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Abstract

We investigate the state complexity of basic operations for suffix-free regular languages.
The state complexity of an operation for regular languages is the number of states that
are necessary and sufficient in the worst-case for the minimal deterministic finite-state
automaton that accepts the language obtained from the operation. We establish the
precise state complexity of catenation, Kleene star, reversal and the Boolean operations
for suffix-free regular languages.

1 Introduction

Codes are useful in many areas such as information processing, data compression, cryptog-
raphy and information transmission [15]. Some of well-known codes are prefix codes, suffix
codes, bifix codes and infix codes. People use different codes for different applications based
on the characteristic of each code [1, 15]. Since codes are sets of strings over an alphabet,
they are closely related to formal languages: a code is a language. Thus, the condition defin-
ing a class of codes defines a corresponding subfamily of each language family. For regular
languages, for example, suffix-freeness defines suffix-free regular languages, which constitute
a subfamily of regular languages.

There are different ways to define the complexity of a regular language L. One classical
definition is the total number of states in the minimal deterministic finite-state automa-
ton (DFA) for L since the minimal DFA for L is unique (up to isomorphism) [12, 20]. Based
on this definition, Yu and his co-authors [23] defined the state complexity of an operation for
regular languages to be the number of states that are necessary and sufficient in the worst-
case for the minimal DFA that accepts the language obtained from the operation. Yu [22]
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gave a comprehensive survey of the state complexity of regular languages. Salomaa et al. [19]
studied classes of languages for which the reversal operation reaches the exponential upper
bound. As special cases of the state complexity, researchers examined the state complexity
of finite languages [3, 7], the state complexity of unary language operations [18] and the non-
deterministic descriptional complexity of regular languages [10, 11]. There are several other
results with respect to the state complexity of different operations [4, 5, 6, 13, 14, 17].

Recently, Han et al. [8] examined the state complexity of prefix-free regular languages.
They tackled the problem based on the structural property of prefix-free DFAs: A prefix-
free DFA must be non-exiting assuming all states are useful [9]. It turns out that the state
complexity for the prefix-free case is strictly less than the corresponding state complexity for
regular languages over some basic operations. We know that if a language L is prefix-free,
then its reversal LR is suffix-free by definition. Moreover, if L is regular and non-empty, then
the start state of a DFA for LR should not have any in-transitions. However, this condition
is necessary but not sufficient. Due to this fact, the state complexity of suffix-free regular
languages is not symmetric to the prefix-free case. This leads us to investigate the state
complexity of basic operations on suffix-free regular languages. Interestingly, the results for
catenation and Kleene star turn out to be of a totally different order than in the case of
prefix-free regular languages.

In Section 2, we define some basic notions. In Section 3, we examine the state complexity
of Kleene star and reversal of suffix-free regular languages. We then look at the catenation
of two suffix-free minimal DFAs in Section 4. Next, we investigate the state complexity of
intersection and union of suffix-free regular languages based on the Cartesian product of states
in Section 5. We present the comparison table of the state complexity on different types of
regular languages and conclude the paper in Section 6.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings over Σ. The
size |Σ| of Σ is the number of characters in Σ. A language over Σ is any subset of Σ∗. Given
a set X, 2X denotes the power set of X. For a string x ∈ Σ∗ and a character a, |x|a denotes
the number of symbol a occurrences in x. We say that a string x is a suffix of a string y
if y = ux for some string u. We define a set X of strings to be a suffix-free set if a string
from X is not a suffix of any other string in X. Given a string x from a set X, let xR be the
reversal of x, in which case XR = {xR | x ∈ X}.

The symbol ∅ denotes the empty language and the character λ denotes the null string. A
finite-state automaton (FA) A is specified by a tuple (Q,Σ, δ, s, F ), where Q is a finite set of
states, Σ is an input alphabet, δ : Q×Σ → 2Q is a transition function, s ∈ Q is the start state
and F ⊆ Q is a set of final states. If F consists of a single state f , we use f instead of {f}
for simplicity. |Q| denotes the number of states in Q. We define a state d to be a sink state if
d is reachable from s of A and, for any a ∈ Σ, δ(d, a) = d and d /∈ F . Since all sink states are
always equivalent, we can assume that A has a unique sink state. For a transition δ(p, a) = q
in A, we say that p has an out-transition and q has an in-transition. Furthermore, p is a
source state of q and q is a target state of p. The transition function δ can be extended to a
function Q × Σ∗ → 2Q that reflects sequences of inputs. A string x over Σ is accepted by A
if there is a labeled path from s to a state in F such that this path spells out the string x.
Namely, δ(s, x) ∩ F 6= ∅. The language L(A) of an FA A is the set of all strings that are
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spelled out by paths from s to a final state in F . We say that A is non-returning if the start
state of A does not have any in-transitions and A is non-exiting if all out-transitions of every
final state in A go to the sink state.

Given an FA A = (Q,Σ, δ, s, F ), we define the right language Lq of a state q to be the set
of strings that are spelled out by some path from q to a final state in A; namely, Lq is the
language accepted by the FA obtained from A by changing the start state to q. We say that
two states p and q are equivalent if Lp = Lq.

We define an FA A to be a DFA if the number of target states for each pair of a state q
and a character a ∈ Σ is one: namely, |δ(q, a)| = 1. Given a DFA A, we assume that A is
complete; namely, each state has |Σ| out-transitions. If A has m states, then we say that A
is an m-state DFA.

