
Methods for Evaluating Software Architecture: A
Survey

Banani Roy and T.C. Nicholas Graham

Technical Report No. 2008-545
School of Computing

Queen’s University at Kingston
Ontario, Canada

April 14, 2008

Abstract

Software architectural evaluation becomes a familiar practice in software en-

gineering community for developing quality software. Architectural evaluation

reduces software development effort and costs, and enhances the quality of the

software by verifying the addressability of quality requirements and identifying po-

tential risks. There have been several methods and techniques to evaluate software

architectures with respect to the desired quality attributes such as maintainability,

usability and performance. This paper presents a discussion on different software

architectural evaluation methods and techniques using a taxonomy. The taxon-

omy is used to distinguish architectural evaluation methods based on the artifacts

on which the methods are applied and two phases (early and late) of software life

cycle. The artifacts include specification of a whole software architecture and its

building blocks: software architectural styles or design patterns. The role of this

paper discussion is to review different existing well known architectural evalua-

tion methods in order to view the state of the art in software architectural evalua-

tion. This paper also concentrates on summarizing the importance of the different

evaluation methods, similarities and difference between them, their applicability,

strengths and weaknesses.

Contents

1 Introduction 7

2 Software Architecture and Related Terminology 10
2.1 Definition of Software Architecture . 10
2.2 Architectural Views . 11
2.3 Architectural Styles . 12
2.4 Design Patterns . 13
2.5 Software Quality and Quality Attributes 14
2.6 Relationship between Software Quality and Software Architecture . . . 15
2.7 Risks of Software Systems . 16

3 Software Architectural Evaluation 16
3.1 Challenges in Software Architectural Evaluation 17
3.2 Taxonomy of Software Architectural Evaluation 18

4 Early Evaluation Methods Applied to Software Architecture 19
4.1 Scenario-based Software Architecture Evaluation Methods 20

4.1.1 SAAM . 21
4.1.2 ATAM . 27
4.1.3 ALPSM and ALMA . 29
4.1.4 SBAR . 30
4.1.5 SALUTA . 31
4.1.6 SAAMCS . 32
4.1.7 ESAAMI . 34
4.1.8 ASAAM . 34
4.1.9 SACAM and DoSAM . 36
4.1.10 Comparison among the Scenario-based Evaluation Methods . . . 37

4.2 Mathematical Model-based Software Architecture Evaluation 39
4.2.1 Software Architecture-based Reliability Analysis 41
4.2.2 Software Architecture-based Performance Analysis 47

4.3 Analysis of Early Architecture Evaluation Methods 52

5 Late Evaluation Methods Applied to Software Architecture 53
5.1 Tvedt et al.’s Approach . 54
5.2 Lindvall et al.’s Approach . 56
5.3 Tool-based Approaches . 57

5.3.1 Fiutem and Antoniol’s Approach 57
5.3.2 Murphy et al.’s Approach . 57
5.3.3 Sefika et al.’s Approach . 57

5.4 Analysis of Late Architecture Evaluation Methods 58

3

6 Early Evaluation Methods Applied to Software Architectural Styles
or Design Patterns 58
6.1 ABAS Approach . 59
6.2 Petriu and Wang’s Approach . 61
6.3 Golden et al.’s Approach . 61
6.4 Analysis of Early Architectural Styles or Design Patterns Evaluation

Methods . 62

7 Late Evaluation Methods Applied to Software Architectural Styles or
Design Patterns 63
7.1 Prechelt et al.’s Approach . 63
7.2 Analysis of Late Architectural Styles or Design Patterns Evaluation Meth-

ods . 64

8 Summary and Discussion 65
8.1 Comparison among Four Categories of Software Architectural Evaluation 66

9 Open Problems 68

10 Conclusion 70

4

List of Figures

1 Relationship between software architecture and software quality 16
2 Common activities in scenario-based evaluation methods 22
3 Functional view of an example software architecture 24
4 An example flow description of a direct scenario 25
5 An example utility tree in an e-commerce system 28
6 Subset of relationship between usability patterns, properties and attributes 32
7 Evaluation framework of SAAMCS . 34
8 The six heuristic rules and their applications to obtain the aspects . . . 35
9 ASAAM’s tangled component identification process 36
10 CFG of an example application . 43
11 Software architecture-based performance analysis 47
12 An example execution graph . 49
13 Activities of a late software architecture evaluation method 56

5

List of Tables

1 Taxonomy of Software Architectural Evaluation 19
2 Two Example Scenarios Ordered by Consensus Voting 25
3 SAAM Scenario Evaluation for a MVC- based Architecture 25
4 SAAM Scenario Evaluation for a PAC-based Architecture 26
5 Evaluation Summary Table . 26
6 Summary of the Different Scenario-based Evaluation Methods 40
7 Summary of the Scenario-based Evaluation Methods Based on Different

Properties . 41
8 Overview of Different Path-based Models 45
9 Overview of Different State-based Models 46
10 Overview of Different Architecture-based Performance Analysis Approaches 52
11 Comparison among Four Categories of Software Architectural Evaluations 69

6

1 Introduction

Maintaining an appropriate level of quality is one of the challenging issues in developing

a software system. Over the past three decades, research has been going on to predict

quality of a software system from a high level design description. In 1972, Parnas

[96] proposed the idea of modularization and information hiding as a means of high

level system decomposition for improving the flexibility and understandability of a

software system. In 1974, Stevens et al. [126] introduced the notions of module coupling

and cohesion to evaluate alternatives for program decomposition. Currently, software

architecture has emerged as an appropriate design document for maintaining quality of

software systems.

Software architecture embodies the early design decisions covering several perspec-

tives. Generally, these perspectives are decomposition of a system’s functionalities in

the domain of interest, determination of the structure of the system in terms of com-

ponents and their interaction, and allocation of functionality to that architecture [72].

This decomposition and the interaction between components determine non-functional

properties of the application to a large degree. Moreover, they also have considerable

impact on the progress of the software project by influencing both the structure of the

developing organization and system properties like testability and maintainability.

Software architecture of a large system can be guided by using architectural styles

and design patterns1 [93, 15]. Architectural styles encapsulate important decisions

about the architectural elements and emphasize important constraints on their elements

and their relationships. An architectural style (e.g., pipes and filters, blackboard, and

repository) may work as a basis for the architect to develop software architectures in a

specific domain. Design patterns (e.g., observer, command and proxy) are the common

idioms that have been found repeatedly in software designs. Architectural styles and

design patterns are important because they encourage efficient software development,

reusability and information hiding.

Since architectural decisions are among the first to be taken during system devel-

opment, and since they virtually affect every later stages of the development process,

the impact of architectural mistakes, and thus the resulting economical risk, is high.

One of the solutions to cope with architectural mistakes is to evaluate the software

architecture of a software system against the problem statements and the requirement

specifications. Software architecture evaluation is a technique or method which deter-

mines the properties, strengths and weaknesses of a software architecture or a software

1In this paper architectural styles and design patterns are considered to be similar as both represent
codified solutions to problems which repeatedly arise in software designs[15]

7

architectural style or a design pattern.

Software architectural evaluation provides assurance to developers that their chosen

architecture will meet both functional and non-functional quality requirements. An

architectural evaluation should provide more benefits than the cost of conducting the

evaluation itself; e.g., Abowd et al. [1] write that as a result of architectural evaluation,

a large company has avoided a multimillion dollar purchase when the architecture of

the global information system they were purchasing was, upon evaluation, not capable

of providing desired system attribute to support a product line. Software architectural

evaluation ensures increased understanding and documentation of the system, detection

of problems with existing architecture, and enhanced organizational learning. While

there exist numerous evaluation techniques for evaluating architectures, all techniques

require the participation of stakeholders, the generation of requirement lists, and a

description of the software architecture with other relevant artifacts.

One of the major challenges in evaluating software architectures is that the de-

scription of software architectures and stakeholder requirements can rarely be defined

precisely (e.g., it is hard to define precisely what level of maintainability is required for

a software system). As a result, critical risks and problems in a software architecture

might not be discovered during the evaluation procedure. Architectural evaluation does

identify the incomplete architectural documentation and requirement specifications.

A number of evaluation methods have been developed which are applicable in differ-

ent phases of the software development cycle. The main two opportunities for evaluation

are before and after implementation [32]. As architectural styles and design patterns

are important in designing successful software systems, different evaluation methods

have also been developed explicitly to evaluate them. Evaluation of architectural styles

and design patterns employs qualitative reasoning to motivate when and under what

circumstances they should be used. This category of evaluation also requires experi-

mental evidence to verify the usage of architectural styles or design patterns in general

cases.

Considering different stages of the software development, the goal of the evalua-

tion and different variety of quality attributes, several methods and techniques have

been proposed for software architectural evaluation. Among those scenario-based ap-

proaches are considered quite mature [38, 7]. There are also attribute model-based meth-

ods [77] and quantitative models [128] for software architecture evaluation. However,

these methods are still being validated and are considered complementary techniques

to scenario-based methods. There are also empirically-based approaches [85] that de-

fine some relevant metrics for software architecture evaluation. The metrics are defined

8

based on the goal of the evaluation. Other approaches have been developed to system-

atically justify the properties of architectural styles [77] and design patterns [104, 58].

Quality goals can primarily be achieved if software architecture is evaluated with

respect to its specific quality requirements before its implementation [32]. The goal of

evaluating software architecture before its implementation is to discover problems of

the architecture in advance for reducing the cost of fixing errors at a later stage.

In order to fix problems and adapt to new requirements, software systems continu-

ously get changed. As a result, the implemented architecture deviates from the planned

architecture. The time spent on the planned design to create an architecture to satisfy

certain properties is lost, and the systems may not satisfy those properties anymore.

To systematically detect and fix the deviations, software architecture is evaluated af-

ter its implementation. Different tool-based [46, 94, 112] and metrics-based [133, 85]

evaluation approaches are used to evaluate the implemented architecture.

The goal of this paper is to review existing software architectural evaluation meth-

ods and to classify the methods in the form of a taxonomy. The taxonomy is used to

focus on the distinction and similarity between the methods for software architecture

evaluation and for architectural styles or design patterns evaluation. Evaluation of ar-

chitectural styles (or design patterns) requires a lot of experimental effort and reasoning

to determine the use and applicability of an architectural style for general cases. In con-

trast, software architecture evaluation determines the use of a software architecture for

specific cases. Therefore, it is comparatively easier to evaluate a software architecture

than an architectural style or design pattern.

Our proposed taxonomy also considers two phases of a software life cycle: early and

late. Early software architectural evaluation techniques can be used to determine the

best planned design for the project, whereas late architectural evaluation processes can

be used to ensure that the planned design is carried out in the implementation.

The organization of this paper is as follows: Section 2 defines the terminology used

in the context of the architectural evaluation methods. Section 3 explains what soft-

ware architectural evaluation is and describes its challenges. This section also explains

our proposed taxonomy of the software architectural evaluation methods. While Sec-

tion 4 presents and analyzes early software architecture evaluation methods, Section 5

presents and analyzes late software architecture evaluation methods. Section 6 and 7

discuss early and late software architectural styles or design patterns evaluation meth-

ods. Section 8 summarizes and compares the four categories of software architectural

evaluation. Section 9 summarizes the open problems and future work in the area of

software architectural evaluation, and finally, Section 10 concludes this paper.

9

2 Software Architecture and Related Terminology

This section first explores the definitions of software architecture and presents different

architectural views. Thereafter, software architectural styles and design patterns are

described. Then, this section discusses quality in software systems and explains the

relationship between software architecture and quality. Finally, this section concludes

by briefly explaining the risks in software system.

2.1 Definition of Software Architecture

Typically, three arguments have been used to motivate the process of software archi-

tectural design [15]. First, it provides an artifact that allows for discussion by the

stakeholders very early stage of the design process. Second, it allows for early assess-

ment or analysis of quality attributes. Finally, the decisions captured in the software

architecture can be transferred to other systems. While there are several definitions of

software architecture, a commonly used definition of software architecture is as follows

(Bass et al.[15]):

The software architecture of a program or computer system is the structure or struc-

tures of the system, which comprise software components, the externally visible proper-

ties of those components, and the relationships among them.

While this definition provides the structural aspects of the software architecture, the

definition given by the IEEE 2000 standard [63] emphasizes other aspects of software

architecture:

Architecture is the fundamental organization of a system embodied in its components,

their relationships to each other and to the environment and the principles guiding its

design and evolution.

This definition stresses that a system’s software architecture is not only the model of

the system at a certain point in time, but it also includes principles that guide its design

and evolution. Another well known definition of software architecture is as follows [119]:

A software architecture is an abstraction of the run-time elements of a software

system during some phase of its operation. A system may be composed of many levels

of abstraction and many phases of operation, each with its own software architecture.

At the heart of software architecture is the principle of abstraction: hiding some of

the details of a system through encapsulation in order to better identify and sustain

its properties. A complex system will contain many levels of abstraction, each with its

own architecture. An architecture represents an abstraction of system behavior at that

level, such that architectural elements are delineated by the abstract interfaces they

10

provide to other elements at that level [15].

2.2 Architectural Views

A number of case studies and theories based on practical experience have been pub-

lished, suggesting the need for multiple architectural views to capture different aspects

of a software architecture [32]. The effectiveness of having multiple architectural views

is that the multiple views help developers manage complexity of software systems by

separating their different aspects into separate views [7]. Several architectural views

share the fact that they address a static structure, a dynamic aspect, a physical layout

and the development of the system. Bass et al. [15] introduced the concept of architec-

ture structures as being synonyms to view. While different architectural view models

are proposed [73, 15, 10], Krutchen [79] presents a collection of system representations

that have been successfully used to depict the architecture information in several large

projects. These are as follows:

• The logical view: This view is called functional view. It describes the func-

tional characteristics of the software. This view is an abstraction of the system’s

functions and their relationships.

• The process view: This view describes concurrency and synchronization in the

software. When a complex system is deployed, it is typically packaged into a set of

processes or threads which are deployed onto some computational resources. This

process view is a necessary step for reasoning about what processes or threads

will be created and how they will communicate and share resources. This view is

also sometimes called concurrency view.

• The physical view: This view describes how the software components are

mapped onto the target environment.

• The development view: This view describes how the software is organized into

modules or compilation units during the development process.

These four views are combined by using another view called use case view that illus-

trates the four views using use cases, or scenarios. The use case view helps developers

to understand the other views and provides a means of reasoning about architectural

decisions.

11

2.3 Architectural Styles

An architectural style is the building block of a software architecture. New architectures

can be defined as instances of specific architectural styles [95]. Since architectural

styles may address different aspects of software architecture, a given architecture may

be composed of multiple styles. According to Garlen and Shaw [52], an architectural

style defines a family of systems in terms of a pattern of structural organization which

includes:

• the vocabulary of components and connectors that can be used in instances of

that style,

• a set of constraints on how they can be combined. For example, one might

constrain the topology of the descriptions (e.g., no cycles) and execution semantics

(e.g., processes execute in parallel), and

• an informal description of the benefits and drawbacks of using that style.

There are different varieties of architectural styles available today [52, 95]. Garlen

and Shaw [52] have proposed several architectural styles, such as Pipes and Filters,

Client-Server, Layered Style, Data Abstraction and Object-Oriented Organization, Im-

plicit Invocation, Repositories, and Interpreters. Each architectural style has defined

components, connectors and architectural constraints. For example, for the Pipes and

Filters architectural style, the components are the Filters, the connectors are Data

streams (pipes) and the main architectural constraint is that Filters should not share

state and should not know the identity of the upstream and downstream filters, and

should use a uniform component interface to exploit reusability.

