
Molecular Codebreaking

and Double Encoding

Cameron D. McKay∗, Joslynn G. Affleck†,
Naya Nagy, Selim G. Akl‡, Virginia K. Walker§

August 21, 2007

Abstract

We have evaluated the practical feasibility of implementing part of a
molecular codebreaker, a DNA computer that uses a known-plaintext at-
tack to recover an encryption key. Molecular biology techniques such as
ligation, gel electrophoresis, polymerase chain reaction (PCR), and grad-
uated PCR were found to be feasible but currently have some limitations
such as error accumulation. A so-called “error resistance technique” of
double encoding, where bits are encoded twice in a DNA strand, was also
designed and attempted. Although the double encoding implementation
was not completely successful, several important issues associated with
using ligation for double encoding were identified, such as encoding adap-
tation problems, strand generation penalties, strand length increases, and
the possibility that double encoding may not reduce the number of false
negatives.

1 Introduction

DNA computers offer inherent parallelism with remarkable energy efficiency, in-
formation density, and can be as fast as modern silicon-based computer [2, 8, 7,
9, 13, 14]. The first DNA computer, devised by Adleman [2] was used to solve
the directed Hamiltonian path problem. The Lipton and sticker-based com-
puters [11, 15] were designed to tackle more general problems, with the former
showing promise at least for computations with up to 60 variables and the lat-
ter exhibiting potentional even in partial implementations [8, 7]. Surface-based
DNA computers [12, 13, 17] have been shown to reduce the amount of DNA lost
in molecular biology purification steps but are subject to lower reaction kinetics
since the DNA is immobilized. The hairpin DNA computer makes use of in-
trastrand hybridization (hairpin formation [16]), offering a promising new DNA

∗Queen’s University is acknowledged for financial support of Cameron D. McKay.
†NSERC supported Joslynn G. Affleck with a postgraduate scholarship.
‡NSERC supported Selim G. Akl with a Discovery Grant.
§NSERC supported Virginia K. Walker with a Discovery Grant.

1

Technical Report No. 2007-539

School of Computing
 Queen's University

 Kingston, Ontario, Canada



computing approach. Innovations such as gel-based methods [8, 7] have not yet
been embraced because of the necessary specialized equipment and an efficiency
that presently cannot compete with inexpensive silicon-based computers. Most
of these devices suffer from slow human-assisted steps for the biochemical re-
actions, but biomolecular automata [4] use proteins that rapidly recognize and
hydrolyze certain DNA sequences (restriction enzymes) and join (ligases) ap-
propriate strands allowing up to 1019 transitions per second. These and similar
machines [1, 3] are perhaps the most promising DNA computers yet devised, but
even these cannot theoretically perform all the computations possible in silico,
and until now have only been validated for a simple case involving two states.
Thus, DNA computing is in its infancy and it is uncertain if these computers
will have general applicability in the future or if they will be required only for
a limited number of specialized tasks.

One such task could be the breaking of encryption schemes, such as the
widely-used but relatively insecure U.S. Data Encryption Standard (DES) that
encrypts 64-bit messages using a 56-bit key. The use of DNA computers to solve
such problems was described by Boneh et al. [5]. In their paper they described a
theoretical, brute force attack to recover the key used to map a known-plaintext
to a known-ciphertext. This exhaustive approach on a DNA computer has not
yet been demonstrated in the laboratory. In this paper we attempt to use a
much simpler, proof-of-concept version of the Boneh et al. program. The new
program, designated Molecular Codebreaker 1 (MCB-1), was designed to have
proof-of-concept simplicity in that it uses only 2-bit plaintexts, 2-bit keys and
2-bit ciphertexts. Furthermore, instead of full DES encryption, MCB-1 uses the
principal operation performed by the DES algorithm: the exclusive disjunction,
also known as the exclusive-OR operation, and denoted XOR.

In order to explore the feasibility of using a DNA computer to break encryp-
tion, we evaluated the feasibility of using ligation, gel electrophoresis, PCR,
and graduated PCR (GPCR) in MCB-1. We also began some preliminary ex-
periments using magnetic bead separation with MCB-1. All of these molecular
biology techniques appeared to be suitable for use in a present-day real-world
implementation of MCB-1. We also evaluated using a ligation-based double en-
coding technique that was to act as an error correction mechanism for MCB-1.
Although the double encoding hypothesis could not be tested, our experiments
yielded important observations regarding the use of ligation to implement dou-
ble encoding. These observations are discussed in detail in Section 3.

The remainder of this paper is organized as follows: Section 2 covers the
structure and implementation of MCB-1. It also covers the experiments we car-
ried out and their results. Section 3 discusses our research into double encoding,
particularly the different ways double encoding may be implemented in MCB-
1. It also contains further experimental results and observations. The paper
concludes with our conclusions and suggested future work in Section 4.

2



2 Molecular Codebreaking

As with the DES-breaking algorithm, the goal of MCB-1 is to determine the
key K used to map a known-plaintext P to the known-ciphertext C. To do this,
the following steps are followed:

1. The known-plaintext P is fixed to P1P2 where P1 and P2 are 0 or 1.

2. All keys are generated resulting in the set K1K2 = {00, 01, 10, 11}.

3. The ciphertexts are generated and appended, resulting in the set K1K2T1T2

where Ti = Ki ⊕ Pi for all i ∈ {1, 2}.

4. The known-ciphertext C is fixed to C1C2 where C1 and C2 are 0 or 1.

5. Any string from K1K2T1T2 where Ti = Ci for all i ∈ {1, 2} is separated
to its own group. The key portion K1K2 is the key used to map P1P2 to
C1C2.

