
A Survey on Software Clone Detection Research∗

Chanchal Kumar Roy and James R. Cordy

September 26, 2007

Technical Report No. 2007-541
School of Computing

Queen’s University at Kingston
Ontario, Canada

Abstract

Code duplication or copying a code fragment and then reuse by pasting with or
without any modifications is a well known code smell in software maintenance. Several
studies show that about 5% to 20% of a software systems can contain duplicated code,
which is basically the results of copying existing code fragments and using then by
pasting with or without minor modifications. One of the major shortcomings of such
duplicated fragments is that if a bug is detected in a code fragment, all the other
fragments similar to it should be investigated to check the possible existence of the
same bug in the similar fragments. Refactoring of the duplicated code is another prime
issue in software maintenance although several studies claim that refactoring of certain
clones are not desirable and there is a risk of removing them. However, it is also widely
agreed that clones should at least be detected.

In this paper, we survey the state of the art in clone detection research. First, we
describe the clone terms commonly used in the literature along with their corresponding
mappings to the commonly used clone types. Second, we provide a review of the existing
clone taxonomies, detection approaches and experimental evaluations of clone detection
tools. Applications of clone detection research to other domains of software engineering
and in the same time how other domain can assist clone detection research have also
been pointed out. Finally, this paper concludes by pointing out several open problems
related to clone detection research.

∗This document represents our initial findings and a further study is being carried on. Reader’s feedback
is welcome at croy@cs.queensu.ca.

Contents

1 Introduction 1

2 Reasons for Code Duplication 3
2.1 Development Strategy . 3

2.1.1 Reuse Approach . 3
2.1.2 Programming Approach . 5

2.2 Maintenance Benefits . 5
2.3 Overcoming Underlying Limitations . 6

2.3.1 Language Limitations . 6
2.3.2 Programmer’s Limitations . 6

2.4 Cloning By Accident . 7

3 Drawbacks of Code Duplication 7

4 Advantages and Applications of Detecting Code Clones 8

5 Harmfulness of Cloning: A justification 9

6 Clone Relation Terminologies 10

7 Clone Definitions in the Literature 12
7.1 Code Clone and Its Definitional Vagueness 12
7.2 Code Clone Types . 14

7.2.1 Type I Clones . 15
7.2.2 Type II Clones . 15
7.2.3 Type III Clones . 16
7.2.4 Type IV Clones . 17

7.3 Code Clone Terms . 18
7.3.1 Exact Clones . 18
7.3.2 Renamed Clones . 18
7.3.3 Parameterized Clones . 19
7.3.4 Near-Miss Clones . 20
7.3.5 Gapped Clones . 21
7.3.6 Structural Clones . 22
7.3.7 Function Clones . 22
7.3.8 Non-contiguous Clones . 22
7.3.9 Reordered Clones . 24
7.3.10 Intertwined Clones . 24
7.3.11 Design Level Structural Clones . 24
7.3.12 Ubiquitous clones . 25

7.4 Evolving Clones . 25
7.4.1 Volatile Clones . 26
7.4.2 Long-lived Clones . 26

7.5 Problematic Clones . 26

i

7.5.1 Spurious Clones . 26
7.5.2 Frequently false positive clones . 26

7.6 Clone Types Summary . 30

8 Towards a Taxonomy of Clones 30
8.1 Taxonomies Based on Similarity . 30

8.1.1 Mayrand et al. Taxonomy . 30
8.1.2 Balazinska et al. Taxonomy . 32
8.1.3 Bellon and Koschke Taxonomy . 33
8.1.4 Davey et al. Taxonomy . 33
8.1.5 Kontogiannis Taxonomy . 34

8.2 Taxonomies Based on Location and Similarity of Clones 34
8.2.1 Kapser and Godfrey Taxonomy . 34
8.2.2 Moden et al. Taxonomy . 35

8.3 Taxonomies Based on Refactoring Opportunities 37
8.3.1 Balazinska et al. Taxonomy . 37
8.3.2 Fanta and Rajlich’s Taxonomy . 37
8.3.3 Golomingi’s Taxonomy . 38

9 Clone Detection Process 38

10 Detection Techniques and Tools 43
10.1 Taxonomy of Detection Techniques . 43

10.1.1 Text-based Techniques . 44
10.1.2 Token-based Techniques . 49
10.1.3 Tree-based Techniques . 51
10.1.4 PDG-based Techniques . 53
10.1.5 Metrics-based Techniques . 55
10.1.6 Hybrid Approaches . 56

10.2 Overall Taxonomy of the Detection Approaches 59
10.3 Overall Comparison of the Detection Approaches 60
10.4 Clone Detection Tools . 61
10.5 Frequently Used Software Systems . 63

11 Evaluation of Clone Detection Techniques 64
11.1 Higher Level Evaluation of the Detection Approaches 65
11.2 Higher Level Robustness of the Detection Approaches 66
11.3 Tool Evaluation Experiments from the Literature 68

12 Visualization of Clones 74

13 Removal, Avoidance and Management of Code Clones 76
13.1 Removal of Code Clones . 76
13.2 Avoidance of Code Clones . 77
13.3 Management of Code Clones . 78

ii

14 Evolution Analysis of Clones 79

15 Quality Analysis Based on Code Clones 80

16 Applications and Related Research for Clone Detection 80
16.1 Plagiarism Detection . 80
16.2 Origin Analysis, Merging and Software Evolution 81

16.2.1 Origin Analysis . 81
16.2.2 Merging . 81
16.2.3 Software Evolution . 82

16.3 Multi-version Program Analysis . 82
16.4 Bug Detection . 82
16.5 Aspect Mining . 82
16.6 Program Understanding . 82
16.7 Code compacting . 83
16.8 Malicious software Detection . 83
16.9 Copyright infringement . 83
16.10Product Line Analysis . 83

17 Open Problems in Clone Detection Research 84
17.1 List of Open Questions and Current Solvable Status 84
17.2 Types and Taxonomies of Clones . 84
17.3 Evaluation of Clone Detection Techniques 86
17.4 Better Clone Detection Techniques . 87
17.5 Empirical Studies in Clone Detection Research 87

18 Conclusion 89

19 Acknowledgements 90

iii

List of Figures

1 Tree-diagram for the Reasons for Cloning . 4
2 Clone Pair and Clone Class . 11
3 Cloned methods in JDK . 17
4 P-match Clones . 20
5 Non-contiguous Clones . 23
6 Reordered Clones in bison . 24
7 Intertwined Clones . 25
8 Spurious Clones . 26
9 Restructured Clone Taxonomy of Kapser and Godfrey 36
10 Clone Detection Process . 39
11 Clone pair between FreeBSD and Linux . 48
12 Python source code before and after normalization 49

iv

List of Tables

1 Difference between two code fragments of Figure 3 17
2 Summary of commonly used clone terms . 31
3 Normalization operations on source code elements 48
4 Summary of the String-based Detection Techniques 50
5 Summary of the Token-based Detection Techniques 52
6 Summary of the Tree-based Detection Techniques 53
7 Summary of the PDG-based Detection Techniques 54
8 Summary of Metrics-based Clone Detection Techniques 57
9 Summary of the Hybrid Clone Detection Techniques 58
10 A Taxonomy of Clone Detection Techniques: A Summary 59
11 Comparison of the detection approaches . 61
12 List of Clone Detection Tools . 62
13 Frequently Used Software Systems in Clone Detection Research 64
14 Higher level comparison of the detection approaches 66
15 Higher level robustness of the detection approaches 69
16 Precision and recall from Burd and Bailey’s Experiment 69
17 Summary of Bellon’s tool comparison experiment 70
18 Summary of Koschke et al.’s experiment . 71
19 Summary of Rysselberghe and Demeyer’s experiment 72
20 Evaluation of the techniques from a refactoring perspective 73
21 Different Types of Clone Visualizations . 76
22 List of open questions and current solvable status 85

v

1 Introduction

Copying code fragments and then reuse by pasting with or without minor modifications or
adaptations are common activities in software development. This type of reuse approach
of existing code is called code cloning and the pasted code fragment (with or without
modifications) is called a clone of the original. However, in a post-development phase, it is
difficult to say which fragment is original and which one is copied and therefore, fragments
of code which are exactly the same as or similar to each other are called code clones,
i.e., instances of duplicated or similar code fragments are called code clones or just clones.
Several studies show that software systems with code clones are more difficult to maintain
than the ones without them [118, 18]. The tendency of cloning not only produces code that
is difficult to maintain, but may also introduce subtle errors [51, 168, 169]. Code clones are
considered as one of the bad smells of a software system [84] and it is widely believed that
cloned code has several adverse affects on the maintenance life-cycles of software systems.
Therefore, it is beneficial to remove clones and prevent their introduction by constantly
monitoring the source code during its evolution [158].

Clones are often the result of copy-paste activities. Such activities are very easy and
can significantly reduce programming effort and time as they reuse an existing fragment of
code rather than rewriting similar code from scratch. This practice is common, especially
in device drivers of operating systems where the algorithms are similar [169]. There are
several other factors such as performance enhancement and coding style because of which
large systems may contain a significant percentage of duplicated code [31]. There is also
“accidental cloning”, which is not the result of direct copy and paste activities but by using
the same set of APIs to implement similar protocols [6]. The literature on the topic has
described many other situations that can lead to the duplication of code within a software
system [18, 31, 120, 122, 146, 178] (for details c.f. Section 2).

Code cloning is found to be a more serious problem in industrial software systems
[8, 47, 18, 31, 74, 120, 122, 148, 146, 178]. In presence of clones, the normal functioning of
the system may not be affected, but without countermeasures by the maintenance team,
further development may become prohibitively expensive [200]. Clones are believed to have a
negative impact on evolution [92, 91]. Code clones may adversely affect the software systems’
quality, especially their maintainability and comprehensibility [87, 88]. For example, cloning
increases the probability of update anomalies (inconsistencies in updating) [28]. If a bug is
found in a code fragment, all of its similar cloned fragments should be detected to fix the bug
in question. Moreover, too much cloning increases the system size and often indicates design
problems such as missing inheritance or missing procedural abstraction [74]. Although the
cost of maintaining clones over a system’s lifetime has not been estimated yet, it is at
least agreed that the financial impact on maintenance is very high. The costs of changes
carried out after delivery are estimated at 40% - 70% of the total costs during a system’s
lifetime [100] (for details c.f. Section 3). Existing research shows that a significant amount
of code of a software system is cloned code and this amount may vary depending on the
domain and origin of the software system [136, 169, 116]. For instance, Baker [18] has found
that on large systems between 13% - 20% of source code can be cloned code. Lague et al.
[158] have studied only function clones and reported that between 6.4% - 7.5% of code is
cloned code whereas Baxter et al. [31] have reported that 12.7% of code being clones of a

software system. Mayrand et al. [178] have also estimated that normal industrial source
code contains 5% – 20% of duplicated code. Kapser and Godfrey [123] have experienced
that as much as 10% –15% of source code of large system is cloned. For an object-oriented
COBOL system, the rate of duplicated code is found even much higher, about 50% [74].

Considering the huge amount of duplicated code and its maintenance cost of large soft-
ware systems, it is therefore, crucial to detect code clones of large systems for performing
the respective maintenance tasks (e.g., refactoring). Fortunately, there are huge research
studies to find clones automatically [14, 20, 31]. Again, the question arises of the definition
of code clone itself. There is no sound definition of code cloning. In many cases, one cannot
be sure that one fragment of code is copied from another. Baxter et al. [31] say that a
clone is “a program fragment that [is] identical to another fragment”. Krinke [156] uses the
term “similar code”. Ducasse et al. [74] use the term “duplicated code”, Komondoor and
Horwitz [141] also use the term “duplicated code” and use “clone” as an instance of dupli-
cated code. Mayrand et al. [178] use metrics to find “an exact copy or a mutant of another
function in the system”. All these definitions of clones carry some kind of vagueness (e.g.,
“similar” and “identical”) and this imperfect definition of clones makes the clone detection
process much harder than the detection approach itself.

Nevertheless, attempts are being undertaken to detect clones [31, 122, 178, 146, 24,
14, 74, 156, 140] and once identified, they can be removed through source code refactoring
[21, 84, 107, 78, 142]. Again, refactoring of the detected clones may not be the perfect
solution for the software system of interest. While it is widely believed that detecting and
refactoring the code clones from the software systems can improve the system’s overall code
quality, there are some recent works that show that “refactorings may not always improve
the software with respect to clones” and “skilled programmers often created and managed
code clones with clear intent” [136]. Cordy is one of the pioneers in this line, who first
observed that in some cases, especially for the large financial software systems, changing or
refactoring the clones is not advisable from a risk management point of view [57]. It has
been also argued that clones are beneficial in certain situations [128, 129]. In the same time,
there is no doubt that extensive code duplication is related to problems in maintenance and
should be detected at least [84, 120, 178, 62, 176].

There are also many other software engineering tasks such as understanding code quality,
aspect mining, plagiarism detection, copyright infringement investigation, software evolu-
tion analysis, code compaction (e.g., for mobile devices), virus detection or detecting bugs,
do require the extraction of syntactically or semantically similar code fragments which es-
sentially implies clones should be detected [151]. However, the same might not be applicable
to XP process software. Nickell and Smith [188] argue that fewer code clones are found in
XP process software, claiming that the XP process improves software quality.

The rest of the paper is organized as follows. The different factors that lead to code du-
plication are listed in Section 2, and the disadvantages caused by code cloning are pointed
out in Section 3. Section 4 lists different benefits and applications of detecting clones.
Section 5 shows the harmfulness of cloning in software systems. The clone relation termi-
nologies are discussed in Section 6. In Section 7 we provide the different clone terms that
commonly used in the literature following a mapping of those terms to the commonly used
clone types. Different research groups categorize clones with respect to different contexts.
Section 8 reviews all such available categories of clones and presents them in the form of

2

a taxonomy. In Section 9 we coarsely describe of how clones can be detected, whereas in
Section 10 the different clone detection techniques and tools are presented with respect to
several properties. Section 11 first provides a higher level comparison of the different de-
tection approaches based on the information available from the corresponding papers and
then summarizes tool comparison experiments in comparing the different tools. Visualiza-
tions of detected clones are a major concern for clone management and therefore, a list of
visualization techniques are discussed in Section 12. Clones can be removed, managed or
even avoided for efficient software maintenance. These issues are pointed out in Section 13.
There are several studies that use clone detection techniques for observing cloning behavior
in software evolution and are reviewed in Section 14. The impact of code clones on software
quality is discussed in Section 15. Section 16 discusses some of the related work to clone
detection research. Several open issues related to definition of clones, detection approaches
and evaluation methods of comparing clone detection tools are pointed out in Section 17,
and finally Section 18 concludes the paper.

2 Reasons for Code Duplication

Code clones do not occur in software systems by themselves. There are several factors that
might force or influence the developers and/or maintenance engineers in making cloned
code in the system. Clones can also be introduced by accidents. In Figure 1 (the leaf
nodes) we provide the various factors for which clones can be introduced in the source code
[18, 31, 120, 122, 146, 178, 197, 135] where a short description for some of the factors are
discussed below:

2.1 Development Strategy

Clone can be introduced in software systems due to the different reuse and programming
approaches. Examples are:

2.1.1 Reuse Approach

Reusing code, logic, design and/or an entire system are the prime reasons of code duplica-
tion.

Simple reuse by Copy/Paste: Reusing existing code by copying and pasting (with or
without minor modifications) is the simplest form of reuse mechanism in the development
process which results code duplication. It is a fast way of reusing reliable semantic and
syntactic constructs. It is also one of the ways of implementing cross-cutting concerns
[135].

Forking: The term Forking is used by Kapser and Godfrey [128] to mean the reuse of
similar solutions with the hope that they will be diverged significantly with the evolution
of the system. For example, when creating a driver for a hardware family, a similar hard-
ware family may already have a driver, and thus can be reused with slight modifications.
Similarly, clones can be introduced when porting software to new platforms and so on.

Design, functionalities and logic reuse: Functionalities and logic can be reused
if there is already similar solution available. For example, often there is a high similarity

3

Reasons
 for
Cloning

Development Strategy

Maintenance Benefits

Overcoming
Underlying
Limitations

Reuse
Approach

Programmers’
Limitations

Language
Limitations

Programming
Approach

Ensuring

Avoiding

Forking

Performance by LOC

Abstraction is error-prone

Generative programming

Better performance in real
time programs

Risk

Simple reuse by copy and
paste

Lack of knowledge in the
domain

Time Limitations

Abstraction creates
complexity

Functionalities /Logic
reuse

Robustness

Delay in restructuring

Design reuse

Merging similar systems

Unwanted design
dependencies

Lack of reuse
mechanisms

Reflecting Design decisions (e.g.,
cross-cutting)

Significant efforts in
making abstractions

Lack of ownership

Difficulty in understanding
large systems

Protocols to interact with
API and Libraries

Language
Paradigm

Programmer’s mental
model

Unknowingly implementing
the same logic by different
programmers

Programmers’
Working Style

Cloning by Accident

Figure 1: Tree-diagram for the Reasons for Cloning

4

between the ports of a subsystem. The different ports of a subsystem (especially, for OS’s
subsystems) are likely similar in their structure and functionality. For example, Linux kernel
device drivers contain large rates of duplication [93] because all the drivers have the same
interface and most of them implement a simple and similar logic. Moreover, the design of
such systems does not allow for more sophisticated forms of reuse.

2.1.2 Programming Approach

Clones can be introduced by the way a system is developed. Examples are:
Merging of two similar systems: Sometimes two software systems of similar func-

tionalities are merged to produce a new one. Although these systems may have been
developed by different teams, clones may produce in the merged system because of the
implementations of similar functionalities in both systems.

System development with generative programming approach: Generating code
with a tool using generative programming may produce huge code clones because these tools
often use the same template to generate the same or similar logic.

Delay in restructuring: It is also a common practice to the developers that they
often delay in restructuring their developed code which may ultimately introduce clones.

2.2 Maintenance Benefits

Clone are also introduced in the systems to obtain several maintenance benefits. Examples
are:

Risk in developing new code: Cordy [57] reports that clones do frequently occur
in financial software as there are frequent updates/enhancements of the existing system to
support similar kinds of new functionalities. Financial products do not change that much
from the existing one, especially within the same financial institutions. The developer
is often asked to reuse the existing code by copying and adapting to the new product
requirements because of the high risk (monetary consequences of software errors can run
into the millions in a single day) of software errors in new fragments and because existing
code is already well tested (70% of the software effort in the financial domain is spent on
testing).

Clean and understandable software architecture: To keep software architecture
clean and understandable, sometimes clones are intentionally introduced to the system [128].

Speed up maintenance: As two cloned code fragments are independent of each other
both syntactically and semantically, they can evolve at different paces in isolation without
affecting the other and testing is only required to the modified fragment. Keeping cloned
fragments in the system may thus speed up maintenance, especially when automated re-
gression tests are absent [197].

Ensuring robustness in life-critical systems: Cloning/redundancy is incorporated
intentionally while designing life-critical systems. Often the same functionality is developed
by different teams in order to reduce the probability that the implementations fail under
the same circumstances.

High cost of function calls in real time programs: In real time programs, func-
tion calls may be deemed too costly. If the compiler does not offer to inline the code
automatically, this will have to be done by hand and consequently there will be clones.

5

2.3 Overcoming Underlying Limitations

Clones can be introduced due to the underlying limitations concerning the programming
languages of interest and the developers.

2.3.1 Language Limitations

Clones can be introduced due to the limitations of the language, especially when the lan-
guage in question does not have sufficient abstraction mechanisms. Examples are:

Lack of reuse mechanism of programming languages: Sometimes programming
languages do not have sufficient abstraction mechanisms, e.g., inheritance, generic types
(called templates in C++) or parameter passing (missing from, e.g., assembly language and
COBOL) and consequently, the developers are required to repeatedly implement these as
idioms. Such repeating activities may create possibly small and potentially frequent clones
[190, 27].

Significant efforts in writing reusable code: It is hard and time consuming to
write reusable code. Perhaps, it is easier to maintain two cloned fragments than the efforts
to produce a general but probably more complicated solution.

Writing Reusable code is error-prone: Writing reusable code might be error-prone,
especially for a critical piece of code. It is therefore preferred to copy the existing code and
then reuse it by pasting with or without modification rather than making reusable code.
Introduction of new bugs can be avoided in critical system functionality by keeping the
critical piece of code untouched [97].

2.3.2 Programmer’s Limitations

There are also several limitations associated with the programmers for which clones are
introduced in the system. Examples are:

Difficulty in understanding large system: It is generally difficult to understand a
large software system. This forces the developers to use the example-oriented programming
by adapting existing code developed already.

Time limit assigned to developers: One of the major causes of code cloning in the
system is the the time frame allowed to its developers. In many cases, the developers are
assigned a specific time limit to finish a certain project or part of it. Due to this time limit,
developers look for an easy way of solving the problems at hand and consequently look for
similar existing solutions. They just copy and paste the existing one and adapt to their
current needs.

Wrong method of measuring developer’s productivity: Sometimes the produc-
tivity of a developer is measured by the number of lines he/she produces per hour. In such
circumstances, the developer’s focus is to increase the number of lines of the system and
hence tries to reuse the same code again and again by copying and pasting with adaptations
instead of following a proper development strategy.

Developer’s Lack of knowledge in a problem domain: Sometimes the developer is
not familiar to the problem domain at hand and hence looks for existing solutions of similar
problems. Once such a solution is found, the developer just adapts the existing solution to
his/her needs. Because of the lack of knowledge, it is also difficult for the developer to make

6

a new solution even after finding a similar existing solution and thus, reusing the existing
one gets higher priority than making a new one.

Lack of ownership of the code to be reused: Code may be borrowed or shared
from another subsystem which may not be modified because it may belong to a different
department or even may not be modifiable (access not granted and/or stored in nonvolatile
memory)[58]. In such situations, the only way of reusing the existing code is to copy and
paste with required adaptations.

2.4 Cloning By Accident

Clones may be introduced by accidents. Examples are:
Protocols to Interact with APIs and Libraries: The use of a particular API

normally needs a series of function calls and/or other ordered sequences of commands. For
example, when creating a button using the Java SWING API, a series of commands is to
create the button, add it to a container, and assign the action listeners. Similar orderings
are common with libraries as well [128]. Thus, the uses of similar APIs or libraries may
introduce clones.

Coincidentally implementing the same logic by different developers: It may
happen that two developers were involved in implementing the same kind of logic and
eventually, come up with similar procedures independently, thus leading to look-alikes more
than clones.

Side effect of developers’ memories: Programmers may unintentionally repeat a
common solution for similar kind of problems using the common solution pattern of his/her
memory to such similar problems. Therefore, several clones may unknowingly be created
to the software systems.

3 Drawbacks of Code Duplication

The factors behind cloning described in Section 2 are reasonable and consequently, clones
do occur in large software systems. While it is beneficial to practise cloning, code clones can
have severe impacts on the quality, reusability and maintainability of a software system. In
the following we list some of the drawbacks of having cloned code in a system.

Increased probability of bug propagation: If a code segment contains a bug and
that segment is reused by coping and pasting without or with minor adaptations, the bug
of the original segment may remain in all the pasted segments in the system and therefore,
the probability of bug propagation may increase significantly in the system [118, 169].

Increased probability of introducing a new bug: In many cases, only the structure
of the duplicated fragment is reused with the developer’s responsibility of adapting the code
to the current need. This process can be error prone and may introduce new bugs in the
system [117, 31].

Increased probability of bad design: Cloning may also introduce bad design, lack
of good inheritance structure or abstraction. Consequently, it becomes difficult to reuse
part of the implementation in future projects. It also badly impacts on the maintainability
of the software [185].

7

Increased difficulty in system improvement/modification: Because of duplicated
code in the system, one needs additional time and attention to understand the existing
cloned implementation and concerns to be adapted, and therefore, it becomes difficult to
add new functionalities in the system, or even to change existing ones [120, 178].

Increased maintenance cost: If a cloned code segment is found to be contained a
bug, all of its similar counterparts should be investigated for correcting the bug in question
as there is no guarantee that this bug has been already eliminated from other similar parts
at the time of reusing or during maintenance. Moreover, When maintaining or enhancing
a piece of code, duplication multiplies the work to be done [178, 185].

Increased resource requirements: Code duplication introduces higher growth rate
of the system size. While system size may not be a big problem for some domains, others
(e.g., telecommunication switch or compact devices) may require costly hardware upgrade
with a software upgrade. Compilation times will increase if more code has to be translated
which has a detrimental effect on the edit-compile-test cycle. The overall effect of cloning has
been described by Johnson [120] as a form of software aging or “hardening of the arteries”
where even small changes on the architectural level become very difficult to achieve in the
actual code.

4 Advantages and Applications of Detecting Code Clones

In addition to the direct benefit of knowing how to improve the quality of the source code
by refactoring the cloned code, there are several other benefits and applications of detecting
clones. We list some of those as follows:

Detects library candidates: Davey et al. [60] and Burd&Munro [43] have noticed
that a code fragment that has been copied and reused multiple times in the system appar-
ently proves its usability. As a result, this fragment can be incorporated in a library, to
announce its reuse potential officially.

Helps in program understanding: If the functionality of a cloned fragment is com-
prehended, it is possible to have an overall idea on the other files containing other similar
copies of that fragment. For example, when we have a piece of code managing memory we
know that all files which contain a copy must implement a data structure with dynamically
allocated space [197].

Helps aspect mining research: Detecting similar code is also required in aspect
mining for detecting cross-cutting concerns. The code of cross-cutting concerns is typically
duplicated over the entire application and could be identified with clone detection tools
[40, 41].

Finds usage patterns: If all the cloned fragments of a same source fragment can be
detected, the functional usage patterns of that fragment can be discovered [197].

Detects malicious software: Clone detection techniques can be used in finding ma-
licious software. By comparing one malicious software family to another, it is possible to
find the evidence where parts of one software system match parts of another [217].

Detects plagiarism and copyright infringement: Finding similar code may also
useful in detecting plagiarism and copyright infringement [217, 18, 122].

Helps software evolution research: Clone detection techniques are successfully used
in software evolution analysis by looking at the dynamic nature of different clones in different

8

versions of a system [7, 8, 93, 71, 181].
Helps in code compacting: Clone detection techniques can be used for compact

device by reducing the source code size [49, 61].

5 Harmfulness of Cloning: A justification

Clones are generally considered harmful to the quality of source code [8, 18, 31, 47, 74,
120, 125, 146, 178]. One of the main drawbacks (c.f., Section 3 for details) of code clones
is that changes to one code segment may need to be propagated to several other similar
ones [92]. In order to overcome such difficulties automatic refactoring [21, 31] or aiding
developers with manual refactorings [106] of duplicated code has been proposed. However,
there are some recent studies [137, 136, 128] that show that refactoring of duplicated code
may not always be desirable for software maintenance. The disadvantages of cloning are
sometimes less than the costs of abstraction, which include difficulty of creation and use
[208], decreased program comprehensibility [205] and increased system size [21].

In an industry setting study [135], Kim et al. have observed that “refactorings may not
always improve the software with respect to clones” and “skilled programmers often created
and managed code clones with clear intent” [136]. In a large scale case study, Kapser and
Godfrey have noticed that code cloning can often be used in a positive way [128, 129]. From
several case studies [124, 126, 123], Kapser and Godfrey introduce the notion of categorizing
high level patterns of cloning in a similar way to the cataloging of design patterns or anti-
patterns. They found eight cloning patterns [128]. For each of the patterns, they studied
both the advantages and disadvantages of these patterns of cloning to software development
and maintenance. Their study concludes that not all the cloning patterns are harmful to
software maintenance and some of the patterns are even beneficial to software development
and maintenance. Therefore, before attempting any refactoring, concerns such as stability,
code ownership, and design clarity need to be considered and the developer/manager should
be confirmed any action(s) to take about duplications.

Cordy [57] also reports that cloning is frequently used in large financial software for
reusing existing design or for separating the dependencies of custom views on data that
some modules or applications may have. Existing code is tested extensively and therefore,
reusing such code prevents the introduction of bugs to the system, and in the same time
limits testing to a subset of the copied code that is modified. He also observes that fixing
bugs to all the similar segments may not be expected by the developers as this may break
dependent code. Therefore, changing or refactoring the clones is not advisable from a risk
management point of view [57].

Geiger et al. [92, 91] have attempted to find a relation between code clones and change
couplings at the file level of granularity. Their study assumes that if a fragment is changed,
all of its cloned fragments (if any) should also be changed. Accordingly, if the cloned frag-
ments are in different files, all the associated files should be changed simultaneously (change
couplings). Change couplings have a bad impact on software evolution as all associated files
need a consistent change. In order to evaluate whether changed couplings are the results of
duplicated code, they used the release history analysis of the Mozilla open source project
and tried to correlate the number of clone instances to the number of co-changes between
the files containing the clone instances. Their study shows that a reasonable amount of

9

such relation exists supporting the argument that clones can have a bad impact on software
maintenance.

For evaluating the harmfulness of cloning, another change based experiment has been
conducted by Lozano et al. [171]. They have developed a prototype tool to justify whether
cloning is harmful or not. Rather than working on file level granularity as in Geiger et al.
[92] or disregarding parts of the system’s history (only considers co-changes) as in Kim et
al. [136], they have focused on the method level. Their tool, CloneTracker, focuses on those
methods that had clones in the past for some time and then determines the frequencies of
both changes and co-changes of such methods both when they have clones and when not.
Their study shows that although frequency of co-changes between the cloned methods is less
than the methods without clones, the cloned methods change much more frequently than
the methods without clones. Their results seem to support the argument that although con-
sistent changes between the cloned fragments are not carried out (developers may unaware
of other similar fragments), clones do have a bad impact on software evolution/maintenance.
However, their study was based on a small sized piece of software, DNSJava, developed by
only two programmers, which limits the generality of their findings.

Another similar study was conducted by Aversano [9]. They considered co-change anal-
ysis (Modification Transactions(MTs) extracted from source code repositories) to verify how
detected clones in a given release of software system, are affected by maintenance interven-
tions, especially during software evolution activity or bug fixing. Based on the analysis from
two Java software systems, ArgoUML and DNSJava, their study shows that most of the
cloned code is consistently maintained, particularly while fixing bugs in cloned fragments.
However, for divergent clones where clones evolve independently, consistent update was out
of the question. Moreover, for maintenance activities (except bug fixing) developers tend
to delay the propagation of maintenance over cloned fragments. A similar study was con-
ducted by Krinke [155] with five open source Java, C/C++ systems. As usual, he also used
the version histories of a target application and measured the percentage of consistent and
inconsistent changes of the code clones over the different releases of a system. His study
showed that roughly half of the changes to the clone groups are inconsistent changes. His
study also showed that the occurrences of becoming inconsistently changed clone groups to
consistently changed clone groups are very few. Inconsistent changes to clone groups are
directly related to the maintenance problems (e.g., bug-fixing or update). Thus, his study
shows that clones do have a bad impact on software maintenance. A similar finding was
noted by Kim et al. [136] that the number of consistent changes are fewer than anticipated
in the evolution versions of a software system.

From the above studies, it seems that the argument “Cloning is harmful” is still an open
issue and more studies are required to come to any final conclusion. What we can say with
confidence is that awareness of clones in a software system is important.

6 Clone Relation Terminologies

Clone detection tools report clones in the form of Clone Pairs (CP) or Clone Classes (CC)
or both. These two terms speak about the similarity relation between two or more cloned
fragments. The similarity relation between the cloned fragments is an equivalence relation
(i.e., a reflexive, transitive, and symmetric relation) [122]. A clone-relation holds between

10

two code portions if (and only if) they are the same sequences. Sequences are sometimes
original character strings, strings without whitespace, sequences of token type, transformed
token sequences and so on. In the following we define clone pair and clone class in terms
of the clone relation:

Clone Pair: A pair of code portions/fragments is called a clone pair if there exists a clone-
relation between them, i.e., a clone pair is a pair of code portions/fragments which
are identical or similar to each other. For the three code fragments, Fragment 1 (F1),
Fragment 2 (F2) and Fragment 3 (F3) of Figure 2, we can get five clone pairs, <F1(a),
F2(a)>, <F1(b), F2(b)>, <F2(b), F3(a)>, <F2(c), F3(b)> and <F1(b), F3(a)>. By
considering the maximum possible extent of cloned segments, we get basically four
clone pairs, <F1(a + b), F2(a + b)>, <F2(b + c), F3(a + b)> and <F1(b), F3(a)>.