Each architectural style has advantages and disadvantages. For example, one of

the important advantages of the Pipes and Filters style is that systems developed with

this style can easily be maintained and enhanced, but the disadvantage of this style

is that it is not good for handling interactive applications due its constraint. A filter

cannot interact with its environment because it is inherently independent and cannot

know that any particular output stream shares a controller with any particular input

stream. These properties decrease user-perceived performance. In contrast, the Data

Abstraction and Object Oriented style is good for interactive applications as it allows

that for an object to interact with another object, the identity of the object (unlike

Pipes and Filters) must be known. But this style is not suitable for system’s scalability

due to the side-effects of common object sharing. This type of tradeoff indicates the

necessity of different architectural styles to satisfy the desired quality requirements and

12

shows that one architectural style is not good for all situations. tectural style is not

good for all situations.

2.4 Design Patterns

In parallel with the software engineering research in architectural styles, the object-

oriented programming community has been exploring the use of design patterns and

pattern languages to describe recurring abstractions in object-based software develop-

ment. A design pattern is defined as an important and recurring system construct. The

design space of patterns includes implementation concerns specific to the techniques of

object-oriented programming, such as class inheritance and interface composition, as

well as the higher-level design issues addressed by architectural styles [85]. However,

the main difference between an architectural style and a design pattern is that a de-

sign pattern does not address the structure of a complete system, but only of a few

interacting components [134].

Gamma et al. [50] are famous for their book titled “Design Patterns: Elements of

Reusable Object Oriented Software” where 23 object-oriented design patterns have been

collected and documented. They classified these design patterns into three categories:

Creational design patterns which concern about creation of objects (such as singleton),

Structural design patterns which capture classes or object composition (such as adapter,

Model View Controller (MVC) and proxy), and Behavioral design patterns which deal

with the way in which classes and objects distribute responsibilities and interact (such

as observer and iterator). Design patterns do not change functionalities of a system, but

only the organization or structure of those functionalities. Applying a design pattern

generally affects only a limited number of classes in the architecture. The quintessential

example used to illustrate design patterns is the MVC design pattern. The MVC

pattern (Buschmann et al. [27]) is a way of breaking an application, or even just

a piece of an application’s interface, into three parts: the model, the view, and the

controller. This pattern decouples changes to how data are manipulated from how they

are displayed or stored, while unifying the code in each component. The use of MVC

generally leads to greater flexibility and modifiability. Since there is a clearly defined

separation between the components of a program, problems in each domain can be

solved independently. New views and controllers can be easily added without affecting

the rest of the application

13

2.5 Software Quality and Quality Attributes

In the IEEE Glossary of Software System Engineering Terminology [63], quality is

defined as the degree to which a system, a component, or a process meets customer or

user needs or expectations. The quality of the software is measured primarily against

the degree to which user requirements, such as correctness, reliability and usability are

met. The use of a well defined model of the software development process and good

analysis, design and implementation techniques are prerequisite to ensuring quality.

Measuring quality is challenging since measurement must consider the perspectives

of different stakeholders. Garvin [54] described quality from five different perspectives:

the transcendental view, which sees quality as something that can be recognized, but

not defined; the user view, which sees quality as fitness for the user’s purpose; the

manufacturer’s view, which sees quality as conformance to specification; the product

view, which sees quality as tied to inherent characteristics of the product; and the value-

based view, which sees quality as dependent on what a customer is willing to pay for

it. Pressman [105] mentions that usually software quality is “conformance to explicitly

stated functional and performance requirements, explicitly documented development

standards, and implicit characteristics that are expected of all professionally developed

software”.

The factors that affect quality are termed as quality attributes. There are differ-

ent categorizations of quality attributes. Quality attributes can be categorized into

two broad groups: attributes that can be directly measured (e.g. performance) and

attributes that can be indirectly measured (e.g., usability or maintainability). In the

latter category, attributes are divided into sub-attributes so that they can be measured

directly. To better explain the quality view, several quality models such as Bohem’s

Quality Model (1978) [24], McCall’s Quality Model (1997) [89], and ISO 9126 Quality

Model [65] have been proposed.

Some commonly used quality attributes in the architectural evaluation process are

as follows:

• Maintainability: Maintainability is the capability of the software product to

be modified. Modifications may include corrections, improvements or adapta-

tions of the software to changes in environment, requirements and/or functional

specifications.

• Usability: Usability is a metric to measure how comfortably and effectively an

end user can perform the tasks at hand. It involves both architectural and non-

architectural aspects. The non-architectural aspects include making user interface

14

clear and easy to use and the architectural aspect include for example, support

for cancelation and undo commands.

• Performance: Performance measures execution time and resource utilization.

Events occur and a system must respond to them. According to Smith and

Williams [122], performance refers to responsiveness: either the time required to

respond to specific events or the number of events processed in a given interval

of time. There are different architectural aspects of performance, such as how

much communication is necessary among components, what functionality has

been allocated to each component and how shared resources are allocated to each

component.

• Availability: Availability is concerned with system failure and its associated

consequences. It is defined as the relative amount of time the system functionality

is accessible. System breakdowns and malfunctions have a negative effect on

availability.

• Reliability: The mean amount of time that the software is available for use as

indicated by several sub-attributes, such as maturity, fault tolerance, and recov-

erability.

• Reusability: The extent to which a program or parts of the program can be

reused in other applications.

• Security: This attribute ensures the integrity and confidentiality of exchanged

information or information of a server by prohibiting intruders accessing unau-

thorized information.

2.6 Relationship between Software Quality and Software Ar-

chitecture

Software architecture is a key determinant of whether system quality requirements

can be met. In software intensive systems, software architecture provides a powerful

means to achieve the system qualities over the software life cycle [15]. Figure 1 shows

how software architecture can help predict the quality of a software system. First, the

relevant quality attributes are identified from the system’s requirement specification. In

the next step, these quality attributes are used to drive the software architecture which

is subsequently used as a blueprint to assess the system’s capabilities and qualities.

15

System specification

System quality attributes*

Software architecture

System capabilities and
software qualities

drive

drives

* Reliability
 Functionality
 Usability
 Maintainability

 …………

Determines level of quality

Figure 1: Relationship between software architecture and software quality (from Bergey
et al. [21])

The software architecture acts as a bridge to attain software quality specified in the

system’s requirements.

2.7 Risks of Software Systems

Risk is measured as the probability and severity of adverse effects that may arise in

the development, maintenance and operations of software [31]. Architectural risk man-

agement is the process of identifying and addressing software risks. Architectural risk

analysis includes identification and evaluation of risks and risk impacts, and recommen-

dation of risk-reducing measures. Architectural risks can be identified by investigating

whether a software architecture satisfies different quality attributes.

3 Software Architectural Evaluation

Software architectural evaluation is a technique which determines properties of software

architectures, or software architectural styles, or design patterns by analyzing them.

The architectural evaluation verifies architectural decisions against problem statements

and requirement specifications. It determines the degree to which a software architec-

ture or an architectural style satisfies its quality requirements.

Software qualities are not completely independent and may interact each other pos-

itively or negatively. E.g., modifiability has negative influence on performance and

positive affect on reliability and security. Architectural evaluation helps identify and

analyze these tradeoffs between quality attributes.

The architectural evaluation process takes software architecture documentation,

problem statements, and requirement specifications as inputs. Then, it generates cor-

rected, improved and organized software architecture documentation as output of the

16

evaluation process. Software architecture documentation contains, for example, differ-

ent architectural views, specification of architectural elements, connectors and other

important information about how architectural elements relate, and specifications of

constraints that impact architectural decisions. The team who conducts an architec-

tural evaluation comprises various kinds of stakeholders, such as project managers,

system administrators, architects, developers and users. The role of each stakeholder

is determined according to his/her domain knowledge.

3.1 Challenges in Software Architectural Evaluation

Software architecture evaluation is a flexible way to uncover problems in a software

architecture before the architecture has been committed to code. There are some chal-

lenges in architectural evaluation, including, for example:

• Software architectural evaluation requires an expert evaluation team to deal with

unpredictable risks along with the known risks. For example, analyzing archi-

tectural decisions for satisfying security requirement is challenging. No one can

accurately predict how often an attack will occur and how effectively security

mechanisms will mitigate the damage. However, an experienced security manager

in the evaluation team can estimate the risk and the effectiveness of proposed risk

mitigation strategies [28].

• There can be a lack of common understanding of the high level design [104]. Soft-

ware architects often do not document design rationale. When they do, they may

not follow a systematic way of expressing the rationale [130]. There is also no

standard notion to describe software architectures. However, currently Unified

Modeling Language (UML) is widely used as an architectural specification lan-

guage, but it is still not possible to express various architectural notations (e.g.,

quality attributes of interest) using UML.

• The quality requirements for a system may not be written properly or may not

be finished when the architecture is designed. For example, often a requirement

statement is written like “ the system shall be modifiable” which does not indicate

any particular change for which the system should be modifiable. As a result,

quality attributes sometimes become vague for architectural analysis.

17

3.2 Taxonomy of Software Architectural Evaluation

Software architectural evaluation can be conducted at different phases of software life

cycle. In this paper, we distinguish between early and late software architectural eval-

uations. A software architecture can be evaluated before its implementation (early

evaluation), or after its implementation (late evaluation). These evaluation techniques

can be categorized according to the type of design artifacts on which the evaluation

methods are applied. Some evaluation methods are intended to evaluate the whole

architecture, whereas some are intended to evaluate the building blocks of software ar-

chitecture, such as architectural styles or design patterns. Our taxonomy for software

architectural evaluation is shown in Table 1.

Early software architectural evaluation can be conducted on the basis of the speci-

fication and description of the software architecture, and other sources of information,

such as interviews with architects. Late software architectural evaluation is performed

based on metrics, for example, cohesion and coupling of architectural components. For

both early and late software architectural evaluations, Abowd et al. [1] have suggested

two basic categories: qualitative evaluation and quantitative evaluation.

Qualitative evaluation generates qualitative questions about software architecture

to assess any given quality, whereas quantitative evaluation uses quantitative measure-

ments to be taken from a software architecture to address specific software qualities.

Techniques for generating qualitative questions include scenarios, questionnaires, and

checklists. Scenarios appear to be the most utilized form for acquiring data [6]. Dif-

ferent scenario-based software architecture evaluation methods have been developed so

far [72, 73, 83, 92, 20, 127, 132, 142].

One of the important approaches studied in software architecture is the use of archi-

tectural styles and design patterns for handling the complexity at architectural level.

Software architects are encouraged to use pre-existing architectural styles and design

patterns to make the software systems more understandable, maintainable and reusable.

It is therefore important to evaluate the architectural styles and design patterns in or-

der to determine their strengths and weaknesses. Attribute Based Architectural Style

(ABAS) [77], Golden et al.’s method [58] and Prechelt et al.’s method [104] are some

of the existing approaches for evaluating architectural styles and design patterns.

18

Table 1: Taxonomy of Software Architectural Evaluation
Evaluation Applied to software architecture Applied to SAS - DP*

Category Name Category Name
SAAM [72] Scenario-based Software Archi-

tecture Analysis Method
ATAM [73] Architecture-based Tradeoff

Analysis Method
ALPSM [18] Architecture Level Prediction of

Software Maintenance
ABAS [77] -

ALMA [20] Architecture-Level Modifiability
Analysis

Attribute-
based Ar-
chitectural
Style

SBAR [17] Scenario Based Architecture
Reengineering

Scenario-
based

SALUTA
[49]

Scenario-based Architecture
Level UsabiliTy Analysis

Scenario-
based

Early SAAMCS
[83]

SAAM for Complex Scenarios CBAM [71]-
Cost Bene-
fit Analysis
Method

ESAAMI
[92]

Extending SAAM by Integration
in the Domain

ASAAM
[132]

Aspectual Software Architecture
Analysis Method

SACAM [22] Software Architecture Compari-
son Analysis Method

DoSAM
[127]

Domain-Specific Software Archi-
tecture Comparison Model
Shooman [120]

Path-based Krishnamurty and Mathur [78]
Yacub et al. [143] Golden et al.

[58]
Mathematical
model-based:
reliability

Cheung [30] Controlled
Experiment

State-based Kubat [80] Junuzovic and
Dewan [68]

Laprie [82]
Gokhale and Trivedi [56]

SPE [123] Software Performance Analysis
WS [138] Williams and Smith
PASA [137] Performance Assessment of Soft-

ware Architecture
Petriu and
Wang [99]

Mathematical
model-based:
performance

CM [35] Cortellessa and Mirandola Mathematical
model-based

BIM [9] Balsamo et al. Gomaa and
Menascé [59]

ABI [4] Aquilani et al.
AABI [2] Andolfi et al.

Metrics-
based

TLC [133] Tvedt et al.

LTC [85] Lindvall et al. Controlled
Experiment

Prechelt et al.
[104]

Late FA [46] Fiutem and Antoniol
Tool-based MNS [94] Murphy et al.

SSC [112] Sefika et al.
*Applied to software architectural styles or design patterns

4 Early Evaluation Methods Applied to Software

Architecture

Early software architecture evaluation methods are applied to a software architecture

before its implementation. Quality goals can primarily be achieved if the software19

architecture is evaluated with respect to its specific quality requirements at the early

stage of software development. When a software system is in its early development

stage, it is easy to change inappropriate architectural decisions, but at later stages,

reverting the changes, or noticing that the architecture is not appropriate for satisfying

non-functional quality attributes can be costly.

Four approaches have been developed for early software architecture evaluation:

scenario-based, mathematical model-based, simulation based and experience-based rea-

soning. The scenario-based approaches are flexible and simple [6, 7]. Many scenario-

based architecture evaluation methods have been presented in the literature. Math-

ematical model-based evaluation techniques for assessing the operational quality at-

tributes, such as reliability and performance are also well used, particularly in real-time

software systems. On the other hand, few techniques have been developed for simulation

and experience-based evaluation. In this paper, we cover the scenario and mathematical

model-based evaluation techniques.

4.1 Scenario-based Software Architecture Evaluation Meth-

ods

Scenario-based evaluation methods evaluate a software architecture’s ability with re-

spect to a set of scenarios of interest. Scenario is brief descriptions of a single interaction

of a stakeholder with a system [15]. A scenario expresses a particular quality attribute

to compensate for the lack of fundamental understanding about how to express that

quality attribute.

The scenario-based evaluation methods offer a systematic means to investigate a

software architecture using scenarios. These methods determine whether a software ar-

chitecture can execute a scenario or not. Evaluation team explores/maps the scenario

onto the software architecture to find out the desired architectural components and

their interactions, which can accomplish the tasks expressed through the scenario. If

the software architecture fails to execute the scenario, these methods list the changes to

the software architecture required to support the scenario and estimate the cost of per-

forming the changes. Scenario-based evaluation methods require presence of relevant

stakeholders to elicit scenarios according to their requirements. Stakeholders use sce-

narios to exchange their views and opinions, and come to a common agreement about

the architectural decisions.

For example, in a library automation system, a scenario might be: “Separate user

interaction tasks from data storage management ”. When the evaluation team executes

20

the scenario onto the software architecture, the evaluation team looks for architectural

components that offer the functionalities related to user interactions and data storage

and checks whether they are properly separated or not. If they are not, the evaluation

team marks the problem as poor separation of concerns and finds out the solution to

fix the problem, and estimates the effort required for the fixation.

Scenario-based methods can ensure discovery of problems in software architectures

from different point of views by incorporating multiple stakeholders during the scenario

elicitation process; e.g., system administrator can point out the maintenance problems,

whereas the end user can indicate the performance issues. In addition to technical

benefits, scenario-based evaluation methods produce social benefits since most involve

a brainstorming session to a wide group of stakeholders. The architecture works as a

communication vehicle for the stakeholders – a shared language that allows them to

discuss their concerns in a mutually comprehensible language.