We define a (regular) language L to be suffix-free if L is a suffix-free set. A regular
expression E is suffix-free if L(E) is suffix-free. Similarly, an FA A is suffix-free if L(A) is suffix-
free. Moreover, if L(A) is suffix-free and non-empty, then A must be non-returning. Similarly,
we can define prefix-free regular expressions and languages. Note that if a language L is suffix-
free, then LR is prefix-free.

For complete background knowledge in automata theory, the reader may refer to text-
books [12, 20].

3 Kleene star and reversal

Before examining the state complexity of various operations, we establish that any suffix-
free (complete) DFA must always have a sink state. Recall that the state complexity of a
regular language L is the number of states in its minimal DFA. If L is a regular language, its
minimal DFA does not necessarily have have a sink state. However, if L is prefix-free, then its
minimal DFA A must have a sink state since A is non-exiting. Therefore, we have to verify
the existence of the sink state in a suffix-free minimal DFA before investigating the state
complexity for each operation. This is crucial for computing the correct state complexity.

Lemma 1. Let A = (Q,Σ, δ, s, F ) be a minimal DFA for a suffix-free language and k = |Q|.
Then, A has a sink state d ∈ Q and for every string w ∈ Σ+, δ(s,wk) = d.

Proof. Let w ∈ Σ+ be arbitrary and for the sake of contradiction assume that

δ(s,wk) 6= d. (1)

By the pigeon-hole principle, there exist 0 ≤ j < m ≤ k such that δ(s,wj) = δ(s,wm) and let
us denote this state by q. Now (1) implies that q 6= d and, since a minimal DFA can have only
one sink state, there exists v ∈ Σ∗ such that δ(q, v) ∈ F . Thus, A accepts both strings wjv
and wmv and since w 6= λ and j 6= m, this means that L(A) cannot be suffix-free.

Lemma 1 shows that we must always consider the sink state for computing the state
complexity of suffix-free regular languages. From now, we assume that a suffix-free minimal
DFA has the unique sink state.

3.1 Kleene star of suffix-free regular languages

We first start with the Kleene star operation.
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Lemma 2. Given an m-state suffix-free minimal DFA A = (Q,Σ, δ, s, F ), 2m−2 + 1 states
are sufficient for L(A)∗.

Proof. We first construct an NFA A′ from A that accepts L(A)∗ and determinize and minimize
A′. Let d be the sink state of A. We compute A′ = (Q′,Σ, δ′, s′, F ′) as follows:

Q′ = Q,

δ′(p, a) =

{

δ(p, a) if p /∈ F,
δ(p, a), δ(s, a) if p ∈ F.

s′ = s,

F ′ = F ∪ {s′}.

It is easy to verify that A′ accepts L(A)∗ from the construction. Note that the two sink
states of A and A′ are the same and A′ is also non-returning. Now we apply the subset
construction to A′. Let AD denote the resulting DFA from A′. The number of states in AD

is 2m. Note that a state of AD is a subset of states in Q′. We identify equivalent states and
merge them. We also remove unreachable states from the start state in AD.

Claim 1. Two states q1 and q2 of AD are equivalent if q1 \ q2 = d or q2 \ q1 = d.
Proof: Assume that q1 \ q2 = d. (The other case is symmetry.) Since d is a sink state, it

cannot appear in an accepting path in AD and, therefore, Lq1
= Lq2

.
Since there are 2m−1 states that contain d in AD, we can reduce 2m−1 states. Thus, the

resulting DFA has 2m − 2m−1 = 2m−1 states. Notice that the start state of AD is {s′} and a
state of AD is a subset of states in Q′ from A′.

Claim 2. A state q in AD such that s′ ∈ q and {s′} 6= q is not reachable from {s′} in AD

since A′ is non-returning.
Based on Claim 2, we remove all states that contain s′ in AD except {s′} itself. Therefore,

we reduce 2m−2 − 1 states. It shows that 2m−1 − (2m−2 − 1) = 2m−2 + 1 states are sufficient
for the minimal DFA of L(A)∗.

We now define a DFA A such that L(A) is suffix-free and the state complexity of L(A)∗

reaches the upper bound in Lemma 2. Let A = (Q,Σ, δ, s, F ), where Q = {0, 1, . . . ,m−1},
for m ≥ 4, Σ = {a, b, c, d}, s = m−2, F = {0} and δ is defined as follows:

(i) δ(m−2, c) = 0,

(ii) δ(i, a) = i+1, for 0 ≤ i ≤ m−4, and δ(m−3, a) = 0,

(iii) δ(i, d) = i, for 1 ≤ i ≤ m−3,

(iv) δ(m−2, b) = 1, δ(0, b) = 0, δ(i, b) = i for 2 ≤ i ≤ m−3,

(v) all transitions not defined above go to the sink state m−1.

Fig. 1 depicts the DFA A. The figure omits the sink state m−1.

Lemma 3. Let A be the DFA in Fig. 1 for m ≥ 4.

1. The language L(A) is suffix-free.

2. The state complexity of L(A)∗ is 2m−2 + 1.

Proof. We prove two results separately.
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Figure 1: The DFA A for the worst-case lower bound for the Kleene star of L(A), for m ≥ 4.
Note that we omit the sink state m−1.

