Key Distribution versus Key Enhancement in

1

Consider two parties, affectionately called Alice and Bob, who want to achieve
sharing a secret key value. The key should be of considerable size. In fact
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the key should be as long as the message to be encoded, thus providing a
one-time pad [7]. In quantum computation such a secret key is developed
by Alice and Bob following a quantum protocol, while they have two com-
munication channels available: a quantum channel carrying quantum bits
and a classical channel carrying classical binary bits. A remarkable property
of these protocols is that the resulting secret key is unbreakable even with
arbitrarily large computational power employed in breaking the key.

The drawback in all existing quantum computation algorithms is that
for the algorithm to work, the classical channel needs to be authenticated.
Authentication of a classical channel can be done using a small secret key.
This means that in order to distribute a (larger) secret key between Alice
and Bob, a small secret key needs to be used to authenticate the classical
channel. This small secret key has to be shared between Alice and Bob prior
to the quantum key distribution protocol. Therefore, these protocols are in
fact quantum key enhancement protocols.

This paper shows that quantum cryptography has more to offer than
key enhancement. In fact Alice and Bob can reach a consensus about the
value of a secret key without sharing any secret information prior to the
quantum algorithm that distributes this key. Moreover, the secret key can
be arbitrarily large and consequently can be used as a one-time pad. All
classical information exchanged between Alice and Bob is intrinsically public.
This means that it is accessible to any eavesdropper or masquerader.

Lomonaco [5] describes the basics of classical and quantum cryptography
as well as the problems faced by each discipline. He talks of the famous Catch
22 of classical cryptography, namely:

Catch 22. There are perfectly good ways to communicate in secret,
provided we can communicate in secret ...

Classical cryptography is subject to this catch and according to the liter-
ature to date, quantum cryptography falls in the same category. This paper
proves however, that quantum cryptography steps out of these limits. Indeed,
secret, communication using quantum means does not need any prior secret
or secure private communication. It only needs public communication. This
is the strongest requirement, namely, that “some limited” public information
is protected. This means that this public information is guaranteed to come
from the expected source ( e.g., Alice) and that the information is truthful:
An eavesdropper Eve could not tamper with the contents of this information
and could not masquerade as Alice. These ideas of protected public informa-
tion are well known in public key cryptosystems and are referred to as the
public keys. Alice publishes her public key in a secure, protected place, such
as the yellow pages of a telephone book. The key is available to everybody.
Eve can see the key but cannot tamper with it. Bob can see/read Alice’s



public key and is absolutely certain that he now possesses Alice’s correct
public key. Note that classic cryptographic protocols, the public key cryp-
tosystem for instance, rely on the fact that Alice is able to publish her key
in this secure way.

The protocol presented in this paper relies on public communication only,
therefore weakening the requirements for secret communication. For quan-
tum cryptography, Catch 22 has to be reformulated as:

Quantum Catch 22. There are perfectly good ways to communicate
secretly, provided we can communicate publicly in a protected way ...

The rest of the paper is organized as follows. Section 2 contains a de-
scription of entanglement as used in our protocol. Section 3 describes the
BB84 key enhancement protocol from the perspective of secret and public
information. Section 4 presents the main result of the paper, a quantum
protocol that distributes a secret key. Notably, all information exchanged in
this protocol is public. The last section, section 5, sums up the paper with
some conclusions.

2 Entangled Qubits

The key distribution algorithm we present in the following sections relies on
entangled qubits. Alice and Bob, each possess one of a pair of entangled
qubits. If one party, say Alice, measures her qubit, Bob’s qubit will collapse
to the state compatible with Alice’s measurement.