Step 1 is a preprocessing step. Step 2 is the key generation step. Step 3 is
the ciphertext generation step. Steps 4 and 5 are the key recovery steps.

2.1 Encoding Bits in DNA

To manipulate bits using molecular biology techniques, binary strings are en-
coded as DNA sequences. Each string is comprised of 4 bits: 2 bits for the key
and 2 bits for the ciphertext. Since each of the 4 bits has two states (2 × 4),
there are 8 oligonucleotides (oligos) required to encode the 4 bits in DNA. In
addition to bit oligos, the DNA encoding of the 4-bit strings contains separator
oligos. The 4-bit DNA encoding, with separators, has the following mathemat-
ical representation

S0B1(x1)S1B2(x2)S2B3(x3)S3B4(x4)S4 (1)

where xi is 0 or 1, Bi is a bit oligo, and Si is a separator oligo. The separators
are used as templates for Taq polymerase so that the bits can be amplified using
a polymerase chain reaction (PCR) and thus detected. The bit and separator
oligo sequences used are listed in Table 1 and Table 2, respectively. The oligos
are 20-40 base pairs (bp)1 in length. In order to ensure that all oligos were
distinct: (1) each nucleotide in an oligo sequence was chosen at random and (2)
no two oligos share a substring of length 10 (for the 20-bp oligos), 15 (for the
30-bp oligos) or 20 (for the 40-bp oligos).

Connector oligos are designed to join bit and separator oligos together and
are named for the two sequences connected (see Table 3). For example, a
connector between S1 and B2(0) is denoted S1 ↔ B2(0). If S1 and B2(0) were
20-bp, then the connector is designed to have a complementary sequence of the

1The number of base pairs (bp) in a DNA strand is the number of nucleotides in that
strand. For example, the strand GATTACA has 7 nucleotides, so it is 7-bp long.

3



Bit Sequence
B1(0) GGTCGAGTGAGCCTGGTCACACAGCAGCGC
B1(1) GTGTTTGAGGTTCTATTTTGCCCACTAGAC
B2(0) TTACGGCCTTTGGATCATTTGTTTACTCGT
B2(1) CTGCAACTACTGAGTATTCCTGAGCCGGCA
B3(0) CTCTCGACTGCTACGCACGA
B3(1) TACTACTGCTATGTACTGCT
B4(0) CTGTAGTCGCAGTGCTCTCG
B4(1) AGATGTCGACGAGAGACATA

Table 1: MCB-1 bit oligo sequences for the 8 states of 4 bits.

Separator Sequence
S0 TCTGGTCACCTCCTCCTTCTCTGCCTACGA
S1 TTCCACGCCGCAGAGCCATCTAGGTAGCTT
S2 CGTACGTTCCCCTAACCGCATGCATTAGCT
S3 GATGCTACTCGTCACGATAG
S4 TCACGCTCAGTATACAGTGA

Table 2: MCB-1 separator oligo sequences for 4 bits.

Connector Sequence
S0 ↔ B1(0) AGACCAGTGGAGGAGGAAGAGACGGATGCTCCAGCTCACT
S0 ↔ B1(1) AGACCAGTGGAGGAGGAAGAGACGGATGCTCACAAACTCC
B1(0) ↔ S1 CGGACCAGTGTGTCGTCGCGAAGGTGCGGC
B1(1) ↔ S1 AAGATAAAACGGGTGATCTGAAGGTGCGGC
S1 ↔ B2(0) GTCTCGGTAGATCCATCGAAAATGCCGGAA
S1 ↔ B2(1) GTCTCGGTAGATCCATCGAAGACGTTGATG
B2(0) ↔ S2 ACCTAGTAAACAAATGAGCAGCATGCAAGG
B2(1) ↔ S2 ACTCATAAGGACTCGGCCGTGCATGCAAGG
S2 ↔ B3(0) ACGTAATCGAGAGAGCTGAC
S2 ↔ B3(1) ACGTAATCGAATGATGACGA
B3(0) ↔ S3 GATGCGTGCTCTACGATGAG
B3(1) ↔ S3 TACATGACGACTACGATGAG
S3 ↔ B4(0) CAGTGCTATCGACATCAGCG
S3 ↔ B4(1) CAGTGCTATCTCTACAGCTG
B4(0) ↔ S4 TCACGAGAGCAGTGCGAGTC
B4(1) ↔ S4 CTCTCTGTATAGTGCGAGTC

Table 3: MCB-1 connector oligo sequences for 4 bits.

4



last 10 bp of S1 and the first 10 bp of B2(0). Collectively, the bit, separator and
connector oligos are referred to as the encoding set. The encoding set uses 30-bp
oligos (the first two bits), as well as 20-bp oligos (last two bits). Although longer
than required for a 4-bit problem, the 30-bp oligos allow for the possibility of
theoretically scaling to 300 bits or more.

2.2 Key Generation

In the key generation step of MCB-1, all possible keys are generated. The keys
are generated using the first two bits of the encoded DNA string. That is, the
S0B1(x1)S1B2(x2)S2 part of Equation 1. By taking advantage of the natural
affinity that complementary nucleotides have for one another (i.e. Watson-Crick
complementarity), ligation reactions are used so that the oligos that make up
S0B1(x1)S1B2(x2)S2 form the bit strings 00, 01, 10, and 11 in DNA (see Figure
1 for an example). The new, longer DNA strands that result from the ligation
of the smaller oligos are called keyligos.

