Technical Report No. 2007-537
Parallelism in quantum information processing defeats
the Universal Computer

Marius Nagy and Selim G. Akl
School of Computing

Queen’s University
Kingston, Ontario K7L 3N6
Canada

Email: {marius,akl}@cs.queensu.ca

Abstract

This paper is structured around the idea that a finite Universal Computer cannot
be realized and presents in detail a series of unconventional computing paradigms
supporting this idea from a quantum mechanical perspective.

1 Introduction

Some of the computations carried out today are qualitatively different from those performed
more than half a century ago, when the age of computers was only just beginning. The
traditional concept of computation is best captured by the functioning of the Turing machine.
A sequence of operations (or transformations) forming the algorithm is applied to a set of
input data to produce an output (or result). There are no space and time limitations, nor
any restrictions imposed on the input or output data. The whole input is available at the
outset (on the tape, in the case of the Turing machine) and the result is reported (placed
on the tape) when the computation terminates (assuming it does). The majority of the
computations performed today on various electronic computers and computing devices fit
the above description. We refer to them as conventional computing paradigms and, given
enough memory and time, they can be solved by any of today’s computers. The Turing
machine stands as a mathematical model, an abstract prototype for any of these computing
devices.

However, in time, this rather simplistic view on computation has been challenged by
increasingly demanding applications and real-world problems. For example, we need better
solutions, faster, to problems whose input specifications may vary with time. Often, our
results need to be obtained before certain deadlines, or else various penalties can be applied.
The information processing tasks we face today or those we discover to take place in Nature

often possess attributes which make them unsuitable for a Turing machine. These attributes
usually describe the dynamic nature of a computation, from the way the input is presented,
continuing with the characteristics of the algorithm operating on the input data and ending
with the possible constraints that can be imposed on the output. We call such a computation
unconventional, as opposed to the general pattern exhibited by Turing computations. In this
paper we address five unconventional computing paradigms (enumerated below), sharing the
generic property that the input variables are temporally and/or spatially interconnected.
Each of these paradigms is exemplified through a concrete example provided by quantum
mechanics.

With the advent of unconventional computing paradigms, the concept of universality too,
needs to be revised, or at least clarified. To this end, parallelism may offer the means to show
that a Universal Computer with fixed and finite physical characteristics (speed, number of
processing units, etc.) cannot be built [1]. An infinite hierarchy of computing devices exists,
with each machine capable of simulating any one below it in the hierarchy, but none above,
because it lacks the required number of processing elements necessary for coping with the
degree of parallelism inherent in certain applications.

In the general framework of evolving computations, whose characteristics vary during
their execution, there are many paradigms for which a parallel computing approach is most
appropriate, if not vital for the success of the computation [3]. Here are some examples:

e the computational complexity of a step in a certain computation may depend on the
time when the step is executed or on the order of execution (rank) of that step within
an algorithm that solves the problem at hand.

e the variables upon which the algorithm is supposed to act are affected by the passage
of time.

e the input data are interconnected in such a way that operating on any one value
inevitably disturbs the others.

e at each step of the computation, a global, mathematical constraint has to be obeyed.

In each of the above cases, a problem instance of size n can only be solved by a machine
equipped with at least n processing units and the solution cannot possibly be simulated by
another machine with fewer processors. This observation is at the heart of the impossibility
of achieving universality in computing. In what follows, we show that quantum information
processing provides excellent examples of evolving computing paradigms, and the need for
parallelism in this newly emerged unconventional field transforms the Universal Computer
into a myth.

The remainder of the paper is structured as follows. In the next section the reader is
familiarized with the concept of evolving computations, and five examples of such comput-
ing paradigms are described therein. For each of these paradigms, a quantum mechanical
instance is presented in the ensuing three sections. Section 3 shows how the procedures for
computing the quantum Fourier transform and its inverse can be decomposed into steps of
rank-varying computational complexity. In a practical setting, quantum decoherence places

a hard deadline on when these computations have to be completed, offering a typical exam-
ple of time-varying variables. Fortunately, the use of a parallel architecture can reduce the
execution time and help complete the computation before the sensitive quantum information
leaks into the surrounding environment.

Section 4 is concerned with quantum error-correction schemes from the viewpoint of
time-varying computational complexity. In section 5, we focus on entanglement among
qubits, first, as a quantum instance of the interacting variables paradigm. Since, technically,
entanglement is a mathematical constraint imposed on the quantum state of the whole
ensemble, we then assert that a quantum computation that has to maintain entanglement at
all times belongs to the paradigm of computations obeying a global condition. Furthermore,
such a computation can only be carried out by manipulating the whole ensemble as a single
entity (in other words, acting in parallel on all components). Finally, section 6 draws some
important conclusions based on the evidence presented in the paper.

2 Evolving computations

Evolution (or merely change) is a fundamental attribute of many systems that we observe
and investigate, whether they are physical, biological, economic, social or of any other na-
ture. Yet, until recently, computational systems whose characteristics change during the
computational process itself did not receive much attention. In this section, we describe five
computing paradigms, labeled unconventional precisely because of their dynamic nature.

At an abstract level, the following generic problem needs to be solved: a set of n input
variables g, x1, ..., 2, 1 have to be read and a certain function F(zy, z1,...,2, 1) must be
computed and the result reported. In the first two of the five cases to be described, the
focus is on the algorithm employed to compute the function . What evolves during the
computation is the complexity of each step in the algorithm.

2.1 Unconventional Computational Complexity

When analyzing the computational complexity of a given algorithm, we usually focus on how
this quantity varies as a function of the problem size, without paying too much attention
to how the complexity of each step in the algorithm varies throughout the computation.
Though in many cases the complexity of each step is a constant, there are computations for
which the cost of executing essentially similar steps is different from one step to another.

2.1.1 Rank-varying computational complexity

One factor that can dictate the complexity of a step is its rank, defined as the order of
execution of that step. For instance, if the cost of executing the i*" step of an algorithm is
c(i) = 2 elementary operations or time units, then the computational complexity of a step
grows exponentially with its rank, for that respective algorithm. In other cases, it may be
that the computational complexity of a step actually decreases with the rank. An algorithm
made up of n steps for which ¢(i) =n —i+ 1 for i = 1,...,n illustrates such a situation.

Examples of this kind are hardly new. Euclid’s algorithm for computing the greatest
common divisor of two numbers executes the same basic operation (a division) at each
step, but the size of the operands (and implicitly the complexity of the operation) decreases
continually. Algorithms for which an amortized analysis can be applied also make good
examples of rank-varying computational complexity. Incrementing a binary counter [11] is a
procedure in which the number of bit flips at each step is not constant, though it is neither
strictly increasing nor strictly decreasing with the rank.

2.1.2 Time-varying computational complexity

Alternatively, the relentless passage of time can directly influence the computational com-
plexity of a given step in the algorithm. The difference between a rank-driven and a time-
driven computational complexity can probably be synthesized best in the following manner.
If the cost of executing step S; depends only on the state of the system after executing the
previous j — 1 steps, regardless of how much time was consumed to reach that state, then we
clearly have an example of rank-varying computational complexity. But if the complexity
of S; is a function of the particular moment in time when that step is executed, then what
we have is a procedure with steps of time-varying computational complexity. For example,
if the computational complexity of S; is described by the function c¢(t) = 22 then the com-
putational resources required to complete that step are rapidly growing with the moment in
time when S; is actually executed.

2.2 Unconventional Computational Variables

For the three remaining examples of unconventional computing paradigms, the focus moves
from the algorithm to the input variables xg, x1, . .., x,_1, which now determine the dynamics
of the system.

2.2.1 Time-varying variables

In the paradigm dealing with time-varying variables, time plays again the main role. Each
argument of function F is itself a function of time: x(t), z1(t), ..., Tp—1(t). At each time
unit, the values assumed by the input variables change in such a way that the new value
cannot be predicted from the former, nor the former recovered from the latter. Certainly, this
makes the computation of F(x(tp),...,2n—1(to)) at the precise moment ¢ = ¢, a challenging
task, in case we do not have the capability of reading all n input variables, in parallel, at
the right moment.