The vast majority of key distribution protocols based on entanglement
[2, 1, 6], rely on Bell entangled qubits. The qubit pair is in one of the four
Bell states:
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Suppose Alice and Bob share a pair of entangled qubits described by the
first Bell state:
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Alice has the first qubit and Bob has the second. If Alice measures
her qubit and sees a 0, then Bob’s qubit has collapsed to |0) as well. Bob
will measure a 0 with certainty, that is, with probability 1. Again, if Alice

(100) +[11))



measures a 1, Bob will measure a 1 as well, with probability 1. The same
scenario happens if Bob is the first to measure his qubit.

Note that any measurement on one qubit of this entanglement collapses
the other qubit to a classical state. This property is specific to all four Bell
states and is then exploited by the key enhancement protocols mentioned
above: If Alice measures her qubit, she knows what value Bob will mea-
sure. The entanglement employed by the algorithm proposed in this paper,
however, does not have this property directly.

2.1 Entanglement Caused by Phase Incompatibility

Let us look now at an unusual form of entanglement. Consider the following
ensemble of two qubits:

6 = 5(~100) + 01} +]10) + [11))

The ensemble has all four components, |00), |01), |10), and |11), in its
expression. And yet, this ensemble is entangled.

Consider the following proof. Suppose the ensemble ¢ is not entangled.
This means ¢ can be written as a tensor product of two independent qubits:

6= 5(@10) + Ail1)) ® (asl0) + B/1))

Matching the coefficients from each base vector, we have the following
conditions:

1. ajag = —1

2. a1l =1

3. agfhy =1

4. bifa =1

The multiplication of conditions 1 and 4 yields: ajas3;6: = —1. On

the other hand, from conditions 2 and 3, we have: ajay3;8; = 1. This is a
contradiction. The product a;asf3; 32 cannot have two values, both +1 and
—1. Tt follows that ¢ cannot be decomposed and thus the two qubits are
entangled.

The entanglement of the ensemble is caused by the signs in front of the
four base vector components. Thus, it is not that some vector is missing in
the expression of the ensemble, rather it is the phases of the base vectors
that keep the two qubits entangled.



2.2 Measurement

Let us investigate what happens to the ensemble ¢, when the entanglement
is disrupted through measurement.

If the first qubit ¢; is measured and yields ¢; = |0) = 0 then the second
qubit collapses to ¢y = %(—|0> + |1)). This is not a classical state, but a
simple Hadamard gate transforms ¢, into a classical state. The Hadamard
gate is defined by the matrix

1 |11 1
izl ]

Applying the Hadamard gate to an arbitrary qubit, we have H(«|0) +
BI1)) = a'o%”—l—ﬁ%. For our collapsed go, we have H(qy) = H(%(—|0>+
|1))) = —|1). This is a classical 1.

The converse happens when qubit ¢; yields 1 through measurement. In
this case ¢y collapses to g = %(|0> + |1)). Applying the Hadamard gate
transforms ¢y to H(gq) = H(%(m) +11))) = |0) = 0. Again this is a classical
state 0.

It follows that by using the Hadamard gate, there is a clear correlation
between the measured values of the first and second qubit. In particular,
they always have opposite values.

A similar scenario can be developed, when the second qubit ¢, is measured
first. In this case, the first qubit ¢;, transformed by a Hadamard gate, yields
the opposite value of ¢5.

3 The BB84 protocol - Information on the
Classical Channel is Public

Let us recall the well known BB84 key enhancement protocol. Alice and Bob
share one classical and one quantum communication channel. The classical
channel needs to be authenticated using a small secret key previously known
to only Alice and Bob. This is why the protocol is called a key enhancement
protocol. On the quantum channel Alice can send quantum bits to Bob.
Alice possesses an array of entangled EPR qubit pairs. For each entangled
pair, Alice reads (measures) one qubit in one of two orthonormal bases. She
then sends the pair of this qubit to Bob, who randomly measures it again
in one of the two orthonormal bases. After all the array of entangled qubit
pairs is measured pair by pair by Alice and Bob, they start communicating
on the classical channel. On the classical channel, they reveal their respective
measurement bases and retain only the values of the qubits measured in the
same base.