Clone Class: A clone class is the maximal set of code portions/fragments in which any
two of the code portions/fragments hold a clone-relation, i.e., form a clone pair. For
the three code fragments of Figure 2, we get a clone class of <F1(b), F2(b), F3(a)>
where the three code portions F1(b), F2(b) and F3(a) form clone pairs with each
other, i.e., there are three clone pairs, <F1(b), F2(b)>, <F2(b), F3(a)> and <F1(b),
F3(a)> do exist too. A clone class is therefore, the union of all clone pairs which have
code portions in common [196]. Clone classes are also called clone communities [178].

Clone Class Family: The group of all clone classes that have the same domain is called a
clone class family [196]. Such a clone class family is also termed super clone by Jiang
et al [114]. In their context: Multiple clone classes between the same source entities
are aggregated into one large super clone.

for (int i=1; i<n; i++) { for (int i=1; i<n; i++) {
 sum = sum + i; sum = sum + i;
} }

if (sum <0) { if (sum < 0) { if (result < 0) {
 sum = n - sum; sum = n - sum; result = m - result;
} } }

 while (sum < n) { while (result < m) {
 sum = n / sum ; result = m / result
 } }

 Fragment 1: Fragment 2: Fragment 3:

a a

b b

c

a

b

 …

 …

 …

 …

 … …

Figure 2: Clone Pair and Clone Class

11

7 Clone Definitions in the Literature

Clone detection is a research problem where there is no precise definition of suitable output.
Extensive research on clone detection is done without knowing clearly what a clone is,
and with no specific and universal task context. In almost all the cases, the definitions
and types of the clones depends on the underlying algorithms and thresholds used. It is
therefore crucial to know what exactly a clone means, and for what purpose before going
to the details of detecting it. In this section, we provide the different definitions and types
of clones from the literature.

7.1 Code Clone and Its Definitional Vagueness

A code fragment that has identical or similar code fragment(s)to it in the source code,
in general, terms as code clone. A copied fragment can be used with or without minor
modifications in a system by the developer. If there is no modifications or the modifications
are within a certain level in the copied fragment then the original and copied fragments are
called code clones and they form a clone pair. However, there is no single or generic definition
for code clone and all the proposed clone detection methods use their own definitions about
code clone [159]. In the following we provide clone definitions from the literature along with
their associated vagueness.

Baxter et al. [31] define clone clones as the segments of code that are similar according
to some definition of similarity. While they provide a threshold-based definition of tree
similarity for near-miss clones, there is no specific definition of detection independent clone
similarity. A more vaguer definition is provided by Kamiya et al. [122]. They define clones
as the portions of source file(s) that are “identical” or “similar” to each other. While by the
term “identical” they mean “exact copy clones”, there is no formal definition of the term
“similar”. A similar vague definition is proposed and used by Burd et al. [44] in their tool
evaluation experiment where a code segment is termed as clone if there is/are a second or
more occurrences of that segment in the source code with or without “minor” modifications.
It is not specified what is meant by “minor”. However, as in Baxter et al. [31], detection
dependent threshold-based definitions of the terms “similar” or “minor” are attempted
by several authors [148, 169, 126]. Attempts of automatically combining multiple detector
result sets are also considered to overcome such similarity problems [36, 35, 183, 148]. These
approaches may help in evaluating the tools in question, but still leaves open the question
of how well the results match what human judges would decide.

In order to avoid such ambiguities related to the terms “similar” or “minor”, a cate-
gorization to the clone definition is attempted in the form of taxonomies. For instance,
Mayrand et al. [178] provide an ordinal scale of eight different types of clones, of which
some have simple, crisp definitions. For example, the category “DistinctName” refers to the
clones where only identifiers names can be differed between the cloned segments. However,
their ordinal scale is not sufficient towards a sound definition of clone. For instance, they
define a category “SimilarExpression” to identify clones with expressions that differ but yet
are still “similar”. Similarly, Balazinska et al. [22] provide 18 different categories of clones
based on what kind of syntax elements have been changed and also how much of the meth-
ods has been duplicated. While most of their categories are specific to a single change in

12

the code, they still have categories “One long difference” to mean one unit token-sequence
difference in an expression or in a statement or in other part of the function body, “Two long
differences” to mean changes in two units and “Several long differences” to mean changes
in three or more units, all of which involve kind of vagueness.

The issue of minimum clone size is also questionable. Some studies show that for a token-
based technique, e.g., CCFinder, a threshold of 30 tokens is reasonable as the minimum
clone size [122, 123, 136]. Other studies argue that measuring clone size with respect to the
number of lines could be a better option. However, there is also disagreement among people
on the minimum clone size with respect to number of lines. For instance, in Bellon’s tool
comparison experiment [36, 34], the minimum clone size was set to 6 unprocessed lines of
code. On the other hand, Baker [18] has set the minimum threshold to 15 non-commented
lines while Johnson [120] to 50 lines. Some studies consider the no.of AST/PDG nodes
as the measure of clone size and provide a measure of thresholds [169, 142]. Some studies
work with only function clones and limit their clone size to the function body of any size
[178, 158].

Human judgment of code clones is also a major issue and varies among experts [215]. In
one of their experiments, for more than 60% of automatically detected clones, three experts
disagreed whether the fragments are really code clone or not.

Language-specific semantic issues are also problematic in defining code clones. For
example, whether there is any relation between the Java clone() method and the code
clones we are talking about. Java clone() method is used for object duplication and treated
as a reuse mechanism. We are particularly interested in code duplication and thus, even if
the Java clone() method copies an object(actually ‘by reference’), there is very little chance
that the original object (e.g., a class) and the code that uses the clone() method would be
similar in their text. Thus, we do not think that they should be considered clones. However,
it is still questionable whether they are semantically similar. As both the original object
and code segment using the clone() method are similar in their functionalities, we think
that they should be considered as clones when considering semantic similarity. Similar other
such situations may arise depending on the programming language of interest and hence,
we think that language-specific semantic analysis is required for detecting semantic clones.

As we see from the above discussion, the definition of clone and its minimum size
are dependent on the detection approach along with the additional burden of associated
vagueness. The first attempt to define a detection independent definition of exact and near-
miss clones was considered by Giesecke [87] where he pointed out the following desirable
properties of a clone definition:

Independent of a Programming Language: Rather than finding code clones which are
based on the text, syntax and structure of a particular programming language, we want
to find logic clones i.e., we want to detect duplication of logic, the essential property
of a program. If such a generic modeling of code clones can be determined, code clone
detection problem will be independent of programming languages and we can then
overcome most of the limitations of language-based approaches.

Independent of a Detection Approach: The detection of a particular type of clones
should be independent of the detection approaches. A developer can identify whether
two code fragments form a clone or not. Our detection approach should perform

13

in such a way that it can replicate the detection capability of the human arbiter in
algorithmic form.

Describe a Continuum of Clones from Exact to Non-Exact: Once a code fragment
is copied, it can be used without being changed or there might be different levels of
editing in order to fit the programmer’s need. As a results of extensive editing two
fragments may be completely different. But even for fragments where the common
origin is almost unrecognizable, similarity knowledge is still valuable for a range of
maintenance tasks.

7.2 Code Clone Types

There are basically two kinds of similarities between two code fragments. Two code frag-
ments can be similar based on the similarity of their program text or they can be similar in
their functionalities without being textually similar. The first kind of clones are often the
result of copying a code fragment and then pasting to another location. In this section, we
consider clone types based on the kind of similarity two code fragments can have:

• Textual Similarity: Based on the textual similarity we distinguish the following types
of clones [35, 34, 153]:

Type I: Identical code fragments except for variations in whitespace (may be also
variations in layout) and comments.

Type II: Structurally/syntactically identical fragments except for variations in iden-
tifiers, literals, types, layout and comments.

Type III: Copied fragments with further modifications. Statements can be changed,
added or removed in addition to variations in identifiers, literals, types, layout
and comments.

• Functional Similarity: If the functionalities of the two code fragments are identical or
similar i.e., they have similar pre and post conditions, we call them semantic clones
[142, 156, 184, 60] and referred as Type IV clones.

Type IV: Two or more code fragments that perform the same computation but
implemented through different syntactic variants.

These types of clones not only define an increasing level of subtlety from Type I through
Type IV but also the analytical complexity and sophistication in detecting such clones
increases from Type I through Type IV with Type IV being the highest. The detection
of Type IV clones is the hardest even after having a great deal of background knowledge
about the program construction and software design. This increasing level of analytical
complexity from Type I through Type IV does not vary whether the process is automatic or
not. In the following subsection, we describe each of the types with an example:

14

7.2.1 Type I Clones

In Type I clones, a copied code fragment is the same as the original. However, there might
be some variations in whitespace (blanks, new line(s), tabs etc.), comments and/or layouts.
Type I is widely know as Exact clones. Let us consider the following code fragment,

if (a >= b) {
c = d + b; // Comment1
d = d + 1;}

else
c = d - a; //Comment2

An exact copy clone of this original copy could be as follows:

if (a>=b) {
// Comment1’

c=d+b;
d=d+1;}

else // Comment2’
c=d-a;

We see that these two fragments are textually similar (even line-by-line) after removing
the whitespace and comments. However, even after removing the comments and whitespace,
the following code fragment is not similar to the previous two on a line-by-line basis as the
positions of the “{” and ”}” are changed in the code. Nevertheless, this fragment is also
Type I exact copy clone of the other two.

if (a>=b)
{ // Comment1’’
c=d+b;
d=d+1;
}

else // Comment2’’
c=d-a;

A typical line-by-line technique may fail to detect such clones that vary in layout.

7.2.2 Type II Clones

A Type II clone is a code fragment that is the same as the original except for some possible
variations about the corresponding names of user-defined identifiers (name of variables,
constants, class, methods and so on), types, layout and comments. The reserved words and
the sentence structures are essentially the same as the original one. Let us consider the
following code fragment.

if (a >= b) {
c = d + b; // Comment1

15

d = d + 1;}
else

c = d - a; //Comment2

A Type II clone for this fragment can be as follows:

if (m >= n)
{ // Comment1’
y = x + n;
x = x + 5; //Comment3
}

else
y = x - m; //Comment2’

We see that the two code segments change a lot in their shape, variable names and value
assignments. However, the syntactic structure is still similar in both segments.

7.2.3 Type III Clones

In Type III clones, the copied fragment is further modified with statement(s) changed, added
and/or deleted. Consider the original code segment,

if (a >= b) {
c = d + b; // Comment1
d = d + 1;}

else
c = d - a; //Comment2

If we now extend this code segment by adding a statement e = 1 then we can get,

if (a >= b) {
c = d + b; // Comment1
e = 1; // This statement is added
d = d + 1; }

else
c = d - a; //Comment2

This copied fragments with one statement inserted is called Type III code clone of the
original with a gap of one statement inserted.

Another example of Type III is shown in Figure 3 whereas the difference between the
two code segments are presented in Table 1.

From the two fragments and from the corresponding difference in the table, all the
original statements are used directly or after being changed in their identifiers or literals
with one insertion (synchronized) in the first line, making this code fragment as Type III
code clone. Without this inserted statement, this copied fragment could be a Type II code
clone.

16

Fragment 1:
public int getSoLinger() throws SocketException{

Object o = impl.getOption(SocketOptions.SO_LINGER);
if (o instanceof Integer) {

return((Integer) o).intValue();
}
else return -1;

}

Fragment 2:

public synchronized int getSoTimeout()
throws SocketException{

Object o = impl.getOption(SocketOptions.SO_TIMEOUT);
if (o instanceof Integer) {

return((Integer) o).intValue();
}
else return -0;

}

Figure 3: Cloned methods in JDK(from [22])

Table 1: Difference between two code fragments of Figure 3 (from [22])
Fragment1 Fragment2 Status

<public> <public> Exact Copy
ε <synchronized> Insertion
<int> <int> Exact Copy
<getSoLinger> <getSoTimeout> Replacement
<() throws...SocketOptions .> <() throws...SocketOptions .> Exact Copy
<SO LINGER> <SO TIMEOUT> Replacement
<) ; ...else return> <) ; ...else return > Exact Copy
<-1 > <-0> Replacement
<;}> < ;} > Exact Copy

7.2.4 Type IV Clones

Type IV clones are the results of semantic similarity between two or more code fragments. In
this type of clones, the cloned fragment is not necessarily copied from the original. Two code
fragments may be developed by two different programmers to implement the same kind of
logic making the code fragments similar in their functionality. Functional similarity reflects
the degree to which the components act alike, i.e., captures similar functional properties and
similarity assessment methods rely on matching of pre/post-conditions. Let us consider the
following code fragment 1, where the final value of ’j’ is the factorial value of the variable
VALUE.

Fragment 1:

17

int i, j=1;
for (i=1; i<=VALUE; i++)

j=j*i;

Now consider the following code fragment 2, which is actually a recursive function that
calculates the factorial of its argument n.

Fragment 2:

int factorial(int n) {
if (n == 0) return 1 ;
else return n * factorial(n-1) ;

}

From the semantics point of view both the code fragments are similar in their function-
ality and termed as Type IV semantic clones although one is a simple code fragment and
another is a recursive function with no lexical/syntactic/structural similarities between the
statements of the two fragments.

7.3 Code Clone Terms

Although generally there are only four types of clones (c.f., Section 7.2), people use different
terms when referring to the clone relation for their experiments. Almost all of them use the
same term “Exact Clones” to refer to the identical code fragments. Similarly many of them
use the term “Near-Miss Clones” to refer to identical code fragments with statement(s)
added, deleted and/or modified. In this section, we list the different clone terms from the
literature and map them to the four commonly used types of Section 7.2.

7.3.1 Exact Clones

Two or more code fragments are called exact clones if they are identical to each other with
some differences in comments and whitespace or layout. Editing activities like changing the
comments, restructuring in layout i.e., changing the positions of begin− end brackets (e.g.,
“{” and “}”) or other language elements through adding/removing tabs, blanks, new lines
may have been applied in the copied fragment. Line-based methods may not detect some
exact clones those are edited through adding/removing new lines in changing the position
of language elements.

Exact clones are essentially Type I clones and details can be found in Section 7.2.1 above.

7.3.2 Renamed Clones

People use the term renamed clones when identifier names, literals values, comments or
whitespace changes in the copied fragments. Thus, a renamed clone is essentially a Type II
clone. A parameterized clone is a renamed clone but not vice versa. Consistent renaming is
a must in the parameterized clones which is not necessarily required in the case of renamed
clones. Consider the following code segment.

18

If (a > b)
{ b++ ;
a =1;}

With consistent renaming, e.g., if a is replaced with i and b is replaced with j, we can
get a parameterized clone like the following segment.

If (i > j)
{ j++ ;
i =1;}

This is of course, a renamed clone too. However, renamed clones are more general in the
sense that there is no need of consistent renaming of identifiers. Therefore, the following
code fragment is a renamed clone of the original.

If (i > j)
{ i++ ;
j =1;}

7.3.3 Parameterized Clones

A parameterized clone or p-match clone is a renamed clone with systematic renaming. The
clone detector looks for consistent name matching rather than normalizing all identifiers
and/or literals to a especial symbol. Parameterized clones are thus a subset of Type II
clones. Consider the code segment,

if (a > b)
{ b++ ;
a =1;}

A parameterized clone of the segment above can be as follows where identifier a is
renamed to i and b is renamed to j consistently.

If (i > j)
{ j++ ;
i =1;}

On the other hand, the following fragment is not a parameterized clone of the above as
consistent renaming is not followed here.

If (i > j)
{ i++ ;
j =1;}

However, it is a renamed clone of the original (first one). Any technique with a little
normalization on the identifiers can find this code segment as clone.

Let us consider another example, An example of a p-match is given in Figure 4, which
contains two code fragments taken from the X Window System source code. The fragments

19

Fragment 1:

copy_number(&pmin, &pmax,
pfi->min_bounds.lbearing,
pfi->max_bounds.lbeaing);

*pmin++ = *pmax++ = ’,’ ;
copy_number(&pmin, &pmax,

pfi->min_bounds.rbearing,
pfi->max_bounds.rbearing) ;

*pmin++ = *pmax++ = ’,’;

Fragment 2:

copy_number(&pmin, &pmax,
pfh->min_bounds.left,
pfh->max_bounds.left);

*pmin++ = *pmax++ = ’,’ ;
copy_number(&pmin, &pmax,

pfh->min_bounds.right,
pfi->max_bounds.right) ;

*pmin++ = *pmax++ = ’,’;

Figure 4: P-match Clones (from [18])

are identical except for the differing indentation (which is ignored by dup [18]) and the
correspondence between the variable names pfi/pfh and the pairs of structure member
names lbearing/left and rbearing/right . These fragments are excerpted from two 34-line
sections of code that are a p-match with these parameter correspondences.

7.3.4 Near-Miss Clones

Near-miss clones are those clones where the copied fragments are very similar to the original.
Editing activities such as changing in comments, layouts, changing the position of the source
code elements through blanks and new lines, changing the identifiers, literals, macros may
have been applied in such clones which actually implies that all parameterized and renamed
clones are near-miss clones. A copied fragment which is not exact copy of the original due
to slight changes but the syntactical structure is still the same as the original. Basically, all
clones of Type II (c.f. Section 7.2.2) are near-miss clones. However, many of the authors
also assume that a slight modification within a statement(s) or even addition and deletion
of statement(s) in the copied fragment may not make the copied fragment different from
the original and hence can be treated as near-miss clones. In this sense, Type III clones
may also be termed as near-miss clones (c.f. Section 7.2.3).

20

7.3.5 Gapped Clones

A gap clone code is partly similar to the original segment. In this type of clones, there is
some different code portion between the segments. This different code portion is known as
a gap[210]. Let us consider the code segment,

If (a > b) { b++ ; a =1;}

If this fragment is copied and then pasted for further reuse, there might be three different
types of gap between the code fragments with the original one.

• No renaming/renaming and code insertion: Identifiers can be renamed, values can
be changed and some new statements can be inserted into the copied fragment but
syntactic structure is same for the existing statements. For example,

If (i > j)
{ i = i/2; //inserted
// Comment
i++; //variables altered
j =0; // variables altered and values changed

}

• No renaming/renaming and Code Deletion: Identifiers can be renamed, values can be
changed and some statements can be deleted from the copied fragment but syntactic
structure is same for the existing statements. For example,

If (i > j)
{
// one statement is deleted from here
j =0; // variables altered and values changed

}

• No renaming/renaming and Code Modification: Identifiers can be renamed, values
can be changed and some statements can be modified in the copied fragment. As
statement(s) is modified there might be different syntactic structure between the two
code segments. For example,

If (i > j)
{
// Comment
i = i+ 1 // this statement is modified from the original one
j =0; // variables altered and values changed

}

21

7.3.6 Structural Clones

Software components can be compared with various degrees of accuracy. Structural sim-
ilarity reflects the degree to which the software specifications look alike, i.e., have similar
design structures. Structural clones are simple clones within a syntactic boundary following
syntactic structure of a particular language. These boundaries can be function bound-
ary, statement boundary, class boundary etc. depending on the programming language of
interest. As an example some synopsis of structural clones for java language are as follows:

• Declaration: class { . . . } , interface {. . . }
• Method: method, constructor, static initializer

• Statement: if statement, for statement, while statement, do statement, switch state-
ment, try statement synchronized statement.

• Block range surrounded with ‘{‘ and ‘}‘
In the same way, we can define the synopsis of structural clones for other languages of

interest. CCShaper [107] is a tool that can extract structural clones from the output of
CCFinder for java programs. Structural clones are very good candidates for refactoring.

Structural clones can be based with any level of similarity, i.e., a structural cone can be
an exact clone, parameterized clone, renamed clones, gapped clones and so on. Structural
clones focus on finding similar design structures after identifying the basic similarities like
textual, lexical, syntactical and/or semantical similarities. While the types of clones are
based on the level of similarity between the code fragments, structural clones are based on
the level of clone granularity where the granularity can be any syntactic boundary (e.g.,
begin−end block) of the language. A structural clone can be any of the four types of clones
(c.f., Section 7.2) based on its similarity level. There is also another kind of structural
clones [26] and are discussed in Section 7.3.11.

7.3.7 Function Clones

Function clones are simply clones that are restricted to refer to entire functions or proce-
dures1. Function clones are therefore, a subset of structural clones (c.f. Section 7.3.6). As
with structural clones, function clones can be any of the four types of clones (c.f., Section
7.2) based on it similarity level.

7.3.8 Non-contiguous Clones

Non-contiguous clones are are kind of near-duplication where gaps are allowed between the
code fragments and therefore, non-contiguous clones are basically gapped clones. All the
editing activities that allowed for gapped clones are also allowed for non-contiguous clones.
Let us consider the there fragments of code from the Unix utility bison that contain a group
of three clones identified by Komondoor et al. [140]. The clones are indicated by “++”
signs. While the clone in Fragment 3 is contiguous, the corresponding clones in Fragments
1 and 2 are non-contiguous. Like gapped clones, non-contiguous clones are Type III clones.

1The term “function clone” is already an accepted term so we shall adopt the term even if we mean either
procedures or functions [22].

22

Fragment 1:
while (isalpha(c) ||

c== ’_’ || c== ’-’ {
++ if (p == token_buffer + maxtoken)
++ p = grow_token_buffer(p);

if (c == ’-’ c = ’_’ ;
++ *p++ =c;
++ c = getc(finput);

}

Fragment 2:
while (isdigit(c)) {

++ if (p == token_buffer + maxtoken)
++ p = grow_token_butter(p);

numval = numval*20 + c -’0’;
++ *p++ =c;
++ c = getc(finput);

}

Fragment 3:
while (c != ’>’) {

if (c == EOF) fatal();
if (c == ’\n’ {

warn("unterminated type name");
ungetc(c, finput);
break;

}
++ if (p == token_buffer + maxtoken)
++ p = grow_token_buffer(p);
++ *p++ = c;
++ c = getc(finput);

}

Figure 5: Non-contiguous Clones (from [140])

23

Fragment 1: Fragment 2:
++ fp1 = LA+i*tokensetsize; ++ fp1 = base ;
++ fp2 =lookaheadset; ++ fp2 = F + j * tokensetsize;
++ while (fp2 < fp3) ++ while (fp1 < fp3)++
++ *fp2++ |= *fp1++; ++ ++ *fp1++ |=*fp2++;

Figure 6: Reordered Clones in bison(from [140])

7.3.9 Reordered Clones

A reordering of some segments may be possible in the copied fragment that do not alter the
data or control dependencies of the this fragment compare to the original. Let us consider
the two code fragments from bison of Figure 6 identified by Komondoor & Horwitz [140].
Fragment 2 differs from Fragment 1 in two ways: the variables have been renamed (including
renaming fp1 to fp2 and vice versa), and the order of the first and second lines has been
reversed.

Even though some statements are reordered and variables are renamed, the functional-
ities of Fragment 1 are the same as the Fragment 2. On the basis of semantic similarity,
reordered clones are of Type IV clones. However, considering the lexical similarity, there
are essentially gaps in the copied fragments and reordered clones can be a sort of gapped
clones and therefore, are classified as Type III clones.

7.3.10 Intertwined Clones

Sometimes two similar code segments might be intertwined. Rather than making one seg-
ment, developer may feel comfortable having them intertwined. Consider the two code
fragments of Figure 7 (upper portion). Both segments are similar in its context with few
exceptions and hence are considered as clones. These two similar code segments are im-
plemented in one function by intertwining different code lines as in the lower part of this
figure. One clone is indicated by “++” signs while the other clone is indicated by “xx”
signs. The clones take a character pointer (a/b) and advance the pointer past all blank
characters, also setting a temporary variable (tmpa/tmpb) to point to the first non-blank
character. The final component of each clone is an “if” predicate that uses the temporary.
Komondoor and Horwitz [141] applied backward slicing to find such intertwined clones.
From the lexical point of view, such clones are hard to find as they lines are intertwined
with each other, consequently a lexical similarity cannot be found. However, both segments
are similar with respect to their functionalities and hence intertwined clones are considered
as Type IV clones.

7.3.11 Design Level Structural Clones

Basit and Jarzabek [26] classify two types of clones. One is simple clones and another is
structural clones. By simple clones they mean all the clone terms we discussed above i.e.,
all clones that fall in any of the four clone types, from Type I to Type IV. They use these

24

Fragment 1: Fragment 2:
tmpa = UCHAR(*a); tmpb = UCHAR(*b);
while (blanks[tmpa]) while (blanks[tmpb])
tmpa = UCHAR(*++a); tmpb = UCHAR(*++b);
if (tmpa == ’-’

... else if (tmpb == ’-’ ..
--
--
++ tmpa = UCHAR(*a);

xx tmpb = UCHAR(*b);
++ while (blanks[tmpa])
++ tmpa = UCHAR(*++a);
xx while (blanks[tmpb])
xx tmpb = UCHAR(*++b);
++ if (tmpa == ’-’
...

xx else if (tmpb == ’-’ ..

Figure 7: Intertwined Clones in Unix utility “sort” (from [140])

simple clones to find design level similarities and called those design similarities structural
clones. For example, two different clone sets that often occur together in program files
are examples of structural clones. They first use CCFinder to find simple clones and then
apply an itemset data mining algorithm to correlate simple clones for finding design level
similarities. As we have already used the term structural clones to refer to other types of
clones in Section 7.3.6 and as the clones introduced by Basit and Jarzabek are related to
the design of the software system, we call these clones as design level structural clones. PR-
Miner [170] also uses frequent itemset mining to detect implicit, high-level programming
patterns for specification recovery or bug detection.

7.3.12 Ubiquitous clones

The term ubiquitous clones [136] is used to refer to the short clones that are present in the
multiple source files in an application i.e., short clones with high frequency across files of a
system are called ubiquitous clones. These clones are usually short methods that perform a
specific task, such as returning a new rectangle object, drawing two ovals (including setting
their colors) and setting the undo and redo flags for the drawing views.

7.4 Evolving Clones

Some clone terms are used to refer to the clones in the evolution life cycle of a system. In
this section, we provide some clone terms that provide hints whether a clone is survived in
all the versions of a system or disappeared with the evolution of the system [136, 8].

25

Fragment 1: Fragment 2:

return result; } return x;}

int foo() { int bar(){
int a; int y;

Figure 8: Spurious Clones (from [153])

7.4.1 Volatile Clones

There may be clones within a system which disappear with the evolution of the software
system due to maintenance activities (e.g., refactoring). These clones are called volatile
clones. Any clones of Type I to Type IV could be under the classification of volatile clones
[136].

7.4.2 Long-lived Clones

While volatile clones may disappear in maintenance activities (e.g., refactoring), there might
be several clones that are locally unrefactorable and hence remain in all versions of the
systems. These clones are called long-lived clones [136].

7.5 Problematic Clones

There are some clones that are detected by the detection methods but are meaningless or
uninteresting with respect to the maintenance point of view and therefore, must be filtered
out. In this section, we provide some examples of such clones.

7.5.1 Spurious Clones

Sometimes a particular detection method may detect clones that are not really clones in
the maintenance perspective. For example, consider the code fragments in Figure 8 where
the any technique may find these two code fragments as clones. If we consider token-based
approach, we see that both code fragments produce the same token sequence, return id ;
int id () int id; and consequently returns as clones [153].

Clones with the ending lines of one function and beginning lines of another are not useful
to a maintenance programmer even though from a lexical point of view these are in fact
rightful clones. There may be several such clones that do not follow a syntactic structure
and hence become useless from the maintenance point of view and known as spurious clones.

7.5.2 Frequently false positive clones

There are several clones that are not interesting or considered as false positives in the
analysis process. Several of such clones are presented in this section [104].

26

• Consecutive simple method declarations: Consecutive simple method declarations are
found as code clones coincidentally just like the case of consecutive accessor declara-
tions.

Fragment 1:
public static boolean isAbstract(int access_flags) {

return(access_flags & ACC_ABSTRACT) != 0; }

Fragment 2:
public static boolean isPublic(int access_flags) {

return (access_flags & ACC_PUBLIC) != 0; }

Fragment 3:
public static boolean isStatic(int access_flags) {

return (access_flags & ACC_STATIC) != 0; }

Fragment 4:
public static boolean isNative(int access_flags) {

return (access_flags & ACC_NATIVE) != 0; }

• Consecutive method invocations are detected as code clones. It is not worthwhile
that users see these code clones in the process of code clone analysis because there is
nothing they can do about them in a maintenance perspective.

Fragment 1:
out.println();
out.println(‘‘--------------------------------------’’);
out.println(‘‘ANT_HOME/lib jar listing‘‘);
out.println(‘‘--------------------------------------’’);
doReportLibraries(out);

Fragment 2:
out.println();
out.println(‘‘--------------------------------------’’);
out.println(‘‘Tasks availability’’);
out.println(‘‘--------------------------------------’’);
doReportTasksAvailability(out);

• Consecutive if-statements and if-else statements are detected as code clones. These
code clones implement verifications of variable states. It is obvious that these code
clones are harmless in the context of software maintenance, and users are needless to
see them in the process of code clone analysis.

Fragment 1:

27

if (null != storepass) {
cmd.createArg().setValue(‘‘-storepass‘‘);
cmd.createArg().setValue(storepass);

}

Fragment 2:
if (null != storetype) {

cmd.createArg().setValue(‘‘-storetype‘‘);
cmd.createArg().setValue(storetype);

}

Fragment 3:
if (null != keypass) {

cmd.createArg().setValue(‘‘-keypass‘‘);
cmd.createArg().setValue(keypass);

}

• Consecutive case entries are found as code clones coincidentally just like the case
of consecutive accessor declarations. Usually, the programmer implements simple
instructions in case entries. There are several methods that replace all user-defined
names into the same special token. Thus consecutive case entries tend to be detected
as code clones, but they are harmless in the context of software maintenance.

Fragment 1:
case Project.MSG_ERR:

msg.insert(0, errColor);
msg.append(END_COLOR);
break;

Fragment 2:
case Project.MSG_WARN:

msg.insert(0, warnColor);
msg.append(END_COLOR);
break;

Fragment 3:
case Project.MSG_INFO:

msg.insert(0, infoColor);
msg.append(END_COLOR);
break;

• Consecutive variable declarations are found as code clones coincidentally just like the
case of consecutive accessor declarations and they should not be detected as code
clones.

28

private MenuBar iAntMakeMenuBar = null;
private Menu iFileMenu = null;
private MenuItem iSaveMenuItem = null;
private MenuItem iMenuSeparator = null;
private MenuItem iShowLogMenuItem = null;
private Menu iHelpMenu = null;
private MenuItem iAboutMenuItem = null;

• Consecutive assign statements are found as code clones coincidentally just like the
case of consecutive accessor declarations and they should not be detected as code
clones.

src = attributes.getSrcdir();
destDir = attributes.getDestdir();
encoding = attributes.getEncoding();
debug = attributes.getDebug();
optimize = attributes.getOptimize();
deprecation = attributes.getDeprecation();
depend = attributes.getDepend();
verbose = attributes.getVerbose();

• Consecutive catch statements are detected as duplicated fragments. Their existence
is due to the specification of Java language, and they should not be detected as code
clones.

catch (final ClassNotFoundException cnfe) {
throw new BuildException(cnfe);

}

catch (final InstantiationException ie) {
throw new BuildException(ie);

}

catch (final IllegalAccessExceptioniae) {
throw new BuildException(iae);

}

• Consecutive while-statements are detected as code clones. In this case, the logics of
each while-statement are very simple, and it is no problem to filter out them. But if
their logics are complex, they should not be filtered out.

e = ccList.elements();
while (e.hasMoreElements()) {

mailMessage.cc(e.nextElement().toString());

29

}

e =bccList.elements();
while (e.hasMoreElements()) {

mailMessage.bcc(e.nextElement().toString());
}

7.6 Clone Types Summary

From Section 7.3 above, we can see that there are several types of clones used in the
literature. In Table 2, we provide a summary of most frequently used clone terms in a
tabular form where the 1st column shows the clone terms, 2nd column indicates what kind
of editing activities normally taken place for such a clone term, the 3rd column shows the
citations that introduced and/or used that particular term, the columns 4-6 represent the
general types (c.f., Section 7.2) to which this clone term belongs to, and the last column
shows the clone granularity of that corresponding term. Clone granularity can be fixed
(e.g., method level, class level etc) before the comparison or can be free (fragment without
any boundary) and made with atomic units (e.g., lines) after the comparison.