However, there are challenges in scenario-based evaluation methods, e.g., what hap-

pens if important scenarios are missed so that the evaluation fails to discover critical

risks and problems in software architectures. There is no particular number of scenario

execution which can provide assurance that all the possible risks are identified and the

evaluation results are effective. Employing experienced stakeholders in the evaluation

session can mitigate this problem to some extent. Another challenge is that a scenario-

based method cannot give an absolute measurement about the software quality, e.g., a

scenario-based method cannot say how many person-days will be required to enact a

change in a software system.

While there exist many scenario-based evaluation methods, SAAM is considered as

the parent method for the rest of scenario-based evaluation methods. Many scenario-

based methods are refinement of SAAM, so in the following, we will first introduce

SAAM in detail and then will cite other methods that are developed based on SAAM.

We will also show how these methods differ from SAAM. Finally, we will compare

these scenario-based methods in two forms. First, we will compare them using different

comparison criteria. Then, we will investigate them using various properties of scenario-

based evaluation methods.

4.1.1 SAAM

The goal of SAAM (Scenario-based Software Architecture Analysis Method) is to verify

basic architectural assumptions and principles against documents that describe the

desired properties of an application. This analysis helps assess the risks inherent in an

architecture. SAAM guides the inspection of the architecture, focusing on potential

21

Describe software
architecture

Specify requirements and
design constraints

Elicit quality sensitive
scenarios from stakeholders

Evaluate
architecture
w.r.t. scenario

Prioritize scenarios

Interpret and
present results

Figure 2: Common activities in scenario-based evaluation methods

trouble spots such as requirement conflicts or incomplete design specification from a

particular stakeholder’s perspective. Additionally, SAAM helps compare candidate

software architectures.

Kazman et al. [72] first proposed SAAM in 1993 to compare competing software

architectures. Over the years, the prescribed steps of SAAM have evolved with the

increased experience in architectural analysis. In 2002, Clements et al. [32] have pre-

sented another version of SAAM in their book titled “Evaluating Software Architectures

Methods and Case Studies”. SAAM is easy to learn and easy to carry out with relatively

small amounts of training and preparation. According to Clements et al. [32], SAAM

is a good place to start if one has not done an architecture evaluation before. The main

inputs to the SAAM are business drivers, software architecture description, and quality

requirements. The outputs of this method include quality sensitive scenarios, map-

ping between those scenarios and architectural components, and the estimated effort

required to realize the scenarios on the software architecture. There are six activities

in the SAAM which are shown in Figure 2 and discussed as follows:

• Specify requirements and design constraints: In this step, SAAM collects

the functional and non-functional requirements, and design constraints (e.g., man

power, budget, time and language constraints). In a group meeting, the eval-

uation team collects these requirements from the stakeholders and specifies the

requirements. ATAT software system [32] was created as an experimental tool for

aiding architectural evaluation, and for managing and analyzing architecture. A

brief sample of the requirement specification for this software system is as follows.

The ATAT tool must include:

– Presentation support for both architectural (components and connectors)

22

and non-architectural (scenarios and stakeholders) elements,

– Analysis supports for establishing link between architectural decisions and

quality attributes, and guiding the users to find the right information,

– Process support for enacting processes and providing process guidance to

the user, and usability supports for interacting with people and exchanging

information.

• Describe software architecture: In this step, the candidate architectures are

described using a syntactic architectural notation that is well-understood by the

evaluation team. SAAM uses different architectural views, such as a functional

view, a physical view, a code view and a concurrency view. Architects also use a

component coordination view (like UML communication diagram) and dynamic

views (like UML sequence diagram) to understand the dynamic behavior of the

system. The architects use these architectural views as per the goal of the eval-

uation, e.g., a functional view can be used for reasoning about work assignments

and information hiding, whereas a process view can be used for reasoning about

performance [15]. As an example, the functional view of ATAT is shown in Figure

3. The four components in the functional architectural view are briefly described

as follows:

1. Process Support Components: responsible for enacting process, provid-

ing guidance to the user, and ensuring that the user is aware of the current

process state.

2. Architectural Editorial Components: responsible for viewing different

kinds of architectural and non-architectural information.

3. Central Data Repository: responsible for storing information.

4. Constraint Checker: checks for constraint violations.

For implementing the architectural editor components (each instance of the com-

ponent is shown in Figure 3), the architects can propose different candidate ar-

chitectures, such as the Model-View-Controller (MVC) pattern and the Presen-

tation Abstraction Control (PAC) pattern [32]. The architects describe all the

candidate architectures to the evaluation team and the other stakeholders. This

activity helps the evaluation team to justify which candidate architecture best

fits the implementation.

23

 KEY:

 Functionality Functional

 Dependency

Constraint
 Checker

Architectural
 Editor

Architectural
 Editor

Architectural
 Editor

Central Data
Repository

Process support
component

Figure 3: Functional view of an example software architecture (from Clements et al.
[32])

• Elicit scenarios: Scenarios are elicited with the presence of the relevant stake-

holders. The scenarios represent the tasks that are realized by the stakeholders -

end user, customer, maintainer, developer and architect. Stakeholders exchange

their opinions through a brainstorming session and create a representative set

of scenarios that addresses relevant quality attributes. The effectiveness of the

SAAM analysis more or less depends on quality of the elicited scenarios. Scenarios

should capture many things, such as all the major uses of the system, users of a

system, anticipated changes in the system and the qualities that the system must

satisfy now and in the foreseeable future. The processes of scenario development

and architectural description are related and iterative (see Figure 2). As more

architectural information is collected and shared, more meaningful scenarios are

surfaced by the stakeholders.

• Prioritize Scenarios: The stakeholders prioritize scenarios according to their

importance. This allows the most important scenarios to be addressed within the

limited amount of time available for evaluation. The importance of the scenarios

depends on the opinions and concerns of the stakeholders. A sample outcome of

this scenario prioritization activity for the ATAT software architecture evaluation

is shown in Table 2.

• Evaluate architectures with respect to scenarios: In this step, the impact

of the scenarios on software architectures is explored. The evaluation team esti-

mates the changes and the effort needed to realize the scenarios. SAAM classifies

two types of scenarios: indirect scenarios, which cause modifications to the archi-

tecture and direct scenarios, which do not. In the case of a direct scenario, SAAM

24

Table 2: Two Example Scenarios Ordered by Consensus Voting
Scenario
no.

Scenario description Votes

7 Change the underlying LAN for communication to a WAN 14
8 Change the relationships between data items to be main-

tained (e.g. add the ability to associate scenarios with
stakeholders)

11

C1 C4 C5 D3 C7 C9

[1] C: init_ops

[2] C: txt_patterns

[3] C: invoke_txt

[4] D: get_ids

[5] D: do_cty

[6] C:invoke_ccj

[7] D: I ccj_patterns

C10

Figure 4: An example flow description of a direct scenario [116]

checks how the scenario can be executed by the architecture. Figure 4 shows a

sample flow diagram to map a direct scenario onto the architecture. Each col-

umn in the diagram represents an architectural component. An arrow between

columns represents either a flow of information (labeled D in the diagram for data

connection) or a control relationship (labeled C).

In the case of an indirect scenario, SAAM predicts the architectural changes that

the scenario will require. A change to the architecture means that either a new

component or connection is introduced or an existing component or connection

requires a change in its specification. SAAM also estimates the cost of performing

such changes. A sample scenario evaluation results and effort estimations for the

two scenarios of Table 2 for the MVC-based candidate architecture is shown in

Table 3. Similar evaluation results for the PAC-based architecture are shown in

Table 4.

Table 3: SAAM Scenario Evaluation for a MVC- based Architecture
Scenario
no.

Scenario
type

Elements requiring
change

No. of changed/added
components

Effort for changes
(estimate)

7 Indirect Model, interface to
data repository

3 1 person- month

8 Indirect Model, controller 3 1 person week

• Interpret and present results: At the end of the architecture evaluation with

respect to the scenarios, SAAM interprets the evaluation results according to the

25

Table 4: SAAM Scenario Evaluation for a PAC-based Architecture
Scenario
no.

Scenario
type

Elements requiring
change

No. of changed/added
components

Effort for changes
(estimate)

7 Indirect Abstraction, inter-
face to data repos-
itory

1 1 person- month

8 Indirect The ATAT-Entity
PAC agent for sce-
narios and stake-
holders

2 1 person week

evaluation goals. For the indirect scenarios, SAAM determines the coupling of the

architectural components by means of the scenario interactions. If two or more

unrelated scenarios cause changes to the same components, SAAM determines

that the components are tightly coupled, i.e. exhibit poor separation of concerns.

SAAM also determines the cohesion of the architectural components. If an indi-

rect scenario affects multiple components, SAAM decides that the architectural

components are loosely cohesive i.e. the concerns are distributed. If the goal of

the evaluation is to compare multiple candidate architectures, SAAM compares

the scenario interaction results, and summarizes the comparison decisions in a

table for each candidate architecture, e.g. Table 5 shows that for the scenario 8

(shown in Table 2), the PAC-based architecture is better than the MVC-based

architecture.

Table 5: Evaluation Summary Table
Scenario no. MVC PAC

7 0 0
8 - +

+: better, -: worse, and 0: no significant difference

Finally, the evaluation team creates an organized written document putting to-

gether the elicited scenarios, specification of the software architectures, scenario

mapping results, and other important findings and their opinions about the can-

didate software architectures. Finally, the evaluation team may present the eval-

uation results.

SAAM has been applied to numerous case studies: global information systems,

air traffic control, WRCS (a revision control system), user interface development en-

vironments, Internet information systems, keyword in context (KWIC) systems, and

embedded audio systems [116, 32]. SAAM has identified different design problems in

these systems and provided proper guidelines to fix them. For example, while evaluating

26

architecture of WRCS, which allows project developers the ability to create archives,

compare files, check files in and out, create releases, and back up to old versions of files

system, SAAM identified several limitations in achieving the desired portability and

modifiability. Thus, a major system redesign was recommended. The senior develop-

ers/manager found it important and useful, whereas the other developers regarded this

as just an academic exercise [116]. Another good example is the evaluation of a Global

Information System’s (GIS) architecture. SAAM revealed that the GIS’s architecture

was inappropriate for the context in which the company wanted to use it. Therefore, the

company stopped buying the GIS from the supplier, which saved an investment of tens

millions of dollars [116]. SAAM evaluation helped greatly to increase the customer’s

understandings of the supplier’s architecture and direct scenarios played a crucial role

in helping the customer to determine the suitable level of detail for the architectural

representation. However, although SAAM is a well validated and widely used method,

it has several limitations. In the following, we discuss the limitations of the SAAM

while presenting other methods that have evolved to address these limitations.

4.1.2 ATAM

SAAM does not consider interactions amongst competing quality attributes. SAAM

evaluates software architecture without considering that improvement of one quality

attribute often comes at the price of worsening one or more of the others i.e. an archi-

tectural decision can affect two quality attributes in an opposite manner. For example,

the performance and availability of the client-server architectural style are sensitive to

the number of servers considered in the architecture. Both performance and availabil-

ity can be increased if the number of servers is increased. However, this architectural

decision can negatively impact the security of the system, because increasing number

of servers, increases potential points of attack and failures. Therefore, performance

and availability trade off when determining number of servers. ATAM (Architecture-

based Tradeoff Analysis Method) has evolved as a structured way for understanding

the tradeoffs in software architecture. ATAM provides a principled way to evaluate the

fitness of a software architecture with respect to multiple competing quality attributes.

ATAM activities are more structured and complex than those of SAAM. ATAM

consists of nine activities, where some of the activities are executed in parallel. The new

three activities are: present ATAM, identify the architectural approaches and present

ATAM evaluation results. Although the other six activities of ATAM that appear to be

similar as SAAM at a coarse grained level, the activities are different at a fine grained

level.

27

(L, H) Credit Card transactions are
secure 99.999% of time.

(L, H) Customer database
authorization works 99.999% of time

Utility

Security

Modifiability

New Product
Categories

Change COTS

Data
Confidentiality

Data Integrity

(L, H) Add CORBA middleware
in <20 person months

(H, L) Change Web user
interface in <4 person-weeks

Figure 5: An example utility tree in an e-commerce system (adapted from Clements et
al. [32])

ATAM uses a utility tree to capture the high priority scenarios from the relevant

quality attributes. The utility tree provides a mechanism for directly and efficiently

translating the business drivers of a system into concrete scenarios with priorities. The

prioritization may be between a 0 to 10 scale or may use relative ranking, such as

High (H), Medium (M) and Low (L). Participants prioritize the utility tree along two

dimensions: (1) by the importance of each scenario to the success of the system and (2)

by the degree of difficulty posed by the achievement of the scenario, in the estimation

of the architect.

Figure 5 shows an example utility tree for an e-commerce system. In this system,

two of the business drivers can be stated as: Security is central issue to the success

of the system since ensuring the privacy of our customers’ data is utmost importance

and Modifiability is the central to the success of the system since we need to be able to

respond quickly to an evolving and a competitive market place. In Figure 5, these two

business drivers are refined into two specific and concrete quality attributes: security

and modifiability. The attributes are then decomposed into general scenarios. After

that concrete scenarios are derived from the generalized scenarios. Finally, the concrete

scenarios are prioritized.

Architects describe the software architecture using Kruchten’s 4+1 views [79]. The

architects may also employ other architectural views, such as a dynamic view, show-

ing how systems communicate, a system view, showing how software is allocated to

hardware, and a source view, showing how components and systems are composed of

objects. Additionally, the candidate architectures are described in terms of the archi-

tectural elements that are relevant to each of the important quality attributes. For

example, according to Kazman et al. [73], voting schemes are an important element for

reliability; concurrency decomposition and process prioritization are important for per-

formance; firewalls and intruder models are important for security; and encapsulation

28

is important for modifiability.

ATAM identifies existing architectural approaches and uses ABASs (Attribute Based

Architectural Style) to analyze them with resect to quality attribute specific questions.

The ABASs offer attribute specific-frameworks to illustrate how each architectural de-

cision embodied by an architectural style affects the achievement of a quality attribute.

For example, a modifiability ABAS helps in assessing whether a publisher/subscriber

architectural style would be well-suited for a set of anticipated modifications. Using the

ABASs, ATAM can support other techniques like mathematical models to evaluate the

architectural approaches, because the ABAS for a particular quality attribute offers an

analytic model, which can be either quantitative or qualitative, to assess a particular

quality attribute.

During the analysis, the ATAM determines sensitivity points, the architectural deci-

sions that are sensitive to achieve quality attributes. It then determines tradeoff points

by identifying sensitivity points that affect the same quality attributes. In the client-

server architectural style, the architectural decision of the number of servers is treated

as a tradeoff point as the decision is sensitive for both the performance and security.

The architectural risks are identified when no satisfactory value of the response for an

action is obtained from the architectural approaches, e.g. some assignments of process

to the server result in unacceptable values of the response which is a risk [73].

At the end of the analysis, the evaluation team lists the architectural approaches

relevant to the utility tree, the analysis question(s) associated with each approach, the

architects’ responses to the questions, and the identified risks, non-risks, sensitivity and

tradeoff points.

ATAM is a well studied method. Several ATAM evaluations have been conducted

over the past several years. The members of the Software Engineering Institute (SEI)

[114], creators of ATAM, have taken various steps to validate ATAM. Recently, Bass et

al. [14] have published a technical report which presents 18 ATAM evaluations.