Figure 1: A figure depicting how the S0 and B1(0) connect together. In the
figure, S0 and S0 ↔ B1(0) have annealed to form hydrogen bonds because they
share 20 complementary nucleotides. Moreover, since the first 10 nucleotides of
B1(0) are complementary to the last 10 nucleotides of S0 ↔ B1(0), they too
will anneal along the area indicated. The new oligo will be 60-bp long.

Once the ligation reaction has been completed, the solution is analyzed by gel
electrophoresis to verify that the keys formed correctly. Following gel analysis,
the keyligos are amplified using PCR with S0 (forward primer) and S̄2

2 (reverse
primer) as primers.

2.3 Ciphertext Generation

In the ciphertext generation step of MCB-1, the keys generated in the previous
step are used to encrypt the known-plaintext. In order to generate the cipher-

2S̄2 is the Watson-Crick complement of S2. For example, if S2 = GACTACAC then
S̄2 = CTGATGTG.

5



texts from the known-plaintext P and the keyligos, a 2-phase cycle is repeated
for every state of every bit in the key for the molecular algorithm.

In the first phase, the keyligos encoding a bit state Bi(xi) (where i is 1 or 2
and xi is 0 or 1) are separated from the other keyligos using biotin-streptavidin
bead separation3. For example, if the bit state to be separated was B1(0), then
the bead separation would place all keyligos encoding 00 and 01 in a separate
test tube.

In the second phase of the cycle, the appropriate bit of the ciphertext is added
to the separated keyligos. To determine the ciphertext bit, the separated bit
state Bi(xi) is XORed with the first bit of the known-plaintext P . So, continuing
with the example from the first phase, if P = 10 and the bit separated was B1(0)
then 1⊕ 0 = 1, meaning that 1 must be added to the separated keyligos. Note
that the calculation of the ciphertext bit is performed manually, without the
use of DNA. The ciphertext bit is appended to the keyligos through the use of a
ligation reaction. If the ciphertext bit is represented by B3(1) then, to append
it to the separated keyligos, the oligos encoding S2 ↔ B3(1) and B3(1) must
be ligated to the separated keyligos. After the ciphertext bit is appended, the
separated solution (now with an extra ciphertext bit) is merged back into the
solution with the rest of the keyligos.

The first two cycles of the ciphertext generation step are shown in Figure
2. Since each bit has 2 states and there are 2 bits in a key, 4 cycles must take
place in order to generate all possible ciphertexts for a known-plaintext. The
keyligos with ciphertexts attached to them are called cryptligos.

2.4 Key Recovery

In the key recovery step of MCB-1, the key used to encrypt the known-ciphertext
is recovered. To recover the key, the cryptligos that encode the known-ciphertext
(the known-cryptligos) are separated from the remaining cryptligos using bead
separation. The attached keyligos are then read using graduated PCR (GPCR)4.

The known-cryptligos are separated from the rest of the cryptligos using
iterative bead separation operations. Consider an example where the known-
ciphertext is 01. In order to separate all cryptligos that encode the known-
ciphertext, a bead separation must be performed on the first bit of the cipher-
text. Since the first bit of the ciphertext is located at the third bit in a cryptligo,
the bead separation operation is made to separate at B3(0). As a result, the
cryptligos that encode the ciphertexts 00 and 01 are placed in a separate tube.
Next, a bead separation is performed on the test tube containing 00 and 01.
Since the second bit of the ciphertext is 1, the bead separation operation is
made to separate at B4(1). This separates all cryptligos that encode the ci-
phertext 01 in a separate tube. Next, the key encoded by the keyligos that are

3Biotin-streptavidin bead separation (described by Adleman [2] and Kaplan [10]) is used
to separate DNA strands with a desired nucleotide sequence from those without it.

4GPCR is the technique that Adleman used in his first experiment to read graphs from
specially encoded DNA. GPCR works by selectively amplifying substrings of DNA. See Adle-
man’s paper [2] for further details.

6



Figure 2: A diagram showing the first two cycles of the ciphertext generation
step of MCB-1. In the example, the plaintext P is 10. In the first phase of the
first cycle, the keyligos containing bit B1(0) (that is, the first bit with state 0)
are separated from the rest of the keyligos. In the second phase, the ciphertext
bit is calculated and appended to the separated keyligos. At the end of the
cycle, the separated oligos are mixed back with the rest of the keyligos. The
second cycle proceeds in the same manner as the first cycle, with the exception
being that the separation occurs on bit B1(1) instead of B1(0).

7



attached to the known-cryptligos is recovered by using GPCR.

2.5 Results and Discussion

2.5.1 Ligation

In the key generation and ciphertext generation steps of MCB-1, a ligation
reaction is used to either create keys or attach ciphertexts. Since there is no
single optimal ligation protocol, three protocols were tested: ADL-4, ADL-12
and JC-12. Each of these protocols is briefly described below.

Protocol ADL-4 was used by Adleman in his first DNA computing experi-
ment [2]. The protocol specified that all the necessary oligonucleotides should
be mixed together along with ligase and left at room temperature for 4 hours.
Protocol ADL-12 is identical to ADL-4 except that the reaction continues for
12 hours (i.e. overnight) in an attempt to maximize the ligation products. In
contrast to Adleman’s protocol, Protocol JC-12 has two steps. In the first step,
the annealing step, all the necessary oligos are mixed together in a test tube
along with the appropriate buffer and MgCl2. The test tube is placed in an
80◦C bath for 3 minutes then left for 1 hour to cool to room temperature. This
allows the strands to anneal together first before they are ligated. In the second
step, the ligation step, ligase is added and the solution is left for 12 hours. This
step covalently bonds together the oligos annealed in the previous step.