1. First, we prove that L(A) is suffix-free. Assume that L(A) is not suffix-free. It implies
that there are two strings w1, w2 ∈ L(A) such that

w1 = uw2, u 6= λ.

Note that all strings of L(A) begin with a symbol b or c, and c can occur only as the
first symbol of any string. Since u 6= λ, we can write w2 = bw′

2 for some w′
2 ∈ Σ∗.

Because we are at state 1 in A after reading the first b of bw′
2, we know that

|w′
2|a ≡ −1 (mod m−2). (2)

We consider the computation of A on w1 = ubw′
2. Since A can reach the state 1 on

input b only from the non-returning start state and u 6= λ, we know that A will not be
in state 1 after reading the prefix ub. Now (2) implies that A cannot be in the final
state 0 after reading w1 — a contradiction. Therefore, L(A) is suffix-free.

2. Next, we prove that the state complexity of L(A)∗ is 2m−2 + 1.

Let A′ = (Q,Σ, δ′, s′, F ′) be the NFA constructed for L(A)∗ as in the proof of Lemma 2
and let

AD = (2Q,Σ, γ, {m−2}, FD)

be the equivalent DFA constructed from A′ using the subset construction as in the proof
of Lemma 2.

Consider the states in the minimal DFA for L(A)∗ from AD. Let C be the collection of
subsets of Q that consists of {m−2} and all subsets of {0, 1, . . . ,m−3}. Namely,

C = {{m−2}, 2{0,1,...,m−3}}.

Since |C| = 2m−2 + 1, it is sufficient to show that the two following claims are valid
when regarded as states of AD:
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Claim 1. All sets in C are pairwise inequivalent with respect to the right-invariant
congruence of L(A)∗.

Claim 2. All sets in C are reachable in AD.

Proof of Claim 1: The singleton set {m−2}, which is the start state, is not equivalent
with any subset of {0, 1, . . . ,m−3} because 0 ∈ γ({m−2}, c) and c-transitions from all
the other states go to the sink state. Now consider two subsets S1, S2 ⊆ {0, 1, . . . ,m−3},
S1 6= S2. Without loss of generality, there exists i ∈ S1 \ S2 and 0 ≤ i ≤ m−3, where
the other possibility is completely symmetric. Recall that γ is the transition function
computed by the subset construction from the NFA transition function δ′ and the a-
transitions in δ′ are as in the original DFA A. Furthermore, in δ′, any transition between
two states (i, i+1), for 0 ≤ i ≤ m−2, has the label a; namely, δ′(i, a) = i+1. It follows
that

0 ∈ γ(S1, a
m−2−i) and 0 6∈ γ(S2, a

m−2−i).

Hence S1 and S2 are inequivalent.

Proof of Claim 2: We show that all sets in C are reachable. Since {m−2} is the start
state of AD, it is reachable.

Using induction on k, for 0 ≤ k ≤ m − 3, we show that each of the sets

T0 = {0}, Tk = {0,m−3,m−4, . . . ,m−3−k+1}, 1 ≤ k ≤ m−3, (3)

is reachable. Note that γ({m−2}, c) = {0} = T0. Due to A having a transition on b
from the start state to 1, for 0 ≤ k ≤ m−4,

γ(Tk, b) = Tk ∪ {1}.

From this set, we get Tk+1 by cycling with a-transitions, that is, γ(Tk ∪ {1}, am−3) =
Tk+1. We have shown that the set

Tm−3 = {0, 1, . . . ,m−3}

is reachable. Since the d-transition is undefined in the state 0 (when we interpret
transitions to the sink state to be undefined), and the d-transition is a self-loop for
states 1, . . . , m−3, we observe that for any set S ⊆ {0, 1, . . . ,m−3},

γ(S, d) = S \ {0}. (4)

Now from the set Tm−3, we can reach any subset of {0, 1, . . . ,m−3} by cycling each
element, which we want to eliminate, to state 0 using the a-transitions and applying
a d-transition as in (4). When we have the correct number of elements with correct
intervals between consecutive elements, the set can be shifted cyclically to the correct
position using only a-transitions. This concludes the proof of Claim 2.

Therefore, two results of Lemma 3 are true.

Combining Lemma 2 and Lemma 3, we have the following result.

Theorem 4. Given an m-state suffix-free minimal DFA A, 2m−2 + 1 states are necessary
and sufficient in the worst-case for the minimal DFA of L(A)∗.
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Proof. We assume that m ≥ 4 in Lemma 3. For m = 3, one can use L(ba∗). Remark that any
non-trivial suffix-free language needs at least 3 states (only {λ} has two states). Therefore,
the statement is true.

The proof of Lemma 3 uses a four character alphabet. It remains an open question whether
the bound of Theorem 4 can be reached using an alphabet of size 2 or 3.

3.2 Reversal of suffix-free regular languages

We examine the reversal operation of suffix-free regular languages. First, we recall the state
complexity of reversal on regular languages. If a regular language L is accepted by an m-state
minimal DFA, then its reversal LR is accepted by an m-state NFA. By the well-known subset
argument, we can conclude that the state complexity of LR is at most 2m.

Proposition 5 (Leiss [16] and Salomaa et al. [19]). There are classes of regular languages
for which 2m states are necessary and sufficient for the reversal of an m-state minimal DFA.
Note that such an m-state minimal DFA does not have the sink state.

