
Template Design of Discrete-Event Systems

Technical Report No. 2007-538

Lenko Grigorov

grigorov@cs.queensu.ca
School of Computing

Queen’s University, Kingston, Canada

Abstract

A new methodology for the design of DES control is proposed which
allows for the creation of conceptual designs by using encapsulated
low-level elements. The approach can be used within the standard
framework of modular supervisory control. The notion of DES tem-
plates is introduced, where both DES modules and specifications are
represented as high-level abstractions of typical behaviors. The control
engineer creates instances of these abstractions and specifies the way
the instances interact. System modeling and the design of specifica-
tions occur simultaneously. Rapid prototyping with implicitly consis-
tent models improves the speed and robustness of the design process.
The implementation of software for template design is described, as
well as the application of the proposed methodology to a small system
to get real-world feedback.

August 8, 2007

Chapter 1

Introduction

In control engineering, the possible behavior of some systems can be described as a set of
sequence of discrete events (events that occur instantaneously). Ramadge and Wonham [14]
propose a theoretical framework, called Supervisory Control Theory, for the modeling and
control of such systems. In this framework, the discrete events are instantaneous, sponta-
neous, and certain control can be exercised by preemptively blocking some of them. Systems
modeled in this framework are called Discrete-Event Systems (DESs) and the entity exercis-
ing the control is called a supervisor.

In order to obtain a supervisor for a system, the control engineer needs to design the
system as a DES, provide the control specifications in the form of an “ideal” DES, and
invoke a special computational algorithm that computes the most permissive supervisor which
satisfies all restrictions.

In theory this approach works well, however, practical implementations have run into a
number of problems. The most significant problem is what is called “state-space explosion”.
The state complexity of a system model may grow exponentially with the number of partic-
ipating subsystems. Another problem for the use of the theory in practice is the fact that
modeling a system and verifying the end result is difficult and non-transparent for the users
[19]. Further complications arise from the fact that the usability of software packages for
DES control is generally unsatisfactory and that generally there is no support for the use of
an abstract supervisor in the control of a real system.

The problem of state-space explosion has been addressed partially by considering modular,
[20], or hierarchical supervision, [13], and by dealing with systems incrementally, [1]. Of these
methods, modular supervision seems to be most mature. The system is modeled as a set of
separate modules or subsystems which may interact. Usually, control specifications can then
be given in a modular fashion as well—concerning only a subset of all the modules. The
reduction of complexity is a result of being able to compute separate, smaller, supervisors
for each separate specification. Incremental approaches to DES control usually also rely on
having a modular system model. Then, compositions of modules are constructed only as
needed in order to determine a given property of the system. In hierarchical control, the base
system is usually abstracted in a specific fashion and then supervisors can be computed just
for the simpler high level of the system. Unfortunately, the research done on hierarchical
supervision is more disparate and a unifying theme is lacking [9]. Modular control is not

1

without problems either. When separate supervisors are constructed for each specification,
it is not possible to predict what will be the net effect of the simultaneous application of all
supervisors. Sometimes, due to some interdependency between the different control policies,
the system may block. Thus, after the separate supervisors are constructed, it is necessary
to check if the simultaneous application of these supervisors will lead to blocking. For this
purpose, all supervisors have to be composed, which in some sense forfeits the benefit that is
achieved by constructing separate supervisors. However, since blocking is a global property,
in the general case there is no way to avoid the global check.

During our personal experience with the application of supervisory control, we noted
further complications. First, control engineers are required to learn about Finite-State Au-
tomata (FSAs) and the modeling of systems and specifications using FSAs. The process of
modeling is quite slow and requires a lot of attention in order to avoid errors. The presence
of an error in the design is not readily observable. The design of interaction between differ-
ent system modules is achieved through synchronization on common events. The designer
needs to constantly maintain an overview of what events are used for the purpose. A second
complication, partially a result of the method for synchronization, is that system models are
usually designed on a per-use basis. It not trivial to reuse models in other projects. Many
times it is necessary to start modeling from scratch even though parts of the model have
been designed on previous occasions. Third, the application of the algorithm for supervisor
generation frequently results in an huge entity which cannot be comprehended completely
by humans; in moderate-size projects a supervisor may have hundreds of states and thou-
sands of transitions. This necessitates some other method of testing the functionality and
the performance of the output, e.g., by simulations or by test runs. This, in turn, requires
that the abstract supervisor obtained at the end of the modeling process be implemented
in some concrete form. Most popular DES software, such as CTCT [2], DESUMA [6] and
others, does not offer any tools for automated supervisor implementation.

While there does not seem to be an easy solution to this complex set of issues, the use
of predefined DES units by engineers may lead to a much easier application of supervisory
control. In [7], the authors describe an approach where the controlled behavior of a discrete-
event system is designed using a set of very simple specifications. Each specification is built
from a prototype structure, a template, and exercises control over a single aspect of the
system—such as the operation of a gripper. All specifications are executed in parallel and
thus, simultaneously, provide control for the whole system. The benefits pointed out by
the authors include significant reduction of the time needed to design controllers (e.g., one
hour versus 12 hours), lower cost of the project (the approach encourages the substitution of
software complexity with cheap hardware sensors) and more robust handling of failures (no
need for complex reset procedures). However, this approach also has some disadvantages.
It is assumed that almost all system behavior can be described as the concurrent execution
of simple units without much interaction. This is not suitable for the definition of global
specifications, such as the control for non-blocking. The suggested templates seem too simple
to express more complex requirements. Furthermore, the methodology is not cast within the
supervisory control framework and it cannot take advantage of the algorithms therein.