Figure 3: The ligation products formed using Protocols JC-12, ADL-4 and
ADL-12. The first lane (far left) contains the base pair ladder. The second lane
contains the keyligos made using JC-12, the third lane contains the keyligos
made using ADL-4, and the fourth lane are the keyligos made using ADL-12.
A 4% agarose gel stained with ethidium bromide is shown.

Experiments conducted with each of the three protocols showed appropriately-
sized ligation products (see Figure 3) in the desired 150-bp area. ADL-4, the
fastest of the three protocols, fared remarkably well with a bright band at 150-bp
as well as two secondary bands below the 100-bp marker. ADL-12 produced the
same bands as ADL-4, although the bands produced by ADL-12 were brighter,
indicating more product. JC-12, the most labour-intensive of the three proto-
cols, produced two faint bands at 150-bp and just below the 100-bp marker.

8



The most interesting result of the testing was the difference between the
brightness of the bands produced by ADL-12 and JC-12. It appears that allow-
ing the oligos to anneal before ligating (as is in the case with JC-12) results in
a fewer number of keyligos being formed. It should also be noted that all three
protocols produced secondary bands. However, because the 150-bp band is cut
out of the agarose gel anyway, secondary products are of little concern. Thus,
since ADL-4 was the fastest of the three protocols and still produced acceptable
bands in the 150-bp range, it was chosen as the ligation protocol for MCB-1.

2.5.2 Gel Electrophoresis

Gel electrophoresis is used at some point in almost any DNA computer. In
MCB-1, gel electrophoresis is used to confirm the computation is proceeding, to
purify DNA, and to output bit strings.

Although gel electrophoresis has been a standard tool in molecular biology
for quite some time, it is not error-free. Typically, none of the process is auto-
mated. That is, a researcher must mix the agarose and heat it, physically pour
the liquid gel, transfer it to the electrophoresis apparatus and attach a power
source. Because of this reliance on manual labour, consistency from gel to gel is
difficult to guarantee. For instance, if the gel is not poured level the migration
of the DNA may be altered. If the wells are not deep enough, then they may
get overfilled and leave DNA behind. Other failures include DNA that runs at
different speeds depending on the lane, lanes that do not appear parallel to the
gel, DNA bands that bend, and air bubbles that may be trapped within the gel
causing inhomogeneous polymerization of the gel [10].

During the course of the experiments, it became obvious that gel elec-
trophoresis failures can have negative consequences in a DNA computing con-
text. For instance, if a gel fails then, at best, the DNA can be cut out and
recovered or, at worst, the DNA is lost. If the DNA is cut out and recovered,
then the time spent preparing and running the gel (2 or more hours) is lost.
If the DNA cannot be recovered (very rare) and the DNA computation is at
an advanced stage, many days of work may be forfeited. Thus, just as with a
silicon computer, DNA computers have a risk of “crashing”.

2.5.3 PCR

PCR is used in two steps of MCB-1. It is used to duplicate and purify the keyli-
gos in the key generation step, and it is used to output the recovered key in the
key recovery step. Unlike gel electrophoresis, most of the PCR reaction is auto-
mated by a machine known as a thermal cycler, which controls the temperature
according to a preprogrammed schedule.

As with ligation, there is no definitive protocol for PCR. However, at least
two protocols have been used in the DNA computing literature. PCR-A, used
by Adleman in [2], specifies a temperature cycle of 94◦C for 15 seconds and 30◦C
for 30 seconds, for a total of 35 cycles. PCR-K, used by Kaplan in [10], specifies
a temperature cycle of 94◦C for 30 seconds, 55◦C for 30 seconds, and 72◦C for

9



30 seconds, for a total of 35 cycles. Since both Adleman and Kaplan reported
success using their respective protocols, it was decided that PCR-A would be
used for all the experiments. This was decided based on the fact that PCR-A
took less time in the thermal cycler than PCR-K and thus could be performed
faster.

Of all molecular biology techniques used in the experiments, PCR was the
least difficult to perform. Since the majority of the process is handled by a
thermal cycler, very little manual effort is required beyond mixing the necessary
reagents in a test tube and remembering which test tube contains which reaction.
Furthermore, the high level of automation results in more consistent results than
the more labour-intensive experiments like gel electrophoresis.

2.5.4 Graduated PCR

In his breakthrough paper [2], Adleman detailed an experimental paradigm that
could solve the directed Hamiltonian path problem using a DNA computer.
However, in order to ensure that the graph he received at the end of his DNA
computation was indeed the correct graph, Adleman needed a technique for
reading graphs encoded in DNA. The technique he used was graduated PCR
(GPCR), a technique that uses PCR to selectively amplify specially encoded
DNA substrings. In MCB-1, GPCR is used as part of the key recovery step.
However, unlike Adleman, it is used to read bit strings instead of graph edges.
This can lead to some ambiguous results (more on that below). In order to
ensure that GPCR was a viable technique for reading the bit values of keyligos,
it was decided that it would be tested in an idealized situation. Thus, GPCR
was used to identify a 01 keyligo in a solution containing only 01 keyligos, which
would occur only if the bead separation mechanism worked perfectly.