Given a suffix-free minimal DFA A = (Q,Σ, δ, s, F ), we flip all transition directions in A
and obtain a new FA AR for L(A)R. If we apply the subset construction on AR, then the
resulting DFA is the minimal DFA for L(AR) [2, 21].

Lemma 6. Given an m-state suffix-free minimal DFA A, 2m−2 + 1 states are sufficient in
the worst-case for the minimal DFA of L(A)R.

Proof. Let AR = (Q,Σ, δR, F, s) be the FA obtained by flipping all transition directions in
A and m = |Q|. Since A is non-returning, AR is non-exiting. Before we do the subset
construction, we remove useless states (a state is useless if it is not reachable from the start
state in a given FA) from AR. Let d be the sink state in A. Then, all states of F in AR do
not have any out-transitions to d in δR. Namely, the sink state d is useless in AR and, thus,
we remove d and have m − 1 states in AR. Now we are ready for the subset construction.
A crucial point of the subset construction is that the construction is based on all subsets of
states of a given FA. There are 2m−1 subsets of states from AR. Let M ′ = (Q′,Σ, δ′, s′, F ′)
be the resulting DFA by the subset construction from AR. We examine a state of M ′, which
is a subset of states from AR, such that s ∈ q and {s} 6= q.

Claim: A state q in M ′ such that s ∈ q and {s} 6= q is unreachable from s′ in M ′.
Proof: Assume that q is reachable for the sake of contradiction. Then, q is a final state

of M ′ since s ∈ q. Since q is reachable, there is a path from s′ to q in M ′. Let the path spell
out a string x; namely, x ∈ L(M ′). Let p 6= s be another state in q. Since p is a useful state
in A, there is a path from s to p in A and the path spells out a string y. Then, in AR, there
is a path from p to s that spells out yR. Therefore, there must be a path from q to a final
state that spells out yR in M ′. This implies that M ′ accepts both x and xyR. It contradicts
the fact that L(M ′) is prefix-free. Therefore, all such q are unreachable.

Our claim shows that there is only one final state {s} in M ′, which is not a surprising
result since L(M ′) is prefix-free and and the minimal DFA for a prefix-free regular language
always has a single final state [9]. Thus, we remove all 2m−2 − 1 unreachable states. In
summary, M ′ requires at most 2m−2 + 1 states.
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Next, we show that 2m−2 + 1 states are necessary for the reversal of a suffix-free minimal
DFA. Given a (regular) language L over Σ, #L is suffix-free if the character # is not in Σ.

We construct a suffix-free minimal DFA that has m states as follows: Let A = (Q,Σ, δ, s, F )
be a minimal DFA as in Proposition 5 over Σ, which is not suffix-free in general. We introduce
a new start state s′ and a new transition δ(s′,#) = s. We also introduce a sink state d.
Note that a minimal DFA for a regular language in Proposition 5 does not have a sink state.
Consequently, d is not equivalent with any of the states of A. Then, the new FA A# is de-
terministic and minimal by construction. Furthermore, L(A#) is suffix-free. Thus, if A has
m − 2 states, then A# has m states. See Fig. 2 for an example.
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Figure 2: An example of a minimal DFA A in Proposition 5. Note that A# is also a minimal
DFA and L(A#) is suffix-free.

Lemma 7. Given an m-state suffix-free minimal DFA A# as shown in Fig. 2, 2m−2+1 states
are necessary for the minimal DFA of L(A#)R, where # /∈ Σ.

Proof. Let A′ be the minimal DFA for L(A)R. Then, by Proposition 5, the state complexity
of L(A′) is 2m−2 if A has m− 2 states. Let F ′ be the set of final states of A′. We introduce a
new final state f ′′ and connect all states in F ′ to f ′′ with label #. Let A′′ denote the resulting
DFA. It is easy to verify that A′′ is a minimal DFA and L(A′′) = L(A)R ·# = L(A#)R. Since
A′ has 2m−2 states, A′′ has 2m−2+1 states. It follows that given an m-state suffix-free minimal
DFA, 2m−2 + 1 states are necessary.

We establish the following theorem from Lemmas 6 and 7.

Theorem 8. Given an m-state suffix-free minimal DFA A over Σ, 2m−2 + 1 states are
necessary and sufficient in the worst-case for the minimal DFA of L(A)R, where |Σ| ≥ 3.

4 Catenation

We investigate the state complexity of the catenation of two suffix-free regular languages. We
first compute the upper bound and after that present a matching lower bound example.
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Lemma 9. Given two suffix-free minimal DFAs A = (Q1,Σ, δ1, s1, F1) and B = (Q2,Σ, δ2, s2, F2),
(m−1)2n−2 +1 states are sufficient for the minimal DFA of L(A) ·L(B), where m = |Q1| and
n = |Q2|.

Proof. Yu et al. [23] presented a DFA construction for the catenation of two DFAs. Based on
their construction, we compute a DFA C = (Q,Σ, δ, s, F ) for L(A) · L(B) as follows:

Q = Q1 × 2Q2 \ F1 × 2Q2\{s2}, where 2X denotes the power set of X,

s = [s1, ∅],

F = {[q, T ] ∈ Q | T ∩ F2 6= ∅} and

δ([q, T ], a) = [q′, T ′] for a ∈ Σ, where

q′ = δ1(q, a) and T ′ =

{

δ2(T, a) ∪ {s2} if q′ ∈ F1.
δ2(T, a) otherwise.