In this work, we propose a new methodology for the design of DES control. We introduce

2

the notion of DES templates within the framework of supervisory control. Both DES modules
and specifications are represented as high-level abstractions of typical behaviors. The control
engineer creates instances of these abstractions and then needs only to specify the way the
instances interact. System modeling and the design of specifications occur simultaneously.
Speed and robustness of the design process are improved since it is not necessary to deal
with details of the system behavior, as well as to reimplement similar parts of a system.
The computation of the supervisory solution can be automated. The methodology was
implemented in software and support for the generation of Programmable Logic Controller
(PLC) code was added. Then, we applied the approach to obtain a control solution for the
hardware of a small system.

Next, we describe our approach and give a brief motivation for each aspect. Then, we
discuss the software implementation. Finally, we discuss our observations when the approach
was applied for the control of a robotic testbed.

3

Chapter 2

Template design of DESs

The template method for DES design is substantiated greatly by the observations made
during a study of how humans solve DES control problems [10]. When faced with a new
problem, subjects frequently engaged in drawing a simple diagram of interactions between
parts of the system which needed to be modeled. It appeared that the subjects liked to
isolate different aspects of a system before they proceeded with the low-level modeling. These
observations led to the proposal for a new methodology for the design of DESs, where control
engineers can focus on assembling together blocks of subsystems and specifications instead
of worrying about every little detail of the system.

2.1 Framework

The framework for template design is largely based on the work of Santos et al. [17, 16].
The authors propose a methodology for conceptual design of DES system using instances
and channels. Instances are the active parts of the system (e.g., workstations). Channels
are passive parts of the system which facilitate the transfer of matter and energy between
instances (e.g., conveyor belts). It is argued that this framework is suitable for the mod-
eling of complex systems since it allows the simultaneous definition of both structure and
functionality.

When the methodology of [17] is applied to discrete-event systems, in effect modular
control is used where DES modules become instances and specifications serve as channels.
Then, the supervisors for the system are computed according to the local modular control
proposed in [4].

In our framework we decided to keep all the basic propositions of [17], however, we decided
to cast the whole idea purely in DES terms. Thus, a system model consists of a set of modules
(DES subsystems), M , a set of channels (DES specifications), N , and a function defining the
links between modules and channels, C. Modules and channels are modeled as finite-state
automata (FSAs), Gi = (Σi, Qi, δi, q0i, Qmi). Furthermore, all modules and channels have to
be asynchronous, i.e.,

∀i 6= j,Gi, Gj ∈ M : Σi ∩ Σj = ∅

∀i 6= j,Gi, Gj ∈ N : Σi ∩ Σj = ∅

4

∀Gi ∈ M,Gj ∈ N : Σi ∩ Σj = ∅.

The requirement that modules be asynchronous is not a stringent restriction as discussed
in [4]. The benefit of having asynchronous modules is mainly in being able to make more
uniform assumptions about the system. If some modules are not asynchronous, they can
be composed until there are no dependencies between modules. The channels have to be
asynchronous because they describe only some abstract specifications which still need to be
concretized in terms of the given system. This concretization is done with the help of links.
Let ΣM =

⋃
Gi∈M Σi and ΣN =

⋃
Gi∈N Σi. Then C : ΣN → ΣM . In other words, the function

defines links between events of modules and events of channels. The interpretation of the link
C(τ) = σ is that the event τ in the given channel should be considered equivalent to the event
σ of the given module—thus relating the abstract specification to the given system. This
allows the synchronization of modules through the channels, in effect defining the protocols
for the transfer of information between parts of the system.

After a system is modeled in the proposed framework, modular control can be applied
to obtain supervisors for the separate specifications. In our work we propose the use of an
optimized version, namely local modular control [4]. The precondition for the application
of this method is satisfied, i.e., the participating modules are asynchronous. All modules
which are linked to a channel participate in the subsystem influenced by the specification
determined by the channel. Let Gchannel be a channel. Then

C(Gchannel) = {Gi|∃τ ∈ Σchannel,∃σ ∈ Σi, C(τ) = σ}

is the set of modules influenced by Gchannel. For every channel Gchannel, all the modules
influenced by it are composed via synchronous product.

Gsubsys = ||C(Gchannel)Gi

Then all events in the subsystem which do not appear in the channel are applied as self-loops
to all states in the channel, i.e., the channel has no influence on the occurrence of these
events.

Gspec = selfloop(Gchannel, Σsubsys \ Σchannel)

Finally, the common algorithm for the construction of the supremal controllable sublanguage
of the channel with respect to the relevant subsystem is invoked.

supcon(Gsubsys, Gspec)

As a result, local supervisors for each channel are constructed. The last step involves checking
the mutual non-blocking of the set of supervisors, as described in [4].

2.2 Templates

The next advantage of our methodology is that it allows the use of templates. A template
is simply a model of some discrete-event behavior. In the supervisory control setting, the
model would be an FSA. In other words, any FSA can be a template. The idea behind

5

finish

start

Figure 2.1: The behavior of a typical workstation.

templates is that if they define some frequently used behavior—such as “workstation” (see
Fig. 2.1)—one need not manually create a separate FSA each time this behavior is needed.
Instead, the software can make a copy of the template, or instantiate the template. Thus, for
example, creating the DES modules for ten workstations would be reduced to instantiating a
template ten times. Since the copy is made automatically, the process is both faster and less
error-prone. Furthermore, if the templates have been designed by experts and thoroughly
tested, any user can use them with the same degree of reliability.