Since Adleman was the first researcher to use GPCR, his protocol [2] was
used. The gel image of the GPCR test can be found in Figure 4. As can be seen
in the figure, the GPCR was successful. However, the results were not ideal.
Performing GPCR on a single key is the best-case scenario and should ideally
result in only two bands, one at 60-bp in the second lane (representing bit 0 at
position 1), and one at 120-bp in the fifth lane (representing bit 1 at position 2).
In practice, there were 3 bands in the fifth lane, with the 120-bp band fainter
than the 100-bp band. Perhaps most worrisome was the existence of a faint
60-bp band in the third lane, which could lead to ambiguous GPCR readings.
Some possible reasons for the existence of the 60-bp band in the third lane are
contamination or non-specific binding during the PCR process.

That being said, the GPCR technique appears to be a viable means to read
the values of keyligos. Since all the PCR reactions necessary for GPCR can
be performed in parallel, the technique has a time complexity of O(1). The
main issue with GPCR is the unexplained bands in the second and fifth lanes.
Performing GPCR tests on the remaining three keyligos may shed light on this,
and is recommended as future work.

10



Figure 4: The GPCR test results attempting to read a 01 keyligo. The first lane
(far left) contains the base pair ladder. The second lane, representing B1(0), is a
clear band at 60-bp. This means that the first bit of the keyligo is 0. In the third
lane, representing B1(1) there is a faint band at 60-bp, which should be ignored
due to the presence of the brighter band in the second lane. In the fourth lane,
representing B2(0), there are no bands. In the fifth lane, representing B2(1)
there are three bands at 60-bp, 100-bp and 120-bp. Ideally, only the 120-bp
band should be present. However, since there is a product in this lane, and
none in the fourth lane, it can be assumed that the second bit of the keyligo is
1. A 4% agarose gel stained with ethidium bromide is shown.

2.5.5 Bead Separation

Bead separation is a molecular biology technique used in DNA computing for
separating DNA strands based on their nucleotide sequences. In MCB-1, bead
separation is used to separate DNA double-strands into single-strands5, and
then separate DNA single-strands based on their sequence. Preliminary work
using bead separation to separate double-strands into single-strands was carried
out in the laboratory.

The protocol used by us for separating DNA double-strands was a combina-
tion of the protocol used by Adleman [2] and the protocol included in the man-
ufacturer’s instructions. Bead separation was found to be a relatively straight-
forward experiment to perform. The only potential issue identified was with the
frequent “washing” that took place. Washing entails placing a set amount of
a solution in the test tube, moving the tube to a new spot in a magnetic tube
rack, waiting 2-3 minutes, and then removing the solution (without accidentally
taking the beads with it). This is repeated several times. The result is an op-
eration that is tedious to carry out but also requires attention and precision, a
combination that lends itself easily to human error.

Although extensive testing was not carried out, due to time constraints, using
bead separation as the mechanism to separate DNA double-strands into single-

5It should be noted that separating double-strands into single-strands is not done exclu-
sively by bead separation. Indeed, double-strands are first denatured (i.e. the bonds between
the A/T and C/G are broken) into two single-strands, and then one of the two single-strands is
removed using bead separation.

11



strands in MCB-1 appeared to be feasible. Since all DNA double-strands can
be separated into single-strands in parallel, the operation can be performed in
O(1) time. However, separating DNA strands is only half of the bead separation
operation. The second half of the operation, separating single-strands based on
sequence, must also be tested for feasibility. More extensive testing using bead
separation with MCB-1 has been left as future work.

2.5.6 Summary

MCB-1 was designed to test the basic functionality of the DES-breaking DNA
computer described in [5]. In this respect, MCB-1 was a success. Using a 2-bit
key and 2-bit ciphertext, in lieu of the original 56-bit key and 64-bit ciphertext,
and an XOR gate, instead of the DES algorithm, allowed for the possibility of
testing the molecular codebreaking concept with technology available today. It
should be noted that using a DNA computer to break encryption has never be-
fore been attempted experimentally. Therefore, the research carried out in this
paper represents an important first step toward one day using DNA computers
in cryptanalysis. Although MCB-1 was not fully implemented, the results ob-
served thus far indicate that MCB-1 is realizable now, with more complicated
machines not too far in the future.

3 Double Encoding

DNA operations are not error free. An often cited example is the problem with
separation by hybridization (i.e. magnetic bead separation. In the example,
there is a test tube containing both good strands (those containing the desired
DNA substring) and bad strands (the strands not containing the desired DNA
substring). If, in each application of the bead separation operation, 99% of the
good strands are removed, then the probability that a good strand remains at
the end of 1,000 applications is 0.991000 ≈ 0.00004. Thus, even with a 99%
extraction rate, a bead separation-intensive algorithm that does not implement
some sort of error correction will always fail [6].

The basic idea behind double encoding is to modify the way that binary
strings are encoded in DNA in order to reduce the rate of false negatives6. In
Lipton encoding, a binary string x = x1x2 · · ·xn takes the form:

B1(x1)B2(x2) · · ·Bn(xn) (2)

where each Bi(xi) is a unique oligonucleotide for the bit at position i with value
xi. Thus, every Bi(xi) needs two oligonucleotides to represent it: one for Bi(0)
and one for Bi(1). This encoding (Equation 2) will be referred to as single
encoding.

Traditionally, false negatives in DNA computing are dealt with by increasing
the amount of DNA strands in the solutions, thus increasing the probability

6False negatives occur when a desired strand remains unextracted.

12



that a good strand (that is, a strand containing the desired substring) will be
extracted.