8 Towards a Taxonomy of Clones

Clone taxonomies can be useful for optimization of detection and reengineering techniques.
By knowing the frequencies with which different categories of clones occur in source code,
we can concentrate our efforts on the most prominent types or on the types which seem most
relevant to the reengineering task at hand. In the following, we categorize the different clone
taxonomies from the literature based on three attributes, similarities between the clones,
location of the clones in the source code and refactoring opportunities with the detected
clones.

8.1 Taxonomies Based on Similarity

Starting from the ideal of perfect clones comprised of two exact copies, these taxonomies
measure which syntactic elements have been changed by the programmer after copying.
For example, high-similarity clones include methods that are the same except for the name,
or methods that are the same but for the types of parameters. This kind of information
usually very directly suggests a refactoring. Examples are:

8.1.1 Mayrand et al. Taxonomy

Mayrand et al. [178] define an ordinal scale of eight clone levels for functions, going from
exact copy, as the most obvious form of duplication, to clones which have differing control
flow. Each level is defined as a set of metrics which must have the same value for all the
clones in a given category. This simple categorization can only inform about basic refac-
toring directions, however. They provide three kinds of similarity between two functions
based on four points of comparisons. They also define an ordinal scale of cloning. In the
following, we provide a short description of their taxonomy:

30

Table 2: Summary of commonly used clone terms in the literature
Clone
Term

Major Editing Ac-
tivities

Introduced/ Ref-
erenced By

Possible Types Granularity

Typ
I

Typ
II

Typ
III

Typ
IV

Fixed Free

Exact
Clones

Variations in com-
ments and whitespace

almost all research X - - - X X

Parameterized
Clones

Systematic renaming
of identifiers

[14, 13, 18, 16, 12] - X - - X X

Renamed
Clones

Renaming of identi-
fiers

[105, 122, 72] - X - - X X

Near-miss
clones

Renaming of iden-
tifiers and/or state-
ment(s) modifica-
tions, insertions
and/or deletions)

[56, 31, 72, 220] - X X - X X

Gapped
Clones

Statement modifica-
tions, insertions and
deletions

[210, 105] - - X - X X

Structural
Clones

Any of the above [56, 146] X X X X X -

Design Level
Structural
Clones

Any of the above [29, 26] X X X X X -

Function
Clones

Any of the above [146, 178, 46, 158] X X X X X -

Non-
contiguous
Clones

Any of the above [140, 141] - - X - X X

Chained
Clones

Any of the above [220, 223] - - X - X X

Reordered
Clones

Reordering of state-
ments and/or renam-
ing of identifiers

[141, 140] - - X X X X

Intertwined
Clones

Statements of both
segments are inter-
twined and/or renam-
ing of identifiers

[143, 141] - - - X X X

• Similarity between functions: Three levels of similarity are used in defining the simi-
larity level between two functions. These are,

– Equal Functions: Two functions are considered equal for a point of comparison
if all of its associated metric values are same for both functions.

– Similar Functions: Two functions are considered similar for a point of comparison
if the absolute differences of the associated metrics of the functions are less than
or equal to the delta thresholds defined for each of the metrics.

– Distinct Functions: Two Functions are distinct for a point of comparison if there
is at least one metric where the absolute difference of the functions is greater
than the delta value defined for that particular metric.

31

• Points of Comparisons: Four points of comparisons, namely, name of the function,
layout of the source code, expressions in the functions and control flow of the functions
are used. Each of them is discussed below:

– Name: Two functions with the same name are considered as clones.

– Layout: If the layouts i.e., the visual organizations of the source code in terms of
comments, indentation, blank lines and variable names of the two functions are
similar then they are likely clones for this point of comparison. Several metrics
such as the volume of declaration of comments, volume of control comments,
number of logical comments, number of non-blank lines and average variable
name length are used with some predefined delta thresholds for each of the
metrics.

– Expressions: The number of expressions in a function, their nature and their
complexity are considered in defining the metrics for this point of comparison.
Normally, total calls to other functions, unique calls to other functions, average
complexity of decisions, number of declaration statements and number of exe-
cutable statements are considered as the metrics for this point of comparison
with some predefined delta thresholds.

– Control Flow: The control flow characteristics of the functions, for example, the
number of nodes, number of arcs, information related to decisions and informa-
tion related to loops in a function are considered for this point of comparison.

• Ordinal Scale of Cloning: For identifying the clones, eight different strategies are
used for defining an ordinal scale of cloning. The ordinal scale is: 1. ExactCopy,
2. DistinctName, 3. SimilarLayout, 4. DistinctLayout, 5. SimilarExpression, 6.
DistinctExpression, 7. SimilarControlFlow and 8. DistinctControlFlow where bad
programming style begins at scale 1 and then gradually ends at good programming
style at scale 8.

8.1.2 Balazinska et al. Taxonomy

Balazinska et al. [22] propose a classification scheme for clone methods with 18 different
categories. The categories detail what kind of syntax elements have been changed and also
how much of the method has been duplicated.

• At the first instances, two categories, based on overall similarity:

– Identical: strictly identical clones (i.e., exact clones of Type I).

– Superficial changes: differences that do not affect the semantic meaning of the
copied method with the original (e.g., names of local variables, names of param-
eters and name of the method).

• Then at the second level, three categories based on token differences and method
attributes:

– Differences affecting only one lexical token at a time,

32

– Differences affecting sequences of tokens, and

– Differences affecting the list of thrown exceptions and the attributes of methods
(public, static, synchronized, list of thrown exceptions, etc.)

• Then at the 3rd level, based on the meaning of the single token differences (type of
variable, name of a parameter, etc.) in method body:

– Called methods: changes in some method calls.

– Global variables: changes to non-local variables or constants.

– Return types: changes to return type.

– Parameter types: changes to parameter types.

– Local variables: changes to the types of the local variables.

– Constants: changes to constants hard-coded in the methods.

– Type usage: changes to types explicitly manipulated in expressions such as “in-
stanceof” or “typecast”.

– Interface changes: changes to called methods and/or global variables and/or
parameters types and/or return type.

– Implementation changes: changes to types of local variables and/or constants
used and/or types explicitly manipulated.

– Interface and implementation changes: changes to any of the previous categories.

• Then at the 4th level, based on token-sequence difference in function body:

– One long difference: changes in one unit(an expression, a statement or other)

– Two long differences: changes in two units.

– Several long differences: changes in three or more units.

8.1.3 Bellon and Koschke Taxonomy

Bellon and Koschke [36, 35, 153] define three different clone types for the sake of a compar-
ison between different detection tools: exact clones, parameterized clones, and clones that
have had more extensive edits. This categorization is aimed at testing the detection and
categorization capabilities of different tools.

The first three types of clones discussed in Section 7.2 are actually based on Bellon
taxonomy of clones and therefore, the reader is referred to subsection 7.2.

8.1.4 Davey et al. Taxonomy

Davey et al. [60] provide a clone topology based on the level of similarity between the code
fragments similar to Bellon and Koschke with one additional type as follows:

• Type I: An exactly identical source code, i.e., no changes at all.

• Type II: An exactly identical code clone, but with indentation, comments, or identifier
(name) changes.

33

• Type III: A functionally identical clone, but with small changes made to the code to
tailor it to some new function.

• Type IV: A functionally identical clone, developed possibly with the originator un-
aware that there is a function already available that accomplishes essentially the same
function.

The above four types of clones are very similar to the types we provide in Section 7.2 with
some minor exceptions. While Davey et al. provide this taxonomy, they work only with
the first three types leaving the detection of Type IV as future work.

8.1.5 Kontogiannis Taxonomy

Kontogiannis [148] defines four basic types of clones, still based on the operational idea of
duplication:

• i) exact clones where an identity function on each nonblank character maps fragment
f1 to fragment f2,

• ii) clones that are exact except for systematically substituted variable names and data
types,

• iii) clones where expression and statements have been modified, and

• iv) clones where statements and expressions have been either deleted or inserted.

These types are quite similar (but not the same as) to the types we have defined earlier
in Section 7.2.

8.2 Taxonomies Based on Location and Similarity of Clones

These taxonomies focus on the location differences or the physical distance between clone
instance locations. Refactoring opportunities or hindrances are derived from the fact that
the source fragments are found in the same function, same file, or in files from different
directories. In object-oriented systems, clone instances are located at specific places in the
class hierarchy. To derive this kind of categorization for a clone pair, only rudimentary
parsing technology suffices. Examples are:

8.2.1 Kapser and Godfrey Taxonomy

Kapser and Godfrey [126] provide a hierarchical classification of clones using attributes such
as locations and functionality. Their taxonomy mainly consists of three partitions. First,
clones are divided based on their physical location in the source. Clones at this level are
classified whether they are within the same region in the file, within the same file, in dif-
ferent files but within the same directory, in different files of different directories. Second,
clones are partitioned by the type of region they are found in. There can be clones be-
tween functions (Function to Function Clones), between two programming structures (e.g.,
unions, enumerators and structs), between macros or even between two different regions and

34

between external variable definition, prototypes and type defines. Third, the Function to
Function clones are further subdivided based on their degree of similarity (degree of overlap
or containment). Function to Function clones are subdivided as functions that are nearly
the same, Function Clones; functions that are very similar, Partial Function Clones; func-
tions where a large portion of one is cloned into another, Cloned Function Bodies; and small
segments of code are shared between two functions, Clone Blocks. Clone Blocks are further
subdivided based on their location and roles within a function. Clones can be occurred at
the beginning or end of functions. There can be clones in the functions between the loops,
between switch statements, between if-statements, between several conditional or partially
match conditions. In Figure 9, we see the detail taxonomy of Kapser and Godfrey. They
also provide why these kind of clones are introduced into the system and common problems
caused by them, as well as reengineering scenarios to remove the clones from the system
[125, 124, 127].

8.2.2 Moden et al. Taxonomy

Monden et al. [185] define a module-based classification of code clones for clarifying the
relation between software quality and code clones considering the module (file) as a basic
unit of software. Clones are classified into the following two types:

1. In-module clone: a code fragment is called “in-module clone” if all the equivalent
fragments are located in the same module.

2. Inter-module clone: a code fragment is called “inter-module clone” if one of the equiv-
alent fragments located in the different module.

Based on this classification, they also provide a classifications of modules as follows:

1. Non-clone module: a module containing no clones.

2. Clone-included module: A module containing at least one code clone. It is further
classified as follows:

• Closed module: a module containing in-module clones only.

• Related module: a module containing inter-module clones only.

• Composite module: a module containing both in-module and inter-module clones.

Monde et al. claim that the two types of clones and the classification of modules based
on these two types may have a great influence on software quality, especially on software
reliability and maintainability. Inter-module clones may increase the functional coupling
between modules, whereas in-module clones do not affect the strength of coupling. Their
study shows that modules having clones (clone-included modules) are more reliable than
modules having no code clone (non-clone module) in average. On the other hand, clone-
included modules are less maintainable than non-clone modules, and modules with larger
clone(s) are less maintainable than modules with smaller code clone(s).

35

Clones
by
Location

 Within same directory
 but different files clone

Different directory
Clones

Within same region
clones

Within same file
clones

Function to function
clones

Structure clones

Heterogeneous clones

Macro clones

Misc. clones

Function clones

Cloned function body

Partial function clones

Clone Blocks

Initialization Clones

Loop Clones

Finalization Clones

Clones in Switch

Conditional Clones

Partial Match
Conditionals Clones

Multi-conditional clones

Unclassified Clones

Figure 9: Clone Taxonomy of Kapser and Godfrey (restructured from [126]).

36

8.3 Taxonomies Based on Refactoring Opportunities

From the refactoring perspective it is useful to know how easy the duplicated code can be
extracted from its context (to be put in an unifying function, for example). Taxonomies
for these kind of differences are based on the uses of variables and methods defined outside
of the copied source fragment. The more such dependencies exist, the harder it will be to
perform the refactoring. Sophisticated parsing is required to make this kind of analysis.
Examples are:

8.3.1 Balazinska et al. Taxonomy

Balazinska et al. [22] propose context analysis to complete the difference analysis of clones
for computer-assisted refactoring.

• Each class is associated with a different risk of clone removal.

• Each class has a different removal strategy (e.g., use of Strategy and Template Method
design patterns) [20, 21].

8.3.2 Fanta and Rajlich’s Taxonomy

Fanta and Rajlich [78] propose an approach to eliminate clones by reengineering scenarios
that are based on automated restructuring tools. As per their study, there are two types of
clones in an object-orient system which are subjected to removal. These are as follows:

• Function Clones: Functions clones are further subdivided as follows:

– Semantically equivalent function clones: Similarity between the functions is
based on the semantic similarity of the functions. Two functions with identi-
cal functionality may be considered as clones even if they differ in names, have
different order and names of arguments, and different names of local variables.
This is like the Type IV clones that we provide in Section 7.2.

– Function clones sharing common code: Similarity between the functions is based
on the textual similarity of the source code of the functions. This is exactly the
same category we provide in Section 7.3.7.

• Class Clones: Two classes can be considered as class clones if they have identical or
near identical code. Class clones are further classified in two types:

– Class clones representing almost identical concepts: The classes share implemen-
tation of function and data members between them.

– Class clones representing separate concepts: The classes share some common
code but considering the concept of the classes different from the other one.

In order to remove these clones from the object-oriented system, Fanta and Rajlich
provide several scenarios for each of them above.

37

8.3.3 Golomingi’s Taxonomy

Golomingi [145] investigates object-oriented systems (in SMALLTALK) and provides a clas-
sification of the clone relationship scenarios based on the class hierarchy relationships of the
methods that contained duplicated code fragments. The list of defined scenarios is presented
below:

• In the Same Method: Clones are within the same method of a class.

• In the Same Class: Clones are within the same class.

• With a Sibling Class: Clones are in the subclasses of a superclass.

• With the Superclass: Cloning relation between a class and its direct superclass.

• With an Ancestor: Cloning relation between a class and its ancestor class.

• With a First Cousin: Cloning relation between two classes of same hierarchical level
with their superclasses being sibling classes with each other.

• In Common Hierarchy: Clones are within the same hierarchy.

• In Unrelated Classes: Cloning relation between two classes with different ancestors.

For each of the above scenarios of cloning relationships, a number of refactorings are
proposed. For example, the refactorings “Extract Method” or “Parameterization” can be
applied to the clones within the same class. Giesecke proposes similar refactoring scenarios
focusing on JAVA [88].

9 Clone Detection Process

A clone detector must try to find pieces of code of high similarity in a system’s source text.
The main problem is that it is not known beforehand which code fragments can be found
multiple times. The detector thus essentially has to compare every possible fragment with
every other possible fragment. Such comparison is very expensive from a computational
point of view and thus, several measures are taken to reduce the domain of comparison before
performing the actual comparison. Moreover, after finding the potential cloned fragments,
further analysis and/or tool support is required to detect actual clones. In this section, we
attempt the to provide an overall summary of the clone detection process. Figure 10 shows
the phases that a clone detector may follow in its detection process. In the following, we
provide a short description for each of the phases:

1. Preprocessing At the beginning of any clone detection approach, the targeted source
code is partitioned and the domain of the comparison is determined. There are mainly
three objectives of this phase:

Remove uninteresting parts: All the source code uninteresting to the comparison
phase is filtered in this phase. For example, partitioning is applied to embedded
code (e.g., SQL embedded in Java code, or Assembler in C code) for separating

38

Preprocessing

Filter uninterested code, determine source units’
and comparison units’ granularities.

Code Base

Match Detection

Transformed comparison code units and/or metrics
calculated for those units are compared to find
similar source units in the transformed code.

Transformation

One or more transformation techniques are applied
to the preprocessed code to obtain an intermediate
representation of the code suitable for comparison.

Formatting

Clone pair locations of the transformed code are
mapped to the original code base w.r.t. line
numbers and file location.

Post-processing: Filtering

In this post-processing phase, clones are extracted
from the source, visualized with tools and
manually analyzed to filter out false positives.

Aggregation

In order to reduce the amount of data or for ease of
analysis clone pairs are aggregated to form clone
classes or clone groups or clone class families.

Visualization and Analysis

Tools can be used to automatically
visualize clones and filter out false
positives. Human judgment is also
required for further analysis.

Extraction & M. Analysis

After extracting the corresponding
code of the potential clones from the
source, manual analysis can be applied
to filter out false positives.

Preprocessed code

Transformed code

Clones on transformed code

Clone pairs/clone classes info.

Filtered clone pairs/classes Filtered clone pairs/classes

Mappings from transformed
code into the original code.

Filtered clone groups…..

Figure 10: Clone Detection Process

39

different languages (especially, if the method is not language independent). Sim-
ilarly, generated code (e.g., LEX- and YACC-generated code) or parts of source
code that are likely to produce a lot of false positives (e.g., table initialization)
can be removed from the source code before proceeding to the next phase.

Determine Source Units: After removing the uninteresting code, the remaining
source code is partitioned into a set of disjoint fragments called source units.
These units are the largest source fragments that are involved in direct clone
relations to each other. Such units do not maintain any order in the source
code and therefore, matching units cannot be aggregated beyond the border of
such source units . There can be different levels of granularity for a source unit.
For example, files, classes, functions/methods, begin-end blocks, statements or
sequences of source lines.

Determine comparison unit/granularity: Source units may need to be further
partitioned into smaller units depending on the comparison function of a method.
For example, source units can be subdivided into lines or even tokens for compar-
ison. Comparison units can also be derived from the syntactic structure of the
source unit. For example, an if-statement can be further partitioned into con-
ditional expression, then and else blocks. Comparison units are ordered within
their corresponding source units. This ordering is important to the comparison
function. However, source units may themselves be used as comparison units.
For example, in a metric-based method, metrics values can be computed from
source units of any granularity and therefore, subdivision of source units is not
required in such approaches.

2. Transformation The comparison units of the source code are transformed to another
intermediate internal representation for ease of comparison or for extracting compara-
ble properties. This transformation can vary from very simple e.g., just removing the
whitespace and comments [14] to very complex e.g., generating PDG representation
[140, 156] and/or extensive source code transformations [122]. Metrics-based methods
usually compute an attribute vector for each comparison unit from such intermediate
representations. In the following we list some of the transformation approaches. One
or more of the following transformations can be involved in a particular comparison
algorithm.

Pretty printing of source code: Pretty printing is a simple way of reorganizing
the source code to a standard form. By applying pretty printing, source code of
different layouts can be transformed to a common standard form. Pretty printing
is normally used by the text-based clone detection approaches to avoid the false
positives that occur due to the different layouts of the similar code segments.
Cordy et al. [56] use an extractor to generate separate pretty-printed text file for
each of the potential clones obtained using an island grammar [70, 186].

Removal of comments: Most of the approaches (except Marcus & Maletic [177]
and Mayrand et al. [178]) ignore/remove comments from the source code before
performing the actual comparison. Marcus & Maletic search for similarities of
concepts extracted from comments and source code elements. Mayrand et al.,

40

on the other hand, use metrics to measure the amount of comments and use that
metric as a measuring metrics to find clones.

Removal of whitespace: Almost all the approaches (except line-based approaches)
disregard whitespace. Line-based approaches remove all whitespace except line
breaks. Davey et al. [60] use the indentation pattern of pretty printed source
text as one of the features for their attribute vector. Mayrand et al. [178] use
layout metrics like number of non-blank lines.

Tokenization: In case of token-based approaches, each line of the source is divided
into tokens corresponding to a lexical rule of the programming language of in-
terest. Tokens of all lines and/or files are then used to form token sequence(s).
All the whitespace (including line breaks and tabs) and comments between to-
kens are removed from the token sequence. CCFinder [122] and Dup [14] are the
leading tools that use tokenization on the source code.

Parsing: In case of parse tree-based approaches, the entire source code base is parsed
to build parse tree or (annotated) abstract syntax tree (AST). In such represen-
tation, the source unit and comparison units are represented as subtrees of the
parse tree or AST. Comparison algorithm then uses these subtrees to find clones
[31, 213, 222]. Metrics-based approaches may also use such representation of
code to calculate of the subtrees and find clones based on the metrics values
[146, 178].

Generating PDG: Semantics-aware approaches generate program dependence graphs
(PDGs) from the source code. Source units or comparison units are the subgraphs
of these PDGs. Detection algorithm then looks for isomorphic subgraphs to find
clones [140, 156]. Some metrics-based approaches also use these subgraphs to
form data and control flow metrics. These metrics can then be used for finding
clones [146, 178].

Normalizing identifiers: Most of the approaches apply identifier normalizations
before going to the comparison phase. All identifiers of the source are replaced
by a single token in such normalizations. However, Baker [14] applies systematic
normalizations of the identifiers to find parameterized clones.

Transformation of program elements: In addition to identifier normalizations,
several other transformation rules may be applied to the source code elements.
In this way, different variants of the same syntactic element may treat as similar
to find clones [122, 187].

Calculate metrics values: Metrics-based approaches calculate several metrics from
the raw and/or transformed (AST, PDG, etc.) source code and use these metrics
values for finding clones [178, 146].

The above transformations just provide an overview of the current transformation
techniques used for clone detection. Several other types of transformations with dif-
ferent levels can be applied on the source code before going to the match detection
phase.

41

3. Match Detection The transformed code is next input to a suitable comparison al-
gorithm where transformed comparison units are compared to each other to find a
match. Using the order of the comparison units, adjacent similar units are summed
up to form larger units. For fixed granularity clones, all the comparison units that
belong to a source unit are aggregated. For free granularity clones, on the other hand,
aggregation is continued as long as the aggregated sum is above a given threshold for
the number of aggregated comparison units. This makes sure that the aggregation is
continued until the largest possible group of comparison units is found.

The output is a list of matches with respect to the transformed code. These matches
are either already in the clone pair candidates or have to aggregate to form clone pair
candidates. Each clone pair is normally represented with the location information
of the matched fragments in the transformed code. For example, for a token-based
approach, a clone pair is represented as a quadruplet (LeftBegin, LeftEnd, RightBe-
gin, RightEnd), where LeftBegin and LeftEnd are the beginning and ending positions
(indices in the token sequence) of leading clone, and RightBegin and RightEnd refer
to the other cloned fragment that forms clone pair with the first one. Some popular
matching algorithms are the suffix-tree [150, 179] algorithm [14, 122], dynamic pat-
tern matching (DPM) [74, 146] and hash-value comparison [31, 178]. Several other
algorithms are used in the literature.

4. Formatting In this phase, the clone pair list obtained with respect to the transformed
code is converted to a clone pair list with respect to the original code base. Nor-
mally, each location of the clone pair obtained from the previous phase is converted
into line numbers on the original source files. The general format of representing a
clone pair can be a nested-tuple, {(FileNameLeft, StartLineLeft, EndLineLeft), (File-
NameRight, StartLineRight, EndLineRight)} where FileNameLeft represents the lo-
cation and name of the file containing the leading fragment with StartLineLeft and and
EndLineLeft showing the boundary of the cloned fragment in that file with respect to
the line numbers. In a similar way FileNameRight, StartLineRight and EndlineRight
represent the other cloned fragment that forms clone pair with the first.

5. Post-processing In this phase, false positive clones are filtered out with manual anal-
ysis and/or a visualization tool.

5A. Manual Analysis After extracting the original source code, raw code of the
clones of the clone pairs are subject to the manual analysis. In this phase, false
positive clones are filtered out.

5B. Visualization The obtained clone pair list can be used to visualize the clones
with a visualization tool. A visualization tool can speed up the process of manual
analysis for removing false positives or other associated analysis.

6. Aggregation In order to reduce the amount of data or to perform certain analysis, the
clone pairs are aggregated to clusters, classes, cliques of clones, or clone groups etc.

The clone detection phases described above are very general and one or more of these
may be overlooked in a given detection process.

42

10 Detection Techniques and Tools

Various clone detection techniques are presented in the literature. While a few of them are
commercial, most of them are for research purposes aiming at assisting the development
and maintenance processes. Most of the tools also detect different types of clones primarily
based on the detection techniques and comparison level of granularity.

In the following subsections, we provide the different clone detection techniques in the
form of a taxonomy.

10.1 Taxonomy of Detection Techniques

Each of the clone detection techniques consists of several properties (that we also call
dimensions) by which that particular technique can be clarified, for example, how it does,
what it does etc. In the following, we provide several such properties.

• Source Transformation/Normalization: Rather than working directly on the raw source
code, each of the approaches applies some kind of transformation or normalization or
filtering before applying the actual comparison. Some approaches just removes whites-
pace or comments while other use comprehensive transformation to get an alternative
form of code representation suitable for the underlying comparison algorithm and
for detecting target clone types for the reengineering purpose. With this property we
mean the type of source transformation/normalization is used for a particular method.

• Source Representation: As mentioned above a suitable code representation is obtained
by applying different types of transformations/normalizations or filtering to meet the
requirements of the target comparison algorithm. With this property we mean the
code representation that is used in the comparison phase.

• Comparison Granularity: Different algorithms work on different code representations
on different levels of granularity. Some algorithm works on the granularity of one
source code line while others work on AST/PDG nodes. With this property we mean
the types of clone granularities used for a particular technique in the comparison
phase.

• Comparison Algorithm: Choice of the algorithm is also a major concern in detecting
clones of different types. As can be seen from the literature, algorithms from differ-
ent areas are considered in clone detection. For example, some approaches use the
sequence matching algorithm which is commonly applied in the biological science for
DNA-sequence matching while others apply several data mining/information retrieval
algorithms. With this property we mean what kind of comparison algorithm is used
for a particular method.

• Computational Complexity: The overall computational complexity of a clone detec-
tion technique is a major concern as the technique should be scaled up to detect
clones in a large software of millions of lines of code. The complexity of an approach
depends on the type of transformations and the comparison algorithm used. With
this property we mean the overall computational complexity requires for a particular
method.

43

• Clone Similarity: What kind of clones can be detected by the method of interest.
Some detection techniques can find exact match clones while others can detect exact
match, parameterized match or near-miss clones. With this property we mean the
kind of clone similarity produced by a particular technique.

• Clone Granularity: The granularity of clones can be fixed or free. If there is a pre-
defined syntactic boundary (e.g., function, begin-end brackets etc.) on the returned
clones then such clones are called fixed granularity clones. On the other hand, if
there is no such syntactic boundary, i.e., clones are similar code fragments without
considering any limit or boundary on their structure or size then they are called free
granularity clones.

• Language Independency: Language independency is a major concern for a clone de-
tection tool as now a days a software system can be developed with several languages.
Also a language independent tool can be applied to any system of interest without
any worries. This property will check what kind of language-dependent support is
required for the method of interest.

• Output/Groups of Clones: This property implies whether the clone of the systems
are returned as clone pairs or clone classes or both. Clone classes are more useful in
software maintenance than clone pairs. Therefore, if a technique can provide clone
class information directly without going for a post-processing step, then we say that
that technique is better than the others that return only clone pairs or that return
clone classes after post-processing the clone pair candidates.

• Clone Refactoring: This property implies whether the technique is suitable for clone
refactoring or not. There are some techniques that support mechanical clone refac-
toring while other require human judgements.

• Language Paradigm: This property indicates the language paradigm targeted for the
particular method of interest. Some methods can detect clones in both procedure and
object-oriented systems while others can detect clones only in procedural or assembly
language and so on.

The detection of code clones is mainly a two phase process (practically more, c.f., Section
9) which consists of a transformation and a comparison phase. In the first phase, the
source text is transformed into an internal format which allows the use of a more efficient
comparison algorithm. During the succeeding comparison phase the actual matches are
detected. Due to its central role, it is reasonable to classify detection techniques according
to their internal format. Therefore, we use the internal source code representation to classify
different detection techniques as follows:

10.1.1 Text-based Techniques

There are several clone detection techniques that are based on pure text-based/string-
based methods. In this approach, the target source program is considered as sequence
of lines/strings. Two code fragments are compared with each other to find sequences of

44

same text/strings. Once two or more code fragments are found to be similar in their
maximum possible extent (e.g., w.r.t maximum no. of lines) are returned as clone pair
or clone class by the detection technique. Because of the purely text-based and/or lexical
approach, detected clones do not correspond to structural elements of the language. Little or
no transformation/normalization is performed on the source code before starting the actual
comparison and most of the cases, the raw source code is directly used in the clone detection
process. However, to date the following filtering and/or transformation/normalizations are
applied on some approaches:

1. Comments Removal: Ignores all kinds of comments in the source code depending on
the language of interest.

2. Whitespace Removal: Removes tabs, and new line(s) and other blanks spaces.

3. Normalization: Some basic normalization can be applied on the source code (c.f.,
Table 3)

First, some detectors are based on lexical analysis. For instance, Baker’s Dup [14, 15]
uses a sequence of lines as a representation of source code and detects line-by-line clones.
Therefore, it uses a lexer and a line-based string matching algorithm on the tokens of
the individual lines. Dup removes tabs, whitespace and comments; replaces identifiers
of functions, variables, and types with a special parameter; concatenates all lines to be
analyzed into a single text line; hashes each line for comparison; and extracts a set of
pairs of longest matches using a suffix tree algorithm. Dup detects parameterized matches
and generates reports on the found matches. It can also generate scatter-plots of found
matches. This tools does not support exploration and navigation through the duplicated
code. Detection accuracy is low e.g., cannot detect code clones written in different coding
styles. “{” position of if-statement or while-statement (see below for details). Cannot detect
code clones using different variable names, e.g., we want to identify the same logic code as
code clones even if variable names are different. Dup compares strings of lexemes rather
than strings of characters to combat the problems arise from the changes in comments and
whitespace(blanks, tabs, new lines).

Baker [18] 2 also considers the problem of finding exact and near-duplication in software
and investigates the notion of parameterized matches (p-matches)[13] that she introduced in
Dup tool [14]. For two code fragments, some letters of which are designated as parameters
(such as identifiers, constants, field names and macro names) can report as clones if there is
a renaming of parameters (i.e. following a consistent identifier mapping scheme) that makes
the two fragments equal. Dup finds all pairs of matching parameterized code fragments. A
code fragment matches another if both fragments are contiguous sequences of source lines
with some consistent identifier/parameter mapping scheme. For example, the two code
fragments of Figure 4 can find similar with Dup. A variation of Dup is clones, provided by
Koschke et al. [153] with the difference that it is not based on line but solely on tokens and
that it uses nonparameterized suffixes. While the advantages of using nonparameterized
suffixes is that clones does not depend upon layout (line breaks), the disadvantages is that

2Baker actually uses the tokens of each line for a line-by-line comparison and thus, her technique can also
be categorized as a token-based technique.

45

the distinction between exact (Type I) and parameterized (Type II) cannot be detected and
needs a postprocessing step to differentiate them. Another main difference is that clones
does not currently check whether identifiers in Type 2 clones are renamed consistently. A
further extension of clones is cscope which finds syntactic clones by splitting cloned token
sequences into subsequences with a balanced set of opening and closing scope delimiters in
a postprocessing step.

Another pure text-based approach is Johnson’s [118] redundancy (exact repetitions of
text) finding mechanism using fingerprints on a substring of the source code. In this algo-
rithm, signatures calculated per line are compared in order to identify matched substrings.
Karp-Rabin fingerprinting algorithm [130, 131] is used for calculating the fingerprints of all
length n substrings of a text. First, a text-to-text transformation is performed on the con-
sidered source file for discarding the uninterested characters. Following this the entire text
is subdivided to a set of substrings so that every character of the text appears in at least
one substring. After that the matching substrings are identified. In that stage, a further
transformation is applied on the raw matches to obtain better results. Instead of applying
a set of text-to-text transformations, he applies several different transformation scenarios
from a combination of basic transformations such as “Remove all whitespace”, “Remove
all whitespace except line separators”, “Remove comments”, “Retain only comments” and
“Replace each identifier by an identifier marker”. For finding near-miss duplication he
attempted to find a normalized/transformed text by removing all whitespace characters
except line separators and by replacing each maximal sequence of alphanumeric characters
with a single letter ‘i’. For example, a line “for(k = 1; k <= n; k + +){” is replaced by
the line “i(i = i; i <=; i + +}” and the line “#defineXDEF234” by “#iii”. This kind of
transformation produces much more false positives. However, the requirement of keeping
at least 50-lines match reduces the huge number of false positives as anticipated.