Note that L(C) = L(A) · L(B) and C is deterministic. Q is a set of pairs such that the
first component of each pair is a state from Q1 and the second component is a subset of Q2. Q
does not have pairs whose first component is a final state of A and whose second component
does not contain s2. Thus, the number of states in C is m2n − k2n−1 by construction, where
k = |F1| is the number of final states in A. Now we minimize C and obtain the minimal DFA
for L(A) · L(B).

Let d2 denote the sink state of B. Because of d2, two states [q, P ] and [q, P ∪{d2}] in C are
equivalent, where d2 /∈ P . Thus, we merge all such states and reduce (m2n−1 −k2n−2) states.
Therefore, the number of remaining states is

m2n − k2n−1 − (m2n−1 − k2n−2) = m2n−1 − k2n−2.

Next, we observe that [s1, T ] is not reachable if T 6= ∅. This observation is valid since
A is non-returning and, thus, s1 has no in-transitions. It removes (2n−1 − 1) states and the
current number of states is

m2n−1 − k2n−2 − (2n−1 − 1) = (m−1)2n−1 − k2n−2 + 1.

Lastly, we claim that [q, T ] is not reachable if q /∈ F1 and s2 ∈ T . To prove this claim,
we assume that [q, T ] is reachable for the sake of contradiction. It implies that there is a
transition δ([q′, T ′], a) = [q, T ] in C, where [q′, T ′] is also reachable and a ∈ Σ. It contradicts
to the fact that s2 has no in-transitions in B. Thus, our claim is valid. The number of such
states is (m−1−k)2n−2. We remove these states and the total number of remaining states is

(m−1)2n−1 − k2n−2 + 1 − (m−1−k)2n−2 = (m−1)2n−2 + 1.

We present two suffix-free minimal DFAs A and B such that the state complexity of
L(A)L(B) reaches the upper bound in Lemma 9. In the following, let Σ = {a, b, c, d}. We
define

A = (Q1,Σ, δ1, s1, F1), (5)

where Q1 = {0, 1, . . . ,m−1}, m ≥ 3, s1 = 0, F1 = {1} and δ1 is defined as follows:
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(i) δ1(0, c) = 1,

(ii) δ1(i, a) = i + 1, 1 ≤ i ≤ m−3, δ1(m−2, a) = 1,

(iii) δ1(i, b) = i, 1 ≤ i ≤ m−2,

(iv) δ1(1, d) = 1,

(v) all transitions not defined above go to the sink state m−1.

The DFA A is depicted in Fig. 3. The figure does not show the sink state m−1 or the
transitions into the sink state.

1

2 3

m−2

b

c

a

a

0

b, d

b
a

a

b

a

Figure 3: The DFA A for the worst-case lower bound for catenation.

Next we define
B = (Q2,Σ, δ2, s2, F2), (6)

where Q2 = {0, 1, . . . , n−1}, n ≥ 3, s2 = 0, F2 = {1}, and δ2 is defined by the following:

1. δ2(0, d) = 1,

2. δ2(i, b) = i + 1, 1 ≤ i ≤ n−3, δ2(n−2, b) = 1,

3. δ2(i, a) = δ2(i, c) = i, 1 ≤ i ≤ n−2,

4. δ2(i, d) = i, 2 ≤ i ≤ n−2,

5. all transitions not defined above go to the sink state n−1.

The DFA B is depicted in Fig. 4. Again the figure does not show the sink state n−1.

Lemma 10. Let A be as in (5) and B as in (6), for m,n ≥ 3.

1. The languages L(A) and L(B) are suffix-free.

2. The state-complexity of L(A) · L(B) is (m − 1)2n−2 + 1.

Proof.
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Figure 4: The DFA B for the worst-case lower bound for catenation.

1. The language L(A) is suffix-free because all strings accepted by A begin with a c and
the symbol c may occur only as the first symbol in any strings of L(A).

Now suppose that w1, w2 ∈ L(B), where w1 = uw2, u 6= λ. All strings of L(B) begin
with a d and, hence, we can write w2 = dw′

2. Since w2 ∈ L(B), we know that

|w′
2|b ≡ 0 (mod n − 2). (7)

This follows from the observation that in the cycle of B all transitions besides the
b-transitions are self-loops. Consider now the computation of B on w1. Since B is
non-returning and the only way to reach state 1 with input symbol d is from state 0.
It follows that after reading the prefix ud, the DFA B is in a state j, where j 6= 0, 1.
Now (7) implies that the computation on w′

2 starting from state j cannot end in the
accepting state 1. This is a contradiction and we have shown that L(B) is also suffix-free.

2. By Lemma 9, it is sufficient to show that the state complexity of L(A)L(B) is at least
(m − 1)2n−2 + 1. Let C = (Q,Σ, δ, s, F ) be the DFA constructed for L(A)L(B) as in
the proof of Lemma 9 (following the construction for catenation of arbitrary regular
languages [23]).

We denote by D the subset of Q that consists of [0, ∅], all elements [i, T ], for i ∈
{2, . . . ,m−1} and T ⊆ {1, 2, . . . , n−2}, and all elements [1, T∪{0}], for T ⊆ {1, 2, . . . , n−2}.
Since D has (m−1)2n−2+1 elements, it is sufficient to establish the following two claims:

Claim 1. All states of C belonging to D are pairwise inequivalent.