Since templates can describe both system behavior (i.e., modules) and restrictions on
behavior (i.e., channels), the use of templates within our framework is very natural. Suppose
there is a library of templates (FSAs). Then, the set of modules, M , participating in a design
can be created by instantiating the required templates. Since the events of every template
instance are named in a unique way, all modules will be asynchronous as required. Similarly,
the set of channels, N , can be created by instantiating templates.

In order to simplify the creation of links between modules and channels, the definition of
a template may indicate a set of interface events Σf ⊆ Σ. If some of the events of a module
describe only internal functionality and are not relevant to other modules, then they will not
participate in synchronization links. The events that may be used for synchronization are
chosen to be the interface events of a template. Only interface events will be available to
the designer to create links between modules and channels. Since channels have no inherent
functionality, all events are supposed to be used for synchronization. Thus, channel templates
by definition will have only interface events.

It is also important to note that if templates are used for the design of a DES, the control
engineer need not know all the details of FSA modeling. If the necessary templates are
available, it is possible to design the system completely at the abstract level of template
instances and links between them. It is sufficient to understand what behavior is described
by each template and to understand what the interface events stand for.

2.3 Parametrization

A further improvement to the template design methodology can be brought by considering
parametrization of the template behavior. For example, if one would like to create templates
for buffers, a separate template has to be constructed for all buffer capacities that need to be
considered (e.g., buffer with two slots, buffer with three slots, etc.) However, it can be easily
seen that the basic workings of a buffer are the same regardless of capacity. It would be much
more convenient if there were a single “buffer” template which is parametrized in terms of

6

capacity—and then at instantiation one would be able to choose the specific capacity to be
used.

One possible approach to parametrization of FSAs is described in [3]. There, a regular
FSA is augmented with a data collection. The data collection is a vector of scalars which
can range over some set, e.g., the set of integers. A vector of unary functions is associated
with each transition in the FSA. When the transition occurs, each function in the vector
is applied to the corresponding scalar in the data collection. For example, a buffer can be
modeled as a single state with two self-looped transitions, “insert” and “remove” for inserting
elements to the buffer and removing from it, respectively. The number of items in the buffer
will be recorded with the help of a data collection with a single integer. When the “insert”
transition occurs, the function “+1” will be applied to the integer. When the “remove”
transition occurs, the function “−1” will be applied. The control of such a discrete-event
system may take advantage of the data collection in addition to the information in the states
of the FSA. Indeed, control can be based on predicates about the current state of the system
and on the current value of the data collection. Then, the authors propose a method to
compute the supremal controllable sublanguage of a system by incrementally backtracking
with the predicates until the control decisions do not attempt control of uncontrollable events.

Among the advantages of this type of model is the fact that it is possible to express non-
regular behaviors and specifications. Unfortunately, this is also the reason why the model
cannot be readily applied in the template framework proposed in this work. A potential
solution would be to restrict the type of data collections that can be used. For example, if
each scalar in a data collection is restricted to belong to a closed integer interval, then the
behavior of the system will become regular-only. However, even in this case it is not possible
to use this type of model directly. It is necessary to find an efficient transformation from the
parametrized model into a “simple” FSA.

Another approach to template parametrization is a method where a certain subset of
states in an FSA is multiplied and chained a given number of times, depending on an integer
parameter (see Fig. 2.2). This approach will make it easy for experts to graphically design
templates which are parametrized. Furthermore, for any specific value of the parameter, a
“simple” FSA is obtained. It is not necessary to perform any conversions before an instance
of the template is used in the design. However, we have not yet investigated all aspects in
detail and it is unclear how exactly the parametrization will function in a complex FSA.
More work needs to be done before this method becomes viable.

2.4 Benefits

The template design of DESs is based on theoretical work, however, the main motivation for
its conception was making the application of DES control simpler. It is expected that using
template design will result in the following improvements.

• Faster design of systems. The use of pre-built templates not only reduces the time to
mechanically input new FSAs but also the time to mentally consider low-level details
of FSA implementations.

7

Figure 2.2: Graphical approach to parametrization.

• More robust designs. Fewer errors can be made during the design since it is not nec-
essary to manually copy FSAs and to keep track of the names of events in different
modules and specifications. All events are by default unique, and synchronizing mod-
ules simply requires the establishment of a link.

• Easier design. The designer need not keep track of the FSAs which underly every
template or template instance. The creative effort can focus only on the important
task of determining which modules and channels are to be used and how to link them.
The creation of a supervisor is completely automated.

In order to see if these expectations are substantiated, it is important to actually apply the
methodology in practice. Thus, we decided to build software which supports the proposed
method. Then, we used the software in order to design a controller for a small robotic testbed.