Double encoding, on the other hand, encodes the string x = x1x2 · · ·xn

twice, as in:

B1(x1)B2(x2) · · ·Bn(xn)B1(x1)B2(x2) · · ·Bn(xn) (3)

That is, each Bi(xi) appears twice at separate positions in the strand. The
belief is that since Bi(xi) appears twice in the DNA strand, it is more likely to
be extracted than a strand that has only one Bi(xi).

A simple analysis [6] shows that double encoding is more likely to make tube-
based DNA computing more resistant to false negative errors than doubling the
amount of strands.

3.1 Implementation

There are three ways that double encoding could have been incorporated into
MCB-1: the plaintext could have been double encoded (Equation 4), the ci-
phertext could have been double encoded (Equation 5), or both the plaintext
and ciphertext could have been double encoded (Equation 6). The mathemat-
ical representation of the three encoding options (without separators or PCR
markers) is shown below.

B1B2B1B2B3B4 (4)

B1B2B3B4B3B4 (5)

B1B2B1B2B3B4B3B4 (6)

Since double encoding had hitherto not been attempted, it was decided that
the initial implementation should be kept to a minimum. As a result, double
encoding both the plaintext and the ciphertext was eliminated as a possibility.
In order to choose between the two remaining possibilities, the following rea-
soning was applied. In MCB-1, 4 bead separation operations are performed on
the plaintext portion of the DNA encoding, while only 2 are performed on the
ciphertext portion. Double encoding is intended to make the bead separation
operation more reliable. Thus, the plaintext portion of the encoding should be
double encoded, since it undergoes twice as many bead separation operations
as the ciphertext portion.

As a consequence of the decision to double encode the plaintext, the actual
encoding used in MCB-1 needed to be modified. The original encoding

S0B1(x1)S1B2(x2)S2B3(x3)S3B4(x4)S4 (7)

was changed to

M0S0B1(x1)S1B2(x2)S2S∗S0B1(x1)S1B2(x2)S2M1B3(x3)S3B4(x4)S4 (8)

where Bi is 0 or 1, Si is a separator, and Mi is a PCR marker. The new
encoding contained a special separator oligo (S∗) and two PCR markers M0

13



and M1. The S∗ oligo allowed the first two bits of the string to repeat. The
two PCR markers enabled the key portion of the string to be duplicated using
PCR. For example, if S0 and S2 were used as primers instead of M0 and M1,
then the PCR reaction would yield spurious results due to the existence of more
than one S0 or S2 binding location.

In order to accommodate these changes to the DNA encoding, new oligos
need to be generated. The new oligos can be found in Table 47.

Oligo Sequence
S∗ ATATATACGTGCATCAGCGTCAGCGTGCAG

S2 ↔ S∗ GGATTGGCGTACGTAATCGATATATATGCA
S∗ ↔ S2 CGTAGTCGCAGTCGCACGTCAGACCAGTGG

M0 TCTGAATGCGCTACTGTCTG
M1 CGACCAATCGTTAGCACAAG

Table 4: The additional separator and connector oligos used in the double
encoded molecular program.

The encoding is not the only part of MCB-1 that needed to be modified in
order to take advantage of double encoding. Indeed, the key generation step is
changed significantly. Instead of generating all possible keys in a single ligation
reaction, as is done in the single encoded program (SEP), the double encoded
program (DEP) requires each key to be generated separately.

The reason the keys need to be assembled separately is due to the S∗ oligo.
In the SEP, the keys could be generated in parallel because they assemble in a
non-ambiguous way. Unfortunately, in the case of the DEP, a non-ambiguous
assembly cannot be guaranteed. If the key generation step of the DEP is carried
out as a single ligation reaction (as is done in the SEP) then the following would
occur. First, the single encoded keys would form: 00, 01, 10, 11. Second, the
S∗ oligo (represented as a +) would attach to the ends of some of the keys,
allowing for the keys to repeat: 00, 00+, 01, 01+, 10, 10+, 11, 11+. Third, the
keys would repeat. Unfortunately, the S∗ at the end of 00+ cannot tell if it is
connecting to 00 or 01 or 10 or 11. Thus, instead of yielding just the double
encoded key 00+00, the reaction would also yield the 3 “mangled” keys 00+01,
00+10, and 00+11. This is unacceptable.

However, if each key is generated separately, the formation of “mangled”
keys can be eliminated. Consider the case where a ligation reaction is carried
out using only the oligos for the 00 key. First, a single encoded key would form,
say 00. Second, the S∗ oligo would attach to the end of some of the keys: 00,
00+. Finally, the keys would repeat, yielding only 00+00, since no other keys
are present. Unfortunately, generating the keys separately in this fashion has
an enormous penalty. The complexity for generating the n-bit keys one-by-one
is O(2n). Conversely, the complexity for generating n-bit keys in parallel (as

7The S∗ separator oligo, along with its two corresponding connector oligos, could be omit-
ted in place of a single connector oligo between S2 and S0.

14



is done in the SEP) is O(1). Thus, implementing double encoding in MCB-1
in this way increases the complexity of the key generation step from O(1) to
O(2n), a significant increase. The ciphertext generation and key recovery steps
were unchanged for the DEP.

3.2 Results

The implementation of double encoding in the molecular program was unsuc-
cessful. Specifically, the double encoded strands could not be made to form.
Two different approaches to forming the strands were attempted. They are
described below.

3.2.1 All-At-Once Approach

In the all-at-once approach, all the oligonucleotides that make up a particular
double encoded key are added to a test tube and ligated. Although the oligo
assembly pattern is not completely unambiguous (i.e. both S∗ and P2 can bind
on the right side of S2), the rationale is that the double encoded key will still
form in sufficient quantities to allow for PCR amplification.