4.1.3 ALPSM and ALMA

SAAM and ATAM offer generalized frameworks for addressing multiple quality at-

tributes. In contrast, ALPSM (Architecture-Level Prediction of Software Maintenance)

[18] and ALMA (Architecture-Level Modifiability Analysis) [20] are specifically devel-

oped to address the maintainability quality attribute. The goal of ALPSM is to predict

the maintenance effort required to address a change scenario. ALMA extends ALPSM

to address risk assessment and comparison of candidate architectures.

Both of these methods require access to the maintainers. The maintainers collect

29

change scenario to be used in the analysis. ALMA and ALPSM measure the cost of

enacting a change scenario in terms of its impact on the size of the system’s components.

ALMA suggests three alternative techniques for estimating the size of components.

Total maintenance effort is predicted by summing up the size of components multiplied

by the weights of scenarios. Scenarios are assigned weights depending on their priorities.

ALMA also suggests for consideration of ripple effects [85] in order to fine tune the

estimation result.

ALMA has been applied to several systems software architectures, such as telecom-

munication systems, information systems, embedded systems, and in the medical do-

mains. It is considered to be a mature method.

4.1.4 SBAR

SAAM uses scenarios to assess the development-time quality attributes. It provides

no techniques for assessing operational quality attributes. Bengtsson and Bosch [17]

proposed the SBAR (Scenario-Based Architecture Reengineering) method to assess op-

erational quality attributes. SBAR provides four evaluation techniques: scenario-based,

mathematical model-based, simulation-based and experience-based reasoning. ATAM

also supports multiple evaluation technique. But SBAR differs from ATAM since SBAR

offers different techniques for transforming an architecture. However, when SBAR uses

scenario-based evaluation technique, it is basically similar to SAAM, but add architec-

ture transformation steps.

The goal of SBAR is to define Domain Specific Software Architecture (DSSA). The

DSSA provides a reusable and flexible basis for instantiating measurements. In this

method, an initial version of a software architecture is designed. Then it is evaluated

with respect to the quality requirements by using the technique suitable for a partic-

ular quality attribute. The estimated values of the quality attributes are compared

to the values in the specification. If these are satisfactory then the architecture re-

engineering process is finished, otherwise the architecture transformation is performed.

Five architecture transformation techniques: impose architectural style, impose archi-

tectural pattern, apply design patterns, convert quality requirements to functionality,

and distribute requirements are proposed to re-engineer the software architecture. The

transformation process continues until all non-functional requirements are satisfied as

much as possible.

When SBAR uses scenario-based technique to assess development-time quality at-

tributes, it defines scenario for each quality attribute and maps them on software ar-

chitecture. SBAR proposes two alternative manners for the assessment: complete and

30

statistical. In the first approach, a set of scenarios is defined that altogether cover the

concrete instances of the software quality. For example, for reusability, all the scenarios

that are relevant to reuse the architecture or parts of it are captured. If the architec-

ture can satisfy all the scenarios without problems, the reusability of the architecture

is optimal. The second approach is to define a set of scenarios that is a representative

sample without covering all possible cases. The ratio between scenarios that the ar-

chitecture can handle and scenarios not handled well by the architecture provides an

indication of how well the architecture fulfils the software quality requirements. Both

approaches, obviously, have their disadvantages. A disadvantage of the first approach

is that it is generally impossible to define a complete set of scenarios. The definition

of a representative set of scenarios is the weak point in the second approach since it is

unclear how does one decide that a scenario set is representative.

SBAR has evolved through its application in three projects: fire-alarm systems [25],

measurement systems [72] and dialysis systems [17].

4.1.5 SALUTA

SAAM and ATAM provide generalized frameworks for assessing quality attributes.

Folmer et al. proposed SALUTA (Scenario-based Architecture Level UsabiliTy Analy-

sis) [49] as a specialized framework directed towards the assessment of usability quality

attributes. SALUTA is the first method to assess usability before the implementation

of a software architecture [47]. However, there are several earlier works [16, 13, 69, 49]

attempted to link usability with software architecture.

SALUTA does not use any specific architectural view to describe a software architec-

ture. It extracts two types of information from the software architecture: (1) usability

patterns, the design patterns used to solve a particular scenario and (2) usability prop-

erties, the architectural decisions that affect the usability attribute. Usability patterns

and properties are identified by analyzing the software architecture, using functional

design documentation, and interviewing software architect(s).

SALUTA divides usability into four sub-attributes: satisfaction, learnability, ef-

ficiency and reliability. SALUTA elicits usage scenarios from usability requirement

specifications. These scenarios represent different use of a system for different types of

users and context of use. Using these usage scenarios, SALUTA creates usage profile

that represents the required usability of the system. To create a usage profile, users,

their tasks and context of use are identified for each usage scenario. The usability

sub-attributes are quantified to express the required usability of the system for each

usage scenario. For example, consider a usage scenario described by Folmer et al. [49]:

31

Usability properties

 Guidance

 Explicit user control

 Feedback

 Error management

Usability Patterns

 Wizard

 Undo

 Alert

 Progress indicator

 Solution domain

Usability attributes

Satisfaction

Learnability

Efficiency

Reliability

 Problem domain

Figure 6: Subset of relationship between usability patterns, properties and attributes
(adapted from Folmer et al. [48])

“every page should feature a quick search which searches the whole portal and comes up

with accurate search results”. The underlying requirement of this scenario is that the

searching task should be done quickly and accurately. Thus, for this scenario, SALUTA

assigns higher values to the efficiency and reliability sub-attributes than those of learn-

ability and satisfaction. After that, SALUTA extracts usability patterns and usability

properties from the candidate architectures. It determines the hierarchical relationship

among usability attributes, usability properties and usability patterns shown in Figure

6. In this way, SALUTA relates the problem domain with the solution domain.

These hierarchical relationships work as a framework to find a solution for satisfy-

ing a particular usability sub-attribute. For example, the Undo and Cancel usability

patterns can be used to implement the error management usability property, which in

turn satisfies the efficiency and reliability sub-attributes. Each usage scenario is ana-

lyzed in terms of the usability patterns and properties that it affects. For example, if

undo affects a given scenario then the relationships of the undo pattern with usability

are analyzed to determine how well that particular scenario is supported. For each

scenario, the results of the support analysis are expressed using quantitative measures.

For example, support may be expressed on a five level scale (++, +, +/-,-,–).

SALUTA is a new method. Folmer et et al. have applied SALUTA to three case

studies: eSuit, a web based enterprise resource planning (ERP) system; Compressor, a

web based e-commerce system; and Web platform, a web based content management

system (CMS).

4.1.6 SAAMCS

SAAM and ALMA do not provide any special framework to handle complex scenar-

ios that are hard to implement. Thus, these methods may not expose the limits or

32

boundary conditions of a software architecture by handling possibly implicit assump-

tions. ATAM defines exploratory scenarios to address complex scenarios. But ATAM

does not provide specific factors that can make scenarios complex to implement. Lass-

ing et al. [83] proposed the SAAMCS (SAAM for Complex Scenarios) to expose the

boundary conditions of an administrative system’s architecture with respect to flexibil-

ity. SAAMCS defines a class of scenarios that are possibly complex to realize. These

scenarios are defined according to three factors that influence the complexity of scenar-

ios. These factors are: level of impact of the scenario on the software architecture; need

for coordination between different owners, and presence of version conflicts. SAAMCS

analyses the software architecture by measuring at what level the software architecture

affects these factors to address the complex scenarios.

The first factor, level of impact of the scenario on the software architecture, is used

to estimate the effects of a scenario at the micro and macro-architecture levels. Micro-

architecture refers to present the internal structure of the system, whereas the macro-

architecture defines the role of the system in its environment. Macro-architecture is

considered for the system which is integrated with other systems. A system’s envi-

ronment becomes increasingly complex due to the interaction with other systems. For

both types of architectures, four impact levels are possible: 1) the scenario has no

impact; 2) the scenario affects one component; 3) the scenario affects multiple compo-

nents; and 4) the scenario affects the whole software architecture, i.e. both micro and

macro-architecture.

The second factor, need for coordination between different owners, is based on the

premise that scenarios affecting components that belong to different owners are inher-

ently more complex to realize than those whose impact is limited to the components of a

single owner. Having multiple owners for a component requires additional coordination

between the various parties.

The third factor, presence of version conflicts, is important, because a scenario

that leads to different versions of architectural components is hard to realize. Such

scenarios may cause changes to an architectural element that might be unaffected in

earlier versions. Four levels of difficulties related to versions are defined: 1) No prob-

lem with different versions; 2) The presence of different versions is undesirable, but

not prohibitive; 3) The presence of different versions creates complications related to

configuration management; and 4) The presence of different versions creates conflicts.

After analyzing a software architecture, SAAMCS uses a measurement instrument

to score the response of the software architecture for each factor. A sample of the

measurement instrument is shown in Figure 7.

33

Macro architecture level Micro architecture level Initiator

of
scenario

Impact
level

Multiple
owners

Version
conflict

Impact
level

Multiple
owners

Version
conflict

Scenario 1 Unit A 3 + 3 1 - 3
Scenario 2 Unit B 3 + 4 2 + 1
…… ….. …… …… …… …… …… ……

Figure 7: Evaluation framework of the SAAMCS (from Lassing et al. [83])

4.1.7 ESAAMI

Software architecture evaluation is a human and knowledge-intensive activity that can

be expensive practice if each evaluation starts from scratch. SAAM does not put any

emphasis on knowledge management for reusability, e.g., SAAM does not provide tem-

plates for scenarios allowing their future reuse. Molter et al. [92] proposed ESAAMI

(Extending SAAM by Integration in the Domain) to integrate SAAM in a domain-

centric and reuse-based development process. ESAAMI offers packages of analysis tem-

plates which represent the essential features of the domain. The analysis templates

collect reusable products, e.g., proto-scenarios that can be deployed in the various

steps of the method. Proto-scenarios are generic descriptions of reuse situations or

interactions with the system.

4.1.8 ASAAM

SAAM and its successor methods focus architectural concerns that can be localized cur-

rent architectural abstractions. However, there are some concerns at the architectural

design level that inherently cut across multiple architectural components and therefore,

cannot be localized. SAAM and other methods do not address these “crosscut” con-

cerns (which are also called aspects). As a result, the potentially important aspects

might not be considered during architectural design and hence, might not be solved

in the implementation. This may lead to poor separation of concerns in the system,

and may increase maintenance cost and effort. Tekinerdogan [132] proposed ASAAM

(Aspectual Software Architecture Analysis Method) to identify, specify and evaluate

aspects at the architectural design level. ASAAM is based on SAAM, but it enhances

and refines SAAM by incorporating architectural aspects during the analysis.

ASAAM works in two phases. In the first phase, it identifies aspects. In the second

phase, it classifies different types of components based on how they handle aspects. In

these two phases ASAAM is based on five artifacts: architecture, problem description,

scenario, aspect, and component. The two phases are described as follows:

34

R0:
Develop SCENARIO artifacts based on PROBLEM DESCRIPTION
R1:
IF SCENARIO does not require any changes to architectural
description
THEN SCENARIO becomes DIRECT SCENARIO
R2:
IF SCENARIO requires changes to one or more ARCHITECTURAL
COMPONENTs
THEN SCENARIO becomes INDIRECT SCENARIO
R3:
IF INDIRECT SCENARIO can be resolved after refactoring
THEN INDIRECT SCENARIO is DIRECT SCENARIO
R4:
IF DIRECT SCENARIO is scattered and cannot be localized in one
component
THEN DIRECT SCENARIO is ASPECTUAL SCENARIO
R5:
IF INDIRECT SCENARIO is scattered and cannot be localized in one
component
THEN INDIRECT SCENARIO is ASPECTUAL SCENARIO
R6:
Derive ARCHITECTURAL ASPECT from ASPECTUAL
SCENARIO

Scenario

Direct
Scenario

Indirect
Scenario

Aspectual
Scenario

Architectural
 Aspects

R1 R2

R1

R5 R4

R6

R7

Figure 8: The six heuristic rules and their applications to obtain the aspects (from
Tekinerdogan [132])

Identify aspects: ASAAM classifies direct and indirect scenarios (based on SAAM’s

classification of scenarios) into aspectual scenarios. Aspectual scenarios are those for

which the required changes to software architecture are scattered over many architec-

tural components, and therefore cannot be captured in a single component. Aspectual

scenarios are obtained by applying six heuristic rules on the direct and indirect scenar-

ios. An example, rule is “IF DIRECT SCENARIO IS SCATTERED AND CANNOT

BE LOCALIZED IN ONE COMPONENT THEN DIRECT SCENARIO IS ASPEC-

TUAL SCENARIO”. Architectural aspects are derived from these aspectual scenarios

by thoroughly analyzing the software architecture. Figure 8 shows how ASAAM obtains

aspects by applying the six rules.

Identify components: Like SAAM, ASAAM performs scenario interactions and

identifies the nature of the components. ASAAM defines 12 more rules to identify

different types of components, such as direct, indirect, cohesive, composite, tangled,

and ill-defined. The component identification process is shown in Figure 9. The rules

are defined based on different cases of scenario interactions. For example, for the rule

“R15: IF INDIRECT COMPONENT includes semantically distinct scenarios AND

cannot be decomposed THEN COMPONENT becomes TENTATIVE TANGLED COM-

PONENT”, the tentative tangled component is the intermediate artifact that helps to

identify tangled and ill-defined components.

After executing these heuristic rules for each component, related aspects are iden-

tified and the components are characterized more specifically. ASAAM is a newly

proposed method. It has been only applied in a window management system.

35

Tangled
component

Component

Direct
component Indirect

component

Cohesive
Component

R8 R9

R10

R12
R11

R16

Tentative tangled
component

Composite
Component

Ill-defined
Component

R13
R14

R15

R17

R7

Figure 9: ASAAM’s tangled component identification process (from Tekinerdogan [132])

4.1.9 SACAM and DoSAM

None of the above mentioned methods allow standard frameworks for comparing several

architectures. Most are focused on evaluating a single architecture at a given point

in time. Although, at the end of the evaluation procedure, these methods perform

comparison between candidate architectures, the comparison results are often highly

dependent on the person performing the evaluation. SACAM (Software Architecture

Comparison Analysis Method)[21] and DoSAM (Domain Specific Software Architecture

Comparison Model) [22] have evolved for providing the rationale for an architecture

selection process by comparing the fitness of candidate architectures.

SACAM, proposed by Bergey et al. [21], first derives criteria (e.g. how modi-

fiable a software architecture is) from requirement specifications. Then, the criteria

are expressed as quality attributes that are again refined into quality attribute sce-

narios. SACAM defines a standard architectural view (or an architectural style) and

specifies candidate architectures with respect to that standard view, so that they can

be compared at a common level of abstraction. SACAM then extracts metrics (such

as, number of modules containing communication protocol dependencies) from candi-

date architectural views on the basis of quality attribute scenarios. Then, compares

the metrics of all the candidate architectures, and scores their fitness. Based on the

scores, SACAM provides recommendations about the suitability of candidate architec-

tures. The recommendations help the developers to choose an appropriate product line

architecture.

As SACAM compares candidate architectures from different application domains,

it might be difficult to view them at the same level of abstraction. Therefore, Bergner

36

et al. [22] proposed DoSAM, restricting the scope of SACAM in a specific domain.