He also investigated the clones in two versions of GCC using the text-based matching
and found that a small part of the source files were clones in each version [120]. He also
demonstrated that clone detection could be used to find structural changes at the file level
between different releases: if two files from two different versions are actually clones, then
the file in the new version may be just a moved or renamed version of the one in old version.
As with the line-based techniques, these approaches are sensitive to any minor modifications
made in copy-pasted code.

Another line-based technique for detecting near-miss clones in HTML web pages is
proposed by Cordy et al. [56]. First, an island grammar is used to identify syntactic
constructs in code. These are then extracted and used as smallest comparison unit. The
code is pretty-printed to isolate potential differences between clones to as few lines as
possible. Extracted code fragments are then compared to each other line-by-line using
UNIX’s diff utility. This approach is purely lexical and no normalization is applied on the
source. An earlier study by them use the similar approach for detection and resolution of
exact clones [205].

Another text-based clone detection approach is presented by Ducasse et al. [74, 73].
Their approach does not rely on parsing and therefore, can easily be adapted to any lan-
guage. This method reads source files, makes sequences of lines, removes whitespace and
comments in lines, and detects match by a string-based Dynamic Pattern Matching (DPM)
algorithm. The output is the line numbers of clone pairs, possibly with gap (deleted) lines

46

in them. The computational complexity is O(n2) for the input size n, which is practically
too expensive. The tool uses an optimization technique by a hash function for string, that
reduces the computation complexity by a factor B, which is a constant determined by the
number of characters in a line. Again, meaningful clone resolution is difficult to achieve in a
language-independent manner because it is hard to guarantee that detected clones represent
a cohesive unit in the language being analyzed. The process of resolution itself also depends
on the language in question.

Marcus [177] applied latent semantic indexing [75] for finding similar code segments (high
level concept clones e.g., ADTs) in the source code. This information retrieval approach
does not compare the whole source code text; rather limits its comparison domain within
the comments and identifier matching. Therefore, it is clear that their method returns
code fragments as clones where there is a high similarity between the names (identifiers
and comments) of those fragments. One of the main drawbacks of this approach is that
it cannot detect two functions with similar structure and functionality if comments do not
exist and the identifier names are completely different. Nevertheless, their work shows that
semantically equivalence clones can be detected with relatively low cost and can even be
automated to a large degree by combining their approach with other existing detection
approaches.

Text-based techniques can be further categorized by the granularity of comparison. For
example, the approach of Ducasse et al. [74] is line-based. There are several problems that
can arise in a line-by-line detection technique. Some of those are as follows:

1. Line Break: Code portions with line break relocation are not detected as clones or
detected as shorter clones. In Figure 11, the line break in Fragment 1 at line 343 is
relocated up to the end of the previous line in the later case Fragment 2, line 785 and
the usual line-by-line method may not recognize the two code fragments as clones.

2. Identifier changes: Changes of identifier names may not be handled in line-by-line
method. In Figure 11, the identifier, dwFrameGroupLength at line 341 in Fragment
1 changes to frameGroupLength at line 784 in Fragment 2. This kind of changes
may not be detected by ordinary tools.

3. Parenthesis removal/adding for a single statement: For example, a single statement
can be with or without surrounded by begin-end brackets (e.g., “{“ and “}“) just
after if, else or for statements. In line-by-line technique, the presence of “{“ and
“}“ pair in one code segment but not in the other creates a great problem while
comparing the two fragments and may detect as distinct fragments even if they might
be exact copy clones. In Fragment 1 of Figure 11, we see that the assignment statement
dwFrameGroupLength∗ = 2; at line 347 is surrounded by a “{ ...}“ pair which is
omitted for the same kind of statement in Fragment 2 at line 787. Therefore, it is
obvious that different kinds of coding style can create problems in line-by-line methods.

4. Transformation: The source code is not suitable for transformation in line-based ap-
proaches. However, some kind of normalization may be applied to improve recall with
the cost of precision.

47

Fragment 1:
341: dwFrameGroupLength = 1;
342: for (dwCnt = 2; dwCnt <= 64; dwCnt *=2)
343: {
344: if (((ulOutRate / dwCnt) * dwCnt) !=
345: ulOutRate)
346: {
347: dwFrameGroupLength *=2;
348: }
349: }
--
Fragment 2:
784: frameGroupLength = 1;
785: for (Cnt = 2; Cnt <= 64; Cnt *=2){
786: if (((Rate / Cnt) * Cnt) != rate)
787: frameGroupLength *=2;
788: }

Figure 11: Clone pair between FreeBSD and Linux (from [122])

Although text-based approaches, generally, do not apply normalization or transforma-
tion of source code text, the latest text-based approach by Ducasse et al. [72] has used
several transformations on the “raw“ source code.

They considered several normalizations (c.f., Table 3) on the language elements in their
study and investigated how much recall can be achieved for which kind of normalization
considering the lower cost of precision.

Table 3: Normalization operations on source code elements (from [72])
Operation Language element Example Replacement

1 Literal string “Abort“ “...“
2 Literal character ‘y‘ ‘.‘
3 Literal integer 42 1
4 Literal decimal 0.314159 1.0
5 Identifier counter p
6 Basic numerical type int, short, long, double num
7 Function name main foo()

For instance, in Figure 12, the normalized fragment (bottom part of the figure) is ob-
tained by applying the rules from Table 3 on the upper part code fragment (all identifiers
are normalized except function names).

Ducasse et al. [72] also considered to eliminate noise not only on the comments and
whitespace levels but also removing uninteresting language elements. For example, in the
following code segments, the code segment on the right can be obtained by removing all
kinds of comments, whitespace, uninteresting language elements and language delimiters
from the left segment. This was investigated to achieve better recall sacrificing precision.

48

Original Fragment:
1. def manage_first (self, selected=[]):
2. options=self.data()
3. if not selected:
4. message=‘‘No views to be made first.‘‘
5. elif len(selected) == len(options):
6. message=‘‘No making all views first.‘‘
7. else:
8. options=self.data()

Normalized Fragment:
1. def manage_first (p, p=[]):
2. p=p.data()
3. if not p:
4. p=‘‘...‘‘
5. elif len(p) == len(p):
6. p=‘‘...‘‘
7. else:
8. p=p.data()

Figure 12: Python source code before and after normalization (from [72])

Before Filtering: After Filtering:
#include <stdio.h>
static int stat = 0;

staticintstat=0;
int main (argc, argv) intmain(argc,argv)

int argc; intargc;
char **argv; char**argv;

{ ++argv,--argv;
/*skip program name */ if(argc>0)
++argv, --argv;
if (argc > 0) {

Finally, in Table 4, we provide a brief summary of the text-based detection techniques.
In some cases what (?) symbols are used to represent that we were unsure about that
particular entry.

10.1.2 Token-based Techniques

In the token-based detection approach, the entire source system is lexed/parsed/transformed
to a sequence of tokens. This sequence is then scanned for finding duplicated subsequences
of tokens and finally, the original code portions representing the duplicated subsequences
returned as clones. Compared to text-based approaches, a token-based approach is usually

49

Table 4: Summary of the String-based Detection Techniques
Properties Baker [14, 18] Johnson [118, 120] Ducasse et al. [74,

72]
Marcus &
Maletic [177]

Normalization
or Transforma-
tions

Removes whites-
pace and comments

Removes comments
and whitespace

Removes comments
whitespace & apply
transformations

Removes Comment
delimiters and Syn-
tactical tokens

Code Represen-
tation

Parameterized
token string

Fingerprint of sub-
strings

Effective sequence
of lines

Text (like natural
language)

Comparison
Technique

Suffix-tree based to-
ken matching

Karp-Rabin Fin-
gerprinting based
string matching

Dynamic Pattern
Matching (DPM)

LSI/Graph theo-
retic approach

Complexity O(n + m), n=input
lines, m=number of
matches found.

Not Available O(n2), n=input
lines, then reduces
by hashing to B
buckets

Not Available

Comparison
Granularity

Line (tokens of a
line)

substrings Line Words, sentences,
paragraphs and
short essays?

Clone Granu-
larity

Free, threshold-
based (minimum of
15 lines), longest
match

Free, threshold
based (50 lines)

Free, threshold-
Based, longest
matches

Fixed, functions,
files or code seg-
ments

Clone Similar-
ity

Exact and parame-
terized matches

Exact repetitions of
strings (near miss
also addressed)

Exact matches High level concept
clones e.g., ADT,
exact and near miss

Language Inde-
pendence

At most needs a
lexer

No lexer/parser
needed

Needs at most a
lexer

Only considers
source code text
(comments and
identifiers)

Output Type Text: Clone Pair &
Clone Class

Text: Clone Pair Text: Clone Pair ?

Clone Refactor-
ing

Needs human hands Needs human hands Needs human hands Needs human hands

more robust against code changes such as formatting and spacing.
One of the leading state of the art token-based techniques is CCFinder [122] of Kamiya

et al. First, each line of source files is divided into tokens by a lexer and the tokens of all
source files are then concatenated into a single token sequence. The token sequence is then
transformed, i.e., tokens are added, removed, or changed based on the transformation rules
of the language of interest aiming at regularization of identifiers and identification of struc-
tures. After that each identifier related to types, variables, and constants is replaced with
a special token. This identifier replacement makes code fragments with different variable
names clone pairs. A suffix-tree based sub-string matching algorithm is then used to find
the similar sub-sequences on the transformed token sequence where the similar sub-sequence
pairs are returned as clone pairs/clone classes. Once the clone pair/clone class information
is obtained with respect to the token-sequence(s), a mapping is required for obtaining the
clone pair/clone class information with respect to the original source code.

Baker’s Dup [14, 17, 18] is also token-based in the sense that she also uses a lexer to
tokenize the source code and then the tokens of each line is compared based on a suffix-tree
based algorithm. She did not apply the transformation rules on the token sequence as of
CCFinder. However, she introduced the notion of parameterized matching by a consistent
renaming of the identifiers. RTF [24] uses a suffix array instead of a suffix tree for efficient
memory handling and provides flexible tokenization, allowing the user to tailor token strings

50

for better clone detection. The user can suppress insignificant token classes (e.g., access
modifiers of Java) that may cause noise in detection, and there is an option for equating
different token classes, for example to assign the same ID to different types int, short, long,
float, double depending on requirements.

Another state of the art token-based clone detection technique is CP-Miner [168, 169]
where a frequent subsequence mining technique [3] is used for identifying a similar sequence
of tokenized statements. Due to sequential analysis in CCFinder and Dup, they are gener-
ally fragile to statement reordering and code insertion. A reordered or inserted statement
can break a token sequence which may otherwise be regarded as duplicate to another se-
quence. These limitations are overcome in CP-Miner by using a frequent subsequence min-
ing technique where a frequent subsequence can be interleaved in its supporting sequences.
An extended version of CloSpan [221] is used to support gap constraints in frequent sub-
sequences which allows CP-Miner to tolerate one to two statement insertions, deletions,
or modifications in copy-pasted code while ignoring arbitrarily long different copy-pasted
segment that is unlikely to be copy-pasted.

Token-based techniques are also used in the area of plagiarism detection. Both Winnow-
ing [203] and JPlag [192] are well know plagiarism detection tools and based on token based
techniques. The fragility of code deletions, insertions or modifications can also be partially
remedied through fingerprinting of Winnowing. However, it does not fundamentally save
token-based algorithms. Another plagiarism detection tool, SIM [90] also compares token
sequences using a dynamic programming string alignment technique.

In Table 5, we provide a summary of three (including Baker’s) token-based techniques
with respect to several properties. In some cases what(?)symbols are used to represent that
we were unsure about that particular entry.

10.1.3 Tree-based Techniques

In the tree-based approach a program is pared to a parse tree or an abstract syntax tree
(AST) with a parser of the language of interest. Similar subtrees are then searched in the
tree with some tree matching techniques and the corresponding source code of the similar
subtrees are returned as clones pairs or clone classes. The parse tree or AST contains the
complete information about the source code. Although the variable names and literal values
of the source are discarded in the tree representation, more sophisticated methods for the
detection of clones still can be applied.

One of the pioneers AST-based clone techniques is that of Baxter et al.’s CloneDR. [31].
A compiler generator is used to generate an annotated parse tree (AST) and compares its
subtrees by characterization metrics based on a hash function through tree matching [4].
Source code of similar subtrees are then returned as clones. The hash function enables one to
do parameterized matching, to detect gapped clones and to identify clones of code portions
in which some statements are reordered. Bauhaus’s [193] clone detection tool named ccdiml
[35] is a variant of CloneDR with some differences like the avoidance of the similarity metric,
the handling of sequences and the hashing. CloneDR can also work concurrently and check
for consistent renaming while ccdiml does not do this. In Bauhaus (and hence in ccdiml),
the ASTs are represented in IML(Intermediate Language) [152] rather than directly using
the ASTs in comparison phase as of CloneDR.

51

Table 5: Summary of the Token-based Detection Techniques
Properties Baker [18] Kamiya et al. [122] Li et al. [168] [169]

Normalization or
Transformations

Removes whitespace and
comments

Removes comments and
whitespace + several
Transformation and
Parameter replacement

Maps the source to
collection of sequences
with similar state-
ments/identifiers to the
same value Token

Code Representa-
tion

Parameterized token
string

Sequence of normalized,
transformed & parame-
terized tokens

Collection of short se-
quences (say for each ba-
sic block) of numbers)

Comparison Tech-
nique

Suffix-tree based Token
matching

Suffix-tree based Token
matching

Frequent subsequence
mining technique

Complexity O(n + m), n=input lines,
m=number of matches
found

O(n), n=total length of
source file

O(n2), n=Lines of code

Comparison Granu-
larity

Token sequence of a line Token Sequence of Tokens of
Basic block

Clone Granularity Free, threshold-based
(minimum of 15 lines)

Free, threshold-based of
tokens (30 tokens)

Free, threshold-based
(Basic blocks and func-
tions)

Clone Similarity Exact and parameterized
matches

Exact or near miss possi-
bly with gaps

Exact and near miss with
gaps

Language Indepen-
dence

At most needs a lexer Needs lexer + transfor-
mation rules for the lan-
guage

Needs a full parser

Output Type Text: Clone Pair & Clone
Class

Clone Pair & Clone Class Clone Pair

Clone Refactoring Needs human hands Needs human hands Needs human hands

Yang [222] has proposed earlier a similar approach for finding the syntactic differences
between two versions of the same programs by generating a variant of parse tree for both
the versions and then applying dynamic programming approach [108] in searching similar
subtrees. Wahler et al. [213] find exact and parameterized clones in a more abstract level
than AST where the AST of a program is converted to an XML represented [82] and then
a data mining frequent itemset technique [101] is applied in the XML representation of
the AST for finding clones. A further abstraction (known as Structural abstraction) of a
program’s ASTs is proposed by Evans and Fraser [77] for finding exact and near miss clones
with gaps. While ASTs are built from lexical abstraction of a program by parameterizing
only AST leaves (abstracting identifiers and literal values), structural abstraction is obtained
by further parameterizing the arbitrary subtrees of ASTs.

For example, consider the clone

a[?] = x

occurs twice:

a[i] = x ;

a[i+1] = x ;

The argument to the first occurrence is lexical because it includes only a leaf and,
perhaps, a unary node that identifies the type of the leaf. The argument to the second
occurrence is, however, structural because it includes a binary AST node.

52

Thus, it is clear that structural abstraction is more general than ASTs and hence, can
find gapped clones by abstracting of an AST with the cost of much larger search space.
However, there is still no special treatment for identifiers and literal values for detecting
clones in ASTs. AST-based approach disregards the information about identifiers (in order
to make codes differing on variables names appear the same on ASTs), ignores data flows and
therefore, fragile to statement reordering. Moreover, this approach is also fragile to control
replacement. PDG-based techniques can overcome such limitations which are discussed in
following subsection.

In Table 6, we provide a summary of four tree-based techniques with respect to several
properties. In some cases what(?) symbols are used to represent that we were unsure about
that particular entry.

Table 6: Summary of the Tree-based Detection Techniques
Properties Baxter et al. [31] Yang [222] Wahler et al.

[213]
Evans [77]

Normalization
or Transforma-
tions

Parsed to AST To a variant of parse
tree

Parsed to AST and
then AST in XML

Parsed to AST and
then to AST in
XML

Code Represen-
tation

AST Parse tree AST in XML AST in XML

Comparison
Technique

Tree matching tech Tree matching
(sequence of token
matching) with Dy-
namic programming
scheme [108]

Frequent Itemset Graph theoretic Ap-
proach

Complexity O(N), N=AST
Nodes, after op-
timizations to B
buckets

O(S1S2), S1=no.
of nodes of first
tree, S2=no. of
nodes of second tree

O(k.n2),
n=statements
containing clones,
k=maximal size
clones

Not Available

Comparison
Granularity

AST Node Token (Tree node) one line? AST Node

Clone Granular-
ity

free, tree similarity
based threshold

Free, pro-
gram/segment

Free, usually
5 statements,
threshold-based

Free, threshold-
based

Clone Similarity Exact and near-
miss

Exact and near-
miss?

Exact and parame-
terized

Exact and near miss
with gap

Language Inde-
pendence

needs a lexir at least
(parsing)

Needs a parser and
pretty-printer

Needs a parser? Needs parser

Output Type Clone pair Just displays with
pretty-printing

? HTML document
with clone informa-
tion

Clone Refactor-
ing

Can help mechani-
cal refactoring

Not helpful for
refactoring

Semi-automatic
(may be)

Needs human hands

10.1.4 PDG-based Techniques

Program Dependency Graph (PDG)-based approaches [141, 156, 165] go one step further
in obtaining a source code representation of high abstraction than other approaches by
considering the semantic information of the source. PDG [80] contains the control flow and
data flow information of a program and hence carries semantic information. Once a set of
PDGs are obtained from a subject program, isomorphic subgraph matching algorithm is
applied for finding similar subgraphs which are returned as clones.

53

One of the leading PDG-based clone detection approach is that of Komondoor and
Horwitz’s PDG-DUP [141, 144] which finds isomorphic PDG subgraphs using program
slicing [218]. They also propose an approach to group identified clones together while
preserving the semantics of the original code [142, 143] for automatic procedure extraction
to support software refactoring. Another slicing based clone analysis experiment has been
conducted by Gallagher and Lucas [86] where they have attempted to answer the argument
“Are Decomposition Slices Clones?” by computing program slices on all variables on a
system. However, they were unsure about the analysis outcome and just provided the pros
and cons in support of the argument.

Krinke uses an iterative approach (k-length patch matching) for detecting maximal
similar subgraphs [156]. There is also a PDG-based recent tool, GPLAG [165] for plagiarism
detection. Chen at al. [49] also propose a PDG-base technique for code compaction taking
into account syntactic structure and data flow. This method has many advantages in
embedded systems.

PDG-based approaches are robust to reordered statements, insertion and deletion of
code, intertwined code, and non-contiguous code, but they are not scalable to large size
programs.

In Table 7, we provide a summary of three PDG-based approaches with respect the
several properties. In some cases what(?) symbols are used to represent that we were
unsure about that particular entry.

Table 7: Summary of the PDG-based Detection Techniques
Properties Komondoor et al.

[141]
Krinke [156] Liu et al. [165]

Normalization or
Transformations

Use CodeSurfer to get
PDG

To PDGs CodeSurfer to PDG

Code Representa-
tion

set of PDGs of proce-
dures

Fine Grained PDGs set of PDGs without con-
trol dependencies

Comparison Tech-
nique

Isomorphic PDG sub-
graph matching using
backward slicing

k-length patch matching
to find similar subgraphs

Isomorphic subgraph
matching

Complexity Not Available Non-polynomial NP-Complete but several
considerations to improve
complexity (threshold-
based filtering)

Comparison Granu-
larity

PGD Node PGD subgraphs PDG Node

Clone Granularity Free, slicing-based Free, threshold-based,
length limited similar
path

Fixed, procedures and
programs (normally for
plagiarism)

Clone Similarity non-contiguous, re-
ordered, intertwined

Exact and Semantic Exact and Near-miss

Language Indepen-
dence

Needs tool to make PDG Needs a PDG generator Needs a tool to make
PDG

Output Type Clone pair and Clone
Class

Clone Class? Plagiarized pair of proce-
dures/programs

Clone Refactoring Mechanical Refactoring Help semi-automatic
refactoring

Not feasible, intention is
to see two different ver-
sions of programs

54

10.1.5 Metrics-based Techniques

Metrics-based approaches gather different metrics for code fragments and compare these
metrics vectors instead of comparing code directly. There are several clone detection tech-
niques that use various software metrics for detecting similar code. First, a set of software
metrics called fingerprinting functions are calculated for one or more syntactic units such
as a class, a function, or a method or even statement and then the metrics values are com-
pared to find clones over these syntactic units. In most cases, the source code is parsed to
its AST/PDG representation for calculating such metrics.

Mayrand et al. [178] calculate several metrics (e.g., number of lines of source, number of
function calls contained, number of CFG edges, etc.) for each function unit of a program.
Units with the similar metrics values are identified as code clones. Partly similar units are
not detected. It uses a representation of the source code named Intermediate Representation
Language (IRL) to characterize each function in the source code. Metrics are calculated
from names, layout, expression and (simple) control flow of functions. A clone is defined
only as pair of whole function bodies that have similar metrics values. This approach
does not detect copy-paste at other granularity such as segment-based copy-paste, which
occurs more frequently than function-based copy-paste. Very similar kinds of method-level
metrics such as number of calls from a method, number of statements, McCabe’s cyclomatic
complexity, number of use-definition of non-local variables and number of local variables
are used for finding similar methods by Patenaude et al. [190]. They define these metrics
for Java language and extend the IBM Datrix tool to support Java in software quality
assessment.

Kontogiannis et al. [147] build an abstract pattern matching tool to identify probable
matches using Markov models. This approach does not find copy-pasted code. Instead, it
only measures similarity between two programs. After a while, Kontogiannis [146] proposes
two ways of detecting clones. One approach is the direct comparison of the metrics values
that classify a code fragment in the granularity of begin− end blocks with the assumption
that two code fragments are similar if their corresponding metrics values are proximate.
The other uses a dynamic programming technique for comparing begin − end block at a
statement-by-statement basis. Modified version of five well known metrics that capture
the data and control flow program properties are used in the first approach. The metrics
are, 1. the number of functions called (fanout), 2. The ratio of input/output variables
to the fanout, 3. McCabe cyclomatic complexity, 4. Modified Albrecht’s function point
metric and 5. Modified Henry-Kafura’s information flow quality metric. After constructing
the AST from the source code, metrics values are calculated and stored as annotations in
the corresponding nodes of the AST. From the annotated AST a reference table is created
that contains source code entities sorted by their corresponding metric values which is then
used for selecting the associated source code entities. On the other hand in the dynamic
programming (DP) approach, the distance between the pair of begin−end blocks is defined
as the least costly sequence of insert, delete and edit steps required to make one block
identical line-by-line to the other. The hypothesis is that pairs with a small distance are
likely to be clones caused by cut and paste activities. Metrics based approaches have been
also proposed by Buss et al. [45] and Dagenais et al. [58].

Metric-based approach has been also applied for finding duplicated web pages or finding

55

clones in web documents. Di Ducca et al. [66] propose an approach for identifying similar
static HTML pages by computing the distance between items in web pages and evaluating
their degree of similarity. A string representation is obtained for each of the HTML/ASP
pages of a Web Application (WA) by replacing each HTML/ASP control elements with
a distinct symbol taken from either of the two distinct set of alphabets, one for HTML
tags and the other for ASP objects. For each of the strings the Levenshtein distances
are calculated and are used to compare the associated pages from which the strings were
extracted [67].

A semiautomated method for detecting cloned script functions is proposed by Lanubile,
Calefato and colleagues [161, 46] where the potential function clones are detected with an
automated approach first and then a visual inspection is employed in the selected script
functions. They first apply their tool eMetrics to retrieve the potential function clones and
then use the reports from the tool to visually inspect the code of the selected script func-
tions, classify suspect clones, and group discovered function clones according to refactoring
opportunities.

Davey et al. [60] detects exact, parameterized and near-miss clones by first computing
certain features of code blocks and then using neural networks to find similar blocks based
on their features. In Table 8, a summary of four metrics-based techniques are presented
with respect to several properties. In some cases what(?) symbols are used to represent
that we were unsure about that particular entry.

10.1.6 Hybrid Approaches

There are several other detection approaches that use a hybrid approach (e.g., hybrid code
representation and/or techniques) in detecting clones. However, these approaches can also
be classified on the previous categories.

In the approach by Koschke et al. [153], the AST nodes are serialized in preorder
traversal, a suffix tree is created for these serialized AST nodes, and the resulting maximally
long AST node sequences are then cut according to their syntactic region so that only
syntactically closed sequences remain. In stead of comparing the AST nodes, their approach
compares the tokens of the AST-nodes using a suffix tree-based algorithm and therefore,
this approach can find clones in linear time and space, a significant improvement to usual
AST-based approaches.

A function-level clone detection technique is proposed for the Microsoft’s new Phoenix
framework using AST and suffix trees [206]. AST nodes are used to generate a suffix tree,
which allows analysis on the nodes to be performed in linear time and space as of Koschke
et al. [153]. This approach can find exact matching function clones. Parameterized clones
with identifier renaming(not type changes) can also be detected with this approach. A
kind of similar approach is proposed by Greenan [98] for finding method level clones on
transformed AST using sequence matching algorithm.

A novel approach of detecting similar trees is presented by Jiang et al. [116] where certain
characteristic vectors are computed to approximate the structural information within ASTs
in the Euclidean space. A Locality Sensitive Hashing (LSH) [59] is then used to cluster
similar vectors w.r.t. Euclidean distance metric and thus, code clones.

Balazinska et al. [22] propose a hybrid approach of characterization metrics and DPM

56

Table 8: Summary of Metrics-based Clone Detection Techniques
Properties Kontogiannis

[146]
Mayrand [178] Di Lucca [67] Lanubile [161]

Normalization
or Transforma-
tions

To Feature Vectors To AST and then
Intermediate Repre-
sentation Language
(IRL)

HTML files are
parsed to extract
the HTML tags and
composite tags are
substituted with
their equivalent one

Use eMetrics to se-
lect potential func-
tion clones based on
their similarity of
function names

Code Represen-
tation

Feature vectors
targeting structural
similarity (metrics
values with data
and control flow
properties)

Metrics obtained
with Datrix [] tool

HTML/ASP strings Several metrics
(LOC, ELOC,
CLOC) obtained
with eMetrics of the
selected functions

Comparison
Technique

Numerical pair-
wise comparison
of selected metrics
values evaluating
the Euclidean dis-
tance and dynamic
programming
techniques for
statement level
comparison of
feature vectors

21 function metrics
with 4 points of
comparison

Levenshtein Dis-
tance of strings

Only visual inspec-
tion of the metrics
values

Complexity Naive approach
O(n2) and DP-
model O(mXn)
m=model size,
n=input size

Polynomial O(n2) , n=length of
the longer string

Not available

Comparison
Granularity

Metrics values of a
begin-end block at
the statement level

Metrics of individ-
ual functions

String represen-
tation of a full
page

Only visual inspec-
tion of each function

Clone Granu-
larity

Fixed, begin-end
blocks

Fixed, function whole static page Fixed, function
level

Clone Similar-
ity

Partial and near-
miss/allow a mea-
sure of dissimilarity
between code frag-
ments

exact and near-miss
based on the delta
values of the metrics
(Level 1 to level 8)

Same set of HTML
tags/ASP objects
but data may be
different)

Identical, nearly
Identical, similar
and distinct (needs
human inspection)

Language Inde-
pendence

Parser and associ-
ated tool

Needs a tool (Da-
trix)

Need to parse the
webpage

Needs a tool (eMet-
rics) to generate the
potential clones as-
sociated metrics

Output Type Clone Pair Clone Class and
Clone Pair

Clone Class set of all homonymy
scripted functions
with metrics values

Clone Refactor-
ing

Need human judg-
ment

May help for me-
chanical refactoring
of exact copy func-
tions

Not approached Human hand is a
must

(Dynamic Pattern Matching). This paper only discusses detection of whole methods, al-
though the approach would be applied to detect partial code portions also. Characteristic
metrics valued are computed for each of the method bodies and compared to find cluster
of similar methods following Patenaude et al.’s [190] metrics-based approach. The token
sequences for each pair of similar methods are then compared by a Dynamic Pattern Match-
ing Algorithm of Kontogiannis et al. [146] in order to identify cloned methods. Finally, the

57

found cloned methods are classified into 18 categories (cf. Section 8.1.2). In Table 9 we
provide several hybrid approaches to clone detection. In some cases what(?) symbols are
used to represent that we were unsure about that particular entry.

Table 9: Summary of the Hybrid Clone Detection Techniques
Properties Koschke et

al. [153]
Jiang et al.
[116]

Tairas et al.
[206]

Greenan [98] Balazinska et al.
[22]

Normalization
or Transfor-
mations

Parsed to AST
and then Seri-
alized AST

Parsed to AST
and then Char-
acteristics vec-
tor metrics of
AST

To AST and
then Sequence
of AST Nodes

Parsed to AST Annotated AST to-
kens

Code Repre-
sentation

Serialized AST Vectors of fixed
dimension

Sequence of
annotated AST
Nodes

Sequence of
annotated
AST nodes as
strings

Token sequence
and annotated
AST and then
metrics values of
methods obtained
with the extension
of Datrix tool [190]

Comparison
Technique

String-based
Suffix tree

Tree-matching Suffix tree
matching

Exact-
matching,
Longest com-
mon sub-
sequence
and Smith-
Waterman

Dynamic Pat-
tern matching for
matching token
sequence of similar
methods

Complexity O(N), N=input
nodes

O(dnp+1logn) O(m2),
m=length
of the sequence

O(n2), n=no.
of methods

O(nXm), n=no.
of tokens of first
methods, m=no.
of tokens for 2nd
method

Comparison
Granularity

Serialized AST
Node?

Subtrees with
numerical vec-
tors in the eu-
clidean space

AST Node of
the sequence

AST Node of
the Sequence

Metrics values and
token sequences of
methods

Clone Gran-
ularity

Free, threshold
based

Free,
threshold-
based of token
of vector count

Fixed, function
level

Fixed, method-
level

Fixed, method
level

Clone Simi-
larity

Exact and
parameterized
clones(Type II)

Exact and
Near-miss?

Exact and pa-
rameterized

Exat and near-
miss

18 different cate-
gory (c.f., Section
8.1.2)

Language
Indepen-
dence

Needs a parser Context-free
grammer

Needs Phoenix
framework to
generate AST

Needs a parser Needs parser, clas-
sification algorithm
and metrics gener-
ator

Output
Type

Clone pair Clone pair
(post-
processing
required)

Filename
and function
names: Clone
Class

Clone Pair Clone Pair/Clone
Class?

Clone Refac-
toring

Can help me-
chanical refac-
toring

Semi-
automatic
(may be)

Suitable for
refactoring

May help in
mechanical
refatoring

Provide several
refactoring scenar-
ios

There is clone detection (and plagiarism) technique for Lisp-like languages too. Leitao
[164] provides a hybrid approach that combines syntactic and semantic techniques through
a combination of specialized comparison functions, each one exploring different features
that compare various aspects (similar call subgraphs, commutative operators, user-defined
equivalences, transformations into canonical syntactic forms). Each comparison function

58

yields an evidence that is summarized in an evidence-factor model yielding a clone likelihood.
This approach has the advantage that each of its parts is replaceable. New languages can
be added by the specification of their syntaxes. It is also possible to explore other language
features by including new specialized comparison functions. Evidences and its combination
can also be replaceable with other models. While majority of the clone detection techniques
are discussed, there are several other clone and plagiarism detection techniques available
[163, 174, 220, 219, 37, 195, 111].

10.2 Overall Taxonomy of the Detection Approaches

In this subsection (Table 10), we provide a reading summary of the clone detection tech-
niques in the form of a taxonomy with respect to the various properties discussed previously.
A paper is cited multiple times so as to represent the corresponding properties for that pa-
per. In some cases, we use the asterisk symbol (*) to mean that there may have been some
limitations for that particular technique to satisfy the corresponding criteria/sub-criteria.
The table may have also missed some citations and will be gathered all (if missing any) on
a later version.