Unfortunately, this did not occur in the experiments, and, as a result, the
all-at-once approach was discarded.

3.2.2 Half-and-Half Approach

The main perceived problem with the all-at-once approach was the potential for
ambiguous assembly. The half-and-half approach is intended as a solution to
that problem. Recall that a double encoded key is represented mathematically
as:

P0S0B1(x1)S1B2(x2)S2S∗S0B1(x1)S1B2(x2)S2P1

In the the half-and-half approach, the double encoded DNA strand is assem-
bled in halves. One half consists of the P0S0B1(x1)S1B2(x2)S2S∗ portion, and
the other half consists of the S0B1(x1)S1B2(x2)S2P1. Each of these halves are
ligated separately, giving two separate DNA strands. After being ligated sepa-
rately, the two halves are ligated together in an additional ligation reaction.

The experimental work found that, although the two half strands appeared to
form successfully, they refused to stick together after the final ligation reaction.
Ultimately, the half-and-half approach had to be abandoned as well.

3.3 Discussion

Double encoding is intended to reduce the error associated with using hybridiza-
tion as a central mechanism of a DNA computer. Indeed, the idea of double
encoding is simple to grasp: offer two locations on a single strand for a DNA
probe to bind to. In theory, this should offer better performance than having
just a single location on twice as much DNA. However, the experiments failed
to yield results to prove or disprove this hypothesis.

15



This failure can be attributed to the multitude of problems associated with
using DNA in a computing context. As Kaplan [10] reported when attempting
to repeat Adleman’s experiment [2], the tools of molecular biology have been
designed and implemented for a narrow range of experiments. As such, they
may have unconsidered side effects when used for computations. For example,
errors in the ligation process, such as uncharacterized products, are typically
unimportant to biologists because they incorporate the ligation products into
cells that not only filter out these incorrectly ligated products, but also amplify
the correct ones. In short, it is difficult to predict what will happen when
standard molecular biology protocols are applied to DNA computing.

Although the main double encoding hypothesis could not be tested, some
important observations could be nonetheless made.

First, it can be difficult to adapt a single encoding into a double encoding.
For example, when adapting the encoding used in this paper for single encoding
to double encoding, the ability to amplify any given bit was lost. Furthermore,
two additional oligos, M0 and M1, needed to be added to the encoding to be able
amplify the key. Not only did this make the encoding less elegant, it increased
the cost of the experiment.

Second, double encoding is more complex. Encoding all keys using single
encoding takes O(1) time. Double encoding requires O(n2) time if each key
is created separately. This is a significant drawback of double encoding, as it
cripples the parallelism of the DNA computer. It should be noted that an O(n)
method was suggested by Boneh et al [6]. However, the O(n) technique has its
own share of problems since it requires the use of bead separation, the same
error-prone experiment that it seeks to improve!

Third, double encoding noticeably increases the length of the resulting DNA
strands. For instance, consider a single encoding where the resulting DNA
strands are n-bp long. If the entire strand is double encoded, the resulting
strand will be 2n-bp long. While not a problem for molecular programs with
short bit strings, molecular programs with very long bit strings, such as the
DES-breaking program proposed in [5], would be highly affected. This is due to
the fact that as DNA strands become longer, they are more prone to breaking
and forming undesired hairpins.

Finally, double encoding may not actually be addressing the problem with
separation by hybridization. If a magnetic probe is missing a desired DNA
strand, it may be because it never comes near it in the solution, and not because
it could not find a suitable binding location.

4 Summary and Conclusion

4.1 Summary

In this paper two topics were investigated: molecular codebreaking and double
encoding. Since neither of these two technologies had been carried out in the
laboratory, their feasibility in real-world implementations was evaluated.

16



Molecular codebreaking is a DNA computing technique that uses DNA and
molecular biology experiments to recover a key used to map a plaintext to a
ciphertext. Since a molecular codebreaker had never been constructed, the
molecular biology techniques that make up a molecular codebreaker were eval-
uated. This was done by designing a stripped-down proof-of-concept version
of a DES-breaking molecular codebreaker [5]. The proof-of-concept machine
was called MCB-1. Several of the molecular biology experiments that make up
MCB-1 were examined. They were ligation, gel electrophoresis, PCR, graduated
PCR and bead separation. Each of these techniques, save bead separation, was
successfully carried out in the laboratory, commented upon, and found to be
feasible with certain reservations. In the case of bead separation, preliminary
experiments were carried out with promising initial results.

Double encoding is a proposed [6] error resistance technique that intends to
reduce the number of false negatives that occur during bead separation. This
paper intended to answer the question of whether or not double encoding was
superior than simply doubling the amount of DNA in an experiment. There-
fore, a double encoding implementation was devised, and an attempt to carry it
out in the laboratory was undertaken. However, double encoding was not suc-
cessfully implemented. The failure is attributed to the unpredictable outcomes
that arise when applying specialized molecular biology techniques to situations
for which they were never intended. Several issues associated with practically
implementing double encoding were identified. These issues were the difficulty
in adapting single encodings to double encodings, the enormous performance
penalty associated with generating double encoded strands, the limitations im-
posed by strand length increases, and the possibility that double encoding may
not reduce the number of false negatives.