In order to check for the existence of an intruder Eve to the protocol, Alice
and Bob have to check the values of some of their correctly measured qubits.
These qubits will be discarded from the final key. Eve will be detected if she
has measured some qubits or has replaced some qubits with qubits of her
choice. It is important to note here that the classical channel is essentially
public. Eve is allowed to listen to the classical channel. The information
exchanged on the classical channel does not reveal any information about
the value of the secret key. This is specific for quantum key enhancement
protocols.

We said that the classical channel needs to be authenticated. If it were
not authenticated, Eve could masquerade on both channels such that Alice
never speaks to Bob, but only to Eve. In the same way Bob is only con-
nected to Eve and never speaks to Alice. In this case both Alice and Bob
have no way to detect the masquerader Eve. Therefore, the classical chan-
nel, if authenticated, prevents this situation from happening. Now here is
the interesting characteristic of this algorithm. It authenticates public infor-
mation and public information only. In this, the quantum key enhancement
protocols are unique.

It follows that public information does not need a communication channel.
Public information does not need to be authenticated by authenticating the
communication channel. The problem of a certain public information reliably
belonging to a certain source (say Alice) is not a problem of authentication
any more. It is reduced to protecting the public information published by
Alice. Normally, under commercially viable circumstances, this is accepted
to be possible. As an example, publishing a telephone number in a telephone
book, is accepted to provide accurate information, for which the telephone
company is responsible. “Eve” cannot masquerade as someone else in a
telephone book. It is therefore reasonable to consider that there are means
to publishing protected public information, and these means are available to
Alice and Bob.

4 A True Quantum KeyD:istribution Algo-
rithm

We are ready to describe now an algorithm that truly distributes a secret key
rather than enhances an already existing small secret key. The algorithm is
closely related to those presented in [3, 4]. It does not need a small secret key
shared by Alice and Bob in advance, because it does not authenticate any
classical channel. In fact, there is no classical channel at all that would allow
Alice and Bob to communicate classical binary information. The classical



information is public and therefore is published protectedly. Moreover, both
Alice and Bob are allowed to publish protected public information exactly
once. We will call this unique binary classical information a public posting.
The size of the public information is similar to the size of the secret key
to be established. Alice, at some point in the algorithm, will publish her
posting and likewise Bob will publish his posting. Remember that these
postings replace the classical communication channel of previous quantum
key enhancement algorithms, and thus they will contain useful information
pertaining to the protocol. Alice’s posting is denoted pp, and Bob’s public
posting is denoted ppp. The two postings are independent, both in value
and in time. Alice and Bob use these postings for authentication. Being
protected public information, the postings define the owner.

There is a concept in classical cryptography that has characteristics in
common with our public postings. The public key cryptosystem uses a private
and a public key to communicate securely. Bob uses Alice’s public key to
encode his message and Alice decodes the message using her private secret
key. The private key is known only to Alice and therefore its secrecy is
ensured. The case of the public key is more interesting. Alice publishes her
public key to be seen by everyone. Bob can see the public key and also Eve.
The key has to be published protectedly, meaning Eve cannot tamper with
or replace the key (i.e., masquerade as Alice). This quality of protectedness
is required of Alice’s public key, otherwise the system does not work.

The exact same property applies to the public postings in our algorithm.
They also have to have the same property of protectedness, in which Eve
cannot interfere. Some differences can be noted here. In the public key
cryptosystem, Alice’s public key can be used for an arbitrary number of
messages sent by Bob. In our algorithm, the public postings are unique for
one session of quantum key distribution. The content of the public posting
naturally varies from one key distribution session to another. Also, Alice’s
public key is known prior to any message communication between Bob and
Alice, whereas the content of the public postings are developed during the
key distribution protocol.