2.2.2 Interacting variables

But even if the input variables are not affected by the passage of time, the computational
environment may still change during the computation. In the next paradigm that we de-
scribe, it is the interactions among mutually dependent variables, caused by an interfering
agent (performing the computation) that is the origin of the evolution of the system un-
der consideration. Thus, a relationship exists between xg,x,...,r,_; that connects them

together. Any attempt to read the value of any one variable will inevitably and unpre-
dictably disturb the values of the remaining variables. More precisely, the act of read-
ing z;, for any i € {0,1,...,n — 1}, causes the system to make a transition from state
(X0, T1y oy Tiy oo vy Tpy1) tO (24, 2y, ... 2k, ..., 20 ;). In this way, some of the values needed
in the computation of F may be lost without possibility of recovery. This is the hallmark of
the interacting variables paradigm.

2.2.3 Computations obeying a global condition

Finally, the relationship among the input variables may take the form of a global property
P(xo,x1,...,2, 1) that characterizes the initial state of the system and which must be
maintained throughout the computation. In particular, if the effect of the computation is
to change z; to z} at some point, then P(xg,x1,...,2},...,z,_1) must be true for the new
state of the system. If the property P is not satisfied at a given moment of the computation,
the latter is considered to have failed.

As the following sections prove it, each of these five unconventional paradigms of com-
putation admits a quantum mechanical instance that requires a parallel approach for a
successful outcome.

3 Quantum Fourier Transform

The Fourier transform is a very useful tool in computer science and it proved of crucial
importance for quantum computation as well. Since it can be computed much faster on
a quantum computer than on a classical one, the discrete Fourier transform allows for the
construction of a whole class of fast quantum algorithms. Shor’s quantum algorithms for
factoring integers and computing discrete logarithms [26] are the most famous examples in
this category.

The quantum Fourier transform is a linear operator whose action on any of the compu-
tational basis vectors |0), |1),---,|2" — 1) associated with an n-qubit register is described by
the following transformation:

2mijk /2™ kY. 0 < < omn _ 1. 1
i) — 5 % Z B, 0< (1
However, the essential advantage of quantum computation over classical computation is
that the quantum mechanical principle of superposition of states allows all possible inputs
to be processed at the same time. Consequently, if the quantum register is in an arbitrary
superposition of the basis vectors

2n—1

> wili),

Jj=0

then the quantum Fourier transform will rotate this state into another superposition of the
basis vectors

2" —1

k=0

in which the output amplitudes ¥, represent the discrete Fourier transform of the input
amplitudes z;. Classically, we can compute the numbers y; from z; using ©(22") elementary
arithmetic operations in a straightforward manner and in ©(n2") operations by using the
Fast Fourier Transform algorithm.

In contrast, a circuit implementing the quantum Fourier transform requires only ©(n?)
elementary quantum gates. Such a circuit can be easily derived if equation (1) is rewritten
as a tensor product of the n qubits involved:

(10) + €279 1)) @ (|0) + 270911 [1)) ® - - @ (|0) + €270 I1I=In [1))

s 2)

lj1ja - jn) —

using the binary representation jijs - - - j, of j and binary fractions in the exponents (for full
details see [20]).

Note that each Fourier transformed qubit is in a balanced superposition of |0) and |1).
These qubits differ from one another only in the relative phase between the |0) and the |1)
components. For the first qubit in the tensor product, j, will introduce a phase shift of 0
or 7, depending on whether its value is 0 or 1, respectively. The phase of the second qubit
is determined (controlled) by both j, and j, ;. It can amount to = + 7/2, provided j, ;
and j, are both 1. This dependency on the values of all the previous qubits continues up
to (and including) the last term in the tensor product. When |j;) gets Fourier transformed,
the coefficient of |1) in the superposition involves all the digits in the binary expansion of j.

In the case of each qubit, the 0 or 7 phase induced by its own binary value is implemented
through a Hadamard gate. The dependency on the previous qubits is reflected in the use
of controlled phase shifts, as depicted in Figure 1. In the figure, H denotes the Hadamard
transformation

111
wegsl A
while the gate Rj implements a /2% ! phase shift of the |1) component, according to the
unitary transformation

1 0
Ry = l 0 e2ri/2*] .

3.1 Rank-varying complexity

Computing the quantum Fourier transform and its inverse can also be seen as examples of
algorithms with rank-varying complexity. According to the quantum circuit above, we need
n Hadamard gates and (n—1)+4(n—2)+- - -+1 conditional rotations, for a total of n(n+1)/2
gates required to compute the Fourier transform on n qubits. But this total amount of work

li> R [Ru | o>+ &4k 1>

li,> . H Ro2 1 Rt | 0>+ &% h 1>
lis> H o>+ 8™ b 1>
> o H}10>+8™ 1>

Figure 1: Quantum circuit performing the discrete Fourier transform.

oo+ 8 (R) i>

210.j ...
0>+&"2h 1> Ry HRL H li,>

0>+ ™k > RI}-{H] ln1>
0> + &0 |l>—E li>

Figure 2: Quantum circuit performing the inverse Fourier transform.

is not evenly distributed over the n qubits. The number of gates a qubit needs to be passed
through is in inverse relation with its rank. Thus, |j;) is subjected to n elementary quantum
gates, n — 1 elementary unitary transformations are applied to |js), and so on, until |j,),
which needs only one basic operation.

If we break down the quantum Fourier transform algorithm into n steps (one for each
qubit involved), then its complexity varies with each step. Starting with |j;), the time
needed to complete each step decreases over time. Since the rank of each step dictates
its complexity, the circuit implementing the quantum Fourier transform is an example of a
rank-varying complexity algorithm.

Naturally, the computation of the inverse quantum Fourier transform can also be decom-
posed into steps of varying complexity. Reversing each gate in Figure 1 gives us an efficient
quantum circuit (depicted in Figure 2) for performing the inverse Fourier transform. Note
that the Hadamard gate is its own inverse and R,t denotes the conjugate transpose of Ry:

1 0
RIJL = l O e—27ri/2k] :

Getting back to the original |jijo---j,) from its Fourier transformed expression has a
certain particularity however. Because of the interdependencies introduced by the controlled
rotations, the procedure must start by computing |j,,) and then work its way up to |j;). The
value of |j,) is needed in the computation of |j,_1). Both |j,) and |j,_1) are required in
order to obtain |j,_5). Finally, the value of all the higher rank bits are used to determine |j;)
precisely. Thus, computing the inverse Fourier transform by the quantum circuit illustrated
in Figure 2 is a procedure the complexity of whose steps increases with their rank.

7

Can a parallel approach be employed in order to counter this variation in complexity
and make all steps take a constant amount of time to execute? In the case of the quantum
Fourier transform, it is interesting to note that strict sequentiality is enforced by the laws
of quantum mechanics, but we still have a chance to speed up the computation, provided
we restrict either the input or the output to be classical. No parallel algorithm exists in the
general case, when an arbitrary superposition of the basis vectors is Fourier transformed and
we are not allowed to measure the output. The reason for this impossibility is the quantum
mechanical nature of the qubits controlling the phase shifts in Figures 1 and 2. Such a
controlled rotation corresponds to a two-qubit gate and we need to apply, in parallel, a
number of two-qubit gates, where the control qubit is the same in all gates. Since we cannot
gain knowledge of the control qubit’s state through measurement and cloning an unknown
quantum bit is forbidden by the laws of quantum mechanics, any attempt to parallelize the
procedure in the general case is doomed to failure.