4.2 Future Work

4.2.1 Double Encoding

Double encoding did not yield successful results. It is suggested that a ligation-
based double encoding is impractical in a DNA computer. However, if the double
encoded strands could be made by an alternative method, the hypothesis that
double encoded strands are better than doubled DNA strands could still be
tested. Some alternative methods for acheiving double encoding are:

• Using a DNA synthesizer to create the double encoded strands by employ-
ing a mix-and-split combinatorial synthesis technique, as was done in [8]
to create variable assignments.

• Purchasing pre-made double encoded strands (for small problems).

As mentioned, double encoding need not be used exclusively with MCB-1. If
it appears useful in future experiments it could also be adapted for use with
Adleman’s machine or any other suitable DNA computer.

17



4.2.2 Molecular Codebreaking

The molecular codebreaking program MCB-1 was not fully implemented. Thus,
it is highly recommended that MCB-1 be carried out as future work. In partic-
ular the following portions of the program were not implemented:

• GPCR tests on keyligos 00, 10 and 11. GPCR was only tested for the 01
keyligo.

• Using bead separation to separate based on sequence. Only preliminary
work was done using bead separation to separate DNA double-strands into
single-strands.

• The Append operation. This operation requires the use of bead separation
and ligation and is an important part of MCB-1.

Once MCB-1 has been fully demonstrated, it is recommended that longer bit
strings be tested, as well as more complicated encryption schemes.

4.3 Conclusion

The objective of our research was to evaluate the feasibility of undertaking
molecular biology experiments associated with using DNA computing to solve
problems not suited for a conventional computer. The experiments performed
here showed that implementing double encoding using ligation is difficult and
impractical. The experiments furthermore suggested that breaking encryption
using a DNA computer is feasible as long as the key and ciphertext remain
sufficiently small.

Will we one day use DNA computers in the same manner as we use silicon
computers? Probably not in the near future. DNA computing as it stands is
a time-consuming and delicate operation. However, it should be noted that
silicon computers had similar beginnings. Indeed, although DNA computers do
not seem feasible now, the massive parallelism offered by DNA is a property
that cannot be ignored by researchers. Moreover, unlike other unconventional
computers, such a quantum computers and accelerating machines, DNA com-
puters can be implemented now, with technology that exists today. For these
and other reasons, the future of DNA computing looks promising, and we may
indeed one day see DNA computers used to solve complex problems that are
infeasible on silicon computers.

References

[1] R. Adar, Y. Benenson, G. Linshiz, A. Rosner, N. Tishby, and E. Shapiro.
Stochastic computing with biomolecular automata. Proceedings of the Na-
tional Academy of Science of the USA, 101(27), 2004.

[2] L. Adleman. Molecular computation of solutions to combinatorial prob-
lems. Science, 266(5187), 1994.

18



[3] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro. An autonomous
molecular computer for logical control of gene expression. Nature, 429,
2004.

[4] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro.
Programmable and autonomous computing machine made of biomolecules.
Nature, 414, 2001.

[5] D. Boneh, C. Dunworth, and R. Lipton. Breaking DES using a molecular
computer. In E. Baum and R. Lipton, editors, DNA based computers,
volume 27 of DIMACS: Series in Discrete Mathematics and Theoretical
Computer Science, pages 37–66. American Mathematical Society, 1995.

[6] D. Boneh, C. Dunworth, R. Lipton, and J. Sgall. Making DNA comput-
ers error resistant. In L. Landweber and E. Baum, editors, DNA Based
Computers II, volume 44 of DIMACS: Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1996.

[7] R. Braich, N. Chelyapov, C. Johnson, P. Rothemund, and L. Adleman.
Solution of a 20-variable 3-SAT problem on a DNA computer. Science,
296, 2002.

[8] R. Braich, C. Johnson, P. Rothemund, D. Hwang, N. Chelyapov, and
L. Adleman. Solution of a satisfiability problem on a gel-based DNA com-
puter. In DNA: International Workshop on DNA-Based Computers. LNCS,
2000.

[9] Guarnieri, Fliss, and Bancroft. Making DNA add. Science, 273, 1996.

[10] P. Kaplan, G. Cecchi, and A. Libchaber. Molecular computation: Adle-
man’s experiment repeated. Technical Report TR-95-120, NEC Research
Institute, 1995.

[11] R. Lipton. DNA solution of hard computational problems. Science, 268,
1995.

[12] Q. Liu, Z. Guo, A. Condon, R. Corn, M. Lagally, and L. Smith. A surface-
based approach to DNA computation. In L. Landweber and E. Baum, edi-
tors, DNA Based Computers II, volume 44 of DIMACS: Series in Discrete
Mathematics and Theoretical Computer Science. American Mathematical
Society, 1996.

[13] Q. Liu, L. Wang, A. Frutos, A. Condon, R. Corn, and L. Smith. DNA
computing on surfaces. Nature, 403, 2000.

[14] Q. Ouyang, P. Kaplan, S. Liu, and A. Libchaber. DNA solution of the
maximal clique problem. Science, 278(5337):446–449, 1997.

[15] S. Roweis, E. Winfree, R. Burgoyne, N. Chelyapov, M. Goodman, P. Rothe-
mund, and L. Adleman. A sticker-based model for DNA computation.
Journal of Computational Biology, 5(4):615–630, 1998.

19



[16] K. Sakamoto, H. Gounzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yoko-
mori, and M. Hagiya. Molecular computation by DNA hairpin formation.
Science, 288(5469):1223–1226, 2000.

[17] X. Su and L. Smith. Demonstration of a universal surface DNA computer.
Nucleic Acids Research, 32(10):3115–3123, 2004.

20