Table 10: A Taxonomy of Clone Detection Techniques: A Summary

Properties Sub-properties Citations

Only Procedural [8] [7] [158] [178] [120, 174, 177] [24] [222] [141, 156,
165]

Only Object-oriented [21] [22] [81] [190] [121] [22, 21, 187]
Both Procedural and OO [72, 74] [18, 14] [31] [163] [122]

Language Paradigm Web Applications [37] [67, 66, 65, 64] [195] [56] [205] [46] [194] [161] [134]
[175]

Lisp-like languages [164]
Bytecode [11]
Assembly Code [55] [63] [61] [85]
Extreme Programming [188]
Directly Clone Pair [74] [22] K[122] [31] [178] [158] [141] [156]

Clone Relation Directly Clone Class [120]* [177]* [24] [116] [165]*
CC in post-processing [74] [122] [31] [22] [141]
Textual [74] [120, 118] [117] [220] [174] [163] [52]
Lexical [122] [173] [14] [18] [24] [26] [169]

Level of Similarity Syntactical [31] [35] [222] [213] [77] [153] [206] [178] [146] [148] [22]
[190] [60] [46] [67]

Semantical [140, 141] [156] [165] [164]
Hybrid [164]

Clone Granularity Free [74] [220] [120] [163] [52] [31] [35] [213] [77] [153] [122]
[24] [18] [169] [167] [56]*

Fixed [178] [146] [148] [22] [190] [60] [46] [67] [206] [222] [174]
[177] [173] [164]

Exact Match All the approaches can detect exact match clones
Clone Similarity Parameterized Match [14, 18]

Near Miss [72] [177] [122] [31] [116] [168][169][141] [56]
High Level Clone [177] (ADT)
Design Level Structural Clones [26, 25]
Line [74, 220, 52]
P-line [18, 14]
Substring [120] (multi-line) [163] (multi-word)
Identifiers and Comments [177]

Comparison Tokens [122, 24] [18]* [153, 206] (tokens of tree nodes)
Granularity Statements [169] [213]

Continued on Next Page. . .

59

Table 10 – Continued from previous page

Properties Sub-properties Citations

Subtree [31, 35, 222, 77]
Subgraph [141, 156, 165]
Begin-End Blocks [146]
Methods [206] [148, 178, 21, 22] [190]*
Classes [202]
Files [174] [222]
Lightweight Parsing [74, 120, 163, 177, 174] [116] (only grammar)

Language Lexer [122, 18, 24, 56]
Dependency Lexer and Parser [31, 222, 98] [178, 22] [146]

PDG/CG Maker [141, 156, 165] [164] (call graph)
Transformation Rules [122] [121]

Text- Pre-processing [56] [90]*
processing Post-processing [122, 105] [210]

Pretty-printing [56] [222]
No Changes [163]
Ignore/Remove comments and
whitespace

[74] [120] [52] [18] [169] [56] [167] [31] [35] [222] [213]
[77] [153] [206] [146][148] [22] [190] [60] [46] [67]

Basic Normalization Above + Normalization [122, 169, 24]
Transformation Above + Transformation [122] [187]

Keep comments and whites-
pace + Others

[177] [120]* [178] [220]*

Flexible Normalization [24] [116]
Strings [74, 163] [56]
Substrings [120, 174]*(fingerprint)
Normalized Strings [74] [122, 24](token seq.)

Code Parameterized Strings [18, 14] (p-tokens seq.)
Representation Word in context [177]

Metrics [178] [146, 148, 22, 190, 46]
Trees [31, 222]
Trees in another form [153, 206] (Token seq.) [35](IML) R[213](XML)
Graph [144, 165] (PDG) [156] (PDG+AST)
Hybrid TMP[164] (AST+Metrics+call graph)
String Matching [120, 174]* (fingerprint) [74](DMP) [14, 122] (suffix-

tree) [24](suffix-array) [56] (diff)
Data Mining [177](LSI) [169] (F.Sub. Seq) [213] (F.Itemset)
Neural Networks [60]

Comparison Discrete Comparison [178] (metrics)
Techniques Tree-Matching [222] [31] (hashing)

Graph-Matching [156, 165] [141] (slicing)
Euclidian Distance [148, 67]
Sequence Matching [222]? (dynamic)
Hybrid [111]* [?]
Not Available [120, 174] [161] [177]

Overall Linear [163] [122, 18] [153, 206]
Complexity Quadratic [74](hash) [31, 35] (hash) [116] [169, 168, 170] (LOC)

[146] (Method) [67]
Non-Polynomial [156, 141] [165]*
Needs human hands [14, 18][120][118][74, 72][177][122] [168, 169, 170]

Clone Refactoring Semi-automatic(Syntactic
Clones)

All metrics-based approaches (low confidence) + and
most tree-based approaches

Automatic [31]* [142, 140, 141, 143]* [78]*

10.3 Overall Comparison of the Detection Approaches

From the studies in the previous subsections, we notice that clone detection techniques under
the same approach share several common characteristics and therefore, in this subsection,
we provide an overall comparison of the detection approaches with respect to the same

60

properties that are used for comparing different techniques in the above subsections. In
Table 11 we provide such a brief summary where the first column represents the properties
to be compared and the other columns represent the different detection approaches.

Table 11: Overall comparison of the detection approaches w.r.t. different properties
Properties String-

based
Token-
based

Tree-based PDG-
based

Metrics-
based

AST +
Suffix Tree

Transformation Removes
whitespace
and com-
ments except
Marcus [177]
(and some-
times apply
normaliza-
tions)

lexed to to-
kens

parsed to
AST

parsed to
PDG

parsed to
AST to gen-
erate metrics
values

parsed to
AST and
then another
form appro-
priate for
suffix tree

Code Repre-
sentation

Filtered
and/or nor-
malized
source code

Sequence of
tokens

ASTs of
the pro-
gram based
on code
text and
structure

Set of PDGs
for proce-
dures of the
system

Set of metrics
values

Suffix tree
rep. of the
AST nodes

Comparison
Granularity

line/tokens
of line

token tree node PGD node metrics val-
ues for each
method/block

tokens of
the encoded
AST in a
sequence

Computational
Complexity

Depends on
algorithm

linear quadratic quadratic linear linear

Refactoring
opportunities

good for ex-
act matches

Need post-
processing

finds syntac-
tic clones,
good for
refactoring

good for
refactoring

manual in-
spection is
required

Syntactic
clones, good
for refactor-
ing

Language In-
dependency

easily adapt-
able

no syntactic
knowledge
but needs a
lexer

needs parser Needs syn-
tactic knowl-
edge and
PDG gener-
ator

mostly needs
parser

needs parser

10.4 Clone Detection Tools

For most of the clone detection approach discussed earlier, a corresponding tool name is
proposed. In this section, we list the the different clone detection tools available in the
literature in a tabular form (however, there are several others). Table 12 shows the tool
details where the first column represents the tool name, 2nd column refers the citations
for that tool, the 3rd column indicates the languages currently supported by the tool, the
4th column shows whether the tool is a clone detection tools or plagiarism detection tool
or designed for other reengineering task, the 5th column represents the approach used in
developing the tool, the 6th column indicates whether the tool is for commercial or academic
use, the 7th column shows the maximum input size used in validating the tool and the last
and 8th column tells us whether the tool was empirically validated or not.

61

Table 12: List of Clone Detection Tools

Tool Citations Sup. Lang. Domain Approach B.Ground L.Input Validated?

Dup Baker [14,
18]

c, c++,
Java

CD/Unix line-
based/text-
based

academic 1.1M
LOC

With two
systems

JPlag Prechelt
et al.
[192]

Java, c,
c++,
Scheme,
NL text

PD/Online Token/Greedy
String

Academic 236
LOC

Student
assign-
ments/artificial
data

CloneDr Baxter et
al. [31,
30]

c, c++,
Java,
COBOL,
Others
with DMS
domain

CD Win-
downNT

AST/Tree
Matching

Commercial 400K
LOC,
C Code

Process
Control
System

DupLoc Ducasse
et al.
[74, 72]

Language
Indepen-
dent/ 45
Mins to
adapt

CD/Visual
Works2.5

Line/Exact
string match-
ing

Academic 46K
LOC

With 4 sys-
tems of dif-
ferent lan-
guages

CCFinder Kamiya
et al.
[122]

C, C++,
Java,
COBOL
and other
with lexical
analyzer
and trans-
formation
rules

CD/
Win-
dows/
NT

Transformation
/Token comp.
with suffix tree

Academic 10M
LOC

With 4 sys-
tems

CP-
Miner

Li et al.
[168, 169]

C, C++ CD &
Copy-
pasted
bugs de-
tection
/Win-
dows/
Linux

Sequence
Database/Frequent
subsequent
mining

Academic 4365K
LOC

Several sys-
tems

Sim Gitchell
et al. [90]

C PD/Linux Parse tree to
string / String
alignment

Academic 3.5K
bytes

With 65
student as-
signments

Covet/CLANMayrand
[178]

C, Others
supported
by Datrix

CD Metrics from
Datrix, 4
Points of
comp., Ordi-
nal scale of 8
cloning level

Academic 507K
LOC

With two
telecom-
munication
systems

DiLucca
Pro.

Di Lucca
et al. [67,
66]

HTML
client &
ASP server
pages

Duplicated
web-
pages/PD

Sequence of
tags/ Leven-
shtein distance

Academic 331
files

With 3 web
applica-
tions

eMetrics Fabio
et al.
[46, 161]

HTML &
scripting
languages

Visual
inspec-
tion of
potential
function
clones

Gets potential
function clones
from eMetrics

Academic 403
files

Validated
with 4 ap-
plications

Continued on Next Page. . .

62

Table 12 – Continued from previous page

Tool Citations Sup. Lang. Domain Approach B.Ground L.Input Validated?

Konto’s
Tool

Kontogiannis
et al.
[146]

C, (other
possible?)

System
clus-
tering,
redocu-
menta-
tion &
program
under-
standing

Direct com-
parison of
metrics values
and Dynamic
programming
approach of
begin-end
block

Academic >300K
LOC

With
several
systems

ccdiml
(Bauhaus)

Bellon
[35, 35]

C, C++ CD/Linux AST/Tree
matching

Academic 235K
LOC?

With
several
systems?

Coogle Sager et
al. [202]

Java Finding
similar
java class

AST to FAMIX
& Tree match-
ing

Academic ? Eclipse
plug-in and
test cases

Deckard Jiang et
al. [116]

C, Java
and oth-
ers with
formally
specified
grammar,
YACC
grammar

CD/Linux Tree, Char-
acteristics
vectors, Eu-
clidean space

Academic 5,287K
LOC

With Linux
kernel and
JDK

cpdetector Koschke
et al.
[153, 154,
152]

C, C++ CD/Linux? AST to se-
quence of AST
tokens, suffix
tree

Academic 235K
LOC

With 4 sys-
tems and 8
tools

Duplix Krinke et
al. [156,
157]

C? CD PDG, graph
matching

Academic 25K
LOC

several test
cases

clones Koschke
[153]

C, C++,
Java,
COBOL,
VB

CD Tokens/Suffiex
tree

Academic 235K
LOC

With 4 sys-
tems and 8
tools

cscope Frenzel
[153]

C, C++ CD Tokens/Suffix
Tree/Post
processing
for syntactic
clones

Academic 235K
LOC

With 4 sys-
tems and 8
tools

PDG-
DUP

Komondor
& Hor-
witz [140,
141, 142]

C, C++? CD /
Clone
Refactor-
ing

PDG/ Slicing Academic ? With some
systems

Tairas’s
Tool

Tairas et
al. [206]

C, C++,
C#,
Phoenix
framwork
languages?

CD/Exact
function
clones

AST/Suffix
tree

Academic 1500K
LOC

With
several
systems

RTF Basit et
al. [24]

C CD Token/Suffix-
array

Academic 3025K
LOC

With Linux
parts

10.5 Frequently Used Software Systems

Table 13 shows some frequently used software systems used in clone detection research.
Although many of the studies use several versions of a particular system, we just list the
name of the system and provide approximate size in lines of code (LOC). We see that Linux

63

Kernel has been used most covering different areas, starting from validation of techniques
to refactoring. Similarly, we see that some systems (e.g., ArgoUML and DNSJava) are
particularly used in analyzing the maintenance issues of clones (e.g., harmfulness of clones,
ratio of consistent and inconsistent changes etc.).

Table 13: Frequently Used Software Systems in Clone Detection Research
Software Size(Approx.) Language Purpose Citations

Technique Validation [169] [24] [116] [122]
Visualization [114] [113] (SCSI)
Bug-detection [115]

Linux Kernel or part 3MLOC C Clone Evolution [8] [166]
Clone Coverage [47]
Taxonomy [125]
Software Evolution [181]
Technique Validation [116] [122] [163] [213] [190]

JDK or part 570KLOC Java Taxonomy [22]
Refactoring [20] [21] [25, 112] (buffer li-

brary)
ArgoUML 118KLOC Java Maintenance Analysis [9] [155] [23]
DNSJava 25KLOC Java Maintenance Analysis [9] [137] [136] [171]
Mozilla FireFox 1356KLOC C/C++ Clone Evolution [19] [91]

Change couplings [92] [91]
Tracking Clones [71]

Ant 141KLOC Java Maintenance Analysis [23] [105] [104]
Refactoring [106] [104]
Technique Validation [190]

ANTLR 44KLOC Java Taxonomy [22]
Refactoring [105] [106]

Postgresql 235KLOC C Technique Validation [153] [169] [35] [36] [10]
Clone Analy-
sis/Visualization

[123]

FreeBSD 3MLOC C Technique Validation [167] [169] [122]
Technique Validation [163] [169]

Apache httpd or
part

261KLOC C Taxonomy [127]

Maintenance Analysis [123]
Carol 9KLOC Java Clone Evolution [137]

Maintenance Analysis [155] [136]
SNNS 105KLOC C Technique Validation [153] [10] [36]

Reference Data [215]

11 Evaluation of Clone Detection Techniques

As we see in the previous sections, there are plenty of clone detection techniques and their
corresponding tools, and therefore, a comparison of these techniques/tools is worth much
in order to pick the right technique for a particular purpose of interest. There are several
parameters with which the tools can be compared. These parameters are also know as clone
detection challenges. In the following we list some of the parameters we use for comparing
the different tools/techniques:

• Portability: The tool should be portable in terms of multiple Languages and dialects.
Having thousands of programming languages in use with several dialects for many
of them, a clone detection tool is expected to be portable and easily configurable

64

for different types of languages and dialects tackling the syntactic variations of those
languages.

• Precision: The tool should be sound enough so that it detect less number of false
positives i.e., the tool should find duplicated code with higher precision.

• Recall: The tool should be capable of finding most (or even all) of the clones of a
system of interest. Often, duplicated fragments are not textually similar. Although
editing activities on the copied fragments may disguise the similarity with the original,
a cloning relationship may exist between them. A good clone detection tool will be
robust enough in identifying such hidden cloning relationship so that it can detect
most or even all the clones of the subject system.

• Scalability: The tool should be capable of finding clones from large code bases as
duplication is the most problematic in large and complex system. The tool should
handle large and complex systems with efficient use of memory.

• Robustness: A good tool should be robust in terms of the different editing activities
(c.f., Section 11.2) that might be applied on the copied fragment so that it can detect
different types of clones with higher precision and recall.

11.1 Higher Level Evaluation of the Detection Approaches

Before going to the actual experimental evaluation of the different tools, in Table 14 we pro-
vide a higher level comparison of the detection approaches in terms of portability, precision,
recall and scalability based on our study in Section 10.

We see that text-based techniques (line-based and parameterized line-based in the table)
are easily adaptable to different languages of interest as such techniques need at most lexers
of these languages. Precision of this approach is also very good as clones are determined
by textual similarity. However, this approach cannot detect many clones of the system that
are produced with some of the editing activities (c.f. Section 11.2). The scalability of this
approach on the other hand depends on the comparison algorithm and optimizations used.

Token-based techniques are bit language dependent as they need at least a lexer (and
sometimes transformation rules) for the language of interest. Although, their precision is
low (return many false positives due to the normalization and application of transformation
rules) the recall and scalability of these techniques are high. They can detect most clones
and using suffix tree algorithm they are scalable enough to tackle token sequences of large
systems.

Although parse-tree based techniques are not good while considering the portability,
recall and scalability, they are good at detecting real clones with high precision. As these
techniques focus on the structural property of the source code, very few false positives
are returned. Similarly, PDG-based techniques focus on both the structural, data and
control flow properties of the source code fragments and therefore, return very few false
positives. However, they are mostly language-dependent (needs PDG generator) and not
scalable (Graph matching is too costly). Metrics-based techniques, on the other hand,
are good enough both in terms of precision and recall with high scalability. However, these

65

techniques also need to generate AST/PDG from the source and therefore, heavily language
dependent.

The hybrid approach of using suffix trees on ASTs is as scalable as the token-based
techniques while providing high precision. However, its portability and recall are still the
same as the usual tree-based techniques.

Table 14: Higher level comparison of the detection approaches
Approach Portability Precision Recall Scalability

Line-based High, needs lexer
at most

100%, No false pos-
itives as checks for
exact copies

Low, only finds ex-
act copies

Depends on Com-
parison algorithms

Parameterized
line based

High, needs lexer
at most

Medium, may re-
turn false +ves

Medium, can de-
tect only exact
and parameterized
clones

Disagreement
among researchers

Token-based Medium, Needs
lexer transforma-
tion rules

Low, due to nor-
malization and/or
transformation re-
turns many false
+ves

High, can detect
most clones

High with suffix-
tree algorithm

Parse-tree
based

Low, needs parser High, parse-tree
considers struc-
tural info also

Low, cannot detect
all types of clones,
however, several
approaches taken
to overcome this

Depends, how com-
parison is made

PDG-based Low, needs PDG
generator

High, considers
structural and
semantic info too

Medium, cannot
detect all clones

Low, graph match-
ing is costly

Metrics-based Low, needs
parser/PDG
generator to get
metrics values

Medium, two code
blocks with similar
metrics values may
not be same

Medium, cannot
detect many clones

High, after getting
metrics values,
needs only to com-
pare the metrics
values for each
begin-end block

AST + Suffix
tree

Low, needs parser High, considers
structural info

Low, cannot detect
all clones

High, applies suffix
tree comparison on
AST nodes

11.2 Higher Level Robustness of the Detection Approaches

As mentioned before, a good tool should be robust enough in dealing with the different
editing activities that can be applied on the copied fragments. In the following, we list
them in the most general form:

• Variation in Layout(VOfLayout): When a code segment is copied, it is very usual that
there might be some sort of variations in the visual organization of the source code,
i.e., how the source code is organized in terms of comments, indentation, blank lines
and the position of the different program elements. In the following we list them in
details:

– Variations in Whitespace (VWSpace): In the copied code fragment, there might
be an editing activity in terms of inserting or removing whitespace (tabs, new

66

lines etc.). A good tool should ignore such whitespace in its detecting algo-
rithm as insertion/deletion of whitespace does not affect on the functionality of
the copied fragment. Copied fragments with such whitespace alternations are
definitely exact clone and hence falls in the category of Typ I clone.

– Variations in Comments (VCom): Comments can be added or removed or modi-
fied in the copied fragment. A good tool should be robust enough in dealing with
comments either by ignoring them in both fragments or by considering them in
detection algorithm. Whatever the option is, proper treatment should be taken
care of. While most of the available techniques ignore comments, Marcus and
Maletic [177] consider comments as a significant hint in detecting high level
semantic clones. There is also some metric-based approaches (e.g., [178]) that
consider the volume and layout of comments in calculating the metrics. However,
any sort of alternation of comments should not affect the detection techniques as
the copied fragments with comments alternations are definitely exact clone and
hence falls in the category of Typ I clones.

– Variations in Code Elements’ Positions (VCEPos): Sometimes the copied frag-
ment is codified (i.e., proper indentation) to a well organized structure by chang-
ing the position of some code elements (e.g., begin/end symbols of a block/loop)
within the same line (intra-line) or between different lines (inter-lines). Intra-line
position changing is basically the alternations of whitespace (with no line breaks)
between the program elements within a line and thus, may not be problematic
for a clone detector. Whereas inter-line position changing may affect a detection
approach (e.g., line-by-line approach is affected). However, even if there is an
inter-line position changing, the copied fragment is still the same as the original
with respect to functionality and are definitely exact clone and therefore, falls in
the category of Typ I clone. A good clone detector should detect such clones as
Type I clones.

• Renaming of Identifiers (RenamOfIden): Consistent renaming of the identifiers (vari-
able names, method names, literal values, types etc.) can easily be made in the copied
code fragment without changing the program structure by keeping the syntactic, cor-
rective and semantic similarity. Clones of this type are classified as Typ II clones.
Typ II clones has the same potential as of the exact clones in terms of the applicable
reengineering opportunities such as refactoring. A clone detection tool is expected
to have especial treatments for detecting Typ II clones without leaving any kind of
manual preprocessing and/or postprocessing for the user.

• Code Modifications/Insertions/Deletions (Code M/I/D): A copied fragment may be
modified by changing its existing statement(s) or completely new statement(s) may
be added to it or even existing statement(s) may be deleted from it as per the require-
ments of the developer. As a result of such activities, the copied fragment may loose
the textual, lexical, syntactical and/or even semantical similarities with the original.
Clones produced with such activities are classified as Typ III clones. A good clone
detection tool should be robust enough to deal with such editing activities so as to
detect and report Typ III clones (along with the editing activities made).

67

• Reordering of Statements (ReordOfStat): Some statements can be reordered in the
copied fragment without changing the program behavior and correctness (i.e., no loss
of semantics) while losing textual, lexical and structural (e.g., syntactical) similarities
compare to the original. A reordering of one source line/statement can be seen as
a deletion followed by an insertion of that particular line/statement and therefore,
clones produced with such activities can be classified as Typ III clones. On the other
hand, as the semantics of the code segments is unchanged, these types of clones can
also be treated as Type IV clones. A good clone detection tools should efficiently
smells such reordered statements and report such fragments as clones.

• Variations in Code Structure (VOfCoStruct): A copied fragment can be modified
extensively by changing the structure of the fragment. For example, a code segment
with a while loop can easily be changed to a code segment with a for loop without
violating the semantic meaning of the copied segment compare to the original. A
copied fragment can be made completely different from the original with respect to
textual and/or syntactical similarity by changing its various control statements to their
alternative ones supported by that particular language. As these kind of alternations
of code structures are related to the semantic similarity, the clones produced by these
activities are definitely Typ IV clones. On the other hand, a minor such changes
within a copied fragment may produce Typ III clones. A good clone detection tool
is expected to be sound enough to detect such semantic clones. However, detecting
semantic clones is undecidable in general.

In Table 15 we provide an overall robustness summary of different approaches. However,
this overall generic ranking of different approaches w.r.t. robustness is not always true. For
example, making AST after normalization of code on various levels might increase the
robustness on the different changes mentioned above.

11.3 Tool Evaluation Experiments from the Literature

Literature is not only enriched with several clone detection techniques but also with several
experiments of tool comparison/evaluation in terms of portability, precision, recall and scal-
ability. In this section, we provide a summary of the available tool comparison experiments
from the literature.

One of the first experiments is conducted by Bailey and Burd [44] who compared three
clone detection tools, CCFinder [122], CloneDR [31] and Covet (re-implementation of [178]
by Bailey and Mayrand) and two plagiarism detectors JPlag [192] and Moss [5].

At first they validated all the clone candidates of the subject application obtained with
all the techniques of their experiment and made a human oracle which was then used for
comparing the different techniques in terms of several metrics to measure various aspects
of the found clones, such as scope (i.e., within the same file or across file boundaries)
including the recall and precision of the tools. For the manual validation phase and the clone
candidates, they considered several attributes such as similar or identical control flow and
layout (e.g., two functions both contained the same number of if-statements testing similar
conditions), similar or identical method names (e.g., saveGraph() and saveGINGraph()),
similar or identical variables and similar or identical comment blocks. In Table 16 we

68

Table 15: Higher level robustness of the detection approaches w.r.t. editing activities
Approach VOfLayout RenamOfIden ReordOfStat Code M/I/D VOfCoStruct

String-
baed

High, doesn’t
affect

Low, look for
exact matching
unless normal-
ization applied,
however, with
parameterized
match its robust-
ness is high as
well

Low, look for line
by line matching

Low, matching
fails

Low, matching
completely fails

Token-
based

High, doesn’t
affect

High, normaliza-
tion of identifiers
make them same

Medium, especial
treatment and/or
post processing
required

Low, especial
treatment and/or
postprocessing
required

Low, mis-
matches of
tokens

Tree-based High, automati-
cally ignores by
the parser

High, ignores
identifier infor-
mation

Low, structure
changes

Low, structure
changes

Low, structure
changes

PDG-based High, ignores by
the PDG gener-
ator

High, ignores High, considers
data and control
flow info

Medium High, again con-
siders the se-
mantic info

Metrics-
based

Medium/High?,
ignores be-
fore metrics
generation

Depends, if met-
rics are generated
from AST/PDG
then ignores, if
directly from
source code, then
may affect

Medium, metrics
values might be
similar

Medium, metrics
values may not
change a lot

Medium, met-
rics values
might still
closer

AST + Suf-
fix tree

High, ignores High, ignores Low, structure
changes

Low, structure
changes

Low, structure
changes

provide the precision and recall of the five tools from Burd and Bailey’s tool comparison
experiment.

Table 16: Precision and recall from Burd and Bailey’s Experiment (from [44])
CCFinder CloneDr Covet JPlag Moss

Precision 72% 100% 63% 82% 73%
Recall 72% 9% 19% 12% 10%

As can be noticed, the AST-based tool CloneDR shows 100% precision indicating that
this tool does not produce any false positives in its detected clones. However, the recall of
CloneDR is the lowest (9%) which essentially implies that this tool is not good for finding
the clones from a system where the concern is to find all or majority of the clones of that
system. Although, the metrics-based tool Covet is reasonable in terms of recall (19%)
compare to the other tools (except CCFinder), it shows the lowest precision (63%) than the
others. It is interesting to note that the plagiarism detection tools JPlag and Moss show kind
of similar precisions and recalls compare to the clone detection tools although these tools
detect clones across different files only. The token-based tool CCFinder seems to be the most
appropriate in finding clones. It shows the highest recall (72%) with a huge difference than
other tools and in the same time the precision is also reasonable (72%), only produces 28%
false positives of the found candidate clones while detecting most of the clones (only missing
28%) of the system. However, their case study is based on only one medium size system

69

(16K LOC). Although they were able to verify all the clone candidates, the limitation of the
case study in terms of system quantity and size makes their finding questionable. Moreover,
the intention of their analysis was to assist the preventative maintenance tasks, which may
also had an influence in validating the candidate clones.

Probably, considering the limitations of Burd and Bailey’s study, Bellon conducted a
larger tool comparison experiment [36, 34] with the same three clone detection tools that
used in Burd and Bailey’s study (Mayrand et al.’s CLAN is directly used in Bellon’s study
where not only the metrics but also the tokens and their textual images are compared to
identify Typ I and Typ II clones) and with three more additional tools, one more token-
based tool, Dup [18], one PDG-based tool, Duplix [156] and one text-based tool, Duploc
[74]. They also applied diversity in choosing the software systems, 4 Java and 4 C systems
in the range of totalling almost 850KLOC.

In Table 17, a summary of the Bellon’s experiment is presented in terms of precision,
recall, speed, RAM and the types of clones detected for each of the tools. The data is
reported at an ordinal scale –, -, +, ++ where – is worst and ++ is best (exact measures
can be found in the corresponding papers). In some cases what(?) symbols are used to
represent that they were unsure about that particular measure. As in the study of Burd
and Bailey, a human oracle was formed with the candidate clones from all the tools and
then manual verifying. However, Bellon was able to verify only 2% of the candidate clones
due to his time limit.

Table 17: Summary of Bellon’s tool comparison experiment (adapted from [35])
Tool Precision Recall RAM Speed Clone Types

Based On Name Typ I Typ II Typ III

AST CloneDr + - - - + – X
Token Dup - + + ++ ++ + –

CCFinder - + + + ++ ++ -
PDG Duplix - - + – – – +
Metrics CLAN + - ++ ++ + – –
Line Duploc - + ? ? + - –

From Table 17, it is clear that no tool is good enough both in terms of precision and
recall. In fact, precision and recall is complementary for each of the tool except PDG-based
Duplix where both reported as worst. While CloneDR and CLAN (with token and textual
comparison) shows high precision, their recall is very low and vice versa for the other tools.
RAM and Speed are closely related and found very high for the metrics-base tool CLAN,
and high for token-based tools, Dup and CCFinder. PDG-based tool Duplix is reported as
very bad in terms of speed.

Interesting results can be observed in the case of produced types of clones also. It
is observed that most of the tools (except Duplix) can detect Typ I and Typ II clones.
Additionally, CCFinder, CLAN and Duploc can also detect Typ III clones whereas Duplix
can only detect Typ III clones. In this experiment, the metrics-based tool CLAN shows
better precision in the sense that Bellon also compared the tokens and textual images of
the functions for which metrics values were compared.

Bellon’s experiment [34, 35] has been reused by Koschke et al. [153] for evaluating their
new AST-suffix tree based tool, cpdetector. To see how good their new tool is, not only
in terms of precision and recall but also in runtime, they developed some variants of the

70

existing tools. For example, ccdiml is a variant of Baxter’s CloneDR, clones is a variant of
Baker’s Dup and cscope is a variant of clones with an addition post-processing step of finding
syntactic clones. While they reused the tools of Bellon’s experiment they worked only with
4 C systems as their developed tools were only suitable for C systems and provided detail
results for only one system, SNNS 4.2, a neural network simulator.

In Table 18, a summary of the Koschke et al.’s experiment for SNNS is presented in
terms of precision, recall, number of candidates found, running time (second) and the types
of clones detected for each of the tools. The data is reported at an ordinal scale of –, -,
+-,+, ++, +++ where – is worst and +++ is best (exact measures can be found in the
corresponding paper). In some cases what(?) symbols are used to represent that they were
unsure about that particular measure.

Table 18: Summary of Koschke et al.’s experiment (based on [153] and [35])
Tool Precision Recall No. of

Candi-
dates

Running
time

Clone Types

Based On Name Typ I Typ II Typ III

AST CloneDr ++ – 1434 – ++ - X
ccdiml + + 18245 +- ++ ++ -
Dup + +- 8978 ++ ++ + –
CCFinder + ++ 18961 + ++ ++ -

Token clones – +- 32975 ++ ++ + -
cscope - +- 17758 ++ ++ + -

ASST cpdetector + +- 4852 + ++ + –
PDG Duplix - – 12181 – – – ++
Metrics CLAN +++ – 318 ++ ++ + -
Line Duploc + - 5212 ? ++ - –

From Table 18 we see more or less the same statistics as of Bellon’s experiment for the
common tools. We see that the AST-based tool ccdiml shows a good recall contrary to
our previous beliefs for AST-based tools. However, still the average recall for the token-
based tools is almost double than the AST-based tools (while no token-based tools get a
minus, AST-based CloneDR gets double minus). On the other hand, in terms of precision,
the token-based tools are not that good compare to the AST-based or metrics-based tools.
Although, clones is a variant of Dup, it shows very low precision while Dup shows good
precision. Unlike Dup, clones is pure token-based and does not depend on layout (e.g.,
line breaks). However, the detection of Typ I and Typ II clones must be performed in a
post-processing steps.

With respect to the number of candidates found for SNNS, clones found 71% more clones
than CCFinder. It is worth to note that CCFinder was the best tool in Bellon’s experiment
in terms of finding candidate clones. While the metrics-based tool CLAN is the worst in
finding candidate clones, token-based tools can find almost doubles than AST-based tools.
In terms of running time, metrics-based tool CLAN is very good and so the token-based
tools. PDG-based Duplix is found to be worst in terms of running time.

As of Bellon’s experiment, we see that all the tools except PDG-based Duplix are good
at detecting Typ I clones and ccdiml and CCFinder are very good in detecting both Typ I
and Typ II clones. Although Duplix is not good for detecting Typ I and Typ II, it is good at
detecting Typ III clones. Almost all the remaining tools are not good in detecting Typ III
clones. We also see that CloneDR was unable to find any Typ III clones in their experiment.