4.1 Formal Steps

The secret key secret to be distributed consists of n bits, secret = b1by...b,,.
The quantum communication channel consists of an array of entangled qubits.
The array has length [, it consists of [ qubit pairs denoted (g1, q18), (¢24,
@28) »--- (Qua, @) The array is split between Alice and Bob. Alice receives
the first qubit of each entangled qubit pair, namely ¢4, g24, ..., ¢4, and Bob
receives the second half of the qubit pairs, ¢, ¢25, ..., 5. The entanglement
of a qubit pair is of the type described earlier, namely, phase incompatibility.
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The array of qubits is unprotected. There is no guarantee that the qubits of
a pair are indeed entangled; indeed, Eve may have disrupted the entangle-
ment. Also, Eve may have masqueraded as either Alice or Bob, modifying
the entangled qubits, such that Alice’s qubit is actually entangled with a
qubit in Eve’s possession rather than Bob’s, and the same holds for Bob.
In case Eve has disrupted the entanglement or has masqueraded, any result
of the algorithm is discarded and the key distribution is attempted all over
again, from the beginning.

The size n of the secret key is less than half of the length [ of the initial
qubit array, n < % Indeed, % qubits, that is half of the qubits, are discarded
because the bases in which Alice and Bob measure are inconsistent 50% of
the time. From the remaining half of qubits a further arbitrary number is
sacrificed for security checking. The number of qubits thus sacrificed depends
on the desired degree of security.

The key distribution algorithm, like all quantum key distribution algo-
rithms, develops the value of the secret key during the computation. Im-
plicitly, the values of the public postings as well are developed during the
computation. There exists no knowledge whatsoever about the values of the
secret, key and public postings prior to running the algorithm.

Both Alice and Bob follow the same steps briefly denoted below:

1. Measure your entangled qubits
2. Compute your own public key and post it
3. Read your partner’s key and check for eavesdropping

4. Construct the value of the secret key

A detailed description of the algorithm follows.
Step 1

Alice works with the array of qubits qi4, ¢24, ..., ¢;4. Binary information
is rendered by the results of measuring. All measurements are performed
in the standard computational basis. Alice has two options for processing
her qubits. She either measures a qubit directly, or she transforms the qubit
by a Hadamard gate and measures afterwards. For each qubit, ¢;4, Alice
decides randomly on one of the two processing options. Notably, there is
no communication with Bob at this stage. To look at a concrete example,
suppose Alice has 10 qubits g1 4, 24, ..., g104. Qubits ¢;4 transformed by the
Hadamard gate are denoted Hg;4; for those measured directly the notation is
unchanged. Suppose that by random choice, Alice has processed her qubits
as follows:



Q1a, Hqoa, Hqza, qan, G54, 64, Haqra, Haga, qoa, qroa,

and suppose again, she has measured the following binary values:
1,1,1,0,0,0,0,1,1,1

In the meantime, Bob processes his qubits ¢, ¢35, ..., ¢1op following the
same policy. He too, has a random choice on each qubit: to measure directly
or to measure after a Hadamard transformation. Suppose again, that by
random choice, Bob has obtained the following array:

Haqig, Heop, 938, Hqun, 458, @68, 978, Hass, Hqyr, qioB,

with the values
0,1,0,1,1,0,1,0,0,1

We have seen in the previous section that two entangled qubits ¢;4q;5 =
(—[00)+|01)+|10)+|11)), consistently render opposite classical bit measure-
ments, if and only if exactly one qubit is measured directly and the other is
measured after a Hadamard transformation. It is of no consequence whether
the first qubit is Hadamard transformed or the second. The order of the
qubits is irrelevant, the important issue is that exactly one of the qubits is
passing a Hadamard gate. Thus, there are two “valid” measurement options:

1. gia, Hgip and
2. Hqa, qiB

These measurement scenarios are valid in the sense that they, and only
they, yield opposite classical bits after measurement. Each of Alice and Bob
knows with certainty the value the other person has measured. Such qubits
are considered valid by Alice and Bob and will be used to form the secret
key and to check for eavesdropping.