However, if the Fourier transform step comes right before measuring in a quantum al-
gorithm, then a parallel solution that can reduce the total running time can be devised.
This is not too much of a constraint though, since virtually all quantum algorithms using
some form of Fourier transform to interfere the multiple computational paths are follow-
ing it with a measurement of the quantum register. In particular, this is also true in the
case of Shor’s quantum algorithms for factoring integers and computing discrete logarithms.
Before presenting the details of the parallel architecture designed to compute the quantum
Fourier transform, we first describe the most efficient sequential way of performing the same
computation, under the assumption that the output is measured (and is, therefore, classical).

3.2 Semiclassical solution

Although the circuits for computing the quantum Fourier transform and its inverse are
efficient in terms of the total number of gates employed, the majority of these gates operate
on two qubits. This makes a practical implementation difficult, since arranging for one qubit
to influence another in a desired way is far greater a challenge than evolving a single-qubit
closed quantum system in accordance with any unitary transformation.

A method to replace all the two-qubit gates in the circuit performing the quantum Fourier
transform by a smaller number of one-qubit gates controlled by classical signals has been
developed by Griffiths and Niu [14]. Their approach takes advantage of the fact that the
roles of the control and target qubits in any of the two-qubit gates required to carry on
the computation of the quantum Fourier transform are interchangeable. Consequently, the
quantum circuit in Figure 1 is equivalent to the one depicted in Figure 3 (for inputs restricted
to four qubits).

Note that, from this new perspective, the computation of the quantum Fourier transform
appears to be a procedure whose steps are of increasing complexity. However, under the
assumption that the Fourier transform is immediately followed by a quantum measurement,
the complexity of each step in the computation can be made constant. Since a control qubit
enters and leaves a two-qubit gate unchanged, it follows that the top qubit in Figure 3 yields
the same result regardless of whether it is measured as it exits the circuit or immediately
after undergoing the Hadamard transform. In the latter case, the result of the measurement

JpHﬂ . ® Ke
I R, — H T ® ks
I R3—R— H T ko
Iy Ri—RsRo— H [k

Figure 3: Alternative arrangement of gates in the circuit performing the quantum Fourier
transform.

h—H ky
I RoH ks
I R3RoH ko
Iy R4R3RoH kg

Figure 4: Semiclassical circuit for computing the quantum Fourier transform.

can be used to determine the phase shift that needs to be applied on the second qubit, before
it too is subjected to a Hadamard transform and then measured. The phase computed for
the second qubit together with the result of the second measurement are passed down as
classical inputs for the rotation applied to the third qubit.

The computation proceeds in this manner all the way down to the last qubit, with a
phase rotation, a Hadamard gate and a measurement being performed at each step. The
process is illustrated in Figure 4, where double lines have been used to denote a classical
signal, according to the usual convention. Although the phase shift applied to each qubit
is considered a single operation, conceptually, it is a combination of the gates depicted in
the corresponding box, with each component being applied only if the controlling qubit was
measured as 1.

This semiclassical approach to computing the quantum Fourier transform achieves opti-
mality in terms of the number of elementary unitary transformations that have to be applied.
It also has the important advantage of employing only quantum transformations acting on
a single qubit at a time. However, there is still room for improvement, as the total time
needed to complete the computation can be further squeezed down if parallelism is brought
into play. In what follows, we show how a quantum pipeline architecture is able to speed up
the computation of the Fourier transform [17].

3.3 Parallel approach

The solution developed in [14] to reduce the complexity of the quantum Fourier transform
envisages a purely sequential approach, which is motivated by the same data dependency
that causes the complexity of a step to vary with its rank. Nevertheless, there is a certain

j1 - H - Measure ——=— k;, k>, k3, k4

N
S

Figure 5: Quantum pipeline array for computing the Fourier transform.

— R

degree of parallelism that is worth exploiting in the computation of the quantum Fourier
transform (or its inverse) in order to minimize the overall running time.

Our parallel approach is based on the observation that once a qubit has been measured,
all phase shift gates classically controlled by the outcome of that measurement can be applied
in parallel. The arrangement, again for just four qubits, is shown in Figure 5. The one-qubit
gates are ordered into a linear array having a Hadamard transform at the top and followed
by a 7/2 phase shift gate. The phase shift induced by any other gate down the array is just
half the rotation performed by the immediately preceding gate.

This architecture allows Ry, R3 and R4 to be performed in parallel during the first cycle.
Since each phase shift gate acts on a different qubit, they can all be applied simultaneously,
if the top qubit yielded a 1 upon measurement. In the second cycle, each qubit in the
array travels up one position, except of course for the top one, which has already been
measured. Now, depending on the outcome of the second measurement, Ry and R3 can be
simultaneously effected on the corresponding qubits. In the third cycle, only R, is needed
and only if the control is 1. The computation ends with the last qubit reaching the Hadamard
gate and being measured afterwards. A formal description of the procedure, in the general
case, is given below.

Procedure Parallel_Quantum_Fourier _Transform

Input: |12 Jn)
Output: kiky---k,
for 1 =1 ton do
|3i) «— Hlji);
Measure |j;) as k,_;i1;
if k,_;11 =1 then
for | =2ton—i+ 1 do in parallel
|Jivi—1) <— Bu|fiti-1);
|7i+1—1) moves one position up in the array

10

endfor

endif
endfor

In the worst case, when all qubits are measured as 1, there is no difference between
the parallel algorithm outlined above and the sequential solution envisaged by Griffiths and
Niu [14] with respect to the overall running time. Assuming, for analysis purposes, that
measuring a qubit, applying a phase shift, and performing a Hadamard transformation, each
takes one time unit, then the total time necessary to complete the Fourier transform on a
quantum register with n qubits is 3n — 1, as the top qubit in both the sequential circuit of
Figure 4 and the parallel circuit of Figure 5 does not require a phase shift. This analysis
only considers the quantum operations that need to be performed. The sequential method
also requires some classical computation, when the phase shift that is to be applied to each
qubit is calculated.

However, in the average case, some of the classical signals controlling the array of phase
shift gates in Figure 5 will have been observed as 0, meaning that no phase shifts have to
be performed during those respective cycles. In contrast, the sequential solution depicted in
Figure 4 requires the application of a phase shift at every step following the first measurement
with outcome 1. If the expected probability of a measurement yielding 0 equals the expected
probability to observe a 1 following a measurement, then the running time of the parallel
solution is shorter than the sequential running time by a difference proportional to the time
it takes to effect a number of O(n) phase shift gates, where n is the size of the input register.

The difference between the sequential running time and the parallel running time is
maximum when |j;) is measured as 1 and all the other qubits are observed in the state 0.
In this case, the circuit in Figure 4 still performs n — 1 phase shifts, for a total running time
of 3n — 1 time units, while the circuit in Figure 5 executes all n — 1 phase shifts in parallel
during the first cycle, thus completing the computation in 2n + 1 time units.

The second advantage of the parallel approach is that the phase shift gates that need
to be applied during the computation are known at the outset, making it easy to set them
up beforehand in order to form the required linear array architecture. The systolic mode of
operation of the quantum array compensates for the fixed characteristics of each gate, the
qubits traversing the array to undergo a specific quantum evolution at each node. In the
sequential approach, the phase shift applied to each qubit is not known at the outset, as it
is computed on the fly based on the information about the measurements performed so far
and transmitted as classical signals. This means that the gates effecting the necessary phase
shifts in the semiclassical approach of Griffiths and Niu [14] have to be “programmed” or
adjusted during the computation, in order to accommodate a discrete set of possible values
for the phase shift.

The semiclassical Fourier transform and its parallelization are applicable to those quan-
tum computations in which the Fourier transform immediately precedes a measurement of
the qubits involved in the computation. Furthermore, the quantum systolic array archi-
tecture works equally fine if the input is already classical, in which case the restriction to
measure the qubits after applying the Fourier transform can be lifted altogether.