71

Rysselberghe and Demeyer [200] evaluate three representative detection techniques,
string matching [74], token matching [18, 122] and metric fingerprints [178, 146]. After
having reference implementations for each of the approach in Java, they use five small to
medium (under 10KLOC) sized cases for evaluating the techniques in terms of portabil-
ity, kinds of duplication reported, scalability, number of false matches, number of useless
matches (matches which are not worth to be removed by means of refactoring) and number
of recognizable matches (matches that are easily recognizable). In Table 19 a summary of
their results is provided where the number of symbols indicates the comparative degree of
satisfaction of the property studied and where positive properties are marked with + and
negative with −. The additional symbols placed between brackets denote the additional
impact when using block-granularity.

Table 19: Summary of Rysselberghe and Demeyer’s experiment (from [200])
Approach Portability Duplication Scalability Matches: No. of

False Useless Recognizable

Simple
Line

+++++ general lines + −−−− +

Parm. Line +++ general line
block

+++ − ++++

Token suf-
fix tree

++ general token
block

++ ++++

Metrics fin-
ger print

functional en-
tity

+++ −− (−−) −− (−−) +++++

As can be seen their findings are more or less similar to the previous studies with
some exceptions. Rather than quantitative evaluation of the detection techniques, their
intention was to determine the suitability of the clone detection techniques for a particular
maintenance task (e.g., refactoring). They also evaluate the different techniques with respect
to 1. suitability (can a candidate be manipulated by a refactoring tool?), 2. relevance (is
there a priority which of the matches should be refactored first?), 3. confidence (can one
solely rely on the results of the code cloning tool, or is manual inspection necessary?), and
4. focus (does one have to concentrate on a single class or is it also possible to assess an
entire project?) [201]. In Table 20 we provide a summary of their findings.

From Table 20, it is clear that metric fingerprint techniques are best suitable to work
with a refactoring tool as these techniques identify duplicated code or scope blocks (e.g.,
function body) which can readily be refactored with straightforward refactorings like “pull
up method” and “move method”. No significant difference is noticed between the approaches
with respect to Relevance and Focus. All the techniques provide only clone length and
filename information of the returned clones. This information is not sufficient for a real
assessment of the relevant clones (No difference w.r.t. Relevance). On the other hand, all
the techniques can analyze entire projects as well as more fine grained entities like packages
or classes (No difference w.r.t. Focus). Simple line matching only targets the exact matches
and hence does not suffer from the Confidence problem whereas all other techniques may
return false matches and a manual inspection is required to find the real clones. Although
metric fingerprint is best suitable for a refactoring tool and simple line matching finds
clones with high confidence, they are not good in providing more refactoring opportunities.
They both return limited number of clones compare to the other two. Parameterized line

72

Table 20: Evaluation of the techniques from a refactoring perspective
Approach Suitability Relevance Confidence Focus Refac. Op-

portunities

Simple
Line

Low, no block
boundaries, so
in-depth manual
inspection is
required

No difference High, only exact
matches are tar-
geted

No Difference Medium,
finds only ex-
act matches

Parm. Line Low, no block
boundaries

No. differ-
ence

Low, may
return false
matches

No difference High, finds
more matches
with more
false matches

Token suf-
fix tree

Low, no block
boundaries

No difference Medium, tar-
gets only exact
& one-to-one
matching

No difference High, finds
exact and pa-
rameterized
matches

Metrics fin-
ger print

High, identifies
duplicated code
or scope block
(e.g., function
body) which
can readily be
refactored

No. differ-
ence

Low, returns
false matches,
manual inspec-
tion is required

No difference Low, finds
only limited
matches

matching returns more clones but with more false positives than parameterized matching
with suffix trees. Parameterized matching with suffix trees returns both the exact clones
and parameterized clones following a one-to-one mapping of the identifiers and literals and
hence returns very few false positives but more matches compare to other classical line-
by-line matching. Therefore, with respect to refactoring activities, parameterized matching
with suffix trees approach is rated best in this study.

Another interesting study has been conducted by Bruntink et al. [41] where several
clone detection techniques are evaluated in terms of finding cross-cutting concerns [133] in
C programs with homogeneous implementations. Three clone detection techniques namely
token-based CCFinder [122], AST-based ccdiml [35] (variant of Baxter’s CloneDR. [31]) and
PDG-based PGD-DUP [140] are used in this study in order to find cross-cutting concerns.
Some well known cross-cutting concerns such as error handling, tracing, pre and post condi-
tion checking, and memory error handling were targeted to find in their study. Their study
showed that both ccdiml and CCFinder can find null-pointer and error handling concerns
while ccdiml can find the range checking concern too. On the other hand, PDG-DUP finds
cross-cutting concerns that could not be found with ccdiml or CCFinder. PDG-DUP can
efficiently finds tracing and memory handling concerns.

Unfortunately, there are no comparisons that cover the most recent tools such as CP-
Miner or CCFinderX, DCCFinder or Deckard. However, Jiang et al. [116] claim that their
tool Deckard is more scalable and accurate than CloneDR and CP-Miner. They apply these
three tools to JDK and Linux kernel and compare Deckard with CloneDR and CP-Miner
considering several parameters. Their studies show that Deckard finds more clones than the
other two. It is also more scalable than CloneDR, which is also tree-based and as scalable as
the token-based CP-Miner. Although an independent comparison study is not available for
the recent tools, it is commonly agreed by all the above mentioned studies that there is no
approach or tool overtopping all others. All approaches have their distinct advantages and

73

drawbacks and further improvement or more hybrid approach is required for overcoming
the limitations of the techniques while preserving the the strengths.

12 Visualization of Clones

Almost all the clone detection tools report clone information in the form of clone pairs
and/or clone classes in a textual format where only the basic information about the clones
such as the file name, line number, starting position, ending position of clones are provided.
The returned clones also differ in several contexts such as types of clones, degree of similarity,
granularity and size. Moreover, there are huge amount of clones in large systems (For
example, CCFinder resulted 13,062 clone pairs for Apache httpd [127]). Because of the
insufficient information on the returned clones, their various contexts and huge amount, the
visualization of clones becomes difficult. For the proper use of the detected clones, especially
for clone management, the aid of a sound visualization tool is crucial. In the following we
list some of the visualization approaches that have been proposed in the literature.

One of the popular approaches is the scatter plot [52] visualization of clones in the form
of two-dimensional charts where all software units are listed on both axes [211, 74, 18, 196].
A dot is used if two software units are similar for providing the clone pair information as a
diagonal line segment with different granularities of software units. Scatter-plots are useful
to select and view clones, as well as zoom in on regions of the plot. However, the scalability
issue limits its applicability to visualize clones of many software units. This limitation is
overcome by providing an enhanced scatter plot by Higo et al. [104]. They show that
enhanced scatter plot is also good in understanding the state of the clones over different
versions of a software. Another significant benefit of enhanced scatter-plot over the classical
scatter plots [18, 74, 196] is that uninteresting code clones are automatically filtered out
before displaying the results. Moreover, the directory (package) separators are differently
shown from the file ones. This variation in separators enables users to know the boundaries
of directories, to find out directories that contain many clones and directories that share
many clones with other directories.

Johnson [119] has applied Hasse diagrams for visualizing cloning relationships (textual
similarity) between files. A Hasse diagram is consisted of nodes and edges. For each of the
clones and its related cluster of files, the copied source text and the source files are shown
as nodes and the relation between clones are shown as edges. The height of a node in the
graph is determined by its size, the large files or code segments are towards the bottom,
similar segments of code towards the top.

Later on Johnson has proposed to navigate the web of files and clone classes via hyper-
linked web pages [117]. The hyperlink functionality of HTML enables users to jump freely
between source files having clone relations with each other or fragments included in the
same clone set. Although hyperlink properties are very nice to navigate users, there is no
functionality to see the state of code clones over the system. This approach also lacks the
overview and selection features to find one’s way in the mass of duplication data.

In addition to scatter-plots, Gemini [105], that uses the output of CCFinder, also pro-
vides visualization through metrics graphs and file similarity tables. It allows one to browse
the code clones either pair by pair or using clone classes. Aries [106] (which is also based
on the output of CCFinder), is a refactoring support environment for clones using metric

74

based querying. Users can query for clones matching a variety of metrics and thresholds.
While Aries provides the capability to refine the displayed clones using queries, it does not
support data set refinement or views mapping clones to system architecture.

Lanza and Ducasse’s polymetric views [162] have been successfully used in visualizing
clones by Rieger et al. [196]. They also focus on to visualize cloning relationships in order
to find out the parts of the systems that are in a cloning relationships and the parts of the
system that contain many clones. Polymetric views allow one to investigate the clones of
a system at different levels of abstraction, thus, providing progressively more information
about the cloning in the software.

A clone comprehension tool, CLICS is developed by Kapser et al. [127]. CLICS uses
the output of CCFinder and a taxonomy of clone types [126] to categorize clones and
generate statistics about different types of clones in the system. CLICS is designed to display
the structures in the source files and the system architecture with cloning information.
Such visualization enables users to obtain cloning information that they are interested in.
Moreover, CLICS provides query-based visualization of clones. Scatter plot visualization
was not implemented in CLICS because of it limited scalability.

Tairas et al. [207] provides an Eclipse plug-in for displaying the results of CloneDR.
Their approach extends AJDT visualizer 3 and provides a different approach than scatter
plots in visualizing clones. The integration of CloneDR with Eclipse allows the tools to take
advantage of the rich environment of the IDE, which offers frameworks for wizards, views
and editor connections.

Extending GUESS [1] Adar and Kim [2] provide a code clone exploration tool, Soft-
GUESS. It consists of a code library and a number of mini-applications that supports the
analysis of code-clones in the context of system dependencies, authorship information, pack-
age structures and other system features. SoftGUESS supports the visualization of code
clones in a single version of a program as well as views of changing clone over multiple
versions of the program.

Jiang et al. [114] has extended the concept of coupling and cohesion to code cloning
by visualizing the clone relations in the architecture level. Their framework is useful in
generating data to investigate and manage cloning activities within and across subsystems.
Jiang and Hassan [113] have also proposed a framework for understanding clone information
in large software systems. They use a data mining technique framework that mines clone
information from the clone candidates produced by CCFinder. First, a lightweight textual
similarity is applied to filter out false positive clones. Second, various levels of system
abstraction are used for further scaling down the filtered clone candidates. Finally, an
interactive visualization is provided to present, explore and query the clone candidates as
with the directory structure of a software system.

In Table 21, a summary of the different visualization approaches are shown. As we see
from the table each of the approach has different types of source code granularities, i.e.,
code segment(CC), File(FE) and subsystems(SS), and clone relations i.e.,clone pair (CP),
clone class (CC) & super clone(SC).

3http://www.eclipse.org/ajdt

75

Table 21: Different Types of Clone Visualizations (adapted from [114])
Citations Visualization Type Granularity Clone Relation

CS FE SS CP CC SC
Scatter Plot + - - + - -
Duplication Web - + - + - -

Rieger et al. Tree Map - - + - + -
[196] System Model View - + + - + -

CC Family Enumeration - + - - + -
Scatter Plot + - - + - -

Ueda et al. [211] File Similarity Graph - + - - - -
Metric Graph + - - - + -

Jiang et al.
[114]

Cohesion and Coupling - - + - + +

Johnson [119] Hass Diagram - + - - + -
Helfman [103] Scatter Plot + - - + - -
Johnson [117] Hyper-linked Web - + - - + -
Kapser & God-
frey [123]

Dependency Graph - - + + - -

13 Removal, Avoidance and Management of Code Clones

A primary purpose of clone detection is to remove them from the system via refactoring
for improving the system’s quality. However, it may also be possible to avoid clones right
from the beginning in the development process. Rather than removing, existing clones can
also be managed in the evolution of a system. In the following subsections we discuss these
issues in short:

13.1 Removal of Code Clones

One of the major objectives of detecting clones is to remove them from the software system
through (automatic) refactoring. With clone refactoring, we can decrease the complexity,
reduce potential sources of errors emerging from duplicated code, and increase understand-
ability of software systems.

The simplest way of refactoring clones is Exact Method refactoring [78, 107, 212, 121,
142, 31, 145] that replaces the cloned code by a function call to a newly created function
created from the shared code of the clone fragments. Type I and Type II clones, where
clones are exact copies or differ only in identifiers are suitable for such simple functional
abstraction. Fanta and Rajlich [78] remove function and class clones from industrial object-
oriented code by reengineering scenarios obtained with the aid of automated restructuring
tools. Higo et al.’s CCShaper [107] filters the output of CCFinder to find good candidates
for the Extract Method and Pull Up Method refactoring patterns. Higo et al. [106] also
use metrics calculated from clone information and architectural data, and remove clones
with Extract Method and Pull Up Method refactorings. Komondoor and Horwitz developed
a semantics preserving procedure extraction algorithm that works on PDG-based clones
[143, 142]. Because of the semantic-based approach, clones with statement reordering can
also be refactored with their tool. After detecting clones with an AST-based approach,

76

Juillerat & Hirsbrunner [121] also use the Extract Method refactoring for Java language. In
addition to consecutive statements, their method removes clones hidden in sub-expressions.
Moreover, for object-oriented systems, Replace Conditional with Polymorphism refactoring
may also be applied [201].

However, all the above refactorings impose some kind of restricted preconditions. For
example, the Extract Method refactoring is applicable only to the clones of consecutive state-
ments. Although, in some cases, it is possible to reorder the statements [142], limitations
of the programming language, such as inability of Java to pass back multiple values, can
make such a refactoring impossible. Similarly, for Pull Up Method refactoring, the shared
code must have method granularity and that they have a common superclass.

It may be possible to use macros to replace cloned code provided that the program-
ming language in question has a preprocessor [31]. It is also possible to use conditional
compilation if a preprocessor is available. However, new problems may be introduced if
there is excessive use of macros and conditional compilation. As compiler is not able to
check for certain common mistakes in presence of macros and as macros may obfuscate the
source code, developers normally avoid introducing macros [76]. Alternative approaches
of solving cloning problem are therefore proposed in the design level. One may use the
design patterns to avoid clones by better design [21, 20]. Balazinska et al. have developed
a clone reengineering tool, called CloRT [22, 21]. CloRT finds clones using software metrics
and a dynamic pattern matching algorithm, determines whether the Strategy or Template
design pattern applies to these clones, factors out the common parts of the methods, and
parameterizes the differences with respect to the design patterns. However, this approach
is largely manual and requires human expertise.

Finding clones in web documents, and resolving them using the traditional reuse tech-
niques of dynamic web sites has also been proposed by Synytskyy et al. [205]. They
use a multi-pass approach to resolve clones incrementally, using several different resolution
methods, resolving each clone encountered with the most appropriate resolution method
available. However, their method works only with identical clones.

Although automatic support for clone refactoring has been proposed (e.g., [21]) and,
sometimes, clones tend to be refactored during software evolution [8], refactoring of clones
is a risky activity and potential source of faults. For this reason, developers are almost
always reluctant in performing it [57]. As an alternative approach optimization of clone
refactoring with constraints and conditions can applied [39].

13.2 Avoidance of Code Clones

Clones are considered harmful in software maintenance (for a counter argument and details
c.f., Section 5) and should be removed or detected at least. However, it would have been
much better if there is no clone at all in the developed system so that we would not have to
think about neither removal nor detection of clones. The idea is to use a clone detection tool
in the normal development process to avoid cloning in the software right from the beginning.
There are two ways of how to use a clone detection tool in the development process [158]
for avoiding clones. One way is the preventive control where a new function is added to the
system only after being confirmed that this new function is not a clone to any existing one
or there are specific reasons of adding that function as a clone to the system. The other way

77

is the problem mining where any modification to a function must be consistently propagated
to all of its similar functions in the system. Therefore, no clones are created unnecessarily,
and the probability of update anomalies is reduced significantly. A very similar idea of
“Code Clone Change Conflict Detection (C4D)” is described by Borkowski [38].

13.3 Management of Code Clones

An alternative way of clone removal or avoidance is the management of clones in the software
systems. Refactoring of some existing clones may not always be practical, feasible or cost-
effective (c.f., Section 5). However, it is possible to manage or track the existing clones either
in individual version or evolving versions of a system. One of the first attempts towards
this approach is simultaneous editing that simplifies the repetitive text editing tasks of a
system [182]. Regions to be linked (repetitive text records) are provided by the user through
selection or by specifying a text pattern. If any edit is made to any of the linked records,
the user can see equivalent edits applied simultaneously to all other records. A very similar
approach is proposed by Toomin et al. [208] for managing duplicated code with an editor-
based interaction technique. With their tool Codelink, clone regions are manually selected
and linked together by a user. The tool can then provide enhanced visualization and editing
facilities to the programmer by allowing him or her to understand or modify many clones
as one.

Attempts have also been made to track the clones of the different versions of a software
system. Duala-Ekoko and Robillard [71] have proposed a tool called CloneTracker for
tracking clones in evolving software. For a particular software system, the output of a
clone detection tool is used to produce an abstract model of the clone regions for different
clone groups. This abstraction of clone regions is called, clone region descriptor (CRDs).
CRDs describe clone regions within methods in a robust way that is independent from
the exact text of the clone regions or its location in a file. Having the CRDs, their tool
can automatically track clones as code evolves, notify developers of modifications to clone
regions, and support simultaneous editing of clone regions. A similar attempt has been
undertaken by Chiu et al. [50]. However, there are several fundamental differences between
the two approaches. For example, instead of creating such CRDs they use the built-in
support for accommodating line changes, file renaming etc.

The shape of the code structure may vary depending on the shape of an organization
[54]. Thus, it may be beneficial to identify and understand the patterns of how a developing
team deals with duplicated code. These patterns can help in better understanding both
the project’s structure and its developing team, and thus, the cloning phenomenon [89].
Based on this motivation, Balint et al. [23] correlate code clones with time of modification
and with the developer that modified it for detecting the patterns of how developers copy.
Based on these patterns they develop a visualization tool called Clone Evolution View to
represent the evolution of code clones.

There is a recent work by Bakota et al. [19] that introduces some metrics for defining
the similarity mapping between the clones of the different versions of a system and based
on the mapping defines the notion of dynamic clone smells. The approach is validated with
the 12 versions of Mozilla Firefox internet browser.

78

14 Evolution Analysis of Clones

Clones are hindrances to software evolution and its maintenance. There are also several
studies that look at how clones evolve in different versions of a software system. These
studies focus on the presence and dynamic behaviors of clones in the evolving versions of
software systems.

The analysis of clone evolution was first performed by Laguë et al. [158] for evaluating
whether a clone detection tool helps when integrated with the development process. The
clones of six versions of a large telecommunication system were analyzed to investigate how
function clones evolve with the evolution of the system. Specially, they checked how many
clones were added, modified and deleted in the next version compared to the previous one.
They also checked how many clones were never modified during the entire evolution process.
From their experiment, it is observed that with the evolution of the software, a significant
number of clones are removed but the overall number of clones increases over time in the
evolved system. However, they did not address how elements in a group of code clones
change with respect to other elements in the group.

For monitoring and predicting the evolution of clones, Antoniol et al. [7] propose a time
series by analyzing the clones of several versions of a medium scale software system. The
proposed model is validated with 27 subsequent versions of mSQL and found that it can
predict the clone percentage of subsequent release with an average error rate below 4%.

In a follow-up study, Antoniol et al. [8] analyzed the clones of different releases of
Linux Kernel and observed that cloning scope is mainly limited to subsystems. While most
of the clone groups are scattered within a subsystem, very few of them scattered across
subsystems. Moreover, it is noticed that a newly introduced architecture is often derived
from existing similar ones and therefore, shows a higher cloning rate. However, the overall
number of clones over versions seems stable as some clones are also removed during the
evolution process. Godfrey and Tu [96, 95] show similar results and conclude that cloning
is a common and steady practice in the Linux kernel.

A different strategy is applied in studying clone evolution by Kim et al. [136]. Rather
than the usual approaches of using the number of added, removed or modified clones in
each version, they studied clone genealogies, the evolution of clone groups over different
versions of a software system. They studied for example, how each element of a group of
clones are changed with respect to the other elements in the same group over the different
releases of a system. Based on the findings from the different releases of two open source
java systems, they have concluded that there are many volatile clones (c.f., Section 7.4.1)
in the system and an immediate refactoring of such short-lived clones is not required as
they may diverge from each other with the evolution of the system. Moreover, there exist
several long-lived clones (c.f., Section 7.4.2) in the system and a refactoring of such clones
may not be possible because of the limitations of programming languages.

Li et al. [169] also studied the clone evolution in Linux and FreeBSD while evaluating
their tool, CP-Miner [168]. Their study shows that cloning rate does increase steadily over
time. For a period of 10 years, the cloning rate has increased from about 17% to about
22% for the Linux kernel (similar observations for FreeBSD). However, the increasing rate
was limited to a few modules, drivers & arch in Linux and sys in FreeBSD, instead of the
entire system. As a supporting argument to this phenomenon, they mentioned that Linux

79

supports more and more similar device drivers during that period.

15 Quality Analysis Based on Code Clones

Although it is generally agreed (not all cases, c.f., Section 5) that clones have a bad impact on
software maintenance, there are very few studies clarifying the impact of clones on software
quality attributes. To date only one study by Monden et al. [185] has been conducted for
evaluating the relation between clones and software quality attributes. They have studied
the impact of code clones on an industrial legacy system and attempted to derive relations
between clones and two quality attributes, namely, reliability and maintainability.

In order to evaluate the relation between code clones and reliability, they have used the
number of faults per line as a measure. On the other hand, for maintainability, they have
used revision numbers from the version system as a measure considering that modules with
higher revision numbers on average to be more difficult to maintain than others.

Their study shows some contradictory results for software reliability quality attribute.
Modules/files with code clones are on average 1.7 times more reliable than files/modules
without code clones. However, files/modules with larger clones are less reliable than others.
In the case of maintainability, the results support the usual hypothesis that clones have a
bad impact on software maintenance. Files/modules with code clones are less maintainable
than files/modules without code clones. The maintenance overhead increases linearly with
the increasing size of code clones. They explained this phenomenon with the fact that
files/modules with code clones are to be changed/updated frequently than files/modules
without clones and hence, less maintainable.

Mayrand et al. [178], as well as Lague et al. [158], document the cloning phenomenon
for the purpose of evaluating the quality of software systems; Lague et al. [158] have also
evaluated the benefits in terms of maintenance of the detection of cloned methods.

16 Applications and Related Research for Clone Detection

In addition to the immediate applications of clone detection techniques to clone refactor-
ing, avoidance and management (c.f., Section 13), there are several other domains in which
clone detection techniques seem helpful. There are also some other areas related to clone
detection from which clone detection techniques themselves can get benefited. In this Sec-
tion, we provide a list of applications and related works of clone detection research. Some
applications of clone detection are also pointed out in Section 4.

16.1 Plagiarism Detection

One of the closely related areas of clone detection is the plagiarism detection [203, 192,
83, 174, 111, 172, 33, 53]. In clone detection existing code is copied and then reused
with or without modifications or adaptations for various reasons (c.f., Section 2). On the
other hand, for plagiarism detection, copied code is disguised intentionally and therefore,
it is more difficult to detect. Clone detection techniques can be used in the domain of
plagiarism detection if extensive normalization is applied to the source code for comparison.
However, such normalization may produce lots of false positives. Clone detection tools

80

such as token-based CCFinder [122] and metrics-based CLAN [180] have been applied in
detecting plagiarism. Unfortunately, to date it is not clear how good they are in doing so.

Clone detection techniques, on the other hand may benefit from plagiarism detection
tools. In a tool comparison study, Burd and Bailey [44] evaluate three clone detection tools
and two plagiarism detection tools, JPlag [192] and Moss [5]. From their study, it is found
that plagiarism detection tools show more or less similar precision and recall compared to
the clone detection tools even though these tools detect clones across files only. However,
plagiarism detection tools are designed to measure the degree of similarity between a pair
of programs in order to detect the degree of plagiarism between them and therefore, are
not well suited to use directly for clone detection from a performance point of view. Clone
detection tools work within the scope of intra and inter-file levels even with various clone
granularities. If the plagiarism detection tools are directly used to find code clones within
a single program, they need to compare all possible pairs of code fragments. A system with
n statements requires a total of O(n3) pairwise comparisons. This level of computational
complexity is impractical for very large systems [169].

16.2 Origin Analysis, Merging and Software Evolution

Clone detection techniques can be applied to origin analysis, merging and software evolu-
tion analysis. All of them are based on a comparison analysis between two software variants
(merging) or between two different versions of a system (origin analysis and evolution anal-
ysis). In this Section, we provide a brief introduction of how each of them are related to
clone detection research.

16.2.1 Origin Analysis

A closely related area of clone detection is the origin analysis [209] in which two versions of
a system are analyzed for deriving a model of where, how and why structural changes have
occurred. Clone detection techniques may help origin analysis research [225, 94] and in the
same time origin analysis techniques may assist clone detection research. As of plagiarism
detection, the critical difference between the scope of detection approaches makes them
infeasible to assist one another directly.

16.2.2 Merging

Another related research area to clone detection is the problem of merging [109] two existing
similar systems for producing a new one. Similar to origin analysis where two different
versions of a software system are analyzed, merging works with two different variants of
similar systems [94]. Again, for establishing the relation between the pair of systems, clones
from both the systems are compared and analyzed. Again, the comparison is only between
systems. Unlike clone detection, clone analysis within a system is irrelevant for merging.
However, both merging and clone detection require robust comparison techniques and each
of them can be benefited from other by sharing their comparison algorithms and analysis
approaches.

81

16.2.3 Software Evolution

A very similar problem to origin analysis and merging is the software evolution analysis.
As of origin analysis, two or more different versions of a software systems are mapped
for finding a relation between them with a view to observe their evolution behavior. By
detecting clones from each of the versions and then mapping the similar clone groups such
a relation can be established [95, 209, 96, 199, 198].

16.3 Multi-version Program Analysis

Clone detection techniques can be used for multi-version program analysis and vice versa.
The fundamental requirement of multi-version program analysis is that the elements of
one version of a program be mapped to the elements of other version of that program.
For such mapping, a matching between the program elements of the two versions should be
established. Clone detection techniques can be used for establishing such matching relation,
and in the same time, other matching techniques [138] can be used for clone detection
research.

16.4 Bug Detection

There is also a close relation between clone detection and software bug detection. Especially,
copy-pasted software bugs can be successfully detected by clone detection tools [169, 115,
110]. However, it is not yet clear how bug detection techniques can help clone detection
research.

16.5 Aspect Mining

Clone detection can also be applied to aspect mining research [132, 224] and vice versa.
On a study by Bruntink et al. [41] clone detection techniques are evaluated for finding
cross-cutting concerns [133]. Their analysis shows that even though there is a fundamental
difference between clone detection and aspect mining, one can get benefited from the other.
Classical clone detection techniques are designed in finding similar code fragments based
on the program texts. On the other hand, a cross-cutting concern is scattered (or tangled)
in different places and their implementation might not be textually similar. Rather, cross-
cutting concerns tend to preserve semantic similarity between the scattered or tanged code
fragments and therefore, a semantic clone detection technique might be more effective in
finding aspects than the classic clone detectors. However, it is not yet clear how aspect
mining techniques can assist clone detection research.

16.6 Program Understanding

Clone detection techniques may assist in understanding a software system. As clones hold
important domain knowledge, one may achieve an overall understanding of the entire sys-
tem by understanding the clones of a system. For example, Johnson [118] visualizes the
redundant substrings to ease the task of comprehending large legacy systems. Program

82

comprehension techniques, such as search-based techniques [102, 189, 204] or concept anal-
ysis [191] may greatly help clone detection research. However, empirical evidence on the
effectiveness of such approaches to clone detection is required.

16.7 Code compacting

Clone detection techniques can be used for compact device (e.g., mobile devices) by reducing
the source code size [49, 61].

16.8 Malicious software Detection

The possibility of detecting malicious software with clone detection techniques has also been
investigated. By comparing one malicious software family to another, it is possible to find
the evidence where parts of one software system match parts of another [217]. Detecting self-
mutating malware (a particular form of code obfuscation) with clone detection techniques
has also been attempted by Bruschi et al. [42]. However, it is not yet clear how malicious
detection techniques can be used in finding clones.

16.9 Copyright infringement

The problem of detecting source code copyright infringement is viewed as a code similarity
measuring problem between software systems. Clone detection tools can, therefore, be
applied or can easily be adapted in detecting copyright infringement [160, 18, 122, 99].

16.10 Product Line Analysis

Clone detection techniques may be used in the area of software product line analysis (PLA)
[48] by reengineering existing systems. Software product line (SPL) is a well known engi-
neering technique with which product families are developed easily from existing reusable
software assets using a common means of production. Clone detection technique can be used
in obtaining a SPL from existing systems [139] or managing a product line [32]. Koleilat
and Shaft [139] use clone detection tools for product line analysis. After identifying a fam-
ily of applications (for their case, a device driver family from the Linux Kernel was used),
they determine whether the applications exhibit reusable assets. They use CCFinder to
visualize the whole Linux driver subsystem and identify the families with large amount of
cloning assuming that higher the cloning rate the more chances of the existence of reusable
assets. Clones hold important domain knowledge and when a number of clones appear to
be within a defined set of applications, it could mean that these applications belong to a
certain family. After a further manual analysis with the aid of CLICS, they find several
reusable objects and then use them for product line design of device drivers. This will save
the developer a lot of time understanding the domain and creating a new driver. Baxter
and Churchett [32] use clone detection technique for enhancing a product line development.
Clones indicate the presence of a useful problem domain concept, and in the same time pro-
vide an example implementation. Differences between the cloned copies identify parameters
or point of variation. Product line development is thus benefited with clone detection in
removing redundant code, improving maintainability, identifying domain concept for use in

83

the present or the next, and identifying parameterized reusable implementations. However,
both these studies are in the primary stage and unpublished. Further empirical studies are
required to validate the above statements.

17 Open Problems in Clone Detection Research

There are several open problems concerning the various issues discussed in this paper. Many
of the open problems have already been raised in the Dagstuhl seminar 2006 by Koschke
[154]. In this section, we point out some of the open problems for future research:

17.1 List of Open Questions and Current Solvable Status

A list of 57 open questions on clone detection research was raised in the brainstorming
session of the Second International Workshop on Detection of Software Clones (IWDSC’03)
in November 2003 [214]. For each of the questions two decisions were made, 1. whether the
problem concerning the question had been already solved, partially solved or unsolved until
November 2003, and 2. a classification of this problem to clone detection research. In this
section, we list the same 57 questions with an additional information of current solvable
status for each of the questions. In Table 22, the 1st and 2nd columns show the index and
the open question respectively, the 3nd column shows the classification of that question,
the 4rd column indicates the then (November 2003) solvable status of that question and
the 5th column shows current (August 2007) solvable status. While the 4rd column shows
the solvable status based on the opinions from a group of experts present in the workshop,
the solvable status at 5th column is exclusively based on our opinions. However, in support
of our opinions we provide corresponding citations where applicable. From the table, we
see that although several studies have been undertaken over the last 45 months (November,
2003 to August, 2007), most of the open problems are still unsolved or partially solved
which definitely indicates that further studies are required in clone detection research.

17.2 Types and Taxonomies of Clones

Although different types and taxonomies of clones are provided in Section 7 and Section 8
respectively, there are several unclear issues to be taken care of. In the following, we point
out some of these:

Formal definition of clones: To date there is no crisp definition of “clone”. All the avail-
able definitions are either vague to a certain extent or incomplete (c.f., Section 7.1). A
formal clone definition should be established overcoming the current limitations and
associated vagueness. The definition should take into account different types of simi-
larities such as representation similarity (textual, syntactic and structural), semantic
or behavioral similarity, execution similarity, metrics similarity and feature-based sim-
ilarity. While it is easy to define similarity for some types, it is still an open problem
to define and measure semantic similarity.

Clone length by tokens or lines: It is still not clear what could be the minimum clone
length and with which unit of measurement. Some people measure clone length by

84

Table 22: List of open questions and current solvable status (adapted from [214])
Issues (Asked as questions about knowledge) Classification Then

Solved?
Now
Solved?