Measurements of the form

3. ¢ia, ¢;p and
4. Hqia, Hgip

cannot be used by Alice and Bob. For any value measured by Alice, the
value measured by Bob is still determined probabilistically. Qubits measured
according to these scenarios, will unfortunately have to be discarded. As the



scenarios 1, 2, 3, 4 are equally likely, 50% of the initial qubits will be discarded
because of probabilistically inconsistent measurements.

As mentioned, half of the [ qubits are discarded because of incompatible
measurement bases. The size n of the secret key is therefore n < é From the
remaining qubits, depending on the desired security level, some other qubits
are sacrificed for checking.

For the example of the 10 qubits given above, there are five valid qubit-
pairs:

(14, Hq18), (Hg34,43B), (044, Hus), (Hq74, ¢78), (@94, Haop),

carrying the values
(1,0),(1,0),(0,1),(0,1), (1,0)

Step 2

At this point Alice has no idea what measuring option Bob has employed
on his qubits. She does not know that qubits 1, 3, 4, 7, and 9 are valid. Bob
is in the same situation.

Therefore, Alice will publish her measuring strategy as part of her public
posting. Alice has measured [ = 10 qubits. As such, the first [ bits to be
published explain which qubits have been Hadamard transformed and which
were measured directly. If Alice has applied the Hadamard gate on qubit
¢;4 then the i-th qubit of the posting is set to 1, ppa(i) = 1. Otherwise, if
¢;4 has been measured directly, then the i-th qubit is 0, ppa(i) = 0. For the
example of 10 qubits, the first ten bits of Alice’s posting are

ppa(1..10) = 0110001100

The second part of Alice’s posting is used for security checking. A certain
fraction f, for example f = 40%, of the original qubits are made public for
Bob to check for eavesdropping. Alice chooses randomly 40% of her [ qubits.
For each chosen qubit, Alice publishes the index of the qubit and the binary
value she has measured. To continue our example, Alice chooses randomly
the indices 1, 2, 9, 10. She will publish index 1 with value 1, index 2 with
value 1, index 9 with value 1 and index 10 with value 1. Translated in binary
this is

(0001)1(0010)1(1001)1(1010)1

Alice’s final posting is the concatenation of the measuring (Hadamard / no
Hadamard) information and the qubit checking information:
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ppa = 0110001100 00011 00101 10011 10101

The length of the posting depends on the length [ of the qubit array
and also on the desired security level given by the fraction f. The following
formula computes the length of the posting:

length(ppa) =1+ f(1+logl)l

Here, [, the first term in the sum, refers to the measuring strategy; the
second term, f(1 + logl)l, represents the part that publishes the qubits for
eavesdropping checking.

Bob creates his posting following exactly the same steps. Bob’s measuring
strategy is encoded at the beginning of his public key. For our example, this
means

ppp(1..10) = 1101000110

Suppose Bob sacrifices qubits 1, 5, 7, 8 for checking. In his public posting
he will publish (0001)0(0101)1(0111)1(1000)0. Thus, Bob’s final posting, the
one that Alice and indeed everybody can see, is:

ppp = 1101000110 0001 O 0101 1 0111 1 1000 O

Both Alice’s and Bob’s keys, pps and ppp are made public and are avail-
able to everybody, including Eve.

Step 3

At this stage, Alice and Bob, in full knowledge of and consensus on each
other’s postings, will proceed to check for eavesdropping. Alice is looking
at Bob’s public posting ppp and learns the values Bob has measured on the
randomly sacrificed f = 40% of his qubits, here qubits 1, 5, 7, 8. Because of
the various measuring options, only half of the f = 40% qubits will be useful.
In our example, qubits 1 and 7 are measured with correct options, namely
exactly one Hadamard gate applied to an entangled pair. Alice can find out
the valid qubits by XOR~ing the measuring strategy of Bob with her own:

(0110001100) XOR(1101000110) = (1011001010)

which means qubits 1, 3, 4, 7, 9 have been measured well. Alice is left only
to compare the values of qubits 1 and 7 she has measured with the values
posted by Bob. With no malevolent interference, the binary values are oppo-
site. Thus, if these values are opposite, Alice concludes that the protocol was
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not influenced by Eve. Otherwise, Alice discards all information and starts
all over again. Bob performs the same checking. He will find the valid qubits
posted by Alice 1 and 9 and will compare Alice’s binary measured values with
his own. Thus Bob makes his own independent decision concerning eaves-
dropping. For reasonably large qubit arrays and a resonably large number
of qubits checked, Alice and Bob will reach the same conclusion concerning
the validity of the measured binary data. This conclusion effectively implies
the absence of eavesdropping/masquerading (assuming, of course, that the
qubits were initially entangled).

Step 4

At this stage, the possibility of eavesdropping has already been elimi-
nated. The qubits that have not been published by Alice or Bob in their
public keys continue to be unknown to everybody else. These unpublished
qubits form the secret key secret, that is, secret will be formed from Alice’s
recorded values, and Bob’s complementary values. In our ten qubit example,
valid unpublished qubits are qubits 4 and 9. Therefore, the secret key will
be Alice’s qubits 4 and 9:

secret = 01

Bob has to complement his qubits to reach the same value as Alice.

The size (length) n of the secret key depends on the initial length of the
qubit array [, as well as the fraction of discarded qubits f. Alice and Bob
have decided randomly which qubits to publish. In the worst case, the set of
qubits published by Alice is disjoint from the set published by Bob. Thus,
the fraction of unpublished qubits is 1 —2f. From these unpublished qubits,
only half (50%) are measured correctly. The length of the secret key is given
by the formula

1
=(1-2f)=Il
n=(1-2f)3
For our example
40 1
=(1-2—)=10=1
n= (1= 2955)510

The length of the secret key is 1 in the worst case. For our particular example
we could use 2 bits.
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5 Security Evaluation or Catching the Evil
Eavesdropper

Let us consider the algorithm described in the previous section, from the
point of view of the eavesdropper Eve. Eve wants to ideally gather knowl-
edge about the value of the secret key without being noticed by either Alice
or Bob. It is well known that an entangled qubit pair reveals no information
whatsoever unless the qubits are measured and the entangled state collapses.
Even so, the algorithm presented in this paper supposes that the entangle-
ment is not protected, only the public postings are protected. This means
that the qubits are not guaranteed to be entangled. Eve may masquerade
and distribute qubit arrays of her own choice. It is of no advantage to Eve
to distribute entangled qubits, as she gains no knowledge about the future
secret, key from unmeasured entangled qubits. The best choice for Eve is to
distribute classical bits, or independent qubits in a known state.

The best Eve can do is to give Alice an array of classical Os:

q14G24---q1a = 00...0

and to Bob an array of H1:

¢18QoB...q = H1 H1...H1

All other possible arrays Eve could send to Alice and Bob are equivalent or
less advantageous than the arrays above. In particular, Eve will want to send
any pair (¢;a, ¢;p) that can be measured correctly : (0, H1), (H0, 1), (1, HO),
or (H1,0). Any such pair is equally advantageous. For simplicity we will
discuss the arrays of 0s and H1s, respectively. For a pair (0, H1), Alice and
Bob apply randomly one of the four measurement options. The first correct
measurement option (¢;4, Hg;p) consistently yields complementary correct
results, namely (0,1). The second correct measurement option (Hg;a, ¢;p)
yields all four possible classical bit combinations (0,0), (0,1), (1,0), and
(1,1). Moreover, these combinations are equally likely. In one-half of the
cases, measurements will be (0,0) or (1,1). This cannot happen, if the qubits
are entangled and untouched. This situation reveals the intervention of Eve.
Thus, on any qubit checked for eavesdropping, there is a i X % = é chance
of detecting Eve.