When ji,js,---,Jn are classical bits, the topology of the circuit in Figure 5 remains
unchanged, except that no measurements are performed and the flow of data through the

11

|0> " eZT[lO.j4|1> o] H -

0>+ &Mk s —<— Ry

0>+ &2kl 1 —<— Ry Control Iy, b2, 13, Ig

|O> + eZTUO-111213J4 |1> - R4

Figure 6: Quantum pipeline array for computing the Fourier transform on classical inputs.

linear array is reversed, as shown in Figure 6. As more data are fed into the linear array
through the Hadamard gate, after having “controlled” the parallel execution of a set of phase
shifts, the computational complexity of each step increases with its rank. When j; enters the
array, only the Hadamard gate is active, but with each consecutive step, a new gate down
the array joins the ones above it to operate on the qubits traversing the array. Because
these gates operate in parallel, the execution time of each step is maintained constant. Also
note that, in this case, all outputs are simultaneously obtained during the last step of the
computation.

The overall parallel running time, in the worst case, is therefore 2n — 1 time units, as
there are no measurements to perform. In most cases, however, the parallel running time is
smaller than the time needed to complete the computation in a purely sequential manner,
where each qubit is dealt with one after the other, in decreasing order of their ranks.

Although applying the quantum Fourier transform on a classical input is of little value
for quantum computing, the situation is different for quantum cryptography. Distributing
classical keys through quantum means is a procedure that may use the quantum Fourier
transform and its inverse as encoding and decoding algorithms to protect vital information
while in transit [18]. Naturally, the parallel approach employed for the computation of the
direct Fourier transform is also applicable, with the same results, to the circuit in Figure 2,
performing the inverse Fourier transform.

The difficulty of devising a parallel algorithm for computing the quantum Fourier trans-
form comes from the data dependency between the different steps of the procedure. In most
cases, it is exactly this precedence among the steps composing an algorithm that determines
the variation in complexity. As a consequence, it is not easy, in general, to design a parallel
solution to a problem whose steps are characterized by rank-varying complexity. The data
dependency may impose a strict order of execution, making the resulting algorithm inher-
ently sequential (think about Euclid’s algorithm again). But, there is also a positive aspect
of the data dependency characterizing the quantum Fourier transform. It may be exploited
in cryptographic applications, for example to increase the security and intrusion detection
rate in quantum key distribution protocols [18].

12

On the other hand, perhaps there exist computations made up of steps of various rank-
dependent complexities, for which the order of execution is of no consequence to the correct-
ness of the computation. Imagine, for instance, a task made up of n steps: Si, 9, ..., Sy,
where the steps can be executed in any order, but the more steps we execute before a certain
step S; (1 < j < mn), the more time it will take to complete S;. For example, S; may require
i elementary operations (time units) if executed ", for i« = 1,2,...,n. This rank-driven
increase in complexity may be due to how many pieces of data have to be taken into con-
sideration at each consecutive step, how the data were affected by executing the previous
steps, or it may be justified by the size of the partial solution that has to be constructed at
each step.

In any case, the problem of coping with steps of ever increasing complexity is avoided
altogether by a parallel machine endowed with n processing units. All steps would then be
executed simultaneously, and since each step has the rank 1 in such a parallel approach,
the computational complexity is kept constant (one time unit, in our example) for all steps.
The difference between a sequential and a parallel approach is even more dramatic if the
complexity of a step grows faster with its rank. In the case where step S; (1 < j < n) needs
2¢ elementary operations (time units) to be completed, if executed ", i = 1,2,...,n, the
benefits of using a parallel approach are much higher.

. From the research viewpoint adopted in this paper, it remains an open problem to inves-
tigate if there are quantum instances belonging to the rank-varying computational complexity
paradigm for which there is no
pre-determined order of execution of the steps composing the algorithm. Perhaps the re-
versible nature of quantum evolutions may play some role, in the sense that when a step is
executed, it must first undo the transformations performed by all previously executed steps.

The difference in time complexity between the sequential approach and the parallel one, in
the computation of the direct or inverse quantum Fourier transform, may seem insignificant
from a theoretical perspective, but it proves essential under practical considerations, as we
show next.

3.4 Quantum decoherence

Qubits are fragile entities and one of the major challenges in building a practical quantum
computer is to find a physical realization that would allow us to complete a computation
before the quantum states we are working with become seriously affected by quantum errors.
In an ideal setting, we evolve our qubits in perfect isolation from the outside world. But
any practical implementation of a quantum computation will be affected by the interactions
taking place between our system and the environment. These interactions cause quantum
information to leak out into the environment, leading to errors in our qubits. Different types
of errors may affect an ongoing computation in different ways, but quantum decoherence, as
defined below, usually occurs extremely rapidly and can seriously interfere with computing
the quantum Fourier transform and its inverse.

In the context of a quantum key distribution protocol [18], consider the task of recovering
the original (classical) bit string j = jij2 - - - jn from its quantum Fourier transformed form.
The circuit performing this computation (see Figure 2) takes as input n qubits. The state

13

of each qubit can be described by the following general equation:

1 P
|r) = ﬁm + ﬁll%

where the relative phase 0, characterizing the qubit of rank £, depends on the values of bits

1<k<n (3)

Jks Jk+1s° "5 Jn- LThe corresponding density operator is given by
1 ek €0k 1
pre =) (¥nl = S10)(0] + ——[0) (L] + —=[1) 0] + S [1) (L], (4)
or in matrix form
1 1 e
szélewk 1] (5)

The diagonal elements (or the populations) measure the probabilities that the qubit is
in state |0) or |1), while the off-diagonal components (the coherences) measure the amount
of interference between |0) and |1) [10]. Decoherence then, resulting from interactions with
the environment, causes the off-diagonal elements to disappear. Since that is where the
whole information carried by a qubit is stored, the input qubits for computing the inverse
Fourier transform are very sensitive to decoherence. When they become entangled with the
environment, the interference brought about by the Hadamard gate is no longer possible, as
the system becomes effectively a statistical mixture. In other words, decoherence makes a
quantum system behave like a classical one.

Naturally, this process is not instantaneous, but it usually occurs extremely rapidly,
subject to how well a qubit can be isolated from its environment in a particular physical
realization. Because of decoherence, we must obtain the values of 7, j2,- -+, j, before time
limit 0, after which the errors introduced by the coupling with the environment are too
serious to still allow the recovery of the binary digits of j.

The precise value of § will certainly depend on the particular way chosen to embody
quantum information, but if § lies between the parallel completion time and the sequential
completion time, then the quantum pipeline array may be the only architecture capable to
precisely recover all digits in the binary expansion of j. From a different perspective, the
parallel solution allows for longer bit strings to be transmitted between the communicating
parties, thus achieving better scalability over the purely sequential approach.

Griffiths and Niu [14] also point to decoherence as a possible problem when discussing
their semiclassical solution to computing the quantum Fourier transform, and suggest to
counter it by arranging the computation in such a way that the more significant bits of the
input register are produced earlier than the less significant ones. This may or may not be
possible, depending on the particular characteristics of a certain application. In the case
of the inverse Fourier transform used as a decoding method in a quantum key distribution
protocol [18], starting to work early on higher rank qubits is not possible because the rank of
each qubit is not disclosed until the second stage of the protocol, when all qubits are avail-
able to the receiving party. In such a situation, the parallel approach previously described
can make the difference between success and failure when computing the quantum Fourier
transform or its inverse in a practical setting. Alternatively, since the overall running time

14

scales up with the number of input qubits, parallelism may be a way to improve scalability
and still complete the computation before decoherence effects take hold. In this context, we
emphasize that scalability and decoherence are the two most important issues in designing
a practical quantum computer.

3.5 Time-varying variables

In this section we have seen that the computation of the Fourier transform by quantum
means belongs to the class of computations in which the complexity of each step depends
on its rank. In addition, if we also take into consideration the properties of the computa-
tional environment, we are faced with the negative effects caused by quantum decoherence.
Formally, the data stored in the quantum register before time limit ¢ is significantly dif-
ferent from what the same qubits encode after the decoherence threshold §. The coupling
between our qubits and their surrounding environment effectively places a hard deadline on
the computation. After this deadline, the input data (variables) will have changed and if
the computation is not yet complete, it has inevitably failed. From this perspective, the
computation of the quantum Fourier transform (whether direct or inverse) in the presence
of decoherence is an example of the paradigm dealing with time-varying variables.