Claim 2. All elements of D are reachable as states of C.

Proof of Claim 1: Consider an arbitrary state [i, T ] ∈ D, where i ∈ {1, 2, . . . ,m−1}
and T ⊆ {0, 1, 2, . . . , n−2}. (Note that 0 ∈ T if and only if i = 1.) Now δ([i, T ], c) =
[m − 1, T \ {0}] and, hence, δ([i, T ], cd) cannot be an accepting state of C since

the only d-transition that reaches the final state 1 is an out-transition of 0 in B. (8)
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On the other hand, δ([0, ∅], cd) = [1, {1}] and this shows that [0, ∅] is not equivalent
with any other state of D.

Next, consider elements [i, T ], [j, T ′] ∈ D, for 1 ≤ i < j ≤ m−1 and T, T ′ ⊆ {0, 1, . . . , n−2}.
We note that in the computations of A, δ1(i, a

m−1−i) = 1 and δ1(j, a
m−1−i) 6= 1. This

means that δ([i, T ], am−1−i) = [1, R], 0 ∈ R and δ([j, T ′], am−1−i) = [j′, R′], where
0 6∈ R′. Now from (8), we know that δ([i, T ], am−1−id) ∈ F and δ([j, T ′], am−1−id) 6∈ F .

Finally, we consider elements [i, T ], [i, T ′] ∈ D, for 1 ≤ i ≤ m − 1 and T, T ′ ⊆
{0, 1, . . . , n − 2}, T 6= T ′. Without loss of generality, we can choose k ∈ T \ T ′. We
note that k 6= 0 since 0 ∈ T if and only if i = 1 ( if i = 1, then 0 ∈ T ′). Since in B the
b-transitions cycle the states 1, . . . , n − 2 and take state 0 to the sink state, we observe
that δ([i, T ], bn−1−k) ∈ F and δ([i, T ′], bn−1−k) 6∈ F .

Proof of Claim 2: We show that all elements of D are reachable as states of C. First,
[0, ∅] is reachable as the start state of C.

Using induction on
k = |T ∩ {1, . . . , n−2}|

we show that any element [i, T ], 1 ≤ i ≤ m−1, T ⊆ {0, 1, . . . , n−2} is reachable. Recall
that for [i, T ] ∈ D, 0 ∈ T if and only if i = 1.

As the base case, consider k = 0. For 1 ≤ i ≤ m−2, δ([0, ∅], cai−1) = [i, R] where R = ∅
if 2 ≤ i ≤ m−2 and R = {0} if i = 1. For i = m−1, we note that δ([0, ∅], cc) = [m−1, ∅].

Now consider an arbitrary element [i, T ], for 1 ≤ i ≤ m−1, such that T ∩{1, . . . , n−2} =
{j1, . . . , jk+1} and 1 ≤ j1 < . . . < jk+1 ≤ n− 2 for k ≥ 0. By the inductive assumption,
the element

X = [m−2, {j2−(j1−1), . . . , jk+1−(j1−1)}]

is reachable. Note that 2 ≤ jr−(j1−1) ≤ n−2, for r = 2, . . . , k+1, and hence the a- and
d-transitions on these states are self-loops in B. Then,

δ(X,ad) = [1, {0, 1, j2−(j1−1), . . . , jk+1−(j1−1)}] = [1, Y ],

and if j1 > 1, then δ([1, Y ], bj1−1) = [1, {0, j1 , . . . , jk+1}]. From this state, we can reach
[i, T ] with ai−1 if 1 ≤ i ≤ m−2, and we can reach [m−1, T ] with symbol c. In the latter
case, 0 6∈ T .

Thus, we have shown that all elements of D ⊆ Q are reachable and, therefore, Claim 2

is true.

This concludes the proof.

Lemma 10 shows that the upper bound in Lemma 9 is tight when |Σ| ≥ 4.

Theorem 11. For arbitrary m,n ≥ 3, (m − 1)2n−2 + 1 states are necessary and sufficient
in the worst-case for the catenation of, respectively, an m-state and an n-state suffix-free
minimal DFAs.

The worst-case example in Lemma 10 uses an alphabet with 4 characters. We do not
know whether the upper bound can be reached using an alphabet of size 2 or 3.
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5 Intersection and union

Note that for the complement operation of an m-state suffix-free DFA, it is easy to verify
that m states are necessary and sufficient. In the following, we consider the operations of
intersection and union.

5.1 Intersection of suffix-free regular languages

Given two DFAs A and B, we can construct a DFA for the intersection of L(A) and L(B)
based on the Cartesian product of states. For details on the Cartesian product construction,
refer to Hopcroft and Ullman [12].

Proposition 12. Given two DFAs A = (Q1,Σ, δ1, s1, F1) and B = (Q2,Σ, δ2, s2, F2), let
M = (Q1 × Q2,Σ, δ, (s1, s2), F1 × F2), where for all p ∈ Q1 and q ∈ Q2 and a ∈ Σ,

δ((p, q), a) = (δ1(p, a), δ2(q, a)).

Then, L(M) = L(A) ∩ L(B).