8

Chapter 3

Software package for template design

The theoretical foundation of template design does not require any graphical representations.
However, as it has been discovered in practice [8, 10], the lack of graphical representation
may significantly influence the usability of a software package. Thus, one of the principles we
decided to follow in designing our software was to use a graphical interface. A prototype of
the interface is shown in Fig. 3.1. We decided to use boxes to represent instances of modules
and circles to represent instances of channels. The links between modules and channels are
represented as lines connecting the boxes and circles. The user of the software can create
and manipulate the graphical elements using the mouse cursor. As well, the mouse is used
to establish the links between modules and channels. The choice of a predominantly mouse-
based interface was made due to research showing that working with the mouse is generally
faster than using keyboard shortcuts and commands [18].

Template design is just an abstract interpretation of modular supervisory control. Finite-
State Automata underlie all elements of the design and regular DES operations are applied
at the low level to produce the supervisors. Thus, any software which supports template
design has to be able to perform all functions of a regular DES tool as well. Instead of
writing a completely new software package, we decided to extend existing DES software to
add the template design functionality. The IDES software developed at Rudie’s research
laboratory, [11, 15], was chosen since its architecture supports the addition of extensions, it
offers an advanced graphical interface infrastructure, and we have access to the source code.
Furthermore, IDES is implemented in the Java programming language, so it can be used on
all major computer platforms.

3.1 PLC code generation

Since the purpose of template design is to make the application of DES theory easier, we
decided to try to streamline the complete process of application: from modeling to control
of the real hardware. We envisioned that a control engineer will be able to model a system
using template design and then they will be able to automatically obtain the control code
for the real system.

In many cases the real system is controlled by a PLC unit; this is the case in our ex-

9

Figure 3.1: Prototype of the template design software interface.

ample system as well. Thus, we decided to focus on the generation of PLC code from the
template design. However, it is possible to generate other types of code, e.g., C code for
microcontrollers, as shown in [21].

The solution of a supervisory control problem is in the form of supervisors modeled as
FSAs. Usually, the events in such a system are abstractions of sequences of low-level events
that may occur in the real system. For example, the event “move robot arm to location
2” may involve a sequence of electric signals sent to one of the motors in order to rotate
the needed amount. There is a gap that needs to be filled between the abstract controller
represented by the DES supervisors and the low-level controller for the real system. The first
step is to convert the supervisor logic into control code.

There are many ways how to convert FSAs into code, however, the method proposed
in [5] seems to be most suitable for two reasons: it converts FSAs directly into PLC code,
and it is designed with modular control in mind. The authors propose a method where the
transitions of the supervisors are implemented in PLC code and the control data for each
state is available. The transitions of the supervisors are triggered by signals from another
part of PLC code, namely, the DES system layer. The FSAs of all the system modules are
converted into PLC code similar to the code for the supervisors, thus forming the DES system
layer. This layer in turn communicates with the real system: inputs from the hardware signify
the occurrences of uncontrollable events, while the controllable events force the execution of
subroutines for the system. The DES system layer is also responsible for sequencing and
prioritizing events which happen concurrently.

The method for PLC code generation described so far relies on manual modifications to the
generated code in order to insert hardware-specific instructions. For example, the generated
code needs to call subroutines for the controllable events. When the code is generated, it

10

is assumed that the code for such subroutines will be provided manually. Full automation
is not achieved. We propose a way to bridge this last gap in the following way. For each
event in the template design, the user can specify a snippet of PLC code. In other words,
the low-level subroutine for each event can be specified within the design. Then, during PLC
code generation, this subroutine can be inserted as needed.

The fundamental issue which needed to be resolved was how to couple the automatically
generated PLC code for the supervisors and the DES system with the code snippets entered
by the user. The generated code cannot be aware of the code entered by the user (the
custom code can be in any form and can use any variables), nor can the user be aware of the
generated code in advance (it is not available until the system modeling is finished). Thus, it
was necessary to establish a protocol of communication between the two parts. The protocol
was chosen to be as follows. The user may specify a range of memory which will be used by
the custom code and the generated code will not use. Furthermore, the generated code will
communicate with the code snippets through special variables for each event. In the case
of uncontrollable events, when the snippet sets the corresponding variable to “true”, it will
announce that the event has occurred. In the case of controllable events, when the generated
code sets the corresponding variable to “true”, it will request that the subroutine for this
event be executed. In the custom code snippets, these binding variables can be referred to
by using a special placeholder string. When the complete PLC code is generated and the
memory location of the variables is known, the placeholder strings will be replaced with the
real variables.

3.2 User interface

The user interface which was implemented follows closely the interface prototype of 3.1. A
snapshot of a template design opened in IDES can be seen in Fig. 3.2. The interface is not
polished yet and many things need to be improved until it becomes fully usable. However,
all major components are functional and it is possible to accomplish the following tasks:

• Create a template from an FSA. The template can be either a module or a channel. In
the case of a module, it is possible to select which events will be interface events.

• Open a template from the template library to explore the underlying FSA.

• Remove a template from the template library.

• Instantiate a template. The instance automatically receives a unique name and all
events are prefixed with this name. As a result, all instances in a design are asynchro-
nous by default.

• Open an instance to explore the underlying FSA.

• Remove an instance from the design. All corresponding links are automatically removed
as well.

• Rename an instance. All events of the instance are automatically renamed as well.

11

Figure 3.2: The template design software interface in IDES.

• Create a link between an instance and a channel. The equivalence of the events will be
displayed graphically beside the link.

• Remove a link from the design.

• Compute the modular supervisors for all channels. The local modularity, [4], of the
supervisors is also checked.

• Enter the PLC code for the events of the modules.

• Generate the PLC code for the control of the hardware system, using the modular
supervisors and the PLC code for all events.

