without e-transitions, Proceedings of STACS 2006,
(B. Durand and W. Thomas, Eds.) Lect. Notes Comput. Sci. 3884, 2006, pp. 432-443.

H. J. Shyr, Free Monoids and Languages, Hon Min Book Company, Taichung, 3rd ed., 2001.

A. Szilard, S. Yu, K. Zhang and J. Shallit, Characterizing regular languages with polynomial
densities, in Proc. of 17th MFCS, Lect. Notes Comput. Sci. 629 (Springer-Verlag, 1992), pp.
494-503.

S. Yu, Regular languages, in Handbook of Formal Languages, Vol. 1, eds. G. Rozenberg and
A. Salomaa, (Springer-Verlag, 1997), pp. 41-110.

13

5 Appendix

Here we provide details of the algorithm TestNormalizedExpr and justification for the bound for
the counter.

First we give a more formal description of the recursive calls to the compare method (15). In
the below case analysis all notations are as in (15).

1. If Y (i1,...,4) %p V(j1,---Js), then the method call (15) gives a definitive answer for this
branch. By looking at the symbols following the longest common prefix we either have found
an instance of nondeterminism or no continuation of the words Y (i1, ...,%,) and V(j1,... js)
can violate the condition of determinism.

2. Consider now the case Y (i1,...,4,) <p V(j1,...Js). The algorithm is looking for words as
in (14) and hence next it should expand the shorter word Y (i1,...,%,) by appending a word
yr or z,. Hence the algorithm makes the method calls

Compare(Y (i1,...,ir + 1),V (j1,...4s)) and Compare(Y (i1,...,4r,0),V(j1,...75)). (16)
If r =m + 1, above the word
Y (i1,...,ir,0) should be interpreted as the word Y (41,...,%) - Tm1- a7

Note that since « is normalized, y,,z, # A and first(z,) # first(y,). Hence for at most one
word X € {Y (i1,...,4,+1),Y (i1,...,4,,0)}, X =, V(j1,...Js). This means that at least one
of the recursive calls in (16) gives the answer directly and the algorithm needs to continue
only (at most) one path.

3. The case where V(j1,...J5) <p Y (i1,...,4,) is symmetric to the above.

4. Finally, consider the case where Y (i1,...,4,) = V(j1,...Js). Now when trying to find
words as in (14), the algorithm may expand Y (i1,...,%,) by appending a word z, or y,
and expand V (j1,...js) by appending a word us or vs. This leads to four recursive calls:
Compare(Y (i1,...,% + 1),V (j1,...4s + 1), Compare(Y (i1,...,4 + 1),V (j1,... Js,0),
Compare(Y (1,...,%r,0),V(j1,...js + 1), and Compare(Y (i1,...,%,0),V(j1,...75,0). In
cases where 7 = m + 1 or s = ¢ + 1 we make notational conventions analogous to (17).
Since « and g are normalized, at most two of the four pairs of words in the arguments are in
the prefix relation with each other, and in the other cases the compare method gives directly
an answer. However, in this situation the algorithm may need to branch into two independent
computations.

Now we argue that the number of consecutive method calls (15) where the arguments have
index (r, s) can be bounded by |y,| + |vs|. If we have a sequence of |y,| + |vs| method calls where
the index of the pair of argument words remains (r,s), there must exist 0 < b < ¥, 0 < ¢ < ¢,
(b, c) # (b,), such that

Y(i1,..sir +0) AV(j1,eesjs+¢) =Y (1,0 +U) AV (j1,...,Js +) (18)
Above A denotes the ordered symmetric difference of words defined as follows. For u,v € A*,

((u\v),1) ifu <, v,
uAv=< ((v\u),2)ifv <pu, (19)
undefined otherwise.

14

The second component of the value of u A v is used to indicate which of the words is a prefix of
the other since the two cases are not symmetric.

The equality (18) follows from the pigeon-hole principle when considering the different positions
where the end point of Y (i1,...,4, + b) (respectively, of V(ji1,...,js + ¢)) may “hit” the current
last occurrence of vg (respectively, of y,). Since (18) uses the ordered symmetric difference, the
equality entails that if on the left side the Y-word is longer than the V-word, the same holds on
the right side, and vice versa.

The equality (18) means that this branch of the computation is in a cycle and will never find
words as in (14). Thus, in one branch of the computation the number of recursive calls that do not
increase the index (r, s) of the argument words can be bounded by |y, |+ |vs|. B

15