As Alice and Bob respectively check a fraction f of the original array,
the expected number of times Eve is detected, that is, the expected detection
rate, is

1
expected_detection_rate = 3 x fxl
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For our example, the expected detection rate is

expected_detection_rate = L X ﬂ x 10 = E =50%
8 100 2
Eve is caught 50% of the time. This expected detection rate is rather low
given the toy example we have considered, but of course it can be increased
arbitrarily by increasing f and/or [.
Suppose we have an array of 1024 qubits and work with the same fraction

f = 1. In this case, the length of the final key is

40 |1
=(1-2—)-1024~ 1
n = (1= 275)310 00
This is a length that can be used in practice.

The number of qubits checked by Alice (and also by Bob) is
_ 1 40
checked_qubits = 3 X 100 x 1024 = 204.8

On each qubit, Eve can escape being caught with probability %. Thus

Eve can escape with probability %204'8 = 3.25 x 10726, This probability is

infinitesimal for any practical purposes.

6 Conclusion

The algorithm presented above shows clearly that quantum computation
has the means of producing secret information (a secret key) using public
information only. This is a major difference compared to existing quantum
protocols and also to classical cryptography. In our algorithm a true secret
key is developed such that the eavesdropper has no knowledge whatsoever of
the value of the key. In fact, Alice and Bob use only an insecure quantum
channel and protected public information.

In a more general sense, in cryptography, Alice and Bob want to share a
secret key to subsequently encode/decode messages. If the key is indeed se-
cret, then messages can be indeed exchanged secretly. Secrecy of the message
is ensured as long as the secret key remains totally secret and unbreakable.
If Alice and Bob meet in advance to exchange a secret key this subsequent
secret, communication is easily achieved. If they want to communicate in
secret without a prior meeting, the secrecy is much more difficult to achieve.
Classical solutions with good practical results are offered by public key cryp-
tosystems. Alice has both a private and a public key. The public key is used
by Bob to encrypt a message that can be decoded only by Alice’s secret key.
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The encryption function is a one-way function, for which it is not feasible to
compute the inverse, and hence the secret key. It is accepted though that with
enough computational power such an inverse can be obtained. This means
that the public key reveals some information about the decoding method.
The secret key becomes potentially breakable.

In quantum cryptography, to date, key enhancement assures that the
secret key obtained through enhancement protocols is unbreakable. Commu-
nication between Alice and Bob does not reveal any information about the
secret, key. But, as stated in the beginning, quantum key enhancement only
obtains a longer key from a shorter one.

This paper presents, for the first time, an algorithm that develops a secret
key and overcomes both disadvantages of classical cryptography and previous
quantum cryptography. The following are the properties of the secret key
produced by our algorithm.

1. The secret key is obtained without using a shorter secret key. This
is a major improvement over the previous quantum key enhancement
protocols.

2. The secret key is unbreakable. This is common to all previous quantum
protocols. The public postings of Alice and Bob do not reveal anything
about the value of the key. For Eve, any bit of the secret key still has
a 50% chance of being 0 or 1.

The main new idea of the protocol presented in this paper is to use pub-
lic postings to communicate rather than a classical channel. This idea has a
more general applicability. In fact all quantum key enhancement protocols to
date can be reformulated to work with public postings rather than classical
communication channels. And this applies to quantum protocols using en-
tanglement as well as protocols without entanglement. This is important, as
it shows the general capability of quantum cryptography to generate secret
information from public information. Protocols reformulated to use public
postings instead of classical channels, would not need the small secret key
for authentication and thus would become true quantum key distribution
protocols similar to the one presented here.

If entangled qubits are easily available, the secret key established by the
protocol can be arbitrarily long. Our algorithm thus allows Alice and Bob
to share a one-time pad without prior meeting. To use one time pads, tradi-
tionally, Alice and Bob meet in secret and exchange a long list of keys, each
as long as the message it is supposed to encrypt, and each to be used exactly
once.
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