As we have demonstrated above, parallelism can help us cope with variables whose values
change over time. The use of a parallel approach becomes critical when the solution to a
certain problem must accommodate a deadline. In our case, quantum decoherence places an
upper bound on the scalability of computing the quantum Fourier transform or its inverse,
and the only chance to reach beyond that limit is through a parallel solution.

4 Quantum error-correction

In the examples presented in the previous section, the complexity of each step evolves with
its rank. The more steps are executed before the current one, the higher the computational
resources required to complete it. In this section, we still focus on steps of variable com-
plexity, but in this case the variation is time driven rather than rank driven. In other words,
we can have a high computational complexity even for the first step, if we allow some time
to pass before starting the computation. The amount of computational resources required
to successfully carry out a certain step are directly proportional with the amount of time
elapsed since the beginning of the computation. We illustrate this paradigm through the use
of error-correcting codes employed to maintain a quantum computation error-free.

The laws of quantum mechanics prevent, in general, a direct application of the classical
error-correction techniques. We cannot inspect (measure) at leisure the state of a quantum
memory register to check whether an ongoing computation is not off track without the risk
of altering the intended course of the computation. Moreover, because of the no-cloning
theorem, quantum information cannot be amplified in the same way digital signals can.
Correcting quantum errors certainly requires much more ingenuity than fixing classical bits,
but the basic idea of using redundancy is still useful.

Like in the classical case, the information contained in a qubit is spread out over several
qubits so that damage to any one of them will not influence the outcome of the computation.

15

In the quantum case, though, the encoding of the logical qubit is achieved through the use
of specific resources, by entangling the logical qubit with several ancilla qubits. In this way,
the information in the state of the qubit to be protected is spread among the correlations
characterizing an entangled state. Paradoxically enough, entanglement with the environment
can be fought back using quantum error-correcting codes based on entanglement [23].

4.1 Quantum codes

The construction of all quantum error-correcting codes is based on the surprising, yet beau-
tiful idea of digitizing the errors. How can quantum errors be digitized when, as the variables
they affect, they form a continuum? The answer lies in the linear nature of quantum me-
chanics. Any possible error affecting a single qubit can be expressed as a linear combination
of no errors (I), bit flip errors (X), phase errors (Z) and bit flip phase errors (Y'), where I,
X, Z and Y are the Pauli operators describing the effect of the respective errors. General-
izing to the case of a quantum register, an error can be written as)_; e; E; for some error
operators F; and coefficients ¢;. The error operators can be tensor products of the single-bit
error transformations or more general multibit transformations. An error correcting code
that can undo the effect of any error belonging to a set of correctable errors E; will embed
n data qubits (logical qubits) in n + k code qubits (physical qubits). The joint state of the
ensemble of code qubits is subject to an arbitrary error, mathematically expressed as a linear
combination of the correctable error operators E;.

To recover the original encoded state, a syndrome extraction operator has to be applied
that uses some ancilla qubits to create a superposition of the error indices ¢ corresponding
to those correctable error operators F; that have transformed the encoded state. Measuring
only the ancilla qubits will collapse the superposition of errors, yielding only one index k.
But because the ancilla qubits were entangled with the code qubits through the application
of the syndrome extraction operator, the side effect of the measurement is that the corruption
caused by all error transformations will be undone, save for the one corresponding to index
k. Consequently, only one inverse error transformation is required in order to complete
the recovery process. In essence, knowing how to deal with a set of fundamental error
transformations allows us to tackle any linear combination of them by projecting it to one
of the basis components. This process is referred to as digitizing or discretizing the errors.

Peter Shor’s second major contribution to the advancement of quantum computation
was the creation in 1995 of an algorithm that could correct any kind of error (amplitude
and/or phase errors) affecting a single qubit in a 9-qubit code [25]. In a different approach,
Steane studied the interference properties of multiple particle entangled states and managed
to devise a shorter, 7-qubit code [27]. The number of qubits necessary for a perfect recovery
from a single error was later squeezed down to a minimum of five [6, 15].

Naturally, in order to cope with more than one error at a time, it is necessary to use larger
and more elaborate codes. The book of Nielsen and Chuang [20] offers a detailed treatment
of quantum codes, explaining how ideas from classical linear codes can be used to construct
large classes of quantum codes, as the Calderbank-Shor-Steane (CSS) codes [9, 28], or the
stabilizer codes (also known as additive quantum codes), which are even more general than
the CSS codes and are based on the stabilizer formalism developed by Gottesman [13].

16

The major drawback in using large and intricate quantum codes is that the corrective
circuit itself is as much prone to errors as the quantum circuit responsible for the main
computation. The more errors we are attempting to rectify, the more the complexity and
length of the recovery procedure will increase (see [12] for some theoretical bounds on the
relationship between the number of data qubits, the total number of entangled qubits and
the maximal number of errors that can be tolerated). Thus, we can only increase the size
of the error correction codes up to a certain cutoff point, past which no further gains in
accuracy can be made.

One attempt to overcome this limitation are the concatenated codes. If a certain code
uses n physical qubits to encode one logical qubit, a concatenated version of that code is
obtained by further encoding each of the n qubits in another block of n. This hierarchical
structure (tree) can be further expanded to accommodate as many levels as desired. By
adding more levels of concatenation, the overall chance for an error can be made arbitrarily
small, provided that the probability of an individual error is kept below a certain critical
threshold [24]. Of course, the high cost of using concatenated codes lies in the exponential
increase in the number of qubits with the number of levels added.

4.2 Time-varying complexity

This short exposition of the various quantum error-correcting codes devised to maintain
the coherence of fragile quantum states and to protect them from dissipative errors caused
by spontaneous emissions, for example, clearly shows one thing. The more time it takes
to complete a quantum computation, the more errors are introduced in the process, and
consequently, the more time, number of ancilla qubits and higher complexity error-correcting
schemes that need to be employed. Correcting quantum errors is an important task executed
alongside the mainstream computation and its complexity is heavily dependent on time.
Steps executed soon after the initialization of the quantum register will require none or low
complexity recovery techniques, while steps executed long after the initialization time may
require complicated schemes and heavy resources allocated to deal with quantum errors.

As with the other paradigms investigated in this paper, here too parallelism can help
avoid this increase in the complexity of the recovery procedure and ultimately ensure the
success of the computation. If the steps of the algorithm are independent of one another
and can be executed in any order, then the most straightforward application of parallelism
is to execute all steps simultaneously and thus complete the computation before any serious
errors can accumulate over time. In this way we try to avoid or elude quantum errors rather
than deal with them. But parallelism, in the form of redundancy, can also be used to correct
quantum errors.

4.3 Error correction via symmetrization

The technique called error correction via symmetrization [8, 4] is yet another example of
how the duality of quantum-mechanical laws can be exploited for the benefit of quantum
computation. Although the measurement postulate severely restricts us in recycling tech-
niques from classical error correction, it can still offer conceptually new ways of achieving

17

error correction that are simply unavailable to classical computers. Error correction via
symmetrization relies on the projective effect of measurements to do the job. The technique
uses n quantum computers, each performing the same computation. Provided no errors
occur, the joint state of the n computers is a symmetric one, lying somewhere in the small
symmetric subspace of the entire possible Hilbert space. Devising a clever measurement that
projects the joint state back into the symmetric subspace should be able to undo possible
errors, without even knowing what the error is.

To achieve this, the n quantum computers need to be carefully entangled with a set of
ancilla qubits placed in a superposition representing all possible permutations of n objects.
In this way, the computation can be performed over all permutations of the computers
simultaneously. Then, by measuring the ancilla qubits, the joint state of the n computers
can be projected back into just the symmetric computational subspace, without the errors
being measured explicitly. Peres has shown that this technique is most appropriate for
correcting several qubits that are slightly wrong, rather than correcting a single qubit that
is terribly wrong [22]. Error correction via symmetrization can be applied repeatedly, at
regular time intervals, to avoid the accumulation of large errors and continually project the
computation back into its symmetric subspace.