DoSAM creates a Domain Architecture Comparison Framework (DACF) which com-

prises five components. The first two components are common architecture blue print

and architectural services. While the common blue print architecture is treated as a

conceptual architectural model of an application domain, the architectural services are

used to describe the basic functionality and the purpose of the application domain in

an abstract manner. An abstract architectural service consists of a certain number of

hardware and software components, e.g., the data transfer service of a network-centric

system. These two components together form an abstract description schema for all

architectures in the application domain. An architectural style or a design pattern can

be exploited to meet the purpose of these two components (as with SACAM).

The third and fourth components of this framework are Relevant Quality Attributes

and the corresponding Quality Attribute Metrics. DoSAM elicits scenarios to illustrate

the relevant quality attributes. It determines the metric for each quality attribute; e.g.,

for the availability quality attribute, a relevant metric would be mean time to failure.

The last component of the DACF is Quality Computation Weights. This component

relates architectural services and quality attribute metrics. It is provided to express

the relative importance of a quality attribute metric on an architectural service for a

particular application. For example, the evaluation team might decide that availability

of the data transfer service is very important in a certain application domain.

Once the DACF is developed, first, concrete architecture evaluation is performed in

the domain of DACF. The concrete architecture is mapped to the common architecture

blue print for determining a set of components and their connections. In this step, one

or more high-level architectural overview diagrams are created and the architectural

services of the concrete architecture are identified. In the second step, architectural

services are examined and assessed with respect to identified quality attributes. This

is done by employing quality attribute metrics. Each of these metrics yields a single

evaluation result on a normalized scale from 0 to 100. In the third step, when all archi-

tecture services have been assessed with respect to all identified quality attributes, the

evaluation results are entered into a weighted quality computation matrix. Again, this

leads to a single, normalized evaluation result, characterizing the fitness of a candidate

architecture compared to others.

4.1.10 Comparison among the Scenario-based Evaluation Methods

In the previous section, we have provided an overview of several scenario-based evalu-

ation methods. While presenting the methods, we have explained how each method is

37

different from others, especially from SAAM. In this section, we provide a summarized

comparative study. We present two forms of comparison. First, we compare the meth-

ods using seven comparison criteria, which we perceive to be important in comparing

the methods. Second, we determine questions for investigating the methods. We limit

the answer to the questions to yes (’
√

’) or no (’X’), which will help show the similar-

ities and differences between various methods. The two different ways of comparing

scenario-based evaluation methods are discussed as follows.

Comparison criteria: We have determined seven comparison criteria to compare

ten scenario based evaluation methods. In the following we provide a brief description

of the comparison criteria.

• Specific Goal(s): Here, we specify the method’s goal. For example, one method

can check for the suitability analysis of an architecture while another method

might support architectural tradeoff analysis, usability analysis, maintenance

analysis, risk assessment and/or comparison of candidate architectures.

• Method’s Activities: Here, we show how a particular method performs its

evaluation from the beginning to the end of the analysis. Although most scenario-

based methods are similar at a coarse-grained level, there are significant difference

at a finer-grained level.

• Scenario Classification: Different methods classify scenarios differently. Here

we show the commonalities and differences between the scenario classifications of

different scenario-based methods. For example, some methods classify scenarios

as direct and indirect, while others employ use-case scenarios or growth scenarios.

• Scenario impact analysis: Different methods use different strategies for esti-

mating the impact of considered scenarios on a software architecture. With this

criterion we explore strategy that each method follows for estimating the impacts

of its scenarios. For example, one method might count the number of components

affected by a particular scenario, while another might use metrics for each quality

attribute.

• Approaches used: Although all the scenario-based methods follow the same

approach of using scenarios for evaluation and analysis, they elicit and apply the

scenarios in different ways. Moreover, depending on the target quality attribute(s)

and the goals of the analysis, some methods use hybrid approaches. For example,

one method might use both scenarios and mathematical models in its analysis.

38

• Objects analyzed: All the methods use software architecture documentation in

performing their analyses. However, the required level of details and the views

of the software architecture vary from one method to another. Some methods

require only the component -level architectural specification and the logical view

of the architecture for the analysis, while others may need detailed specifications

for different architectural styles, design patterns, and multiple architectural views.

• Target Quality Attributes: This criterion is used to check what quality at-

tribute(s) is/are targeted by a particular method. For example, some methods

target only one quality attribute (e.g., modifiability) while others target multiple

quality attributes (e.g., modifiability and performance).

Based on the above criteria we provide a comparative summary of the different

scenario-based evaluation methods in Table 6.

Comparison using some distinguishable questions: We use 19 properties to

characterize the 10 scenario-based evaluation methods. Each property is associated

with a question. If the answer to a particular question is yes for a method, we say that

the particular method supports the property, whereas if the answer is no, we say that

the method does not support the property. We use the symbol ’
√

’ if the answer is yes,

and the symbol ’X’ if the answer is no. As some methods partially support tools, we we

use the symbol ’P’ for those cases. The comparison among different methods is shown

in Table 7.

4.2 Mathematical Model-based Software Architecture Evalu-

ation

Most scenario-based software architecture evaluation methods (with the exception of

ATAM and SBAR) use qualitative reasoning for assessing development-time quality

attributes. However, to measure the fitness of the safety-critical software systems,

such as medical, aircraft, and space mission, it is also important to quantitatively

assess operational quality attributes. Therefore, a number of mathematical model-

based software architecture evaluation methods have been developed. These methods

model software architectures using well-known mathematical equations. Then, these

methods use the models to obtain architectural statistics, for instance, mean execution

time of a component. These architectural statistics are used to estimate operational

quality attributes. Reliability and performance are two important operational quality

attributes. To assess these two quality attributes a wide range of mathematical-models

39

Table 6: Summary of the Different Scenario-based Evaluation Methods
 Specific goals Activities Scenario

classification
Scenarios
impact
analysis

Approaches used Objects analyzed Addressed
QAs

SAAM Architectural
suitability and
risks analysis

Six activities, some
activities carried out
in parallel- includes
no preparation
activities

Direct and
indirect
scenarios

Counts the
number of
components
affected by
the scenarios

Scenario elicitation via
brainstorming with
stakeholders. Mapping
scenarios onto SAs to verify
functionality or estimate
change cost

Architectural
documentation,
especially, showing
the logical views

Mainly
modifiability
but can be
adapted for
others

ATAM Sensitivity and
tradeoff
analysis

Nine activities, some
activities carried out
in parallel; includes
preparation activities

Use-case,
growth and
exploratory
scenarios

Counts the
sensitivity
points and
tradeoff
points

Creation of utility tree to elicit
scenarios. Analysis of
architectural approaches using
analytic models to identify
tradeoff points and risks

Architectural
approaches or styles;
architectural
documentation
mainly showing
Kurcten’s 4+1

Multiple
QAs

ALMA Maintenance
cost prediction,
risk assessment,
architectures
comparison

Five, the scenario
elicitation activity
consists of six
activities, executed
sequentially; no
preparation activities

Change
scenarios

Estimates the
change of the
size of each
component

Scenario elicitation based on
the goals of the evaluation.
Mapping scenarios onto SAs
to estimate maintenance cost
considering ripple effects.

Architectural
documentation,
concerning the
system’s structure
comprising
components and
connectors (like the
logical view)

Reusability

SALUTA Usability
analysis

Four, executed
sequentially- no
preparation activities

Usage scenarios Qualitative
analysis

Usage profiles to articulate
usability requirements.
Scenario walkthrough to
analyze the extracted usability
properties and patterns.

Usability patterns,
usability properties
; No particular view
is recommended.

Usability

SBAR SA
reengineering
to achieve QAs

Three, executed
repeatedly; no
preparation activities

Development
and operational
scenarios

Qualitative
analysis

Quality assessment using one
of the four techniques and
architecture transformation

Initially created
architectural
documentation. No
particular view is
considered

Multiple
QAs

SAAMCS Developing
complex
scenarios to
achieve
domain specific
flexibility

Three, two executed
in parallel; no
preparation activities

Complex
scenarios

Same as
SAAM but
defines four
level of
impacts

Analysis of SAs to
determining the values of the
three factors that make
scenarios complex to
implement.

Micro -architectural
and macro-
architectural
documentation

Flexibility

ESAAMI Integrating
SAAM in a
domain specific
reuse based
development
process

Same as SAAM but
considers the
existence of reusable
knowledge base

Same as SAAM Same as
SAAM

Formulation of an analysis
template to collect reusable
products

Reusable software
architecture
documentation

Modifiability

ASAAM Architectural
aspect analysis

Same as SAAM but
includes the
architectural aspects
and tangled
components
identification.

Direct, indirect
and aspectual
scenarios

Qualitative
analysis

Architectural aspect
identification from direct and
indirect scenarios. Aspectual
scenarios interactions to
identify different
components, such as tangled
and ill-defined components

Same as SAAM Modifiability

SACAM Comparing
software
architectures
from different
domains

Six activities, one
executes repeatedly;
includes preparation
activities

Same as ATAM Determines
metrics

Collating comparison criteria ,
presenting candidate SAs at a
common architectural view,
and analyzing fitness of the
SAs w.r.t. to the criteria

 Same as ATAM Multiple
QAs

DoSAM Comparing
software
architectures
from a specific
domain

Six activities,
executed
sequentially; no
preparation activities

 Not performed Same as
SACAM

Creation of a DACF,
candidate architectures
mapping to the DACF,
assessment of QAs employing
metrics and comparing
architectures based on the
metrics values of the QAs

Architectural
documentation. No
particular view is
recommended.

Multiple
QAs

have been developed. In contrast, very few mathematical models exist for other quality

attributes, such as security.

In the following, we first discuss different approaches for assessing reliability of a

software architecture. Then, we discuss the approaches for predicting performance at

the architectural level.

40

Table 7: Summary of the Scenario-based Evaluation Methods Based on Dif-
ferent Properties (yes: ’

√
’), no: ’X’, and partial: ’P’

Methods

 Properties

SA
A

M

 A
T

A
M

SB
A

R

A
L

M
A

SA
A

M
C

S

E
SA

A
M

I

SA
L

U
T

A

SA
C

A
M

D
oS

A
M

A
SA

A
M

1 Addresses multiple attributes? √ √ √ X X X X √ √ X

2 Performs tradeoff analysis? X √ X X X X X X X X

3 Requires multiple views? X √ X X X X X √ √ X

4 Uses multiple evaluation techniques? X √ √ √ X X X √ X X

5

Predicts maintenance effort by estimating
the change of the size of the components?

X X X √ X X X X X X

6 Re-engineers software architecture? X √ √ X X X X X X X
7

Employs activities for Extracting
architectural styles or design patterns?

X √ X X X X √ √ √ X

8 Uses quantitative analysis? X √ X X X X X X X X
9 Requires a reference architecture? √ X X X X X X X √ X

10

Identifies architectural aspects and tangled
components?

X X X X X X X X X √

11 Validation has been done extensively? √ √ X √ X X X X X X

12 Provides tools support? P P X X X X X X X X

13

Provides a SA comparison framework for
different domains?

X X X X X X X √ X X

14

Provides domain-specific comparison
framework?

X X X X X X X X √ X

15 Encourages the reuse of domain
knowledge?

X √ X X X √ √ √ √ X

16

Uses metrics for different quality attributes? X √ X X X X X √ √ X

17 Involves goal selection? X X X √ X X X X X X

18

Provides framework for addressing
complex scenarios that are hard to
implement?

X √ X X √ X X X X X

19 Requires different types of stakeholders’
involvement?

√ √ X X X X X √ X √

4.2.1 Software Architecture-based Reliability Analysis

According to ANSI [3], a software system’s reliability is defined as the probability

of the software operating without failure for a specified period of time in a specified

environment. Reliability is defined in terms of the mean time between failures or its

reciprocal, the failure rate. Software failures may occur for several reasons: errors

and ambiguities in architectural design, carelessness or incompetence in writing code,

inadequate testing, incorrect or unexpected usage of the software or other unforeseen

problems [75, 124]. To reduce the probability of software failures, different reliability

41

models have been developed over the past two decades.

Early reliability models are based on reliability engineering, particularly hardware

reliability. Such approaches make use of extensive experience and provide advanced

mathematical formalism for building software reliability models. These models comple-

ment testing by providing an estimate of a program’s ability to operate without failure.

Software reliability growth models (SRGMs) [42, 139] fall into this category. SGRMs

characterize the behavior of a software system as a black-box. Only the system’s in-

teractions with the outside world are modeled, without taking into account its internal

structure. However, these models are applicable to the very late stages of a software

life-cycle, ignore information about reliability of the components from which a software

is composed, and do not take into consideration the architecture of the software [57].

With the widespread use of object-oriented systems design and web-based devel-

opment, the use of component-based software development is increasing. Software

components can be COTS (commercial-off-the-shelf), developed in-house, or developed

contractually. The whole application is developed in a heterogeneous fashion (multi-

ple teams in different environments), and hence it may be inappropriate to model the

overall failure process of such applications using existing SRGMs. These heterogeneous

systems, where components having different workloads and failure behaviors interact,

are now commonly used [101]. Thus, it is essential to predict the reliability of an ap-

plication by taking into account information about its architecture. The advantage

of these architecture based reliability models is that they help understand how a sys-

tem’s reliability depends on the reliability of its components and the reliability of the

components’ interactions.

Goseva-Popstojanova and Trivedi [103] classify approaches for architecture-based

software reliability assessment into three categories: state-based, path-based and addi-

tive. Earlier research efforts in this area concentrated on the state-based approaches

[30, 82, 30, 80, 57], whereas more recently path-based [120, 78, 143] and additive ap-

proaches [40, 141] have been proposed. Yacoub et al. [143] proposed a reliability estima-

tion model named Scenario-Based Reliability Analysis (SBRA) that exploits scenarios

to construct a probabilistic mathematical model called Component Dependency Graph

(CDG). These architecture-based reliability models [30, 82, 30, 80, 57, 120, 78, 143]

are white-box approaches that estimate software reliability by taking into account the

component structure of software architecture. These models calculate a system’s reli-

ability as a function of components reliability and components’ interactions reliability,

assuming that components and their interactions reliability are known. Therefore, these

models are applicable for a software architecture whose components’ implementations

42

1

2 4 3

5

7 8 9

6

10

P1, 2 P1, 4
P1, 3

P2, 3

P2, 5 P3, 5

P7, 2

P4, 5

P4, 6

P8, 4

P6, 9

P6, 7
P5, 8

P7, 9
P8, 10

P9, 10

P5, 7

Figure 10: CFG of an example application (adapted from Gokhale [57])

are available.

Roshandel et al. [107, 108] show that architecture-based reliability analysis should

not assume that components and their interactions reliability are known. They argue

that at the architectural level, the operational profile of a component may not be

available. They proposed a new technique to estimate reliability at architectural level

where implementations of architectural components are not available.

While there have been numerous software architecture-based reliability approaches,

all the approaches model the software architecture and its failure behavior. In the

following we discuss the general approach to model a software architecture and its

failure behavior.

Modeling Software Architecture: All the approaches model behavior of a soft-

ware architecture in terms of the interactions of its constituent components. The com-

ponents interact by transferring execution control from one to the other. During the

early design phase, each component is investigated to find its interactions with other

components. When the control flows between two components, it is described by non-

zero transition probability. Often a probabilistic Control Flow Graph (CFG) is used to

model the interactions of all components.

Figure 10 shows the probabilistic CFG of an example application. In the figure, each

node represents a component and edge represents flow of controls between components.

Pij is the probability that the control is transferred to component j upon the completion

of component i.

43

Modeling Failure Behavior: Architecture-based reliability analysis approaches

establish relationships between failure mechanisms of a software system and the sys-

tem’s underlying software architecture. These approaches define failure behavior of a

software architecture with respect to failure behavior of its components and their inter-

faces. A component failure may occur during its execution. A Component’s interfaces

failure may occur during the transfer of control between two components. Components

and their interfaces failures can be specified in terms of their reliability or failure ratings.