• Store a design to the disk and load it back.

The representation and manipulation of a template design is predominantly graphical and
mouse-driven. When the user decides to work with the underlying FSAs, IDES switches to
the regular FSA mode of operation and all regular tools are available to the user.

3.3 Implementation

The software for template design of DESs was implemented as an extension of IDES. In order
to extend it, the following main components were developed:

12

• TemplateModel : An implementation of the theoretical model of template designs. This
corresponds roughly to the implementation of the theoretical model of an FSA (such
as states, events, and transitions).

• TemplateDesign: A shell which is applied to a TemplateModel and stores all relevant
graphical layout information. This corresponds roughly to the component responsible
for managing the layout information of an FSA graph (such as nodes, labels, edges).

• Design(Drawing)View : The interface component which renders a template design on
the screen and lets the user interact with it (such as moving a template instance with
the mouse).

• TemplateIO : XML file input/output for template designs.

• LocalModularity : A DES operation to check the local modularity of supervisors.

• ConstructSupervisors: A DES operation which constructs the modular supervisors for
all channels in a template design. Since regular DES operations such as “meet”, “self-
loop” and “supcon” are used, first it is necessary to rename the events in linked modules
and channels to synchronize them properly. This is done completely automatically.

• TemplateLibrary : A collection of module and channel templates which are available for
instantiation. The library supports the addition and removal of templates and provides
automatic persistence (storage of the templates on the disk).

In order to implement PLC code generation, we integrated the BAJ library co-developed
together with Francisco da Silva at the Federal University of Santa Catarina, Brazil. Given
a set of FSA modules and FSA supervisors, this library generates the control code in the
Instruction List PLC language, compatible with Siemens PLC units. Our software then
appends the code snippets for all events to this output. The placeholder string, “<event>”,
in the snippets is replaced since at this time the name for all binding variables are known.
The PLC code is not compiled since a stand-alone compiler for Siemens is not available. The
user has to manually open the code in the software provided by Siemens and then compile it
and download it into the PLC unit.

3.4 Improvements necessary

While the software developed is functional and it was successfully used in a small project, it
is still in a very preliminary form. In order to become as usable as the FSA manipulation
part of IDES, it is necessary to complete and polish the implementation of many components.
The things that need to be improved include:

• Improvement of the template library interface. Most UI elements break design recom-
mendation either with form or behavior or both. For example, the “remove template”
functionality is hidden—the user needs to press the “Delete” button on the keyboard
but this is not obvious from the interface.

13

• Improvement of the presentation of a template design. Most of the elements are ugly.
For example, it may be better to use ovals instead of circles to represent channels.
Furthermore, links are straight lines between the centers of the boxes and circles of the
corresponding modules and channels. It would be much nicer to use broken lines as
used in schematic software. The algorithm for placement of link labels is very simple
and usually the results are unsatisfactory.

• Improvement of the method of interaction with the user. There are many glitches in
the interface which contribute to an overall unsatisfactory experience for the user. For
example, in order to instantiate a template, it is necessary to first click on the name
of the template in the library, and then click again in order to drag it onto the design
canvas. Also, some interactions with the instances on the canvas are contrived—such
as having to select “Delete” from a pop-up menu instead of just pressing the “Delete”
button on the keyboard. As well, if there are multiple links between a module and a
channel, it is not possible to select a specific link for manipulation or deletion.

• Improved consistency of the template design. There are no checks for user inputs which
may result in violations of the model constraints. The user may name two template
instances with the same name (thus, in effect, creating identical, perfectly synchronized,
copies). As well, the user may establish a link between two modules or two channels,
which is meaningless within the proposed framework.

• Improvement of the I/O system for template designs. The I/O support is currently
very rudimentary and fragile. For example, IDES knows if the model one is trying to
load is a template design only from the file name, i.e., if it is “TemplateDesign.xmd”,
the model is assumed to be a template design, otherwise it is loaded as an FSA. The
storage of the template design into an XML file has many assumptions about the form
of the stored PLC code which may be not be always true.

14

Chapter 4

Example application

In order to test the applicability of template design of DESs, the methodology was used
to design a controller for a robotic testbed at the Department of Automation and Systems,
Federal University of Santa Catarina, Brazil. A photograph of the hardware is shown in
Fig. 4.1. The intended functionality of the system is to retrieve parts from an input buffer,
perform operations on the parts and test if the operations were successful. If so, the given
part is output into an “accepted” buffer. If not, the part is placed into a “reprocess” output
buffer. From there, a part can be manually moved into a “reprocess” input buffer. The
system will reprocess parts from this input and if the operations are unsuccessful again, the
parts are output into a “rejected” buffer. The subsystems in the testbed include:

• A set of plastic parts with or without a metal screw;

• Input buffer for new parts, with a sensor;

• Input buffer for parts to be reprocessed, with a sensor;

• Output buffer for successfully processed parts;

• Output buffer for parts which need to be reprocessed;

• Output buffer for rejected parts;

• A rotating table with four slots. It has a positional sensor for calibration;

• Robotic arm with a grabber. The arm has 360 degrees of freedom of rotation, and a
positional sensor for calibration. It can reach all input and output buffers, as well as
one of the slots of the table. The grabber can close to retrieve a piece from the input
buffers or the table and open to deliver a piece into the output buffers or the table. It
has a positional sensor for calibration;

• “Drill” workstation with a sensor for the presence of a part;

• “Welder” workstation with a sensor for the presence of a part; and

15

Figure 4.1: The robotic testbed where template design was applied.