No matter which parallel approach is employed, if the required number of quantum
processing units is provided, then the algorithm is successful. Simulating the same solution
on an insufficient number of quantum computers will lead to a gradual accumulation of the
quantum errors up to the point where the results of the computation are compromised.

5 Entanglement

In this section, we focus on the most counterintuitive property exhibited by quantum parti-
cles, namely entanglement. The components of a quantum system are said to be entangled,
if the state of the ensemble cannot be broken down or decomposed into the states of the
constituents. Although the state of the system as a whole is well-defined, neither of its
components is in a well-defined state.

Entanglement is responsible for the strong correlations exhibited by two or more particles
when they are measured, and which cannot be explained by classical means. At an abstract
level, entanglement among qubits can be described as the behavior exhibited by a set of
interacting variables. When such a variable is subjected to a measurement, the process has
consequences on the other variables in the set, as well.

5.1 Interacting variables

Formally, suppose there are n variables xq, x1, ---, x,_;. Although these variables may
represent the parameters of a physical or biological system, the following formalism is ab-
stracted away from any particular realization and does not necessarily describe the dynamics
of a quantum system. The dependence of each variable on all others induces the system to
continually evolve until a state of equilibrium may eventually be reached. In the absence
of any external perturbations, the system can remain in a stable state indefinitely. We can
model the interdependence between the n variables through a set of functions, as follows:

18

zo(t+1) = folzo(t),z1(t),...,zn 1(t))

r(t+1) = fi(zo(t),z1(t),..., x5 1(t))

T (t+1) = fo1(ze(t),z1(t), ..., 20 1(t))

This system of equations describes the evolution of the system from state (zo(t), z1(¢), ...,
Tn_1(t)) to state (xo(t + 1), 1(t + 1), ..., xp_1(t + 1)), one time unit later. In the case
where the system has reached equilibrium, its parameters will not change over time. It is
important to emphasize that, in most cases, the dynamics of the system are very complex,
so the mathematical description of functions fy, fi,..., fn_1 is either not known to us or we
only have rough approximations for them.

Assuming the system is in an equilibrium state, our task is to measure its parameters in
order to compute a function F, possibly a global property of the system at equilibrium. In
other words, we need the values of zo(7),21(7),...,2,_1(7) at moment 7, when the system
is in a stable state, in order to compute

Flxo(r),21(7), ... 21 (7)).

Without loss of generality, we can try to estimate the value of xy(7), for instance, by mea-
suring the respective parameter at time 7. Although, for some systems, we can acquire the
value of zy(7) easily in this way, the consequences for the entire system can be dramatic. Un-
fortunately, any measurement is an external perturbation for the system, and in the process,
the parameter subjected to measurement may be affected unpredictably.

Thus, the measurement operation will change the state of the system from (zo(7), x1(7),

oy Tp—1(7)) to (x4(7), 21(7), ..., Tp_1(7)), where z(7) denotes the value of variable x
after measurement. In those cases where the measurement process has a non-deterministic
effect upon the variable being measured, we cannot estimate x((7) in any way. But, regard-
less of the particular instance of the model, the transition from (zq(7),21(7), ..., xp_1(7))
(that is, the state before measurement) to (z((7), x1(7),...,x,—1(7)) (that is, the state after
measurement) does not correspond to the normal evolution of the system according to its
dynamics described by functions f;, 0 < i < n.

However, because the equilibrium state was perturbed by the measurement operation, the
system will react with a series of state transformations, governed by equations (6). Thus,
at each time step after 7, the parameters of the system will evolve either towards a new
equilibrium state or maybe fall into a chaotic behavior. In any case, at time 7 + 1, all n
variables have acquired new values, according to the expressions of functions f;:

zo(t+1) = folay(r),z1(7), ..., 20 1(7))

19

o (t+1) = filay(r),z1(7), ..., xn_1(7))

Tp(T+1) = fuoa(xy(7),z1(7), ..., 2y_1(7))

Consequently, unless we are able to measure all n variables, in parallel, at time 7, some of
the values composing the equilibrium state

(xo(7),21(7), ..., 2p1(T))

will be lost without any possibility of recovery.

It is important to emphasize that the computational paradigm to which the above setting
belongs is not a conventional one. The input data necessary to compute F is not available at
the outset and have to be acquired through measurement operations. Perhaps some readers
may object to labeling the process of obtaining the necessary information as computation.
They may be accustomed to seeing computation from the conventional point of view (like,
for example, performing a basic arithmetic operation on a pair of numbers). However, the
qualitatively new ways of manipulating information nowadays is forcing us to challenge the
limitations of the classical computational paradigm and adopt a broader perspective (often
called unconventional or non-classical) on computation [29].

. From this new perspective, a computing machine is seen as an open system whose out-
put depends on the interaction with its environment, a system capable of taking on new
information (either communicated to it by an external agent or acquired directly through
measurements). The emergence of this new model of computation is motivated by applica-
tions as diverse as data acquisition in signal processing [21] and the control of nuclear power
plants [5]. Furthermore, such a computational paradigm can be realized through various
physical means including, of course, a quantum mechanical one [19].

5.2 Quantum distinguishability

The problem of distinguishing among entangled quantum states is a quantum mechanical
instance of the formalism detailed above. Suppose we have a fixed set of quantum states
described using the usual Dirac notation |¥;) (1 < i < n) known to both Alice and Bob.
Alice randomly chooses a state from the set and prepares a qubit (or set of qubits) in that
particular state. She then gives the qubit(s) to Bob who is free to investigate them in any
way he likes. To be more specific, Bob can apply any kind of measurement on the qubit(s)
and possibly process and/or interpret the information acquired through measurement. In
the end, his task is to identify the index 7 of the state characterizing the qubit(s) Alice has
given him. The only case in which a set of quantum states can be reliably (that is, 100% of
the time) distinguished from one another is if they are pairwise orthogonal.
Now consider the case in which we try to distinguish among the four Bell states

2100) + 1), 15]00) — L11), Ljo1) + [10), 2j01) — L [10).

20

by resorting only to direct quantum measurements (in other words, no quantum transforma-
tions are possible before a measurement). In these circumstances, any sequential approach
(that is, measuring the qubits one after the other) will be of no help here, regardless of the
basis in which the measurements are performed. By measuring the two qubits, in sequence, in
the computational basis, Bob can distinguish the states —= (|00> +|11)) from —= (|01> +(10)).
He does this by checking if the outcomes of the two measurements are the same or not. But
this kind of measurement makes it impossible to differentiate between %(|00> + |11)) and
%(|00> —|11)), or between %(|01) +|10)) and —= (|01) |10}).

Alternatively, Bob can decide to perform h1s measurements in a different basis, like
(]4+),|=)), where the basis vectors are

1
25100+ 5 1),
1
- = 510 - 51

+) =

Due to the fact that
00) +[11) [+ +)+]|——)

V2o V2

and
00) = 1) _ [+ =) +[=+)
V2 V2 ’
Bob can now reliably distinguish the quantum state %(|00> + |11)) from %(|OO> — |11)).

Indeed, if the two qubits yield identical outcomes when measured in this new basis, then we
can assert with certainty that the state was not %(|00> —|11)). Similarly, if the measurement

outcomes for the qubits are different, the original state could not have been L(|00> + [11)).
Unfortunately, in this new setup, the quantum states i(|00> + |11)) and (|01> + |10))
become indistinguishable and the same is true about (|00> |11)) and 12(|01> 110)).

The computational bases (|0),[1)) and (|+), |—)) are respectively, the two extremities
of an (theoretically) infinite number of choices for the basis relative to which the quantum
measurements are to be performed. But even though the separation line between the four
Bell states will drift with the choice of the basis vectors, the two extreme cases discussed
above offer the best possible distinguishability.