Although many techniques have been proposed for estimating component reliabil-

ity, there is little information available about interface failures, apart from the general

agreement that interface failures are different from component failures [136]. Most

architecture-based reliability models assume that components’ interfaces are perfectly

reliable. Few approaches, such as approaches of Cukic [36] and Littlewoods [86] have

considered interface failures. In the following we survey different approaches for esti-

mating a component’s reliability.

Based on failure data obtained during testing, SGRM can be applied to each com-

ponent. However, due to the scarcity of failure data, it is not always possible to apply

SGRM. Another technique is to estimate a component’s reliability from explicit consid-

eration of non-failed execution, possibly together with failure. Here, testing is not an

activity for discovering fault but an independent validation activity [102]. The problem

with these models is that they require a large amount of execution data to establish

a reasonable confidence in the reliability estimate. The fault injection technique [135]

is another well-known technique to estimate a component’s reliability. However, the

effectiveness of fault-injection depends on the range of classes that can be simulated.

All the above mentioned techniques require the implementation of a component

to estimate its reliability. This might be a hindrance towards estimating the overall

system’s reliability at architectural level. To overcome this problem, Roshandel et al.

[107] leverage architectural specification to estimate a component’s reliability without

having its implementation. In this work, the component’s structure and intended be-

havior of a component are modeled from the architectural specification to estimate

the component’s reliability. A component can be modeled from four perspectives in

order to analyze its structure, behavior and non-functional properties [108]. The four

perspectives are interface, static behavior, dynamic behavior and interaction protocol.

In the following, we discuss the path-based and the state-based approaches while

ignoring the additive approach as it is not directly related to software architecture.

Path-based Analysis: Path-based approaches model a software architecture using

the probabilistic CFG, a sample of which is shown in Figure 10. These models compute

44

software reliability considering the possible execution paths of a program. A sequence of

components along different paths is obtained either experimentally or algorithmically.

Reliability of each path is determined as the product of the reliability of the components

along that path. For the example application shown in Figure 10, 1− > 3− > 5− >

8− > 10 is a possible execution path, and its reliability is given by R1R3R5R8R10.

Then, the system reliability is estimated by averaging the reliability of all the paths.

One of the major problems with the path-based approaches is that they provide only an

approximate estimate of application reliability when the application architecture has

infinite paths due to the presence of loops. For example, in the path 1− > 4− > 6− >

8− > 41...∗− > 10, the sub-path 4− > 6− > 8− > 4 can occur an infinite number of

times.

There are different kinds of path-based models: Shooman’s model [120], Krishna-

murthy and Mathur’s model [78] and Yacoub, Cukic and Ammar’s model [143]. Some

information about these models is provided in Table 8

Table 8: Overview of Different Path-based Models
Model name Approach Used Model Parameters
Shooman model Assumption based Possible execution paths of the program, fail-

ure possibility of each run, frequency with
each path run.

Krishnamurthy and
Mathur model

Experimental
based

The component trace of a program for given
test case, reliability of each component in a
given test case.

Yacoub, Cukic and
Ammar

Tree traversal algo-
rithm based

A tree representation of software architecture
where reliability of each node and edge (com-
ponent) are known.

State-based Analysis: In state-based approaches, the probabilistic CFG of an

application is mapped to a state space model. These models assume that transfer of

control between components has a Markov property, i.e. the execution of a future

component only depends on a current component but not on the other previously exe-

cuted components. These models consider software architectures as a discrete Markov

chain (DTMC) or a continuous time Markov chain (CTMC) or a semi-Markov process

(SMP). The DTMC represents applications that operate on demand, while the CTMC

and SMP are well suited for continuously operating software applications.

Path-based approaches represent the failure behavior of components using their

probability of failures or reliabilities. In contrast, state-based approaches allow compo-

nent failure behavior to be represented using three types of failure modes: probability of

failure or reliability, constant failure rate, and time dependent failure intensity. These

45

failure modes can be viewed to form a hierarchy, as far as the level of detail that can

be incorporated and the accuracy of the reliability estimate are produced.

State-based approaches can be further classified into absorbing (if it is impossible

to leave a state) and irreducible (it is possible to get to any state from any state).

These approaches assess reliability either by solving the composite model that combines

software architecture with failure behavior (composite models), or by superimposing

failure behavior on the solution of the architectural model (hierarchical models).

There are various kinds of state-based models such as, Cheung’s model [30], Ku-

bat’s model [80], Laprie’s model [82], and Gokhale and Trivedi’s model [56]. Some

information about the four models are given in Table 5.

Table 9: Overview of Different State-based Models

Model name Model Solution Model for software
architecture

Model Parameters

Cheung’s
model

Composite Absorbing DTMC Transition probabilities, reliability of each
component

Kubat’s
model

Hierarchical SMP Constant failure intensity and deterministic
execution time of a component

Gokhale’s
model

Hierarchical Absorbing DTMC Time dependent failure intensity, expected
number of executions of each component

Laprie’s
Model

Hierarchical Irreducible CTMC Transition probabilities, mean execution time
and constant failure intensity of each compo-
nent

Limitations of architecture-based reliability analysis approaches: There are

several limitations of architecture-based reliability approaches. State-based approaches

assume that components are executed in a sequential manner. So these approaches

do not take into account the concurrent execution behavior of components. However,

there are many real-time software systems where components are executed concurrently.

Another limitation is that these models use the variants of Markov models to model the

software architecture. But there are many applications which cannot be modeled using

Markov models, particularly applications which determine which component is the next

to be executed based on execution history. State-based approaches also assume that

failures of a component occur independent of the failures of other components.

Further study is required to overcome these problems of architecture-based relia-

bility analysis approaches. However, several steps have been taken to address some of

these problems. For example, to take into the concurrent execution of software com-

ponents, a high-level specification mechanism such as Stochastic Reward Net [57] has

been introduced.

46

Software
Architecture
Specifications

Transformation Performance
Model

Analysis

Timing
information

Quantitative
results & feedback

Figure 11: Software architecture-based performance analysis

4.2.2 Software Architecture-based Performance Analysis

Software architecture plays an important role in meeting a software system’s perfor-

mance. Performance depends largely on the frequency and nature of inter-component

communication and the performance characteristics of the components themselves. Dif-

ferent software architecture-based methodologies have been developed to predict perfor-

mance attributes, such as throughput, utilization of resources, and end-to-end latency.

Architecture-based performance analysis methodologies transform the specification

of a software architecture into desirable models. Then, timing information is added

to these models. After that, they are analyzed to estimate performance attributes

quantitatively and to provide feedback about the software architecture.

These methodologies work based on availability of software artifacts, such as re-

quirement and architecture specifications and design documents. Since performance is

a runtime attribute, these methodologies require suitable description of the dynamic

behavior of a software system. Often, automatic tools are used to perform performance

analysis once the performance models are created. The general framework for analyzing

performance at architectural level is shown in Figure 11. Some of the advantages of

architecture-based performance analysis methodologies are as follows:

• They can help predict the performance of a system early in the software life cycle.

• They can be used to guarantee that performance goals are met. They can also be

used to compare the performance of different architectural choices.

• They can help in finding bottleneck resources and identifying potential timing

problems before the system is built.

However, the use of the architecture-based performance analysis methodologies has

been low in the software industry. Kauppi [70] has mentioned three possible reasons

47

for this low use. First, managing performance at the architectural level is time con-

suming. Second, performance models required by architectural analysis methods are

complex and expensive to construct. Third, estimating resource requirements in the

early software system development phase is often difficult.

Different research groups have proposed methodologies, often based on previously

developed methodologies. In the following, we discuss some of the important method-

ologies, presenting them according to their evolution hierarchy.

Smith and William’s approaches: In 1990, Smith introduced a design method-

ology called Software Performance Engineering (SPE) [123]. SPE is considered to be

the first comprehensive approach for integrating performance analysis into the software

development process. The SPE method is based on two models: the software execution

model and the system execution model.

A software execution model works on the basis of execution graphs and represents the

software execution behavior. An execution graph consists of nodes and arcs where nodes

represent the processing step/elements/components and arcs represent the order of

processing. The execution graph contains timing information of resource requirements.

The architect provides values for the requirements for each processing step in the model.

A sample execution graph is shown at the left side of Figure 12, where n represents

the number that getRequest and processRequest steps have processed and tn denotes

the time that the step requires service from the server (such as processor). Analyzing

the software execution model means reducing the model into a quantitative value and

comparing the value t (shown at the right side of Figure 12) with the maximum allowed

value specified in performance objectives.

The system execution model represents the model that utilizes both software and

hardware information. This is formed by combining the obtained results of the software

execution model with the information about hardware devices. This model is developed

based on the well-known performance model Queuing Networks Model (QNM) [122].

A QNM is represented as a network of queues. This model is evaluated through ana-

lytical methods or simulation for obtaining the quantitative estimation of performance

attributes.

In 1993, Smith and Williams [122] extended SPE with specific techniques for evalu-

ating the performance of object-oriented systems. This work focused on early life-cycle

issues and introduced use-cases as the bridge between object-oriented systems and SPE.

However, it did not specifically address issues related to larger architectural concerns.

Therefore, in 1998 the authors proposed a more generalized tool-based approach [138]

by extending SPE and their earlier approach [122].

48

Initial session

getRequest

processRequest

terminateSession

t1

t2

t3

t4

 total

t = t1 + n (t2 + t3) + t4

n

Figure 12: An example execution graph (from Kauppi [70])

Williams and Smith’s [138] approach addresses the use of SPE for making architec-

tural tradeoff decisions. This approach demonstrates that software execution models are

sufficient for providing quantitative performance data for making architectural trade-

off decisions, and other SPE models are appropriate for evaluating additional facets of

architectures. In this approach, Kruchten’s 4+1 views are used to collect information,

which are required to document a software architecture from different perspectives. This

approach has also used the SPE ·EDTM performance engineering tool to automate the

architectural analysis.

The SPE · EDTM tool draws a software execution model from a use-case scenario

depicted using a Message Sequence Chart (MSC) [66]. MSC describes the dynamic

behavior of a software architecture in response to a scenario. MSC is similar to a

UML sequence diagram. SPE · EDTM collects a specification of computer resource

requirements for each software resource, in the form of an overhead matrix, and stores

the matrix information in a database for later reuse. Then, the tool produces solutions

for both the software execution model and system execution model from the provided

resource requirement specifications.

In 2002, Williams and Smith introduced a method for performance assessment of

software architectures (PASA) [137]. PASA extends the above mentioned approaches

and includes architectural styles and performance anti-patterns (which negatively im-

pact the performance of a software architecture) as analysis tools. The basic difference

between SPE and PASA is that SPE aims to construct and design software systems

to meet performance objectives, whereas PASA aims to determine whether a software

system will meet its performance objectives. PASA also formalizes the architecture

assessment process based on the general software performance engineering process. It

integrates the concept of SAAM and ATAM in SPE. Like SAAM and ATAM, PASA

uses scenarios (particularly performance scenarios) to provide insight into how the soft-

49

ware architecture satisfies quality goals. PASA expresses scenarios formally using an

architecture description language such as UML sequence diagram. In contrast, SAAM

and ATAM express scenarios as informal narratives. Like ATAM, PASA also concen-

trates on extracting and evaluating architectural approaches, but does not make use

of the performance ABAS as an analysis tool. PASA uses the SPE · EDTM tool to

automatically generate a QNM and to perform quantitative analysis.

The PASA method is the only performance-based software architecture analysis

method that provides a framework for the whole assessment process. The available tools

help speed-up the assessment process. Kauppi [70] conducted a case study using PASA

where he selected it as the most suitable method for analyzing mobile communication

software systems. In this case study, a Layered QNM (LQNM) was used instead of

QNM in order to support concurrent scenarios and layered system.

Cortellessa and Mirandola’s approach:[35] Cortellessa and Mirandola pro-

pose a methodology combining information from different UML diagrams to generate a

performance model of a software architecture. This method follows the methodologies

of SPE for performance modeling. It specifies a software architecture by using deploy-

ment, sequence, and use-case diagrams. This approach is a more formal extension of

the William and Smith’s approach [138]. The key contribution of this methodology over

the William and Smith’s approach [138] is that it adds performance evaluation related

information to the considered UML diagram and obtains an Extended QNM (EQNM).

Balsamo et al., Aquilani et al., and Andolfi et al.’s Approaches: The

approaches of William and Smith [122, 138] (except PASA [137]) explicitly model a

software architecture that becomes part of the software life cycle. The software archi-

tecture contributes to the construction of the QNM and its workload. However, these

approaches do not measure the performance of the software architecture itself; rather

they use the software architecture description to derive the performance model of the

final software system. Moreover, none of the approaches of William and Smith consider

the concurrent or non-deterministic behaviors of the components while modeling the

QNM. To address these problems of William and Smith approaches [122, 138], Balsamo

et al. [9] and Aquilani et al. [4, 5] proposed new methods. The two methods are

described as follows:

In 1998, Balsamo et al. [9] proposed a method that automatically derives a QNM

from a software architecture specification. The software architecture is described using

the CHemical Abstract Machine (CHAM) formalism.

An algorithm has been devised to derive a QNM from the CHAM specification of

a software architecture. The QNM is constructed by analyzing the interactions among

50

the system components and among the customers and system which are represented

using a Labeled Transition System (LTS) graph. The LTS represents the dynamic

behavior of the CHAM architecture, and can be automatically derived from the CHAM

specification. In the LTS, nodes are states, arcs are transitions between states, and

labels are transition rules that permits state transitions. The algorithm is organized

into two sequential phases. In the first phase, all the LTS paths are examined to single

out all the pairs of components that are involved in an interaction. In the second phase,

the obtained interactions pairs are used to derive the QNM. Finally, the solution of the

QNM is obtained by analytical methods or by symbolic evaluation [9].

However, the problem with Balsamo et al.’s approach is that it can only analyze

a restricted set of possible interaction patterns among the architectural components.

For supporting more complex interaction patterns (concurrent and non-deterministic

behaviors of the components) Aquilani et al.’s [4, 5] approach has evolved. For incor-

porating the complex patterns, these approaches are first formulated independent of a

specific architecture description language (ADL), but relying on a finite state model rep-

resentation. Then, the QNM is extended to deal with the complex interaction patterns.

However, this approach was turned out to be inefficient in its computational complex-

ity due to possible state space explosion of the finite state model of the architecture

description. To overcome this drawback, Andolfi et al. [2] proposed a methodology

based on the approaches of Balsamo et al. [9] and Aquilani et al. [4].

Andolfi et al.’s approach automatically derives a QNM from MSCs. This approach

uses an algorithm that automatically transforms MSCs to QNM. This algorithm encodes

MSCs by means of regular expressions. It then analyzes the regular expressions to find

out their common prefix and to identify interaction pairs. Interaction pairs can give

information on the real concurrency between components. These interactions pairs are

then analyzed to obtain QNM. Finally, this approach performs model evaluation and

provides feedbacks about the software architecture.

A summary of some relevant features of the above discussed approaches is shown

in Table 8. In the table, we mark the EG and LTS for the SPE and Balsamo et al.,

and Aquilani et al. [4] approaches in order to represent that the EG and LTS are not

the formal architecture specification languages. We also use SA as the abbreviation of

software architecture.

Limitations of architecture based performance analysis approaches: Var-

ious tools have been proposed or used to implement some steps of the proposed ap-

proaches. However, none of them have yet been implemented into a complete envi-

ronment for specification, performance analysis and providing feedback to the software

51

Table 10: Overview of Different Architecture-based Performance Analysis
Approaches

Methodology SA design
or evaluation
methodology?