Since the automaton M constructed in Proposition 12 is deterministic, it follows that
mn states are sufficient for the intersection of L(A) and L(B), where |A| = m and |B| = n.
Note that mn is a tight bound for the intersection of two regular languages [23].

We assign a unique number for each state from 1 to m in A and from 1 to n in B, where
|A| = m and |B| = n. Assume that the mth state and the nth state are the sink states in A
and B, respectively. Let A∩c B denote the resulting intersection automaton that we compute
using the Cartesian product of states. By the construction, A ∩c B is deterministic since A
and B are deterministic. Therefore, we obtain a DFA for L(A) ∩ L(B). Next, we minimize
A∩c B by merging all equivalent states and removing unreachable states from the start state.

Proposition 13 (Han et al. [8]). For a state (i, j) in A∩c B, the right language L(i,j) of (i, j)
is the intersection of Li in A and Lj in B.

Since a suffix-free DFA A has the sink state as proved in Lemma 1, L(m,i) = ∅, for
1 ≤ i ≤ n, by Proposition 13, where m is the sink state of A. Therefore, we can merge all
these states. Similarly, all states (j, n), for 1 ≤ j ≤ m, of A∩c B are equivalent and, therefore,
can be merged.

Observation 14. Given suffix-free minimal DFAs A and B, all states (m, i) for 1 ≤ i ≤ n
and all states (j, n) for 1 ≤ j ≤ m of A ∩c B are equivalent.

Consider all states (1, i), for 1 < i ≤ n, of A∩c B. Since L(A) is suffix-free, the start state
of A has no in-transitions. It implies that (1, i) is not reachable from (1, 1) in A ∩c B and,
therefore, these states are useless as shown in Fig. 5. We can establish a similar result for the
the states (j, 1), for 1 < j ≤ m.

Observation 15. Given suffix-free minimal DFAs A and B, all states (1, i), for 1 < i ≤ m,
and all states (j, 1), for 1 < j ≤ n, are useless in A ∩c B.

Once we minimize A ∩c B based on Observations 14 and 15, the resulting minimal DFA
has mn − 2(m + n) + 6 states.
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Figure 5: The figure depicts the intersection automaton A∩c B constructed for two suffix-free
minimal DFAs A and B. Note that, by Observation 14, all states in the last row and in
the last column are equivalent. Similarly, by Observation 15, all states, except for the start
state (1,1), in the first row and in the first column are unreachable from (1,1).

Theorem 16. Given two suffix-free minimal DFAs A and B, mn − 2(m + n) + 6 states are
necessary and sufficient in the worst-case for the minimal DFA of L(A)∩L(B), where |Σ| ≥ 3.

Proof. Fig. 5 shows that mn − 2(m + n) + 6 states are sufficient.
We prove that the necessary condition by giving two suffix-free minimal DFAs that reach

the bound.
Assume that Σ = {a, b,#}. Let A be the minimal DFA for

L = {#w | w ∈ {a, b}∗, |w|a ≡ 0 (mod m−2)}

and B be the minimal DFA for

L = {#w | w ∈ {a, b}∗, |w|b ≡ 0 (mod n−2)}

L(A) and L(B) are suffix-free since all strings have only one occurrence of #. It is easy
to verify that |A| = m and |B| = n. Let L = L(A) ∩ L(B). We claim that the minimal DFA
for L needs mn − 2(m + n) + 6 states. To prove the claim, it is sufficient to show that there
exist a set R of mn − 2(m + n) + 6 strings over Σ that are pairwise inequivalent modulo the
right invariant congruence of L.

Let R = R1 ∪ R2, where

R1 = {λ,##},
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R2 = {#aibj | 1 ≤ i ≤ m − 2 and 1 ≤ j ≤ n − 2}.

Any string #aibj from R2 is inequivalent with λ since #aibj ·# /∈ L but λ·# ∈ L. Similarly,
#aibj is inequivalent with ## since #aibj · am−2−ibn−2−j ∈ L but ## · am−2−ibn−2−j /∈ L.
The two strings λ and ## of R1 are inequivalent as well.

Next, consider two distinct strings #aibj and #akbl from R2. Since #aibj 6= #akbl,
#aibj · am−2−ibn−2−j ∈ L but #akbl · am−2−ibn−2−j /∈ L. Therefore, any two distinct strings
from R2 are inequivalent.

Thus, all mn − 2(m + n) + 6 strings in R are pairwise inequivalent. This concludes the
proof.

5.2 Union of suffix-free regular languages

We now investigate the union of two suffix-free regular languages. We compute the union
DFA for L(A) and L(B) using the Cartesian product of states. Given two suffix-free minimal
DFAs A = (Q1,Σ, δ1, s1, F1) and B = (Q2,Σ, δ2, s2, F2), let M = (Q1 × Q2,Σ, δ, (s1, s2), F ),
where for all p ∈ Q1 and q ∈ Q2 and a ∈ Σ,

δ((p, q), a) = (δ(p, a), δ(q, a))

and F = (F1 × Q2) ∪ (Q1 × F2). Then, L(M) = L(A) ∪ L(B) and M is deterministic. Let
A ∪c B denote M . Consider the right language of a state (i, j) in A ∪c B.

Proposition 17 (Han et al. [8]). For a state (i, j) in A∪c B, the right language L(i,j) of (i, j)
is the union of Li in A and Lj in B.