• Test unit with a sensor for the detection of the success of the operations (if the part
has a screw).

The system is controlled via a Siemens S7-200 series PLC unit, connected via Profibus to
a PC. The PLC code is compiled and downloaded onto the PLC using the Step 7 Micro/WIN
software package provided by Siemens.

4.1 System model

The model of the system had to be greatly simplified in order to be able to complete the
project within the constraints listed below:

• Time—the research group had a very limited window of opportunity to develop and
test the supervisory control solution.

• PLC memory size—the PLC disposes of only 4 kilobytes of memory.

• Software limitations—the IDES software used is still under development and cannot
handle very big FSA models.

Further investigation done by Klinge, [12], shows that using some workarounds and supervisor
reduction techniques, it may be possible to obtain a supervisory solution for a much more
complex model.

The part of the system we used included four modules: the input buffer for new parts,
the arm with the grabber, the rotating table and the drill. The arm with the grabber was

16

arrive

(a) Input buffer

finish get part

start get part

(b) Arm with grabber

finish rotate

start rotate

(c) Rotating table

finish drill

start drill

(d) Drill

Figure 4.2: Module models.

simplified to perform only one (high-level) activity: retrieve a part from the input buffer and
place it on the table. The FSA models for all modules are shown in Fig. 4.2.

The specifications applied to the system were as follows. First, there has to be mutual
exclusion between the table and the arm and between the table and the drill. In other
words, the table should not turn while one of the other units is in the middle of completing
an operation. Second, there has to be underflow control for the input buffer, i.e., the arm
should not retrieve a part if there are no parts in the buffer. The buffer is modeled as having
two slots but without overflow control since physically there cannot be more than two parts
available at a time. Third, there has to be control over the sequence of operations: after a
part is placed on the table, the table has to turn before the drill operates on the part. Since
turning the table frees up the slot where parts are deposited, a second part can be placed
before the drill operates. In order to keep the model simple, there is no control on how many
parts are located on the table, i.e., the system may attempt to process five parts even though
after the fourth part, the table is full (parts are never removed). The FSA models for all
specifications (or channels) are shown in Fig. 4.3.

17

finish rotate, finish get part

start rotate, start get part

(a) Mutual exclusion between table and arm

finish rotate, finish drill

start rotate, start drill

(b) Mutual exclusion between table and drill

start get part

arrive

arrive

start get part

arrive

(c) Underflow control for input

finish get part

start drill

start rotate

start drill

finish get part

(d) Operation sequencing

Figure 4.3: Specification models.

At the start of the modeling, it was assumed that the template library contains all relevant
templates (see Fig. 4.4). Then, the modules were created by instantiating the “Workstation”
template for the arm, table and drill and by instantiating the “Selfloop” template for the
input buffer. The channels were created by instantiating the “MutEx” template twice and
the “Buffer2slots” and “Sequence” templates once. Afterwards, the relevant events were
linked. For example, the “perform” event of the part input is linked with the “in” event of
the buffer channel. After the model is ready, the PLC code for each event in the system is
manually input. For example, the code for the event “start drill” is

Network 1

LD <event>

S M3.6, 1

Network 2

LDN M3.6

18

finish

start

perform

(a) Workstation (b) Selfloop

agent 1 exit, agent 2 exit

agent 1 enter, agent 2 enter

(c) MutEx

out

in

in

out

in

(d) Buffer2slots

action 1

action 2

advance

action 2

action 1

(d) Sequence

Figure 4.4: Template models.

JMP 11

Network 3

LD M3.6

TON T102, +50

S Q0.4, 1

Network 4

LD T102

R M3.6, 1

S M3.7, 1

R Q0.4, 1

R T102, 1

Network 5

LBL 11

19

After the template design is ready and the PLC code is input, the user presses the “PLC”
button to obtain the final solution. The software computes the modular supervisors for all
channels, checks if they are locally modular, and then generates the complete PLC program
for the control of the system, including the low-level subroutines for the abstract events in the
model. An additional output, as required by the Siemens control software, is a file containing
the mapping between variable names and memory locations.

In order to complete the application, and start up the hardware system, the user needs to
launch the Siemens Step 7 software, copy the variable mappings from the generated file and
then import the PLC code. Compiling and downloading to the PLC unit is done by pressing
the corresponding buttons in the Siemens software.

When we tried this approach, we had to use “virtual” parts in the testbed, since the
low-level code for the control of the grabber still had unresolved issues. The grabber was not
capable of removing a part from the input buffer. Thus, we had to activate the input sensor
by hand—and then the system proceeded as if it were operating on a real part. Furthermore,
we discovered another issue with the low-level code for the handling of the arrival of new
parts. The event signaling an arrival was generated depending on the level of the sensor
signal. Since the cycle of the PLC unit takes just a fraction of the time for which the signal
is “on”, this resulted in an unbounded number of arrival events generated for each activation
of the input sensor. Since the buffer channel in the model has only two slots, however, the
controller received only two arrival events per sensor activation.

Overall, the application of the proposed methodology was successful, resulting in very
minimal time for the modeling and deployment of PLC controllers designed through super-
visory control.

20

Chapter 5

Observations

The application of the template design methodology to a real project, even though very
small, brought some interesting insights.