SA specification language Tool
sup-
port?

Support concur-
rent scenarios?

Performance
model

SPE [123] design No particular ADL and
EG*

No No QNM

William and Smith
[138]

design MSC- UML: Deployment,
Sequence and Class dia-
grams

Yes No QNM

PASA [137] evaluation MSC- UML: UCD, Se-
quence and Class dia-
grams

Yes No QNM

Cortellessa and Mi-
randola [35]

design UML: Deployment, Se-
quence and Use Case dia-
grams

No No EQNM

Balsamo et al. [9] evaluation CHAM and LTS* Yes No QNM
Aquilani et al. [4] evaluation No specific ADL and LTS* Yes Yes QNM
Andolfi et al. [2] evaluation MSC - UML: Sequence di-

agram
Yes Yes QNM

designer. An open problem and challenge is to completely automate the process of de-

riving performance models from software specification and to integrate the supporting

tools in a comprehensive environment.

4.3 Analysis of Early Architecture Evaluation Methods

In this section, we have presented several forms of early evaluation methods for software

architecture. We now contrast the strengths and weaknesses of these approaches.

Scenario-based software architecture evaluation methods appear to be the most

broadly applied methods for assessing development-time quality attributes at the early

stage of software development. Some scenario-based methods, particularly SAAM,

ATAM and ALMA, have been successfully applied in different industrial settings.

Scenario-based evaluation methods basically use change scenarios and scenario inter-

actions to expose potential problem areas in the architecture. These methods measure

the risks of a software system by estimating the degree of changes that a software archi-

tecture requires to implement a scenario. This risk assessment is influenced by different

factors, such as coverage and complexity of scenarios, domain knowledge and objectives

of stakeholder’s, and consideration of quality attributes’ interactions.

In scenario-based methods, it is hard to assess scenario coverage. Scenario cover-

age means to what extent scenarios can cover quality of a software system. Future

52

research should focus on developing a framework or methodologies that will help devel-

opers determine the scenario coverage. SAAMCS is a good step towards having such

framework.

Most scenario-based methods express scenarios as informal narratives that make it

difficult to automate the activities of scenario-based evaluation methods. Very few

scenario-based methods are tool-supported; e.g., only the activities of SAAM and

ATAM are even partially supported by tools.

Mathematical model-based evaluation methods transform the specification of a soft-

ware architecture into well-known mathematical models. These methods also use sce-

narios to identify the execution paths of a software system and then examine the paths

in detail using the mathematical models. Many mathematical models exist, particulary

for assessing reliability and performance. Performance-based evaluation approaches ap-

pear to be more matured than those for reliability. Performance-based approaches are

mostly tool-supported though none of the tools can support the complete architectural

analysis process. Performance-based evaluation approaches also consider concurrent

and non-deterministic behavior of software components. In contrast, reliability-based

evaluation approaches do not have that much tool-support and these methods are still

evolving to support concurrent and non-deterministic behaviors of software components.

The basic difference between the scenario-based and mathematical model-based eval-

uations is that scenario-based evaluation does not require any implementation-oriented

data, whereas the mathematical model-based evaluation requires the data from the past

execution history of the architectural components. Moreover, mathematical model-

based evaluation is well suited for component-based software system. In contrast,

scenario-based evaluation methods can be applied to any type of software systems.

Due to the difficulty of converting a software architecture into a mathematical model,

the use of mathematical model-based architectural evaluation methods is comparatively

lower than scenario-based evaluation methods.

5 Late Evaluation Methods Applied to Software Ar-

chitecture

In order to fix problems and adapt to new requirements, software systems are continu-

ously modified. The developers who work under intense time pressure and heavy work

load cannot always follow the best way to implement changes. As a result the actual

architecture may deviate from the planned one. Another reason of this deviation is the

53

change in the workforce. Many different developers usually change a typical software

system. Often a core group of developers design and implement the initial version of

the system and as time goes by, members of that core group leave and new developers

join the group. New developers who were not part of the group that originally designed

the architecture might not easily understand it and will therefore implement changes

that might not follow the planned architecture. As a result, when new people work on

the system, often the design of the initial system structure is not followed, leading to a

further system degeneration. In order to prohibit the actual software architecture from

degeneration, late software architecture evaluation method is introduced.

Late software architecture evaluation methods identify the difference between the

actual and planned architectures. These methods provide useful guidelines of how

to reconstruct the actual architecture, so that it conforms to the planned architecture.

During the testing phase, late software architecture evaluation methods are also applied

to check the compliance of the source code to the planned design. According to Fiutem

and Antoniol [46], the economics of the design-code compliance verification process

not only saves time in updating designs, but also improves design artifacts as well as

software development and maintenance processes.

Late software architecture evaluation can use data measured on the implementation

of software architecture. Metrics can be used to reconstruct the actual software archi-

tecture, allowing it to be compared to the planned architecture. Tvedt et al. [133] and

Lindvall et al. [85] propose such metrics-based approaches. Some tool-based approaches

[46, 94, 112] have also been developed for measuring the conformance of source code to

the planned architecture. In the following, we describe these approaches.

5.1 Tvedt et al.’s Approach

Following the Goal Question Metric approach [12], Tvedt et al. propose a late software

architecture evaluation method using metrics. The aim of this method is to avoid system

degeneration by actively and systematically detecting and correcting deviations of the

actual software architecture from the planned architecture. The activities involved in

this evaluation process are shown in Figure 13, and discussed as follows:

• A perspective of the evaluation is selected, because a system can be evaluated

with different goals and from different perspectives. For example, a system can

be evaluated to check whether it conforms to the functional requirements, or it

can be evaluated to check at what level it satisfies its non-functional requirements.

• In order to quantify the evaluation results, guidelines and metrics are defined

54

based on the selected perspective. For example, if the evaluation is to measure the

maintenance cost of the software system, a design guideline might be: coupling

between architectural components should be low. The corresponding metrics

might be “coupling between modules(CBM)”.

• A planned architecture is defined in order to determine the deviation of the ac-

tual architecture from it. The planned architecture is obtained by analyzing the

architectural requirements, the implicit and explicit architectural guidelines and

design rules, and implications stemming from the use of architectural styles and

design patterns. In reality, the planned architecture is more of a goal for what

the architecture should look like rather than how it is actually implemented.

• Next, the actual architecture is identified. A software architecture recovery pro-

cess is applied to extract software architecture from the existing source code.

Different methodologies and tools have been developed to extract the software

architecture. According to Pinzer et al. [100], the general approach of recover-

ing software architecture consists of the three steps: first, the low level system

representation is obtained applying recovery tool(s) such as SWAG Kit [129] and

Shrimp [125]. Second, the architectural elements/components are identified by

combining the domain knowledge. Third, the relationships between the architec-

tural elements are identified to get a high level architectural representation of the

system.

• After obtaining the actual architecture, deviations between the actual and the

planned architectures are identified. The deviations can be violations of design

rules and guidelines or values of metrics that exceed a certain threshold. The

analysis team takes note of each identified deviation, the circumstances under

which it is detected, and the reason the team suspects it to be a violation. If

necessary, the team conducts a more detailed analysis of the deviation in order

to determine its possible cause and degree of severity.

• Based on the results from the previous step, the analysis team formulates high-

level change recommendations that can remove the deviations from the system.

The change recommendations may contain two types change requests– change

requests for source code and change requests for the planned architecture. The

analysis team members do not design or implement change requests; rather they

provide valuable feedback to the development team for the constructive improve-

ment of the system.

55

Determine evaluation
perspectives

Develop guidelines
and metrics

Collect the planned
architecture

Recover the actual
architecture

Architectural
Evaluation

Architectural
deviation

Verification

Change
Recommendations

Figure 13: Activities of a late software architecture evaluation method (adapted from
Tvedt et al. [133])

• The identified changes that are implemented must be verified to ensure that the

actual architecture complies with the planned one. This step repeats the process

steps of identifying the actual architecture and any architectural deviations. This

verification is done to make sure that the changes have been done correctly and

no new violations have been introduced into the system.

The approach has been applied to the VQI (Visual Query Interface) software system.

Two analyses of the architecture were performed to ensure that one developer’s work

conforms to the original design rules. In this case study, three categories of violations

such as design pattern violation, misplaced classes and minor violations are identified.

The evaluation team identified the violations as potential threats to the maintainability

of the system. However, Tvedt et al. did not mention specific suggestions or means to

overcome the violations.

5.2 Lindvall et al.’s Approach

Following the similar structure of the Tvedt et al. approach, Lindvall et al. [85]

conducted a case study on an experience management system (EMS) written in Java.

After identifying the maintainability problems in the software system, the system has

been restructured as component-based system using a new design pattern. After having

the restructured system, Lindvall et al. conducted the case study to verify whether the

new actual software architecture fulfills the planned software architecture and whether

it better fulfills the defined goals and evaluation criteria than does the previous actual

software architecture. In the case study two types of comparison (e.g. new actual

architecture vs. previous actual architecture and new actual architecture vs. planned

architecture) are examined to better understand the software system. Three metrics are

used in this case study. Two metrics are based on inter-module couplings: CBM(m)

and coupling-between-module-classes CBMC(m), and the third metric is to measure

intra-module coupling (CIM(m)).

56

5.3 Tool-based Approaches

Different tool-based approaches have been developed to check the compliance of source

code to the planned software architecture or design. These approaches involve algo-

rithms that are based on source code. In the following, we briefly describe some of

these approaches.

5.3.1 Fiutem and Antoniol’s Approach

Fiutem and Antoniol [46] propose a tool-supported approach that investigates the com-

pliance between design and source code in the context of object-oriented development.

This approach recovers an “as is” design from the code, compares recovered design

with the planned software architecture (design) and helps the user to deal with incon-

sistency. This approach determines the inconsistency by pointing out the regions of

code which do not match with the planned software architecture. This approach has

been applied to the design and code of an industrial software system (about 200 KLOC)

for telecommunications.

5.3.2 Murphy et al.’s Approach

Murphy et al. [94] software reflexion models are also well known to check the compliance

of source code to the planned architecture. In this approach, an architect provides a

high-level model of a system that he/she expects to find in the source code. Then he

extracts a source model (such as a call graph or an inheritance hierarchy) from the

source code, and defines a declarative mapping between the two models. A tool then

computes a “reflexion” model that shows where the high-level model agrees or disagrees

with the source code. This approach has been applied to several cases. For example,

a software engineer at Microsoft Corporation applied reflexion models to assess the

structure of the Excel spreadsheet product (over 1 million line of C code) prior to a

reengineering activity. Murphy et al. used a sequence of reflexion models to compare

the layered architectural design of Griswold’s program restructuring tool [61] with a

source model consisting of calls between modules.

5.3.3 Sefika et al.’s Approach

Another well known tool-based approach is proposed by Sefika et al. [112]. It is

a hybrid approach that integrates logic based static and dynamic visualizations. It

helps determine design-implementation congruence at various levels of abstraction, from

coding guidelines to architectural models such as design patterns and connectors, to

57

design principles like low coupling and high cohesion. The utility of this approach

has been demonstrated in the development of µChoices [29], a multimedia operating

system.

5.4 Analysis of Late Architecture Evaluation Methods

In this section, we have presented several approaches for evaluating a software architec-

ture after its implementation. We now contrast the strengths and weaknesses of these

approaches.

To achieve successful software system’s evolution, late software architecture evalua-

tion is important. The early software architecture evaluation techniques can be used to

determine the best planned design for the project, while late architectural evaluation

process can be used to ensure that the planned design is carried out in the imple-

mentation. Late software architecture evaluation aims to provide an inexpensive and

quick means for detecting violations to the software architecture with the evolution of

software systems. As a result, this evaluation methods are mostly tool-supported.

Future work is needed to see how late software architecture evaluation methods

fit for a wider set of industrial cases. Moreover, the metrics-based approaches have

been only used to evaluate the software architecture with respect to maintainability

perspective. It would be interesting to use these approaches from other perspectives

like security.

Analyzing design-code consistency is one of the important parts in late software ar-

chitecture evaluation. Although much work has done in this area, no formal framework

and taxonomy exists to analyze design-code inconsistencies and prioritize the interven-

tions to make design up-to-date. Therefore, future work should focus on devising such

a formal framework and taxonomy.

6 Early Evaluation Methods Applied to Software

Architectural Styles or Design Patterns

Modern software architecture is often composed from architectural styles and design

patterns for handling different quality attributes, such as maintainability, reusability

and evolvability. Software architecture evaluation methods evaluate a software archi-

tecture for specific cases, e.g. for specific quality requirements, such as modifiability.

They often assume that strengths and weaknesses of its building blocks (architectural

styles and design patterns) are known. Therefore, these methods do not incorporate

58

any experimental study to determine strengths and weaknesses of architectural styles

or design patterns. For example, ATAM maps the extracted architectural styles to

corresponding ABASs for evaluating them. To address this problem, techniques have

been proposed for evaluating architectural styles or design patterns.

Evaluation of architectural styles or design patterns employ both quantitative and

qualitative reasoning to motivate when and under what circumstances architectural

styles or design patterns should be used. In order to differentiate the classes of designs,

these analyses require experimental evidence of how each class has been used.

As with early software architecture evaluation, evaluation of architectural styles or

design patterns also involves scenarios and mathematical models. Moreover, controlled

experiments have been used to determine the properties of some design patterns. Klein

et al. [77] propose a framework called attribute based architectural style (ABAS) to

reason about architectural decisions with respect to a specific quality attribute. Kaz-

man et al. [71] propose a scenario-based method named cost benefit analysis method

(CBAM) as an extension of ATAM to analyze the costs and benefits of architectural

decisions. Mathematical models have been developed to evaluate particular architec-

tural styles or design patterns. For example, Gomaa and Menascé [59] have investigated

the client-server design pattern, whereas Petriu and Wang [99] have evaluated the per-

formance of a significant set of architectural patterns (pipe and filters, client-server,

broker, layers, critical section and master-slave). Wang et al. [136] have developed

an analytical model to estimate the reliability of a heterogeneous architecture con-

sisting of batch-sequential/pipeline, call-and-return, parallel/pipe-filters and fault tol-

erance styles. Junuzovic and Dewan [68] conducted an experiment to evaluate three

well known architectural styles, client-server, peer-to-peer and hybrid, comparing their

response times in multi-user collaborations. This work also resulted in a formal per-

formance model focussed on response time. Golden et al. [58] have introduced USAP

(Usability Supported Architectural Pattern) to evaluate cancelation usability patterns.

In the following, we briefly discuss some of the above-mentioned methods and con-

trolled experiments.

6.1 ABAS Approach

In 1999, Klein et al. [77] introduced ABAS (Attribute-Based Architectural Style) of-

fering a reasoning framework along with an architectural style. This framework has

been developed based on quality attribute specific analytic models, e.g., performance,

reliability and modifiability models. There have been many mature quality attributes

specific analytic models (e.g., Markov model for reliability and QNM for performance)

59

that provide a way to establish better understanding of quality attributes. Analytical

models guide the designer to comprehensively experiment with, and plan, for architec-

tural quality requirements.