Note that the two constructions for A ∩c B and A ∪c B are different. This implies that
we may not be able to apply the same approach that we used for A ∩c B for computing the
upper bound for L(A)∪L(B). For example, since L(n,j) = Ln ∪Lj 6= ∅ by Proposition 17, all
states (m, i) and (j, n) for 1 ≤ i ≤ n and 1 ≤ j ≤ m, in A∪c B are not necessarily equivalent.
Thus, these states cannot be merged. On the other hand, we observe that all states (1, i)
and (j, 1), for 1 < i ≤ n and 1 < j ≤ m, are useless since L(A) and L(B) are suffix-free.
Therefore, we minimize A ∪c B by removing these m + n − 2 states.

Theorem 18. Given two suffix-free minimal DFAs A and B, mn − (m + n) + 2 states are
necessary and sufficient in the worst-case for the minimal DFA of L(A)∪L(B), where |Σ| ≥ 5.

Proof. Let A∪c B be the resulting DFA for L(A) ∪L(B) by the Cartesian product of states.
Since we can remove all states (1, i) and (j, 1), for 1 < i ≤ n and 1 < j ≤ m, it is clear that
mn − (m + n) + 2 states are sufficient.

We present two suffix-free minimal DFAs whose union reaches the bound. Let A be the
minimal DFA for

{#w | w ∈ {a, b, c}∗, |w|a ≡ 0 (mod m−2)}

and B be the minimal DFA for

{#w | w ∈ {a, c, d}∗, |w|c ≡ 0 (mod n−2)}

over Σ = {#, a, b, c, d}.
A has m states, which include one state to read the initial # and one sink state, and all

strings of L(A) do not have d’s. Similarly, B has n states and all strings of L(B) do not have
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b’s. We argue that the minimal DFA for L = L(A) ∪L(B) requires mn− (m + n) + 2 states.
Let R be the set consisting of λ, ## and the following strings:

#aicj , for 0 ≤ i ≤ m − 3 and 0 ≤ j ≤ n − 3, (9)

#bai, for 0 ≤ i ≤ m − 3, (10)

#dci, for 0 ≤ i ≤ n − 3. (11)

We show that all strings of R are pairwise inequivalent in the right-invariant congruence
defined by the language L.

1. λ is not equivalent with any other string of R since λ followed by # can produce a string
of L. However, this property does not hold for any other string of R.

2. ## is not equivalent with any other string of R since no string can complete ## to be
a string of L. However, this property does not hold for any other string of R.

3. Consider two strings in (9): #axcy and #asct, where (x, y) 6= (s, t). If x 6= s (y 6= t case
is symmetric), then #axcy · bam−2−s /∈ L but #asct · bam−2−s ∈ L. Therefore, no two
strings of (9) are equivalent.

4. Similarly to the third case, no two strings of (10) are equivalent and no two strings of
(11) are equivalent.

5. We show that any string of (9) cannot be equivalent with a string of (10): Consider
#axcy and #baz for 0 ≤ x, z ≤ m− 2 and 0 ≤ y ≤ n− 2. Now #axcy(cn−2−yd) ∈ L but
#baz(cn−2−yd) /∈ L since no string in L can have both b and d.

6. Any string of (10) cannot be equivalent with a string of (11): Consider #bai and #dcj .
Now #bai(bam−2−i) ∈ L but #dcj(bam−2−i) /∈ L.

7. Comparing a string of (9) and a string of (11) is analogous to the sixth case.

Thus, the number of distinct equivalence classes of the minimal DFA for L is at least the
cardinality of the set R. R (as defined above) has

2 + (m − 2)(n − 2) + (m − 2) + (n − 2) = mn − (m + n) + 2

elements. Therefore, mn − (m + n) + 2 states are necessary.

6 Conclusions

The state complexity of an operation for regular languages is the number of states that are
necessary and sufficient for the minimal DFA that accepts the language obtained from the
operation. Yu et al. [23] studied the operational state complexity of general regular languages
and Han et al. [8] examined the state complexity of basic operations on prefix-free regular
languages. Since suffix-freeness is reversal of prefix-freeness, it was a natural problem to
examine the state complexity of basic operations on suffix-free regular languages.

Based on the structural property that a suffix-free minimal DFA must be non-returning,
we have tackled Kleene star, reversal, catenation, intersection and union cases and obtained
the tight bound for each operation.
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operation regular languages prefix-free case suffix-free case

L∗
1 2m−1 + 2m−2 m 2m−2 + 1

LR
1 2m 2m−2 + 1 2m−2 + 1

L1 · L2 (2m − 1)2n−1 m + n − 2 (m − 1)2n−2 + 1
L1 ∩ L2 mn mn − 2(m + n) + 6 mn − 2(m + n) + 6
L1 ∪ L2 mn mn − 2 mn − (m + n) + 2

Figure 6: Operational state complexity of general, prefix-free and suffix-free regular languages.

Fig. 6 shows the comparison table of the state complexity on regular languages, prefix-
free regular languages and suffix-free regular languages. We have established the tight state
complexity bounds for each of the operations using languages over a fixed alphabet. However,
the constructions usually require an alphabet of size 3 or 4 and, then, for most operations,
it is open whether or not the upper bound for the state complexity of each operation can be
reached using a small size alphabet such as |Σ| = 2 or 3.
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