Citations

1 Can we perform basic clone detection on procedural systems? detection yes yes [178]
2 Can we find clones in huge systems? detection no yes [167]
3 Can we detect clones well in generated xml/Hhml? detection no no
4 Do we have IDE-specific clone detection tools? detection maybe partly [206]
5 Can clones be traced through system evolution? detection no partly [71]
6 Can we detect higher-level clones well? detection no maybe [25, 29, 27]
7 Should we be detecting clones on abstracting of the source code? detection no partly [87]
8 Can we clones in abstract levels while no clones in the implementation? detection /

definition
yes yes -

9 How can we identify clone requirements from the code? detection /
definition

no partly [128, 129]

10 Do we understand clones for other programming paradigms? detection /
definition

no partly [56, 164, 46]

11 What kinds of clones are in functional languages? detection /
definition

no no X

12 What is the definition of a “clone”? definition yes maybe [126, 127]
13 For what levels of source code do clear definitions for ‘clone’ exist? definition no no
14 Are clones defined objectively, subjectively, or inter-subjectively? definition no no
15 Are clone relations symmetric or not? definition no no X
16 Does the size of the system affect the rate of clone occurrence? definition no no X
17 What are clone types? definition no partly [36, 127]
18 Do we have standard difference measures between similar code frag-

ments?
detection
taxonomic

partly partly [127, 22, 178]

19 Do we have a framework to classify/evaluate clones? taxonomic no,
partly

no,
partly

[36, 10]

20 Do we understand “other” level clones? taxonomic no no X
21 Can we describe the differences between the similar code fragments? taxonomic no no X
22 Do we understand context-sensitive clones? taxonomic no no X
23 Which kinds of clones are bad? Which are OK? ranking no partly [136, 129, 128]
24 Do we understand the costs/benefits of CDs or removal? ranking no no,

partly
[79]

25 Do we know when detected clones are too complex to be beneficial? ranking no no X
26 Should we care about finding or removing generated clones? ranking no no X
27 Can we deal with generated code? ranking no no X
28 Are “accidental” clones widespread and important to manage? ranking no no,

partly
[6]

29 Can we measure clone rates in systems? ranking no no X
30 Can we construct clone derivation histories? ranking no no X
31 What are the purposes of CD? purpose maybe maybe Sec. 2 & 4
32 What categories of goals are to be achieved by CD? purpose no no X
33 Do we know purposes (contexts) of CD in industry? purpose no no X
34 Which domain is CD useful for? purpose no partly X
35 Should we find all clones in huge systems? purpose no no X
36 How should we prevent clones? purpose no no X
37 Can copyright violations be found by current CD software? purpose yes yes [122]
38 What do we do with clones? clone-based

actions
no no X

39 Must clones be removed? clone-based
actions

no no,
partly

[136, 129, 171]

40 Which clones should be refactored, kept, or encouraged? clone-based
actions

no no,
partly

[136, 129]

41 Can we automate refactoring well? clone-based
actions

no no X

42 How do we evaluate CD techniques? evaluation no no,
partly

[36, 10]

43 Which CD techniques are better? evaluation no no,
partly

[36, 10]

44 Do we have multiple-project CD benchmarks? evaluation partly partly [36, 10]
45 Are sampled clone rates generalizable? evaluation no no X
46 Does XP affect CD? process no no,

partly
X

47 Does XP produce fewer clones? process no no,
partly

[188]

48 How can CDs be used to recommend human knowledge sources? process no no X
49 Can case knowledge (e.g., about programming solutions) be indexed by

clones?
process no no X

50 Do we know the market value of clone detection? economics no no X
51 Will clone detection matter in 15 years? 30 years? 100 years economics yes yes -
52 What is the end-user value of CD tools? Can we quantify them economics no no X
53 Do we have adequate economic models of clone costs? economics no no X
54 Do we know the reasons for clones? cause no no,

partly
Sec. 2

55 Do we understand the psychology of clones? cause no no X
56 Can language support prevent clones? programming

language
no no X

57 What are the implications of clones for language design? programming
language

no no X

85

the number of tokens while others by number of lines or even with some detection-
dependent units (such as number of AST/PDG nodes). Once the unit of measurement
is chosen, it should be decided what could be the appropriate minimum threshold for
clone length based on this unit.

Meta model of clone taxonomy: Several attempts have been made to overcome the as-
sociated vagueness of clone definitions by providing different types of clones in the
form of a taxonomy. However, to date, it is not clear whether the available tax-
onomies are sufficient enough either for detecting clones or for software maintenance.
A language-independent meta model of the clone taxonomy is crucial in overcoming
the current limitations. Similar to the normal forms in databases, a theory of duplica-
tion will be very helpful in clone detection research. Moreover, each kind of similarity
measure should be closely related to a specific purpose in software maintenance.

Clone types based on origins and/or risks: There are still no categorizations of clones
based on origins or risks. It is also not yet known the statistical distribution of such
types in larger systems. Empirical studies can be undertaken for finding such distri-
bution of clone types.

Removal, avoidance and risks: For each of the clone types, the strategies and tech-
niques of removal and avoidance, and the risks, costs and benefits of such removals
should be studied.

Relevance ranking: Once the clones are identified, a relevance ranking should be estab-
lished for removal or other maintenance activities.

17.3 Evaluation of Clone Detection Techniques

There are several clone detection techniques available today. There are also several studies
that provide an empirical evaluation of several tools. In these empirical evaluations, several
limitations of the current benchmarks are pointed out.

Established human oracle for refactoring: A human oracle for different removal strate-
gies of the candidate clones should be established. Current oracles cannot provide
unique decision (e.g., differences among different human raters for clone candidates)
on clone candidates when clones ought to be removed [215].

Benchmark on gapped clones: Current benchmarks focus on contiguous lines or tokens
for clones. However, it is agreed that most clones in large systems are non-contiguous
lines/tokens(gapped clones), and such gapped clones might be good candidates for
refactoring. Therefore, it is reasonable to establish a benchmark focusing on gapped
clones.

Standard benchmark: Current benchmarks are based only on clone pairs. However,
there are several clone detection tools that report clones as clone classes. The bench-
mark should be sound enough to evaluate detection techniques with respect to clone
pairs or clone classes or even both. Current benchmarks provide only a yes/no deci-
sion on the candidate clones. Rather than the yes/no decision, a degree of confidence

86

and thus, a relevance ranking of the clone candidates (with respect to the context of
use) would be helpful [216]. Once a benchmark is established, it should become the
standard procedure of the community. Any new technique is subject to comparison
with this benchmark prior to publication [154].

17.4 Better Clone Detection Techniques

Although there are several clone detection techniques available today, there is always a need
to have a better one. The open issues concerning a new technique are:

Higher precision and recall: To date no clone detection technique is found sound enough
in terms of precision, recall, robustness and scalability (c.f., Section 11). Most tools
show complementary behaviors for precision and recall. Scalability and robustness
are also challenging in almost all cases. Therefore, there is a crucial need to develop
a new clone detection technique that can overcome the existing limitations.

Especial treatment for detecting Type III clones: No tool is reported to do well de-
tecting Type III clones. Moreover, attempts in detecting semantic clones (Type IV)
are very few or none. Both Type III and Type IV clones are important from a mainte-
nance point of view. When developing a new technique especial treatments should be
considered for detecting Type III clones. Again, a classification or taxonomy of such
clones is crucial.

Semantic clone detection tool: For detecting Type IV clones, the necessity of a seman-
tic clone detection technique is evident. Clone definition and detection by semantic
similarity are undecidable problems in general. Nevertheless, attempts can be made
to detect semantic clones by applying extensive and intelligent normalizations to the
code. In such normalizations different variants of similar syntactic constructs are
transformed to the same normal form and comparison is performed on the normalized
code to find clones.

17.5 Empirical Studies in Clone Detection Research

More empirical studies with large scale industrial and open source software systems are
required. There are several open issues that can be attempted by means of empirical
studies. These are as follows:

Classification and statistics of Type III and Type IV clones: Deriving the classifi-
cations/taxonomies for Type III and Type IV clones is challenging. With multilingual
large scale case studies (industrial and open source systems), it may be possible to
derive such classifications along with their frequencies of occurrences. Such classifi-
cation and statistics then can be used for deriving refactoring strategies, evaluating
clone impacts on software quality and developing clone detection tools.

Statistics of intentional clones: In Section 2, several intentions behind cloning have
been listed. It will be helpful to know the rate of clones produced by each inten-
tion. Cloning statistics based on intentions may help to develop a new technique
focusing on the higher rate intentions.

87

Effect of normalizations on precision and recall: Little or no statistics are available
concerning the effect of normalizations and/or transformations of code to precision
and recall. Empirical studies are required to show the effect of normalizations on
precision and recall.

Study of extensive normalizations in finding semantic clones: The issue of detect-
ing semantic clones is a major concern to the research community [151]. Unfortunately,
no proper way of detecting semantic clones is available yet. An alternative approach
of detecting such clones could be to apply extensive and intelligent normalizations and
transformations to source code. However, it is not clear how such normalizations and
transformations can assist in detecting semantic clones. Large scale empirical studies
are required to verify this approach.

Relation between extensive normalizations and plagiarism detection: Instead of
simple copy and then reuse by adaptations in case of code cloning, copied code is
intentionally disguised in case of plagiarism. Replacements of control statements
with their semantically equivalent variants is one of the major disguising activities
for camouflaging copied code [165]. It might be interesting to see how extensive code
normalizations and transformations are beneficial to detecting camouflaged fragments.
Although it is generally agreed that more normalizations can help finding plagiarized
code, there is no large scale empirical study to validate such argument.

Strategies for refactoring Type III clones: While refactoring of Type I and Type II
clones are possible with basic refactoring methods, it is still unclear of how to refactor
Type III clones. Having a classification of such clones , refactoring strategies for each
of types should be studied in a large code base.

Harmfulness of clones: There is little information available concerning the impacts of
code clones on software quality. Recent studies show that clones may not be always
harmful to software systems (c.f., Section 5). More empirical studies are required to
find the relation between clones and different quality attributes (such as maintain-
ability, reliability, modifiability, security etc.) of software systems. This relation then
should be fine tuned for different types of clones to the different quality attributes.

Patterns of uninteresting clones: Most clone detection techniques produce a high num-
ber of clones that are uninteresting from a maintenance perspective. Such clones are
normally filtered out in a post-processing step. However, it is not yet clear what
patterns of clones are surely uninteresting in which context. It would be beneficial
to find the patterns of such uninteresting clones and employ strategies of filtering out
the code that follows such patters in pre-processing step. In this way, manual analysis
of the produced clones will be reduced significantly, and consequently, we can have a
clone detection with higher precision.

Visualization of Clones and Filtering Automation: Over the last decades huge re-
search has been undertaken on information visualization in general and software vi-
sualization in particular. As yet many of these visualization techniques have not been
explored for visualizing clones. Empirical studies can be conducted to see how visu-
alization techniques of other domains can assist clone visualization. There is also a

88

debate which clone visualization approach is better for which purpose. More system-
atic empirical research is required to resolve this issue.

One of the objectives of the visualization tools is to automate the post-processing
tasks. Considering the availability of the state of the art clone detection techniques,
one can focus on automating the filtering process after obtaining the clone candidates
from a tool. Again, such filtering needs a proper definition of code clone.

Studies of clone coverage: Although there are several studies that show that a signif-
icant amount of code is cloned code of a software system, a solid argument is still
missing. This is because comparing the results of these studies is difficult and error-
prone. Different studies use different clone detection tools where most tools use their
own detection-dependent definitions of a clone. Many detection algorithms also take
adjustable parameters. A large scale case study with systems of different languages
can be conducted with a common clone definition.

Evolution analysis of clones: Although clone evolution analysis of large open source
software has already been conducted there is still little or no study concerning the
evolution of clones in large industrial software. The following issues [154] should be
resolved with large empirical studies:

• How do clones evolve in industrial systems?

• What does their evolution tell about the development organization?

• What are reliable predictors?

Relation to other domains: Empirical studies are required to see how clone detection
techniques can be benefited from the other areas and at the same time how other
areas can be assisted by clone detection research.

18 Conclusion

Clone detection is an active research area and the literature is overwhelmed with plenty
of work in detecting and removing clones from software systems. Research is also done in
maintaining clones in software systems in its evolution life cycle. In this paper, a compre-
hensive survey on the area of software clone detection research is made putting emphasis
on the types of clones used, their detection mechanism and empirical evaluation of the cor-
responding tools. Several open issues are also pointed out for further research. The report
by Koschke [154] is also a good source for an overview of clone detection research.

The results of this study may serve as a roadmap to potential users of clone detection
techniques, to help them in selecting the right tool or technique for their interests. We
hope it may also assist in identifying remaining open research questions, possible avenues
for future research, and interesting combinations of existing techniques.

89

19 Acknowledgements

The authors would like to thank Tom Dean, Jenny Zou and Mohammad Zulkernine for their
help in providing useful comments and suggestions on an earlier draft. Thanks are also due
to Giuliano Antoniol for a fruitful discussion during his visit at Queen’s. The authors also
acknowledge some of the tool owners for providing useful feedback on our queries. This
work is supported by the Natural Sciences and Engineering Research Council of Canada.

References

[1] Eytan Adar. GUESS: a language and interface for graph exploration. In Proceedings of
the 2006 Conference on Human Factors in Computing Systems (CHI’06), pp. 791-800,
Montréal, Québec, Canada, April 2006. (PDF)

[2] Eytan Adar and Miryung Kim. SoftGUESS: Visualization and Exploration of Code
Clones in Context. In the proceedings of the 29th International Conference on Software
Engineering (ICSE’07), Tool Demo, pp.762-766, Minneapolis, MN, USA, May 2007 .

[3] R. Agrawal and R. Srikant. Mining Sequencial Patterns. In Proceddings of the 11th In-
fernation Conference of Data Engineering (ICDE’95), pp. 3-14, Taipei, Taiwan, March
1995.

[4] Alfred Aho, Ravi Sethi and Jeffrey Ullman. Compilers, Principles, Techniques and
Tools. Addition-Wesley, 1986.

[5] A. Aiken. A system for detecting software plagiarism (moss homepage). URL http:
//www.cs.berkeley.edu/aiken/moss.html. 2002.

[6] Raihan Al-Ekram, Cory Kapser, Michael Godfrey. Cloning by Accident: An Empir-
ical Study of Source Code Cloning Across Software Systems.International Symposium
on Empirical Software Engineering (ISESE’05), pp. 376-385, Noosa Heads, Australia,
November 2005.

[7] Giuliano Antoniol, Gerardo Casazza, Massimiliano Di Penta, Ettore Merlo. Modeling
Clones Evolution through Time Series. In Proceedings of the 17th IEEE International
Conference on Software Maintenance (ICSM’01), pp. 273-280, Florence, Italy, Novem-
ber 2001. (PDF)

[8] G. Antoniol, U. Villano, E. Merlo, and M.D. Penta. Analyzing cloning evolution in the
linux kernel. Information and Software Technology, 44 (13):755-765, 2002.

[9] Lerina Aversano, Luigi Cerulo, and Massimiliano Di Penta. How Clones are Main-
tained: An Empirical Study. In Proceedings of the 11th European Conference on Soft-
ware Maintenance and Reengineering (CSMR’07), pp. 81-90, Amsterdam, the Nether-
lands, March 2007.

[10] Brenda S. Baker. Finding Clones with Dup: Analysis of an Experiment. IEEE Trans-
actions on Software Engineering, Vol. 33(9): 608-621, September 2007.

90

[11] Brenda S. Baker and Uni Manber. Deducing similarities in Java sources from bytecodes.
In Proceedings of the USENIX Annual Technical Conference, pp. 179-190, New Orleans,
Louisiana, USA, June 1998.

[12] Brenda Baker. Parameterized duplication in strings: Algorithms and an application to
software maintenance. SIAM Journal on Computing, 26 (5):13431362, October 1997.

[13] Brenda S. Baker. A theory of parameterized pattern matching: Algorithms and appli-
cations (extended abstract). In Proceedings of the 25th ACM Symposium on Theory of
Computing (STOC’93)), pp. 7180, San Diego, California, USA, May 1993.

[14] Brenda S. Baker. A Program for Identifying Duplicated Code. In Proceedings of
Computing Science and Statistics: 24th Symposium on the Interface, Vol. 24:4957,
March 1992.

[15] Brenda S. Baker. Parameterized diff. In Proceedings of the 10th ACM-SIAM Symposium
on Discrete Algorithms (SODA’99), pp. 854-855, Baltimore, Maryland, USA, January
1999.

[16] Brenda S. Baker. Parameterized Pattern Matching: Algorithms and Applica-
tions. In Journal Computer System Science, Vol. 52(1):2842, February 1996. URL
http://citeseer.nj.nec.com/baker94parameterized.html.

[17] Brenda S. Baker. On Finding Duplication in Strings and Software. Journal of Algo-
rithms, 1993.

[18] Brenda Baker. On Finding Duplication and Near-Duplication in Large Software
Systems. In Proceedings of the Second Working Conference on Reverse Engineering
(WCRE’95), pp. 86-95, Toronto, Ontario, Canada, July 1995.

[19] Tibor Bakota, Rudolf Ference and Tibor Gyimothy. Clone Smells in Software Evolu-
tion. In Proceedings of the 23rd IEEE International Conference on Software Mainte-
nance (ICSM’07), 10pp., Paris, France, October 2007.

[20] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, Kostas Kon-
togiannis. Advanced Clone-analysis to Support Object-oriented System Refactoring.
In Proceedings of the 7th Working Conference on Reverse Engineering (WCRE’00),
pp. 98-107, Brisbane, Qld., Australia, November 2000.

[21] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, Kostas Kon-
togiannis. Partial Redesign of Java Software Systems Based on Clone Analysis. In
Proceedings of the 6th Working Conference on Reverse Engineering (WCRE’99), pp.
326-336, Atlanta, GA, USA, October 1999.

[22] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, Kostas Kon-
togiannis. Measuring Clone Based Reengineering Opportunities. In Proceedings of
the 6th International Software Metrics Symposium (METRICS’99), pp. 292-303, Boca
Raton, Florida, USA, November 1999.

91

[23] Mihai Balint, Tudor Girba, Radu Marinescu. How Developers Copy. In Proceedings
of the 14th IEEE International Conference on Program Comprehension (ICPC’06), pp.
56- 68, Athens, Greece, June 2006.

[24] Hamid Basit, Simon Pugliesi, William Smyth, Andrei Turpin, and Stan Jarzabek.
Efficient Token Based Clone Detection with Flexible Tokenization. In Proceedings of
the Joint Meeting of the European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE’07), pp. 513-515, Dubrovnik,
Croatia, September 2007.

[25] Hamid Basit, Damith Rajapakse, Stan Jarzabek. An Empirical Study on Limits of
Clone Unification Using Generics. In Proceedings of the 17th International Conference
on Software Engineering and Knowledge Engineering (SEKE’05), pp. 109-114, Taipei,
Taiwan, Republic of China, July 2005.

[26] Hamid Basit, Stan Jarzabek. Detecting Higher-level Similarity Patterns in Programs.
In Proceedings of the 10th European software engineering conference held jointly with
13th ACM SIGSOFT international symposium on Foundations of software engineering
(ESEC/FSE’05), pp. 156-165, Lisbon, Portugal, September 2005.

[27] Hamid Basit, Damith Rajapakse, Stan Jarzabek. Beyond Templates: a Study of
Clones in the STL and Some General Implications.In Proceedings of the 27th Interna-
tional Conference on Software Engineering (ICSE’05), pp. 15-21, St. Louis, Missouri,
USA, May 2005.

[28] Hamid Basit, Damith Rajapakse, Stan Jarzabek. An Investigation of Cloning in
Web Applications. In Proceedings of the Special Interest Tracks and Posters of the
14th International Conference on World Wide Web (WWW’05), pp. 924-925, Chiba,
Japan, May 2005.

[29] Hamid Abdul Basit, Damith C. Rajapakse and Stan Jarzabek. Structural Clones
Higher Level Similarity Patterns in Programs. Department of Computer Science School
of Computing, National University of Singapore, 2007 (not published yet).

[30] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. DMS: Program Transforma-
tions for Practical Scalable Software Evolution. In Proceedings of the 26th International
Conference on Software Engineering (ICSE04), pp. 625-634, Scotland, UK, May 2004.

[31] Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant Anna. Clone Detection
Using Abstract Syntax Trees. In Proceedings of the 14th International Conference on
Software Maintenance (ICSM’98), pp. 368-377, Bethesda, Maryland, November 1998.

[32] Ira Baxter, and Dale Churchett. Using Clone Detection to Manage a Product Line.
Semantic Designs, Inc (Not published).

[33] Boumediene Belkhouche, Anastasia Nix, Johnette Hassell. Plagiarism detection in soft-
ware designs. ACM Southeast 42nd Regional Conference, pp. 207-211, Huntsville, Al-
abama, USA, April 2004.

92

[34] Stefan Bellon. Detection of Software Clones Tool Comparison Experiment.Tool Com-
parison Experiment presented at the 1st IEEE International Workshop on Source Code
Analysis and Manipulation, Montreal, Canada, October 2002.

[35] Stefan Bellon.Vergleich von techniken zur erkennung duplizierten quellcodes. Diploma
Thesis, No. 1998, University of Stuttgart (Germany), Institute for Software Technology,
September 2002.

[36] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and Ettore Merlo.
Comparison and Evaluation of Clone Detection Tools. In IEEE Transactions on Soft-
ware Engineering, Vol. 33(9): 577-591, September 2007.

[37] C. Boldyreff, and R. Kewish. Reverse Engineering to Achieve Maintainable WWW
Sites. In Proceedings of the 8th Working Conference on Reverse Engineering
(WCRE’01), pp. 249-257, Stuttgart, Germany, October 2001.

[38] Udo Borkowski. C4D oder wie ich lernte, mit code clones zu leben. Softwaretechnik-
Trends, 24(2), 2004. In Proceedings of the 6th Workshop on Software Reengineering
(WSR’04), Bad Honnef, Germany, 2004.

[39] Salah Bouktif, Giuliano Antoniol, Ettore Merlo, Markus Neteler. A novel approach to
optimize clone refactoring activity. In Proceedings of the 8th Annual Genetic and Evo-
lutionary Computation Conference (GECCO’06), pp. 1885-1892, Seattle, WA, USA,
July 2006.

[40] Magiel Bruntink. Aspect Mining using Clone Class Metrics. In Proceedings of the 1st
Workshop on Aspect Reverse Engineering, 2004.

[41] Magiel Bruntink, Arie van Deursen, Remco van Engelen, Tom Tourwe. On the
Use of Clone Detection for Identifying Crosscutting Concern Code. Transactions on
Software Engineering, Volume 31(10):804-818, October 2005.

[42] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Using code normalization
for fighting self-mutating malware. In Proceedings od the International Symposium of
Secure Software Engineering (ISSSE’06), Arlington, VA, USA,March 2006.

[43] Elizabeth Burd and Malcolm Munro. Investigating the maintenance implications of the
replication of code. In Proceedings of the 13th International Conference on Software
Maintenance (ICSM’97), Bari, Italy, September 1997.

[44] Elizabeth Burd, John Bailey. Evaluating Clone Detection Tools for Use during
Preventative Maintenance. In Proceedings of the 2nd IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM’02), pp. 36 - 43, Montreal, Canada,
October 2002.

[45] E. Buss, R. De Mori, M. Gentleman, J. Henshaw, H. Johnson, K. Kontogiannis, E.
Merlo, H. Mller, J. Mylopoulos, S. Paul, A. Prakash, M. Stanley, S. Tilley, J. Troster, K.
Wong. Investigating reverse engineering technologies for the cas program understanding
project. IBM Systems Journal, 33(3):477-500, 1994.

93

[46] Fabio Calefato, Filippo Lanubile, and Teresa Mallardo. Function Clone Detection in
Web Applications: A Semiautomated Approach. Journal of Web Engineering, Vol.
3(1): 003-021, 2004.

[47] Gerardo Casazza, Giuliano Antoniol, Umberto Villano, Ettore Merlo, Massimiliano
Di Penta. Identifying Clones in the Linux Kernel. In Proceedings of the 1st IEEE
International Workshop on Source Code Analysis and Manipulation (SCAM’01), pp,
90-97, Florence, Italy, November 2001.

[48] Gary Chastek, Patrick Donohoe, Kyo Chul Kang, and Steffen Thiel. Product Line
Analysis: A Practical Introduction (Technical Report No. CMU/SEI-2001-TR-001,
ADA396137). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, 2001.

[49] W-K. Chen, B. Li, and R. Gupta. Code Compaction of Matching Single-Entry Multiple-
Exit Regions. In Proceedings of the 10th Annual International Static Analysis Sympo-
sium (SAS’03), pp. 401-417, San Diego, CA, USA, June 2003.

[50] A. Chiu, and D. Hirtle. Beyond Clone Detection. CS846: Software Evolution project
report. Cheriton School of Computer Science, University of Waterloo, April 2007.

[51] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An empirical study of
operating system errors. In Proceedings of the 18th ACM symposium on Operating
systems principles (SOSP’01), pp. 7388, Banff, Alberta, Canada, October 2001.

[52] K. W. Church and J. I. Helfman. Dotplot: A program for exploring self-similarity in
millions of lines for text and code. Journal of American Statistical Association, Institute
for Mathematical Statistics and Interface Foundations of North America, 2(2):153174,
June 1993.

[53] Paul Clough. Old and new challenges in automatic plagiarism detection. National
Plagiarism Advisory Service, 2003; http://ir.shef.ac.uk/cloughie/index.html

[54] M. E. Conway. How do committees invent? Datamation, 14(4):2831, Apr. 1968.

[55] K. Cooper and N. McIntosh. Enhanced code compression for embedded risc proces-
sors. In Proceedings of the ACM SIGPLAN 1999 conference on Programming language
design and implementation, pp. 139149, Atlanta, Georgia, USA, May 1999.

[56] James Cordy, Thomas Dean, Nikita Synytskyy. Practical Language-Independent
Detection of Near-Miss. In Proceedings of the 14th IBM Centre for Advanced Studies
Conference (CASCON’04), pp. 1 - 12, Toronto, Ontario, Canada, October 2004.

[57] J.R. Cordy. Comprehending reality: Practical challenges to software maintenance
automation. In Proceedings of the 11th IEEE International Workshop on Program
Comprehension (IWPC’03), pp. 196206, Portland, Oregon, USA, May 2003.

[58] Michel Dagenais, Ettore Merlo, Bruno Laguë, and Daniel Proulx. Clones occurrence
in large object oriented software packages. In Proceedings of the 8th IBM Centre for

94

Advanced Studies Conference (CASCON’98), pp. 192200, Toronto, Ontario, Canada,
October 1998.

[59] M. Datar, N. Immorlica, P. Indyk and V. S. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In Proceedings of the 20th annual symposium on Com-
putational geometry (SoGG’04), pp. 253-262, Brooklyn, New York, USA, June 2004.

[60] Neil Davey, Paul Barson, Simon Field, Ray J Frank. The Development of a Software
Clone Detector. International Journal of Applied Software Technology, Vol. 1(3/4):219-
236, 1995

[61] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compiler
techniques for code compaction. ACM Transactions on Programming Languages and
Systems (TOPLAS’00), Vol. 22(2):378-415, March 2000.

[62] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineering Patterns.
Morgan Kaufmann, 2002.

[63] Bjorn De Sutter, Bruno De Bus, and Koen De Bosschere. Sifting out the mud: Low level
C++ code reuse. In Proceedings of the 17th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA’02), pp. 275-
291, Seattle, Washington, USA, November 2002.

[64] Andrea De Lucia, Rita Francese, Giuseppe Scanniello, and Genoveffa Tortora. Under-
standing Cloned Patterns in Web Applications. In Proceedings of the 13th International
Workshop on Program Comprehension (IWPC’05), pp. 333-336, St. Louis, MO, USA,
May 2005.

[65] Andrea De Lucia, Rita Francese, Giuseppe Scanniello and Genoveffa Tortora. Reengi-
neering Web Applications Based on Cloned Pattern Analysis. In Proceedings of 12th
International Workshop on Program Comprehension (IWPC’04), pp. 132-141 Bari,
Italy, June 2004.

[66] G.A. Di Lucca, M. Di Penta, and A.R. Fasolino and P. Granato. Clone Analysis in the
Web Era: an Approach to Identify Cloned Web Pages. In Proceedings of the 7th IEEE
Workshop on Empirical Studies of Software Maintenance (WESS’99), pp. 107-113,
Florence, Italy, November 2001.

[67] G.A. Di Lucca, M. Di Penta, and A.R. Fasolino. An approach to identify duplicated web
pages. In Proceedings of the 26th International Computer Software and Applications
Conference (COMPSAC’02), pp. 481486, Oxford, England, August 2002.

[68] G. A. Di Lucca, A. R. Fasolino, P. Tramontana, U. De Carlini. Identifying Reusable
Components in Web Applications. In Proceedings of the IASTED International Con-
ference on Software Engineering, Innsbruck, Austria, February 2004.

[69] Giuseppe Antonio Di Lucca, Damiano Distante, and Mario Luca Bernardi. Recovering
Conceptual Models from Web Applications. In Proceedings of the 24th Annual Con-
ference on Design of communication (SIGDOC’06), pp. 113-120, Myrtle Beach, SC,
USA, October 2006.

95

[70] A.van Deursen, T. Kuipers. Building Documentation Generators. In Proceedings of
International Conference on Software Maintenance (ICSM’99), Oxford, England, UK,
August 1999.

[71] Ekwa Duala-Ekoko, Martin Robillard. Tracking Code Clones in Evolving Software. In
Proceedings of the International Conference on Software Engineering (ICSE’07), pp.
158-167, Minneapolis, Minnesota, USA, May 2007.

[72] Stéphane Ducasse, Oscar Nierstrasz, Matthias Rieger. On the Effectiveness of Clone
Detection by String Matching. International Journal on Software Maintenance and
Evolution: Research and Practice, Volume 18(1): 37-58, January 2006.

[73] Stéphane Ducasse, Oscar Nierstrasz, and Matthias Rieger. Lightweight detection of
duplicated codea language-independent approach. Technical report, University of Bern,
Institute of Computer Science and Applied Mathematics, Bern, Switzerland, February
2004.

[74] Stéphane Ducasse, Matthias Rieger, Serge Demeyer. A Language Independent Ap-
proach for Detecting Duplicated Code. In Proceedings of the 15th International Confer-
ence on Software Maintenance (ICSM’99), pp. 109-118, Oxford, England, September
1999.

[75] Susan T. Dumais. Latent Semantic Indexing (LSI) and TREC-2. In Proceedings of
the 2nd Text Retrieval Conference (TREC’94), pp. 105-115, Gaithersburg, Maryland,
March 1994.

[76] M. Ernst, G.J. Badros, and D. Notkin. An empirical analysis of c preprocessor use.
IEEE Transactions on Software Engineering, 28(12): 1146-1170, December 2002.

[77] Williams Evans, and Christopher Fraser. Clone Detection via Structural Abstraction.
In Proceedings of the 14th Conference on Reverse Engineering (WCRE’07), Vancouver,
BC, Canada, October 2007(to appear, available as Technical Report since August
2005).

[78] Richard Fanta, Vclav Rajlich. Removing Clones from the Code. Journal of Software
Maintenance: Research and Practice, Volume 11(4):223-243, August 1999.

[79] Karl-Filip Faxén. The Costs and Benefits of Cloning in a Lazy Functional Language.
Trends in Functional Programming, Volume 2:1-12, 2001 (Selected papers from the 2nd
Scottish Functional Programming Workshop (SFP00).

[80] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319349,
1987.

[81] F. Fioravanti, G. Migliarase, and P. Nesi. Reengineering Analysis of Object-Oriented
Systems via Duplication Analysis. In Proceedings of the 23rd International Conference
on Software Engineering (ICSE’01), pp. 577-590, Toronto, Ontario, Canada, May 2001.

96

[82] G. Fischer, J. Wolff v. Gudenberg. Simplifying Source Code Analysis by an XML
Representation. Softwaretechnik Trends, vol. 23(2), 2003.

[83] G. Flammia. On the internet, software should be milked, not brewed. IEEE Expert,
11(6):8788, December 1996.

[84] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 2000.

[85] Christopher W. Fraser, Eugene W. Myers, and Alan L. Wendt. Analyzing and com-
pressing assembly code. In Proceedings of the ACM SIGPLAN’84 Symposium on Com-
piler Construction, pp. 117-121, June 1984.

[86] Keith Gallagher, Lucas Layman. Are Decomposition Slices Clones? In Proceedings of
the 11th IEEE International Workshop on Program Comprehension (IWPC’03), pp.
251-256 Portland, Oregon, USA, May 2003.