Surprisingly, the biggest advantage of the design methodology does not seem to be the
ability to use templates. Even in the small example project, it was necessary to use custom,
project-specific modules and channels which would not make very reusable additions to the
template library. However, the users’ experiences were quite positive in other respects. First,
the template design environment made it very easy to model and remodel systems, i.e., to
create prototypes in the initial stages of system design. It is simple to replace modules and
channels and then generate the corresponding supervisors to see what happens. Second, the
users no longer have to keep track of event name consistency between modules and between
specifications. All elements of a template design have asynchronous events by default—and
one need not worry about unexpected interactions. On the other hand, synchronization is not
achieved by naming events consistently but rather by visually linking them. Then, it is easy
to try different synchronization strategies and it is possible to use a single template instance
in a number of ways without having to always rename events. This property seemed to be
especially liberating since renaming events is laborious and error-prone. In our project we
needed to obtain a very small supervisory solution (in order to fit in the PLC memory) and it
was necessary to go through a large number of iterations where the system was simplified with
different approaches. This rapid prototyping would not have been feasible if all operations
had to be called manually and if event names had to be changed for every new approach.
It seems that even if the use of templates is not the primary reason for applying the new
methodology, users still would find it advantageous, especially in the initial stages of design.

Other observations stem from the attempts to generate working PLC code directly from
the modeling software. One initial idea we had was that maybe it would be possible to store
PLC code snippets together with the templates in the library. Then, the designer would not
have to deal with coding at all. Unfortunately, it turns out that this would have extremely
limited, if any, application. The more generic a template is (i.e., the wider application it can
have), the less meaningful it is to include any code (since it loses relevance). One example
of this is the “Workstation” template which was used to model both the rotating table and
the arm with the grabber; these are two completely different systems, requiring completely
different PLC code. Thus, it is not possible to avoid having to input custom PLC code for

21

every design. Another complication which we discovered was due to the design of the proto-
col between the custom code and the automatically generated supervisory control code. For
each event, the communication happens through a shared variable. For controllable events,
the variable passes information from the controller to the custom subroutine (specifies if the
subroutine has to be executed), while for uncontrollable events, the variable passes informa-
tion from the subroutine to the controller (specifies if the uncontrollable event has occurred).
Some uncontrollable events, however, are the result of the execution of the subroutine for a
controllable event. For example, the event “finish drill” is the result of the execution of “start
drill”. According to the protocol, the only way that the supervisory code can be informed
about the occurrence of such events is through the execution of dedicated subroutines. For
example, it is not possible to announce the occurrence of “finish drill” directly from within
the subroutine for “start drill”. The solution we devised was to use an internal variable
shared between the subroutines for the controllable event and the dependent uncontrollable
event. Then, the first subroutine sets this variable and the second subroutine knows that it
has to announce the occurrence of the dependent event. This is exemplified next with the
code for the “start drill” and “finish drill” events, which share the variable “M3.7”.

START_DRILL

...

Network 4

LD T102

R M3.6, 1

S M3.7, 1

R Q0.4, 1

R T102, 1

...

FINISH_DRILL

Network 1

LD M3.7

S <event>, 1

R M3.7, 1

The practical application of theory usually is faced with many unforeseen obstacles. In
the case of our example project, we discovered that the PLC unit we had available has a
very limited amount of memory (4 KB). The complete system could not be implemented
as envisioned originally since the PLC code could not fit in he available memory. In order
to deal with this problem, we propose the use of supervisor reduction algorithms and the
optimization of the generated PLC code. Due to other constraints, such as time, we did
not make progress on these ideas. However, preliminary investigations showed that, using
the reduction algorithms in CTCT [2], some supervisors could be reduced from thousands of
states to fewer than 10 (for further information, refer to [12]).

22

Chapter 6

Proposed future work

The success of the development of the template design methodology and the subsequent
example project does not mean that there are no open questions regarding application of
supervisory theory. A few directions for future research are listed next:

• The software for template design is still under development. It needs improvement in
order to allow casual use.

• The experience we gained showed that the main strength of template design is not in
the availability of templates. The methodology has to be changed to suit better the
needs of rapid prototyping.

• There are a number of optimizations which can be done to the the library for PLC code
generation. For example, currently a single Boolean variable is used for each state of an
FSA. The variable will be true if the FSA is at this state and false otherwise. Instead,
a single integer variable can indicate which state of the FSA is active, if each state has
a unique integer identifier. Thus, in order to keep track of 100 states, one byte can
be used (one byte can handle up to 256 states), while with the current approach, each
state requires one bit, thus requiring 100/8 = 12.5 bytes.

• The current PLC code generator can output only code in the instruction list format
compatible with Siemens PLCs. It is possible to design the generator using architecture
similar to the one used in computer language compilers. Instead of generating in a hard-
coded format, the core of the generator can produce a sort of PLC meta-language, which
will be then converted into a specific PLC format by a special module. Afterwards,
if one needs to select a different output format, only the converter will have to be
replaced, keeping the core intact.

• The current implementation of the software supports only one-way interaction with
the real system—PLC code is generated from the abstract description of the DES
supervisors and it is downloaded to the PLC controller. However, it is not possible to
receive any feedback from the real system when it runs. Feedback which is not real-
time, such as a log of the executed events and how much time they took, may be used
for analysis of the performance of the controlled system. It is much more interesting,

23

however, to be able to connect the software with the system controller (such as a PLC)
in order to obtain real-time feedback. This could be used in many ways: from animating
on the screen the execution of the system to providing high-level control from within
the software, if the PLC code is equipped to delegate the control of some events to the
software. In the latter case, the controller of the real system has to be able to handle
delays and failures on the communication channel with the software.