Intuitively, this is due to the entanglement exhibited between the two qubits in all four
states. As soon as the first qubit is measured (regardless of the basis), the superposition
describing the entangled state collapses to the specific state consistent with the measurement
result. In this process, some of the information originally encapsulated in the entangled
state is irremediably lost. Consequently, measuring the second qubit cannot give a complete
separation of the four EPR states. But the Bell states do form an orthonormal basis, which
means that (at least theoretically) they can be distinguished by an appropriate quantum
measurement. However, this measurement must be a joint measurement of both qubits

21

simultaneously, in order to achieve the desired distinguishability. Not surprisingly, this is
very difficult to accomplish in practice.

The distinguishability of the four Bell (or EPR) states is the key feature in achieving
superdense coding [7]. However, in the experimental demonstration of this protocol [16]
two of the possibilities cannot be distinguished from one another, precisely because of the
difficulties associated with implementing a joint measurement.

5.2.1 Generalization

A more compact representation of the Bell basis is through a square matrix where each
column is a vector describing one of the Bell states:

10 0 1
1L {01 1 0
V2lo1 -1 0
10 0 -1

The elements of each column are the amplitudes or proportions in which the computational
basis states |00), [01), |10) and |11) are present in the respective EPR state.

This scenario can be extended to ensembles of more than two qubits. The following
matrix describes eight different entangled states that cannot be reliably distinguished unless
a joint measurement of all three qubits involved is performed:

1000 0 0 0 1
0100 0 0 1 0
0010 0 1 0 0

1{ooo01 1 0 0 0

V20001 -1 0 0 0
0010 0 -1 0 0
0100 0 0 —1 0
1000 0 0 0 -1

In general, for a quantum system composed of n qubits, one can define the following 2"
entangled states of the system:

12(|000---0> L)

(|000---1) =+ [111---0))

SRS

2

Loty & 1100---0)

S

2

22

These vectors form an orthonormal basis for the state space corresponding to the n-qubit
system. The only chance to differentiate among these 2" states using quantum measure-
ment(s) is to observe the n qubits simultaneously, that is, perform a single joint measurement
of the entire system. In the given context, joint is really just a synonym for parallel. Indeed,
the device in charge of performing the joint measurement must posses the ability to “read”
the information stored in each qubit, in parallel, in a perfectly synchronized manner. In this
sense, at an abstract level, and just for the sake of offering a more intuitive understanding
of the process, the measuring apparatus can be viewed as having n probes. With all probes
operating in parallel, each probe can “peek” inside the state of one qubit, in a perfectly
synchronous operation. The information gathered by the n probes is seen by the measuring
device as a single, indivisible chunk of data, which is then interpreted to give one the 2"
entangled states as the measurement outcome.

;From a mathematical (theoretical) point of view, such a measurement operator can
be easily constructed by defining each of the 2" states that are to be distinguished to be
a projector associated with the measurement operation. We are well aware though, that a
physical realization of this mathematical construction is extremely difficult, if not impossible
to achieve in practice, with today’s technology. The experimental demonstration of the
superdense coding protocol mentioned at the end of previous section clearly shows this
difficulty (for just two qubits!). Yet, if there is any hope to see a joint measurement performed
in the future, then only a device operating in a parallel synchronous fashion on all n qubits
(as explained above) would succeed.

It is perhaps worth emphasizing that if such a measurement cannot be applied then
the desired distinguishability can no longer be achieved regardless of how many other mea-
suring operations we are allowed to perform. In other words, even an infinite sequence of
measurements touching at most n — 1 qubits at the same time cannot equal a single joint
measurement involving all n qubits.

Furthermore, with respect to the particular distinguishability problem that we have to
solve, a single joint measurement capable of observing n — 1 qubits simultaneously offers no
advantage whatsoever over a sequence of n — 1 consecutive single qubit measurements. This
is due to the fact that an entangled state like

1
V2

cannot be decomposed neither as a product of n — 1 individual states nor as a product of
two states (one describing a single qubit and the other describing the subsystem composed
of the remaining n — 1 qubits). Any other intermediate decomposition is also impossible.

Overall, our distinguishability problem can only be tackled successfully within a paral-
lel approach, where we can measure all qubits simultaneously. In this sense, distinguish-
ing among entangled quantum states can be viewed as a quantum variant of the measure-
compute-set problem formulated in [2], which also admits only a parallel solution.

The inherent parallelism characterizing the task of distinguishing among entangled quan-
tum states through measurements implies that a device capable of measuring at most n qubits
simultaneously (where n is a fixed, finite number) will fail to solve the distinguishability prob-
lem for n + 1 qubits. For this reason, our example joins the other paradigms illustrated in

(000 ---0) + [111---1))

23

quantum mechanical terms throughout this paper, to support the idea advanced in [1] about
the impossibility of realizing the concept of a Universal Computer. This result holds as
long as the candidate Universal Computer cannot apply its (internal) set of basic processing
operations (“gates”) onto systems from the outside world. In other words, its processing
capabilities can only be exercised on data already stored in its (internal) memory. In the
case that we have described, all input data on which the machine can work must be acquired
through measurement(s).

Conceptually, distinguishing among entangled quantum states is a quantum example of
measuring interdependent variables. In this particular quantum instance, the interdepen-
dence between variables takes the form of entanglement between qubits, the phenomenon
ultimately responsible for making a parallel approach imperative. But not only measuring
entangled states requires a parallel solution, quantum evolutions that have to maintain a
certain entangled state may also resort to parallelism in order to achieve their goal. In
what follows, we investigate entanglement as a global mathematical constraint that has to
be satisfied throughout a quantum computation.

5.3 Transformations obeying a global condition

Some computational problems require the transformation of a mathematical object in such
a way that a property characterizing the original object is to be maintained at all times
throughout the computation. This property is a global condition on the variables describing
the input state and it must be obeyed at every intermediate step in the computation, as
well as for the final state. Geometric flips, map recoloring and rewriting systems are three
examples of transformations that can be constrained by a global mathematical condition [3].

Here, we show that some quantum transformations acting on entangled states may also be
perceived as computations obeying a global mathematical constraint. Consider, for example,
an ensemble of n qubits sharing the following entangled state:

! 000---0 ! 11---1 9
ﬁl)+ ﬁl)- (9)
The entanglement characterizing the above state determines a strict correlation between the
values observed in case of a measurement: either all qubits are detected in the state 0 or they
are all seen as 1. Suppose that this correlation has to be maintained unaltered, regardless
of the local transformations each of the qubits may undergo. Such a transformation may be
the application of a NOT quantum gate to any of the qubits forming the ensemble. After
such an event, the particular entangled state given in eq. (9) is no longer preserved and as
a consequence, the correlation between the qubits will be altered. The qubit whose state
was “flipped” will be observed in the complementary state, with respect to the other qubits.
The global mathematical constraint is no longer satisfied.

Parallelism can once again make the difference and help maintain the required entangled
state. If, at the same time one or more of the qubits are “flipped”, we also apply a NOT
gate to all remaining qubits, simultaneously, then the final state coincides with the initial
one. In this way, although the value of each qubit has been switched, the correlation we were
interested to maintain remains the same. Also note that any attempt to act on less than n

24

qubits simultaneously is doomed to failure.

The state given in eq. (9) is not the only one with this property. Any entangled state from
the orthonormal basis set (8) could have been used in the example presented above. The
correlation among the qubits would have been different, but the fact that applying a NOT
gate, in parallel, to all qubits does not change the quantum state of the ensemble is true for
each entangled state appearing in system (8). Perhaps the scenario described above can be
extended to other quantum transformations beside the NOT gate. Another, perhaps more
interesting generalization would be a quantum computation that has to maintain entangle-
ment as a generic, global mathematical constraint and not a specific type of entanglement
with a particular correlation among the qubits involved. Such a computation would allow
entanglement to change form, but the mathematical definition of entanglement would still
have to be obeyed at each step, with each transformation.