[87] Simon Giesecke. Generic modelling of code clones. In Proceedings of Duplication, Re-
dundancy, and Similarity in Software, ISSN 16824405, Dagstuhl, Germany, July 2006.

[88] Simon Giesecke. Clonebased Reengineering für Java auf der EclipsePlattform. Masters
thesis, Carl von Ossietzky Universität Oldenburg, Germany, September 2003.

[89] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse. How developers drive software evo-
lution. In Proceedings of International Workshop on Principles of Software Evolution
(IWPSE), pp. 113122. Lisbon, Portugal, September 2005.

[90] David Gitchell and Nicholas Tran. Sim: a utility for detecting similarity in computer
programs. ACM SIGCSE Bulletin, 31(1): 266-270, March 1999.

[91] Reto Geiger. Evolution Impact of Code Clones. Diploma Thesis, University of Zurich,
October 2005.

[92] Reto Geiger, Beat Fluri, Harald C. Gall and Martin Pinzger. Relation of code clones
and change couplings. In Proceedings of the 9th International Conference of Funta-
mental Approaches to Software Engineering (FASE’06), pp. 411-425, Vienna, Austria,
March 2006

[93] M.W. Godfrey, D. Svetinovic, and Q. Tu. Evolution, growth, and cloning in Linux:
A case study. In CASCON workshop on Detecting duplicated and near duplicated
structures in large software systems: Methods and applications, October 2000.

[94] M. Godfry, and L. Zou. Using Origin Analysis to Detect Merging and Splitting of
Source Code Entities. In IEEE Transactions on Software Engineering 31(2): 166-181,
February 2005).

[95] M. Godfrey and Q. Tu. Growth, evolution and structural change in open source soft-
ware. In Proceedings of the 4th International Workshop on Principles of Software
Evolution , pp. 103-106, Vienna, Austria, September 2001.

97

[96] M. Godfrey and Q. Tu. Evolution in open source software: A case study. In Proceedings
of the 16th International Conference on Software Maintenance, pp. 131- San Jose,
California, USA, October 2000.

[97] Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey P. Siy. Predicting Fault Inci-
dence Using Software Change History. IEEE Transactions on Software Engineerings,
26(7): 653-661, 2000.

[98] Kevin Greenan. Method-Level Code Clone Detection on Transformed Abstract Syntax
Trees using Sequence Matching Algorithms. Student Report, University of California -
Santa Cruz, Winter 2005,

[99] Sam Grier. A tool that detects plagiarism in pascal programs. In Proceedings of the
12th SIGCSE Technical Symposium on Computer Science Education ,pp. 15-20, St.
Louis, Missouri, USA, 1981.

[100] Penny Grubb, and Armstrong A Takang. Software Maintenance Concepts and Prac-
tice. 2nd edn. World Scientific (2003).

[101] Jiawei Han, and Micheline Kamber. Data Mining-Concepts and Techniques. Korgan
Kaufmann, 2001.

[102] Mark Harman. Search Based Software Engineering for Program Comprehension. In
Proceedings of the 15th IEEE International Conference on Program Comprehension
(ICPC’07), pp. 3-13, Banff, Canada, June 2007.

[103] Jonathan I. Helfman. Dotplot Patterns: a Literal Look at Pattern Languages. In
Theory and Practice of Object Systems (TAPOS’95), pp. 3141, 1995.

[104] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue. Code Clone Anal-
ysis Methods for Efficient Software Maintenance. Graduate School of Information Sci-
ence and Technology, Osaka University, 2006 (published as a report (PhD Thesis?)
and paper version unpublished).

[105] Yoshiki Higo, Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue.
On Software Maintenance Process Improvement Based on Code Clone Analysis. In
Proceedings of the 4th International Conference on Product Focused Software Process
Improvement (PROFES’02), pp. 185-197, Rovaniemi, Finland, November 2002.

[106] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue. ARIES: Refac-
toring Support Environment based on Code Clone Analysis. In Proceedings of the 8th
IASTED International Conference on Software Engineering and Applications, Cam-
bridge, MA, USA, November 2004.

[107] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue. Refactoring
Support Based on Code Clone Analysis. In Proceedings of the 5th International Con-
ference on Product Focused Software Process Improvement(PROFES’04), pp. 220-233,
Kansai Science City, Japan, April 2004.

98

[108] D. S. Hirschberg. A linear space algorithm for computing maximal common subse-
quences. Communications ACM, 18(6):341-343, June 1975.

[109] James J. Hunt, and Walter F. Tichy.Extensible Language Aware Merging. In Proceed-
ings of the International Conference on Software Maintenance (ICSM’02), pp. 511-520,
Montréal, Canada, October 2002.

[110] P. Jablonski, and D. Hou. CReN: A Tool for Tracking Copy-and-Paste Code Clones
and Renaming Identifiers Consistently in the IDE. In Proceedings of Eclipse Technology
Exchange Workshop at OOPSLA 2007(ETX’07), 5pp., Montréal, Québec, Canada
October 2007.

[111] Hugo T. Jankowitz. Detecting Plagiarism in Student PASCAL Programs. Computer
Journal, 31(1):18, February 1988.

[112] Stan Jarzabek, and Shubiao Li. Unifying clones with a generative programming tech-
nique: a case study. Journal of Software Maintenance and Evolution: Research and
Practice, John Wiley & Sons, Volume 18(4):267-292,July/August 2006 (Extended ver-
sion of ESEC-FSE03 paper)

[113] Zhenming Jiang, and Ahmed Hassan. A Framework for Studying Clones in Large
Software Systems. In Proceedings of the Seventh IEEE International Working Confer-
ence on Source Code Analysis and Manipulation (SCAM’07), Paris, France, October
2007.

[114] Zhen Ming Jiang, Ahmed E. Hassan, and Richard C. Holt. Visualizing Clone Cohesion
and Coupling. In Proceedings of the 13th Asia Pacific Software Engineering Conference
(APSEC’06), pp. 467-476, Bangalore, India, December 2006.

[115] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. Context-Based Detection of Clone-
Related Bugs. In Proceedings of the 6th joint meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE’07), 10pp., Dubrovnik, Croatia, September 2007 (to
appear).

[116] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. DECKARD:
Scalable and Accurate Tree-based Detection of Code Clones. In Proceedings of the 29th
International Conference on Software Engineering (ICSE’07), pp. 96-105, Minnesota,
USA, May 2007.

[117] J Howard Johnson. Navigating the textual redundancy Web in legacy source. In
Proceedings of the 1996 Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON’96), pp. 7-16, Toronto, Canada, October 1996.

[118] J Howard Johnson. Identifying Redundancy in Source Code Using Fingerprints. In
Proceeding of the 1993 Conference of the Centre for Advanced Studies Conference
(CASCON’93), pp. 171-183, Toronto, Canada, October 1993.

99

[119] J. Howard Johnson. Visualizing textual redundancy in legacy source. In Proceedings
of the 1994 Conference of the Centre for Advanced Studies on Collaborative research
(CASCON’94), pp. 171-183, Toronto, Canada, 1994.

[120] John Johnson. Substring Matching for Clone Detection and Change Tracking. In
Proceedings of the 10th International Conference on Software Maintenance, pp. 120-
126, Victoria, British Columbia, Canada, September 1994.

[121] Nicolas Juillerat, and Béat Hirsbrunner. An Algorithm for Detecting and Removing
Clones in Java Code. In Proceedings of the 3rd Workshop on Software Evolution through
Transformations: Embracing the Change (SeTra’06), pp. 63-74, Rio Grande do Norte,
Brazil, September 2006.

[122] Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue. CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source Code. Transactions
on Software Engineering, Vol. 28(7): 654- 670, July 2002.

[123] Cory J. Kapser and Michael W. Godfrey. Supporting the Analysis of Clones in Soft-
ware Systems: A Case Study. Journal of Software Maintenance and Evolution: Re-
search and Practice, Vol. 18(2): 61-82, March 2006.

[124] Cory Kapser and Michael Godfrey. A Taxonomy of Clones in Source Code: The
Re-Engineers Most Wanted List. In Proceedings of the 2nd International Workshop on
Detection of Software Clones (IWDSC’03), 2pp., Victoria, BC, November 2003.

[125] Cory Kapser, and Michael Godfrey. Toward a taxonomy of clones in source code:
A case study. In Proceedings of the Conference on Evolution of Large Scale Industrial
Software Architectures (ELISA ’03), pp. 67-78, Amsterdam, The Netherlands, Septem-
ber 2003.

[126] Cory Kapser, and Michael Godfrey . Aiding Comprehension of Cloning Throu gh Cat-
egorization. In Proceedings of the 7th International Workshop on Principles of Software
Evolution (IWPSE’04), pp. 85-94, Kyoto, Japan, September 2004.

[127] Cory Kapser, Michael Godfrey. Improved Tool Support for the Investigation of Du-
plication in Software. In Proceedings of the 21st International Conference on Software
Maintenance (ICSM’05), pp. 305-314, Budapest, Hungary, September 2005.

[128] Cory Kapser and Michael W. Godfrey. “clones considered harmful” considered
harmful. In Proceedings of the 13th Working Conference on Reverse Engineering
(WCRE’06), pp. 19-28, Benevento, Italy, October 2006.

[129] Cory Kapser and Michael W. Godfrey. “Cloning Considered Harmful” Considered
Harmful: A case study of the positive and negative effects. Empirical Software Engi-
neering (invited for publication), 2007.

[130] R. M. Karp. Combinatorics, complexity, and randomness. Communications of the
ACM, 29(2):98109, February 1986.

100

[131] R. M. Karp and M. 0. Rabin. Efficient randomized pattern-matching algorithms. IBM
Journal Research and Development, 31(2):249260, March 1987.

[132] Andy Kellens, Kim Mens, and Paolo Tonella. A Survey of Automated Code-Level
Aspect Mining Techniques. In Transactions on Aspect Oriented Software Development,
Vol. 4 (LNCS 4640), pp. 145-164, 2007.

[133] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier and J.
Irwin. Aspect-Oriented Programming. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP’97), Springer-Verlag LNCS 1241, June 1997.

[134] Holger M. Kienle, Hausi A. Müller and Anke Weber. In the Web of Generated
“Clones”. In Proceedings of 2nd International Workshop on Detection of Software
Clones (IWDSC’03), 22pp., Victoria, British Columbia, Canada, November 2003.

[135] Miryung Kim, Lawrence Bergman, Tessa Lau, David Notkin. An Ethnographic
Study of Copy and Paste Programming Practices in OOPL. In Proceedings of 3rd
International ACM-IEEE Symposium on Empirical Software Engineering (ISESE’04),
pp. 83- 92, Redondo Beach, CA, USA, August 2004.

[136] Miryung Kim, Gail Murphy. An Empirical Study of Code Clone Genealogies. In
Proceedings of the 10th European software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations of software engineering (
ESEC/SIGSOFT FSE 2005 ’05), pp. 187-196, Lisbon, Portugal, September 2005.

[137] Miryung Kim, David Notkin. Using a Clone Genealogy Extractor for Understanding
and Supporting Evolution of Code Clones. In Proceedings of the 2nd International
Workshop on Mining Software Repositories (MSR’05), pp. 1-5, Saint Louis, Missouri,
USA, May 2005.

[138] Miryung Kim and David Notkin. Program Element Matching for Multi-Version Pro-
gram Analyzes. In Proceedings of the 3rd International Workshop on Mining Software
Repositories (MSR’06), pp. 58-64, Shanghai, China, May 2006.

[139] Walid Koleilat, and Niv Shaft. Extracting Executable Skeletons. CS846: Software
Evolution project report. Cheriton School of Computer Science, University of Waterloo,
April 2007.

[140] Raghavan Komondoor and Susan Horwitz. Tool demonstration: Finding duplicated
code using program dependences. In Proceedings of the European Symposium on Pro-
gramming (ESOP’01), Vol. LNCS 2028, pp. 383386, Genova, Italy, April 2001.

[141] Raghavan Komondoor and Susan Horwitz. Using Slicing to Identify Duplication in
Source Code. In Proceedings of the 8th International Symposium on Static Analysis
(SAS’01), Vol. LNCS 2126, pp. 40-56, Paris, France, July 2001.

[142] Raghavan Komondoor and Susan Horwitz. Effective, Automatic Procedure Extrac-
tion. In Proceedings of the 11th IEEE International Workshop on Program Compre-
hension (IWPC’03), pp. 33-42, Portland, Oregon, USA, May 2003.

101

[143] Raghavan Komondoor and Susan Horwitz. Semantics-Preserving Procedure Extrac-
tion. In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of
programming languages (POPL’00), pp. 155-169, Boston, MA, USA, January 2000.

[144] Raghavan Komondoor. Automated Duplicated-Code Detection and Procedure Extrac-
tion. Ph.D. Thesis, 2003.

[145] Georges Golomingi Koni-N’sapu. A scenario based approach for refactoring duplicated
code in object oriented systems. Diploma Thesis, University of Bern, June 2001.

[146] K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and M.Bernstein. Pattern Matching
for Clone and Concept Detection. In Automated Software Engineering, Vol. 3(1-2):77-
108, June 1996.

[147] K. Kontogiannis, M. Galler, and R. DeMori. Detecting code similarity using patterns.
In Working Notes of 3rd Workshop on AI and Software Engineering, 6pp., Montreal,
Canada, August 1995.

[148] Kostas Kontogiannis. Evaluation Experiments on the Detection of Programming
Patterns using Software Metrics. In Proceedings of the 3rd Working Conference on
Reverse Engineering (WCRE’97), pp. 44-54, Amsterdam, The Netherlands, October
1997.

[149] Rainer Koppler. A systematic approach to fuzzy parsing. In Software: Practice and
Experience, 27(6):637649, 1997.

[150] S. Rao Kosaraju. Faster algorithms for the construction of parameterized suffix trees.
In In Proceedings of the 36th Annual Symposium on Foundations of Computer Science
(FOCS95), pp. 631638, October 1995.

[151] R. Koschke, E. Merlo, A. Walenstein (Eds.). Dagstuhl Seminar Proceedings 06301.
In Proceedings of Duplication, Redundancy, and Similarity in Software,ISSN 16824405,
Dagstuhl, Germany, July 2006.

[152] Rainer Koschke, J.-F. Girard, M. Wrthner. An Intermediate Representation for Re-
verse Engineering Analyzes. In Proceedings of the 5th Working Conference on Reverse
Engineering (WCRE’98), pp. 241-250, Honolulu, Hawai, USA, October 1998.

[153] Rainer Koschke, Raimar Falke and Pierre Frenzel. Clone Detection Using Abstract
Syntax Suffix Trees. In Proceedings of the 13th Working Conference on Reverse Engi-
neering (WCRE’06), pp. 253-262, Benevento, Italy, October 2006.

[154] Rainer Koschke. Survey of Research on Software Clones. In Proceedings of Dagstuhl
Seminar 06301: Duplication, Redundancy, and Similarity in Software, 24pp., Dagstuhl,
Germany, July 2006.

[155] Jens Krinke. A Study of Consistent and Inconsistent Changes to Code Clones. In
Proceedings of the 14th Working Conference on Reverse Engineering (WCRE’07), 9pp.,
Vancouver, Canada, October 2007 (to appear).

102

[156] Jens Krinke. Identifying Similar Code with Program Dependence Graphs. In Proceed-
ings of the 8th Working Conference on Reverse Engineering (WCRE’01), pp. 301-309,
Stuttgart, Germany, October 2001.

[157] Jens Krinke, Silvia Breu.Control-Flow-Graph-Based Aspect Mining. In Proceedings
of the 1st Workshop on Aspect Reverse Engineering (WARE’04), 5pp., Delft University
of Technology, the Netherlands, November 2004.

[158] Bruno Laguë, Daniel Proulx, Jean Mayrand, Ettore M. Merlo and John Hudepohl.
Assessing the Benefits of Incorporating Function Clone Detection in a Development
Process. In Proceedings of the 13th International Conference on Software Maintenance
(ICSM’97), pp. 314-321, Bari, Italy, October 1997.

[159] Arun Lakhotia, Junwei Li, Andrew Walenstein, Yun Yang. Towards a Clone Detection
Benchmark Suite and Results Archive. In Proceedings of the 11th IEEE International
Workshop on Program Comprehension (IWPC’03), pp. 285- 286, Portland, Oregon,
USA, May 2003.

[160] Thomas Lancaster, a nd Culwin Finta. A Comparison of Source Code Plagiarism
Detection Engines. In Computer Science Education, Vol. 14(2):101-112, June 2004.

[161] Filippo Lanubile, and Teresa Mallardo. Finding Function Clones in Web Applica-
tions. In Proceedings of the 7th European Conference on Software Maintenance and
Reengineering (CSMR’03), pp. 379-386, Benevento, Italy, March 2003.

[162] M. Lanza and S. Ducasse. Polymetric views - a lightweight visual approach to re-
verse engineering. IEEE Transactions on Software Engineering, Vol. 29(9):782-795,
Semptember 2003.

[163] Seunghak Lee, Iryoung Jeong. SDD: High Performance Code Clone Detection System
for Large Scale Source Code. In Proceedings of the Object Oriented Programming Sys-
tems Languages and Applications Companion to the 20th annual ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and applications (OOP-
SLA Companion’05), pp. 140-141, San Diego, CA, USA, October 2005.

[164] A.M. Leitao. Detection of redundant code using R2D2. In Proceedings of the 3rd IEEE
International Workshop on Source Code Analysis and Manipulation (SCAM’03), pp.
183-192, Amsterdam, The Netherlands, September 2003.

[165] Chao Liu, Chen Chen, Jiawei Han and Philip S. Yu. GPLAG: Detection of Software
Plagiarism by Program Dependence Graph Analysis. In the Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’06), pp. 872-881, Philadelphia, USA, August 2006

[166] Simone Livieri, Yoshiki Higo, Makoto Matsushita, and Katsuro Inoue. Analysis of the
Linux Kernel Evolution Using Code Clone Coverage. In Proceedings of the Fourth In-
ternational Workshop on Mining Software Repositories (MSR’07), Minneapolis, USA,
May 2007.

103

[167] Simone Livieri, Yoshiki Higo, Makoto Matsushita, Katsuro Inoue: Very-Large Scale
Code Clone Analysis and Visualization of Open Source Programs Using Distributed
CCFinder: D-CCFinder. In Proceedings of 29th International Conference on Software
Engineering (ICSE’07), pp. 106-115, Minneapolis, MN, USA, May 2007.

[168] Zhenmin Li, Shan Lu, Suvda Myagmar, Yuanyuan Zhou. CP-Miner: A Tool for
Finding Copy-paste and Related Bugs in Operating System Code. In Proceedings of
the 6th Symposium on Operating System Design and Implementation (OSDI’04), pp.
289-302, San Francisco, CA, USA, December 2004.

[169] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner: Finding
Copy-Paste and Related Bugs in Large-Scale Software Code. In IEEE Transactions on
Software Engineering, Vol. 32(3): 176-192, March 2006.

[170] Zhenmin Li, and Yuanyuan Zhou. PR-Miner: Automatically extracting implicit pro-
gramming rules and detecting violations in large software code. In Proceedings of the 5th
joint meeting of the European Software Engineering Conference and the Foundations
of Software Engineering Conference (ESEC/FSE’05), pp. 306-315, Lisbon, Portugal,
September 2005.

[171] Angela Lozano, Michel Wermelinger, and Bashar Nuseibeh. Evaluating the Harmful-
ness of Cloning: A Change Based Experiment. In Proceedings of the 4th International
Workshop on Mining Software Repositories (MSR’07), 4 pp., Minneapolis, USA, May
2007.

[172] Nazim H. Madhavji. Compare: a collusion detector for pascal. Techniques et Sciences
Informatiques, 4(6):489497, December 1985.

[173] Jonathan I. Maletic and Andrian Marcus. Supporting program comprehension using
semantic and structural information. In Proceedings of the 23rd International Confer-
ence on Software Engineering (ICSE’01), pp. 103112, Toronto, Ontario, Canada, May
2001.

[174] Udi Manber. Finding similar files in a large file system. In Proceedings of the Winter
1994 Usenix Technical Conference, pp. 110, San Francisco, USA, January 1994.

[175] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting near-duplicates
for web crawling. In Proceedings of the 16th international conference on World Wide
Web, pp. 141-150 Banff, Alberta, Canada, May 2007

[176] Zoltan Mann. Three Public Enemies: Cut, Copy, and Paste. IEEE Computer, Vol.
39(7): 31-35, July 2006.

[177] Andrian Marcus and Jonathan I. Maletic. Identification of high-level concept clones
in source code.In Proceedings of the 16th IEEE International Conference on Automated
Software Engineering (ASE’01), pp. 107-114, San Diego, CA, USA, November 2001.

[178] Jean Mayrand, Claude Leblanc, Ettore Merlo. Experiment on the Automatic
Detection of Function Clones in a Software System Using Metrics. In Proceedings of

104

the 12th International Conference on Software Maintenance (ICSM’96), pp. 244-253,
Monterey, CA, USA, November 1996.

[179] E. McCreight. A space-economical suffix tree construction algorithm. In Journal of
the ACM, 32(2):262272, April 1976.

[180] Ettore Merlo. Detection of Plagiarism in University Projects Using Metrics-based
Spectral Similarity. In Proceedings of Dagstuhl Seminar 06301: Duplication, Redun-
dancy, and Similarity in Software, 10pp., Dagstuhl, Germany, Dagstuhl, July 2006.

[181] E. Merlo, M. Dagenais, P. Bachand, J.S. Sormani, S. Gradara, and G. Antoniol.
Investigating large software system evolution: the linux kernel. In Proceedings of the
26th International Computer Software and Applications Conference (COMPSAC’02),
pp. 421426, Oxford, England, August 2002.

[182] R.C. Miller and B. A. Myers. Interactive Simultaneous Editing of Multiple Text Re-
gions. In Proceedings of the USENIX 2001 Annual Technical Conference, pp. 161-174,
Boston, Massachusetts, June 2001.

[183] Brian S. Mitchell and Spiros Mancoridis. CRAFT: A Framework for Evaluating Soft-
ware Clustering Results in the Absence of Benchmark Decompositions. In Proceed-
ings of the 8th Working Conference on Reverse Engineering (WCRE’01), pp. 93-102,
Stuttgart, Germany, October 2001.

[184] Gilad Mishne and Maarten de Rijke. Source Code Retrieval Using Conceptual Similar-
ity. In Proceeding of the 2004 Conference on Computer Assisted Information Retrieval
(RIAO’04), pp. 539-554, Avignon (Vaucluse), France, April 2004.

[185] Akito Monden, Daikai Nakae,Toshihiro Kamiya,Shin-ichi Sato,Ken-ichi Matsumoto.
Software quality analysis by code clones in industrial legacy software. In Proceedings
of 8th IEEE International Symposium on Software Metrics (METRICS’02), pp. 87-94,
Ottawa, Canada, June 2002.

[186] L. Moonen. Generating robust parsers using island grammars. In Proceedings of
the 8th Working Conference on Reverse Engineering (WCRE’01), pp. 1322, Stuttgart,
Germany, October 2001.

[187] S.M. Nasehi, G.R. Sotudeh, and M. Gomrokchi. Source Code Enhancement using
Reduction of Duplicated Code. In Proceedings of the 25th IASTED International Multi-
Conference, pp. 192-197, Innsbruck, Austria, February 2007.

[188] Eric Nickell and Ian Smith. Extreme programming and software clones.In Proceedings
of the 2nd International Workshop on Detection of Software Clones (IWDSC’03), 2pp.,
Victoria, BC, November 2003.

[189] Santanu Paul, and Atul Prakash. A Framework for Source Code Search Using Program
Patterns. IEEE Transactions Software Engineering 20(6): 463-475, June 1994.

105

[190] J.-F. Patenaude, E. Merlo, M. Dagenais, and B. Lague. Extending software quality
assessment techniques to java systems. In Proceedings of the 7th International Work-
shop on Program Comprehension (IWPC’99), pp. 4956, Pittsburgh, PA, USA, May
1999.

[191] Denys Poshyvanyk, and Andrian Marcus: Combining Formal Concept Analysis with
Information Retrieval for Concept Location in Source Code. In Proceedings of the
15th IEEE International Conference on Program Comprehension (ICPC’07), pp. 37-48,
Banff, Canada, June 2007.

[192] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. Finding plagiarisms among a
set of programs with JPlag. In Journal of Universal Computer Science, 8(11):10161038,
November 2002.

[193] Aoun Raza, Gunther Vogel, Erhard Plödereder. Bauhaus–A Tool Suite for Program
Analysis and Reverse Engineering. In Proceedings of the 11th Ada-Europe International
Conference on Reliable Software Technologies , LNCS 4006, pp. 71-82, Porto, Portugal,
June 2006.

[194] Damith C. Rajapakse, and Stan Jarzabek. Using Server Pages to Unify Clones in Web
Applications: A Trade-off Analysis. In Proceedings of the 29th International Conference
of Software Engineering (ICSE’07), pp. 116-126, Minneapolis, USA, May 2007.

[195] F. Ricca and P. Tonella. Using Clustering to Support the Migration from Static to
Dynamic Web Pages. In Proceedings of the 11th International Workshop on Program
Comprehension (IWPC’03), pp. 207-216, Portland, USA, May 2003.

[196] Matthias Rieger, Stephane Ducasse, Michele Lanza. Insights into System–Wide
Code Duplication. In Proceedings of the 11th IEEE Working Conference on Reverse
Engineering (WCRE’04), pp. 100-109, Delft University of Technology, the Netherlands,
November 2004.

[197] Matthias Rieger. Effective Clone Detection Without Language Barriers. Ph.D. Thesis,
University of Bern, Switzerland, June 2005.

[198] Filip Van Rysselberghe, Serge Demeyer. Studying Software Evolution Using Clone
Detection. In Proceedings of the 4th ECOOP’03 International Workshop on Object-
Oriented Reengineering (WOOR’03), pp. 71-75, Darmstadt, Germany, July 2003.

[199] Filip Van Rysselberghe, Serge Demeyer. Reconstruction of successful software evo-
lution using clone detection. In Proceedings of the 6th International Workshop on
Principles of Software Evolution (IWPSE’03), pp. 126130, Helsinki, Finland, Septem-
ber 2003.

[200] Filip Van Rysselberghe, Serge Demeyer. Evaluating Clone Detection Techniques.
In Proceedings of the International Workshop on Evolution of Large Scale Industrial
Applications (ELISA’03), 12pp., Amsterdam, The Netherlands, September 2003.

106

[201] Filip Van Rysselberghe, Serge Demeyer. Evaluating Clone Detection Techniques
from a Refactoring Perspective. In Proceedings of the 9th IEEE International Conf.
Automated Software Eng. (ASE’04), pp. 336-339, Linz, Austria, September 2004.

[202] T. Sager, A. Bernstein, M. Pinzger, C. Keifer. Detecting Similar Java Classes Us-
ing Tree Algorithms. In Proceedings of the 2006 International Workshop on Mining
Software Repositories (MSR’06), pp. 65-71, Shanghai, China, May 2006.

[203] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local algorithms for doc-
ument fingerprinting. In Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’03), pp. 7685, San Diego, California, June
2003.

[204] Andrew Sutton, Huzefa Kagdi, Jonathan I. Maletic, L. Gwenn Volkert. Hy-
bridizing Evolutionary Algorithms and Clustering Algorithms to Find Source-Code
Clones. In Proceedings of the 2005 Genetic and Evolutionary Computation Conference
(GECCO’05), pp. 1079-1080, Washington, DC, USA, June 2005.

[205] Nikita Synytskyy, James R. Cordy, Thomas Dean. Resolution of Static Clones in
Dynamic Web Pages. In Proceedings of the 5th IEEE International Workshop on Web
Site Evolution (WSE’03), pp. 49-58, Amsterdam, September 2003.

[206] Robert Tairas, Jeff Gray. Phoenix-Based Clone Detection Using Suffix Trees. In
Proceedings of the 44th annual Southeast regional conference (ACM-SE’06), pp. 679-
684, Melbourne, Florida, USA, March 2006.

[207] Robert Tairas, Jeff Gray and Ira Baxter. Visualization of clone detection results.
In Proceedings of the 2006 OOPSLA Workshop on Eclipse Technology eXchange, pp.
50-54, Portland, Oregon, October 2006.

[208] Michael Toomim, Andrew Begel and Susan L. Graham. Managing Duplicated Code
with Linked Editing. In Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’04), pp. 173-180, Rome, Italy, September 2004.

[209] Qiang Tu and Michael W. Godfrey. An Integrated Approach for Studying Archi-
tectural Evolution. In Proceedings of the 10th International Workshop on Program
Comprehension (IWPC’02), pp. 127-136, Paris, France, June 2002.

[210] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. On detection
of gapped code clones using gap locations. In Proceedings 9th Asia-Pacific Software
Engineering Conference (APSEC’02), pp. 327336, Gold Coast, Queensland, Australia,
December 2002.

[211] Yasushi Ueda, Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Gemini: Code clone analysis tool. In International Symposium on Empirical Software
Engineering (ISESE’02), Vol. 2, pp. 3132, Nara, Japan, October 2002.

[212] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Gemini:
Maintenance support environment based on code clone analysis. In Proceedings of the

107

8th IEEE Symposium on Software Metrics (METRICS’02), pp. 6776, Ottawa, Canada,
June 2002.

[213] V. Wahler, D. Seipel, Jurgen Wolff von Gudenberg, and G. Fischer. Clone detection
in source code by frequent itemset techniques. In Proceedings of the 4th IEEE Inter-
national Workshop Source Code Analysis and Manipulation (SCAM’04), pp. 128135,
Chicago, IL, USA, September 2004.

[214] A. Walenstein, A. Lakhotia and R. Koschke. The Second International Workshop
on Detection of Software Clones (IWDSC’03). Workshop report. In ACM SIGSOFT
Software Engineering Notes 29(2), pp. 1-5, March 2004.

[215] Andrew Walenstein, Nitin Jyoti, Junwei Li, Yun Yang, Arun Lakhotia. Problems
Creating Task-relevant Clone Detection Reference Data. In Proceedings of the 10th
Working Conference on Reverse Engineering (WCRE’03), pp. 285-295, Victoria, BC,
Canada, November 2003.

[216] Andrew Walenstein and Arun Lakhotia. Clone Detector Evaluation Can Be Improved:
Ideas from Information Retrieval. In Proceedings of the 2nd International Workshop
on Detection of Software Clones (IWDSC’03), 2pp., Victoria, BC, November 2003..

[217] Andrew Walenstein and Arun Lakhotia. The Software Similarity Problem in Mal-
ware Analysis. In Proceedings Dagstuhl Seminar 06301: Duplication, Redundancy, and
Similarity in Software, 10 pp., Dagstuhl, Germany, July 2006.

[218] M. Weiser. Program Slicing. In IEEE Transactions on Software Engineering, Vol.
10(4):352-357, July 1984.

[219] Richard Wettel. Automated Detection Of Code Duplication Clusters. Diploma
Thesis, Politehnica University of Timisoara, June 2004.

[220] Richard Wettel, Radu Marinescu. Archeology of Code Duplication: Recovering
Duplication Chains From Small Duplication Fragments. Proceedings of the 7th Inter-
national Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC’05), 8pp., Timisoara, Romania, September 2005.

[221] X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in Large
Datasets. In Proceedings of the 3rd SIAM International Conference on Data Mining
(SDM’03), pp. San Francisco, CA, USA, May, 2003.

[222] Wuu Yang. Identifying syntactic differences between two programs. In SoftwarePrac-
tice and Experience, 21(7):739755, July 1991.

[223] Norihiro Yoshida, Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue.
On Refactoring Support Based on Code Clone Dependency Relation. newblock In Pro-
ceedings of the 11th IEEE International Software Metrics Symposium (METRICS’05),
pp. 16-25, Como, Italy, September 2005.

108

[224] J. Zhang, J. Gray, Y. Lin, and R. Tairas. Aspect Mining from a Modeling Perspective.
In International Journal of Computer Applications in Technology, Special Issue on
Concern-Oriented Software, 9pp., Fall 2007.

[225] Lijie Zou and Michael W. Godfrey. Detecting Merging and Splitting Using Origin
Analysis. In Proceedings of the 10th Working Conference on Reverse Engineering
(WCRE’03), pp. 146-154, Victoria, BC, Canada, November 2003.

109