24

Acknowledgments

We would like to thank the following people without whom this project would not have been
successful: José Cury from Federal University of Santa Catarina, Brazil and Karen Rudie from
Queen’s University, Canada for giving me the opportunity to complete this project, in terms
of time, equipment and advice; Max de Queiroz from Federal University of Santa Catarina,
Brazil for helping with advice and resolving many hardware-related issues; Francisco da Silva
from Federal University of Santa Catarina, Brazil for the initial implementation of the BAJ
library; Steffi Klinge from Otto-von-Guericke University, Germany for the design of the DES
models and channels used in the experimental application and her feedback about the process
of template design; and Guilherme Lise and Luis Marques from Federal University of Santa
Catarina, Brazil for creating the PLC subroutines to control the robotic testbed.

The project was supported through grants from NSERC and Queen’s University, Canada
and CNPq, Brazil.

25

Bibliography

[1] B. A. Brandin, R. Malik, and P. Malik. Incremental verification and synthesis of discrete-
event systems guided by counter examples. IEEE Transactions on Control Systems
Technology, 12(3):387–401, May 2004.

[2] CTCT software. Department of Electrical and Computer Engineering, University of
Toronto, Canada. Available at http://www.control.toronto.edu/DES/.

[3] C. de Oliveira, J. E. R. Cury, and C. A. A. Kaestner. Supervisory control problem for
parameterized and non regular discrete event systems. To appear in IEEE Transactions
on Automatic Control.

[4] M. H. de Queiroz and J. E. R. Cury. Modular control of composed systems. In Pro-
ceedings of the 2000 American Control Conference, volume 6, pages 4051–4055, June
2000.

[5] M. H. de Queiroz and J. E. R. Cury. Synthesis and implementation of local modular
supervisory control for a manufacturing cell. In Proceedings of the 6th International
Workshop on Discrete Event Systems (WODES’02), pages 377–382, Zaragoza, Spain,
October 2002.

[6] DESUMA software. Department of Electrical Engineering and
Computer Science, University of Michigan, USA. Available at
http://www.eecs.umich.edu/umdes/toolboxes.html.

[7] G. Ekberg and B. H. Krogh. Programming discrete control systems using state machine
templates. In Proceedings of the 8th International Workshop on Discrete Event Systems,
pages 194–200, Ann Arbor, MI, USA, July 2006.

[8] C. M. Enright and M. Barbeau. An evaluation of the TCT tool for the synthesis of con-
trollers of discrete event systems. In Canadian Conference on Electrical and Computer
Engineering, volume 1, pages 241–244, Vancouver, BC, Canada, September 1993.

[9] L. Grigorov. Hierarchical control of discrete-event systems. Survey pa-
per, School of Computing, Queen’s University, Canada, 2005. Available at
http://www.cs.queensu.ca/~grigorov/.

26

[10] L. Grigorov and K. Rudie. Problem solving in control of discrete-event systems. In
Proceedings of the European Control Conference 2007, pages 5500–5507, Kos, Greece,
July 2007.

[11] IDES software. Department of Electrical and Computer Engineering, Queen’s University,
Canada. Available at http://www.ece.queensu.ca/directory/faculty/Rudie.html.

[12] S. Klinge. Supervisory control of a manufacturing cell: Modeling and implementation.
Pre-diploma thesis, Otto-von-Guericke University, Germany, 2007. In preparation.

[13] R. J. Leduc. Hierarchical Interface-based Supervisory Control. PhD thesis, Department
of Electrical and Computer Engineering, University of Toronto, 2002.

[14] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization, 25(1):206–230, 1987.

[15] K. Rudie. The integrated discrete-event systems tool. In Proceedings of the 8th Interna-
tional Workshop on Discrete Event Systems, pages 394–395, Ann Arbor, MI, USA, July
2006.

[16] E. A. P. Santos, J. E. R. Cury, and V. J. D. Negri. Modelagem das especificações opera-
cionais de sistemas de manipulação e montagem automatizados. In Śımposio Brasileiro
de Automação Inteligente, pages 144–149, Bauru, São Paulo, Brazil, 2003.

[17] E. A. P. Santos, V. J. D. Negri, and J. E. R. Cury. A computational model for supporting
conceptual design of automatic systems. In Proceedings of 13th International Conference
on Engineering Design, pages 517–524, Glasgow, UK, August 2001.

[18] B. Tognazzini. Tog on Interface. Addison-Wesley Publishing Company, Inc., 1992.

[19] W. M. Wonham. Supervisory control theory: Models and methods. Informal talk
at Queen’s University, a version for the 24th International Conference on Application
Theory of Petri Nets is available at http://www.control.toronto.edu/DES/publish.html,
2003.

[20] W. M. Wonham and P. J. Ramadge. Modular supervisory control of discrete-event
systems. Mathematics of Control, Signals, and Systems, 1:13–30, 1988.

[21] M. M. Wood. Application, implementation and integration of discrete-event systems
control theory. Master’s thesis, Department of Electrical and Computer Engineering,
Queen’s University, 2005.

27