6 Conclusion

In this paper, we have analyzed a series of computational paradigms in which the informa-
tion is encoded and processed using quantum mechanical means. In each particular case we
have discussed, a parallel approach offers the best, if not the only way of seeing the task
accomplished. This has two important consequences with respect to universality. In the
first place, it proves that parallelism is a universal concept, transcending the boundaries im-
posed by a particular way of representing and transforming information. The computational
problems addressed herein clearly demonstrate the value of a parallel solution for quantum
computation and information, confirming the capital role played by parallelism in the theory
of computation.

It is important to note that we refer here to the common understanding of the term
parallelism and not to quantum parallelism. The latter syntagm is used to denote the ability
to perform a certain computation simultaneously on all terms of a quantum superposition,
regardless of the number of qubits composing the quantum register whose state is described
by that superposition. As opposed to this interpretation, we refer to parallelism as the ability
to act simultaneously on a certain number of qubits. Thus, we can rightfully assert that par-
allelism transcends the laws of physics and represents a fundamental aspect of computation,

25

regardless of the particular physical way chosen to embody information.

Paradigm Description Quantum Example

1. Rank-varying complexity | The complexity of a computational Quantum Fourier
step is a function of its rank. Transform

2. Time-varying complexity | The complexity of a step depends Quantum error
on when it is executed. correction

3. Time-varying variables Input variables change their Quantum
values with time. decoherence

4. Interacting variables Input data are interconnected, Measuring entangled
affecting each other’s behavior. states

5. Computations obeying A certain global property has to be Maintaining

a global condition maintained throughout the computation. | entanglement

A more subtle connection exists between parallelism and the hypothetical notion of a
Universal Computer, a machine with fixed and finite characteristics, capable of simulating
any other computing device. One thing common to all examples presented in this paper is
that if the degree of parallelism required to solve a certain problem is not available, then
no approach can be successful. To be more precise, if n processing units are needed to
solve a problem, then a machine endowed with n — 1 processors is not able to complete the
task. In other words, such a machine is not capable of simulating the successful parallel
algorithm running on the n-processor device (even if it is given an unbounded amount of
time and memory to perform the simulation). And since the principle of simulation is the
one supporting the myth of a Universal Computer, we must conclude that the existence of
such a machine is impossible.

We also wish to draw attention on the unconventional aspect of the computing paradigms
responsible for uncovering this result on universality. This further motivates the study of
non-traditional computational environments and proves that sometimes the results can be
surprising.

Acknowledgment This research was supported by the Natural Sciences and Engineering
Research Council of Canada.

References

[1] Selim G. Akl. The myth of universal computation. In R. Trobec, P. Zinterhof, M. Va-
jtersic, and A. Uhl, editors, Parallel Numerics, Part 2, Systems and Simulation, pages
211-236. University of Salzburg, Austria and Jozef Stefan Institute, Ljubljana, Slovenia,
2005.

[2] Selim G. Akl. Coping with uncertainty and stress: A parallel computation approach.
International Journal of High Performance Computing and Networking, 4(1/2):85-90,
2006.

26

3]

7]

9]

[10]

[11]

[12]

[13]

[14]

[15]

Selim G. Akl. Evolving computational systems. In Sanguthevar Rajasekaran and
John H. Reif, editors, Parallel Computing: Models, Algorithms, and Applications. CRC
Press, 2007.

Adriano Barenco, André Berthiaume, David Deutsch, Artur Ekert, Richard Jozsa, and
Chiara Macchiavello. Stabilization of quantum computations by symmetrization. http:
//xxx.lanl.gov/abs/quant-ph/9604028, April 1996.

B. Barutcu, S. Seka, E. Ayaz, and E. Tiirkcan. Real-time reactor noise diagnostics for
the Borsele (PWR) nuclear power plant. Progress in Nuclear Energy, 43(1-4):137-143,
2003.

Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William K. Wootters.
Mixed state entanglement and quantum error correction. Physical Review A, 54:3824—
3851, 1996. http://arxiv.org/abs/quant-ph/9604024.

Charles H. Bennett and Stephen J. Wiesner. Communication via one- and two-particle
operators on Einstein-Podolsky-Rosen states. Physical Review Letters, 69(20):2881—
2884, 1992.

André Berthiaume, David Deutsch, and Richard Jozsa. The stabilization of quantum
computation. In Proceedings of the Workshop on Physics and Computation: PhysComp
"94, pages 60—62, Los Alamitos, CA, 1994, 1994. IEEE Computer Society Press.

A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist.
Physical Review A, 54(2):1098-1106, 1996. http://arxiv.org/abs/quant-ph/9512032.

C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum Mechanics, volume 1 and 2. Wiley,
New York, 1977.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. MIT Press, Cambridge, Massachusetts, 2001.

Artur Ekert and Chiara Macchiavello. Quantum error correction for communication.
Physical Review Letters, 77:2585-2588, 1996.

Daniel Gottesman. Class of quantum error-correcting codes saturating the quantum
hamming bound. Physical Review A, 54:1862-1868, 1996. http://arxiv.org/abs/
quant-ph/9604038.

Robert Griffiths and Chi-Sheng Niu. Semiclassical Fourier transform for quantum com-
putation. Physical Review Letters, 76:3228-3231, 1996.

Raymond Laflamme, Cesar Miquel, Juan Pablo Paz, and Wojciech Hubert Zurek. Per-
fect quantum error correction code. http://arxiv.org/abs/quant-ph/9602019, February
1996.

27

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

Klaus Mattle, Harald Weinfurter, Paul G. Kwiat, and Anton Zeilinger. Dense coding
in experimental quantum communication. Physical Review Letters, 76(25):4656-4659,
1996.

Marius Nagy and Selim G. Akl. Coping with Decoherence: Parallelizing the Quan-
tum Fourier Transform. In 19th International Conference on Parallel and Distributed
Computing Systems, pages 108-113, San Francisco, California, September 2006.

Marius Nagy and Selim G. Akl. Quantum key distribution revisited. Technical Report
2006-516, School of Computing, Queen’s University, Kingston, Ontario, June 2006.

Marius Nagy and Selim G. Akl. Quantum measurements and universal computation.
International Journal of Unconventional Computing, 2(1):73-88, 2006.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, 2000.

G. Oksa, M. Becka, and M. Vajtersic. Parallel computation with structured matrices
in linear modeling of multidimensional signals. Parallel and Distributed Computing
Practices, 5(3):289-299, 2004.

Asher Peres. Error symmetrization in quantum computers. http://xxx.lanl.gov/abs/
quant-ph/9605009, May 1996.

John Preskill. Fault-tolerant quantum computation. In Hoi-Kwong Lo, Sandu Popescu,
and Tim Spiller, editors, Introduction to quantum computation and information, pages
213-269. World Scientific, 1998. http://xxx.lanl.gov/abs/quant-ph/9712048.

John Preskill. Reliable quantum computers. Proceedings of the Royal Society of London
A, 454:385-410, 1998. http://xxx.lanl.gov/abs/quant-ph/9705031.

Peter W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys-
ical Review A, 52:2493-2496, October 1995.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. Special issue on Quantum Computation of the STAM
Journal on Computing, 26(5):1484-1509, October 1997.

Andrew M. Steane. Error correcting codes in quantum theory. Physical Review Letters,
77(5):793-797, July 29, 1996.

Andrew M. Steane. Multiple particle interference and quantum error correction. Pro-
ceedings of the Royal Society of London A, 452:2551-2576, 1996.

Susan Stepney, Samuel L. Braunstein, John A. Clark, Andy Tyrrell, Andrew
Adamatzky, Robert E. Smith, Tom Addis, Colin Johnson, Jonathan Timmis, Peter
Welch, Robin Milner, and Derek Partridge. Journeys in non-classical computation I:
A grand challenge for computing research. International Journal of Parallel, Emergent
and Distributed Systems, 20(1):5-19, March 2005.

28