ABAS’ frameworks are based on the foundational work of Garlen and Shaw [52](proposed

a catalogue of architectural styles) as well as the similar work of the design patterns

community (Gamma et al. [50]). However, both Garlen and Shaw [52] and Gamma et

al. [50] offer heuristic reasoning to define an architectural style or design pattern. For

example, in describing the layered style, Shaw and Garlan write “if a system can logi-

cally be structured in layers, considerations of performance may require closer coupling

between logically high-level functions and their lower-level implementations”. According

to Klein et al. [77], this is important information for the designer who is considering

the use of this style. But at the same time, it does not provide a principled way of un-

derstanding when a specific number and organization of layers will cause a performance

problem. The incorporated quality attribute-specific analytic models in an ABAS can

answer to this dilemma. An ABAS comprises four sections: problem description, stimu-

lus/response attribute measures, architectural styles, and analysis, which are described

as follows:

• Problem description: describes the real world problem that an ABAS helps

to reason about and solve. The problem description includes a description of

the criteria for choosing an ABAS, including when an ABAS is appropriate and

the assumptions underlying the reasoning framework. For example, a perfor-

mance ABAS might only be appropriate for calculating worst-case latency but

not average-case latency [77].

• Stimulus/Response attribute measures: these characterize the stimuli to

which an ABAS is to respond and the quality attribute measures of the response.

• Architectural style: describes the architectural style in terms of its components,

connectors, properties of those components and connectors, and patterns of data

and control interactions (their topology), and any constraints on the style.

• Analysis: describes how the quality attribute models are formally related to the

architectural styles. An architectural style can have different analysis sections

to address different quality attributes and hence, can form multiple ABASs, e.g.

a modifiability client-server ABAS and a performance client-server ABAS. This

section includes a set of analyses, design heuristics, and a set of extrapolations -

typical ways in which an ABAS is extended relating to the choice of architectural

60

parameters. ABASs characterize quality attribute dividing its information into

three categories: external stimuli, architectural decisions, and responses. For

example, for performance, the external stimuli are events arriving at the system

such as messages, missiles, or user keystrokes. The architectural decisions include

processor and network arbitration mechanisms, concurrency structures including

processes, threads, and processors, and properties including process priorities and

execution times. Responses are characterized by measurable quantities such as

latency and throughput.

6.2 Petriu and Wang’s Approach

This approach proposes a systematic methodology to derive LQN performance models

for a heterogeneous software architecture that consists of a significant set of architectural

styles such as pipes and filters, client-server, broker, layers, critical section and master-

slave. This work specifies architectural styles using UML collaboration diagrams that

combines UML class and sequence diagrams. This approach follows SPE methodology

and generates software and system execution models by applying graph transformation

techniques. Software architectures are specified using UML collaborations, deployment

and use-case diagrams. The sequence diagram is used to obtain the software execution

model (which is represented as a UML activity diagram).The class diagram is used to

obtain the system execution model (which is represented as a LQN model). Use-case

diagrams provide information on the workloads, and deployment diagrams allow for the

allocation of software components to hardware sites.

6.3 Golden et al.’s Approach

Golden et al. [58] have created a Usability Supported Architectural Pattern (USAP)

that can enhance software architects’ responsibility and accuracy for developing large-

scale software systems. Each USAP consists of three things: (i) an architectural sensi-

tive usability scenario, (ii) a list of general responsibilities which are generated consid-

ering different factors, such as concerned usability related tasks, environment, human

capabilities and desires, and software state, and (iii) a sample solution implemented

in a larger separation-based design pattern. In this approach, Golden et al. have

performed a controlled experiment using a single USAP that supports the cancelation

usability pattern [16]. The experiment measured whether architectural solutions pro-

duced applying USAP are better than those produced by certain subsets of the USAP

components, e.g., involving only the scenarios or scenarios and the relevant respon-

61

sibilities. However, Golden et al. commented that as USAPs are quite detailed and

complex, software architects might find USAPs difficult to apply to their own design

problems. The controlled experiment is briefly described as follows:

To create the USAP for cancelation commands Golden et al. provided nineteen

cancelation related responsibilities and a sample solution which uses the J2EE MVC

design pattern. As an example, two of the responsibilities are as follows:

• CR1: A button, menu item, keyboard shortcut and/or other means must be

provided, by which the user may cancel the active command.

• CR2: The system must always listen for the cancel command or changes in the

system environment.

For conducting the experiment, 18 graduate students with different level of pro-

gramming experience were selected. The participants were divided into three groups,

each randomly assigned one of the three components of the USAP. Participants in the

first condition were provided the first component of the USAP, i.e., the usability sce-

nario for the cancelation command. Participants in the second condition were provided

the first two components of the USAP, the scenario and a list of general responsibili-

ties. Finally, participants in the third condition received all the three components of

the USAP. Participants in each condition received a different version of a “Training

Document”. All participants received the same architecture redesign task and proper

training. After assigning tasks properly to each of the three groups, the experiment

results were obtained. The experimental results showed that the group which was pro-

vided with USAP took maximum time to perform the task. But this group obtained

better solution than the other two groups, because this group considered most of the

cancelation responsibilities. This indicates that USAP provided significant help to the

participant in remembering the responsibilities they needed to consider when modifying

the software.

6.4 Analysis of Early Architectural Styles or Design Patterns

Evaluation Methods

In this section, we have presented several approaches for evaluating architectural styles

or design patterns before their implementation. We now contrast the strengths and

weaknesses of these approaches.

ABAS is a good attempt to make architectural design more of an engineering dis-

cipline, where design decisions are made upon the basis of known properties and well-

62

understood analyses. Future work should be concentrated on making a handbook with

many ABASs. The handbook can serve as pre-packaged design and/or analysis wisdom.

USAP is a valuable tool for evaluating design patterns with respect to usability

quality attributes. However, more work needs to be done to increase the consistency

with which software architects apply the USAPs, perhaps in the format of the USAP

itself or in training provided with it. Additionally, Golden et al.’s study only used USAP

for the cancelation usability scenario. But there are also other usability scenarios which

require USAPs. Therefore, future investigations are required to determine how Golden

et al.’s experimental results can be replicated and extended across additional USAPs.

7 Late Evaluation Methods Applied to Software Ar-

chitectural Styles or Design Patterns

Many architectural styles and design patterns have been applied in different categories

of software applications, but there is little evidence about their strengths and weak-

nesses. Books and research papers address the usefulness of the architectural styles or

design patterns, but they did not provide any empirically validated data to show the

effectiveness of architectural styles or design patterns. Evaluation of software architec-

tural styles or design patterns after their implementation has been introduced to verify

their usage.

To the best of our knowledge only a single experiment by Prechelt et al.[104], has

evaluated the design patterns in the context of maintenance. With this experiment,

Prechelt et al. showed that theoretical hypotheses about design patterns can be different

in their practical use. In the following, we present Prechelt et al.’s experiment:

7.1 Prechelt et al.’s Approach

Prechelt et al. have performed a controlled experiment in software maintenance to seek

empirical evidence whether the application of a design pattern is effective for solving

design problems. In this controlled experiment, Prechelt et al. justified the usefulness

of design patterns proposed by Gamma et al. in the context of software maintenance for

a particular experimental setting. In this setting, the solution of the selected programs

do not need to apply all the properties of a design pattern and can be replaced by a

simpler solution which uses fewer design patterns or no design patterns. They have

found some contradictory results; for example, the use of design patterns can cause

more maintenance problems in a software system than the conventional solutions, or

63

can make the software system simpler to maintain. Having observed this tradeoff,

Prechelt et al. come to the conclusion that developers should use a design pattern

to solve a particular problem after comparing the solution (with the design pattern)

with other alternatives. They also suggest that developers should not be biased by the

popularity of the design pattern.

The experiment was conducted using four groups (total 29 participants) of pro-

fessional software engineers. They were assigned to solve four different programs

(Stock Ticker (“ST”), Graphics Library (“GR”), Communication Channels (“CO”)

and Boolean Formulas (“BO”)) asking two different versions of solutions. One version

of the solutions (named PAT) involves application of different kinds of design patterns,

such as Abstract Factory, Composite, Decorator, Facade, Observer and Visitors (as de-

scribed by Gamma et al. [50]). Another version (ALT) uses simpler design using fewer

design patterns than PAT. The experiments carried out pre- and post-tests. Pre-test

was conducted without providing any pattern course and post-test was performed after

having the pre-test and the pattern course. In both tests each group maintained one

PAT program and one ALT program with two or three tasks for each and each group

worked on all four programs.

Prechelt et al. have set an expected result for each category of the experiments and

then compared the expected results with the actual experimental results. They found

remarkable deviations between these two. For example, while applying the visitor

pattern in the “ST” program, they expected that with the pattern knowledge both

versions (ALT and PAT) of the program can be maintained faster than the conventional

solutions. But in the actual result, they have found a negative effect from unnecessary

application of the design pattern, particularly for the participants with low pattern

knowledge (the ALT group). The negative effect came since the ALT group was slightly

slower in the post-test than the pre-test which implies that the participants without

having knowledge of the visitor pattern became confused after getting the design pattern

course. The newly learnt design pattern knowledge made the ALT group slow to solve

the provided task using the visitor pattern. They have also got some results which

match with expected results.

7.2 Analysis of Late Architectural Styles or Design Patterns

Evaluation Methods

In this section, we have discussed late software architectural styles or design patterns

evaluation. Very few studies have been done in this category of evaluation. We have

64

presented Prechelt et al.’s experiment for evaluating design patterns. We now discuss

strengths and weaknesses of their experiment, and provide some guidelines for its future

extension.

Prechelt et al. conducted applications using six design patterns. However, many

other design patterns exist. Future study is required to investigate whether there are

alternative simpler solutions for specialized applications of these design patterns. Fu-

ture study should also concentrate on determining the tradeoffs involved in the design

patterns. Additionally, future work should focus on addressing the following questions.

What are the effects of pattern versus non-pattern designs for long term maintenance

involving many interacting changes? How does the use or non-use of patterns influence

activities other than pure maintenance, e.g., inspections or code reuse?

8 Summary and Discussion

In this paper, we have presented four categories of software architectural evaluation

methods. The categorization is done based on the artifacts on which the methods are

applied and the two phases of a software life cycle: early and late. Numerous methods

or approaches [72, 73, 18, 20, 17, 49, 83, 92, 132, 127, 120, 78, 143, 30, 80, 123, 138,

137, 99, 35, 9, 4, 2] have been developed to evaluate software architectures at the early

stage of software development.

At this stage, scenario-based methods [72, 73, 18, 20, 17, 49, 83, 92, 132, 127] are the

most widely applied methods for assessing development-time quality attributes. There

are many scenario-based early software architecture evaluation methods and they are

correlated. In this paper, we have presented ten scenario based methods and compared

them using seven comparison criteria and 19 properties. The comparative study can

help developers select a method appropriate for their evaluation purposes.

Besides scenario-based evaluation methods, different mathematical model-based eval-

uation techniques [120, 78, 143, 30, 80, 123, 138, 137, 99, 35, 9, 4, 2] are developed to

assess operational quality attributes at the early stage of software development. In this

paper, we have discussed mathematical models, particularly for assessing reliability and

performance quality attributes.

Compared to early software architecture evaluation, fewer methods [133, 85, 46,

94, 112] have been developed for late software architecture evaluation. Late software

architecture evaluation helps prohibit architecture degeneration. This category of eval-

uation verifies that an implemented software architecture conforms to the planned soft-

ware architecture. As early software architecture evaluation methods are not intended

65

for verifying the conformance of the implemented software architecture to the planned

software architecture, these methods might not be effective for evaluating a software

architecture after its implementation. Moreover, most late software architecture eval-

uation methods are tool-supported and are executed with respect to concrete quality

requirements. In contrast, most scenario-based methods do not have tools support and

are often used to deal with unpredictable quality requirements. As a result, the degree

of difficulty and uncertainty for late software architecture evaluation is less than that

of early software architecture evaluation. However, early mathematical model-based

evaluation approaches can be well-suited to late software architecture evaluation, as

most of these approaches require implementation-oriented data (except Roshandel et

al.’s [106, 107] approaches) and use tools.

In this paper, we have also presented some approaches for evaluating software archi-

tectural styles or design patterns. Although there are few attempts in these categories of

architectural evaluations, some of them are widely used and useful to evaluate the whole

software architecture. For example, ATAM uses ABASs to analyze the extracted archi-

tectural approaches and SALUTA can use Golden et al.’s approach to determine the

properties of usability patterns such as cancelation. We have presented three categories

of early architectural styles or design pattern evaluation techniques: scenario-based

[77, 71], mathematical model-based [59, 99] and controlled experiments [68, 58]. Very

few approaches are available for evaluating architectural styles or design patterns after

their implementation. In this paper, we have presented Prechelt et al.’s [104] controlled

experiment for evaluating design patterns.

Evaluation of an architectural style or design pattern requires controlled experi-

ments to determine the applicability of an architectural style or design pattern for wide

range of cases. In contrast, evaluation of a whole software architecture determines the

applicability of a software architecture for some specific cases. As a result, evaluation of

an architectural style or design pattern requires extensive study to determine in general

use of architectural styles and design patterns. Hence this category of evaluation is

more difficult than evaluating a software architecture.

8.1 Comparison among Four Categories of Software Architec-

tural Evaluation

In this subsection, we provide a higher level comparison between the four categories of

methods and techniques reviewed above. For such a higher level comparison, we have

determined seven comparison criteria:

66

• Implementation-oriented data: With this criterion we tried to check whether

an evaluation category requires implementation-oriented data or not. The basic

difference between early and late software architecture evaluation is that early

software architecture evaluation does not need implementation of a software ar-

chitecture, whereas late software architecture evaluation does. However, most

mathematical model-based early software architecture evaluation methods need

implementation-oriented data of architectural components.

• Metrics formulation: Some categories of evaluation are required to formulate

metrics for doing quantitative analysis; e.g., metrics-based late software archi-

tecture evaluation methods incorporate metrics depending on the perspective of

the evaluation. On the other hand, some evaluation categories, such as scenario-

based early software architecture evaluation incorporates qualitative evaluation

techniques, so they do not always require to formulate metrics. However, some

early software architecture evaluation methods such as ATAM, SACAM and some

mathematical model-based approaches are required to formulate metrics to assess

the operational quality attributes. Early and late software architectural styles or

design patterns evaluations may not involve any metrics as they involve experi-

mental study. With the criterion Metrics formulation, we tried to check which

category of software architectural evaluation always requires to formulate metrics

and which category does not.

• Types of methods: With this comparison criterion we focus on the different

types of evaluation techniques supported by each category of evaluation. For

example, early software architecture evaluation supports four different categories

of evaluation techniques, whereas late software architecture evaluation supports

three types of evaluation techniques. However, we have determined the types of

evaluation techniques for each category of evaluation from our observations.

• Participation of stakeholder: With this criterion we tried to put emphasis

on the necessity of stakeholder presence during the architectural evaluation. For

example, early software architecture evaluation, specially scenario-based software

architecture evaluation always recommends participation of stakeholder to get a

meaningful analysis result. In contrast, late software architecture evaluation may

be conducted using tools without having stakeholder presence. Both early and late

software architectural styles or design patterns evaluations require participation

of the developers to execute controlled experiments.

67

• Tool-support: With this criterion we checked whether an evaluation category

supports tools to automate the architectural evaluation activities. For exam-

ple, most late software architecture evaluation methods have support for tools,

whereas the methods in the other three evaluation categories have little support

for tools.

• Difficulty level: This criterion has been chosen based on our observation in each

category of evaluation. We have defined three difficulty levels: ’*’,’**’, and ’***’.

The degree of difficulty increases with the number of ’*’. For example, we have

used single ’*’ for late software architecture evaluation, whereas double ’*’ for early

software architecture evaluation to indicate that difficulty level of late software

architecture evaluation is less than that of early software architecture evaluation.

The reason is that late software architecture evaluation has more tool supports

than early software architecture evaluation. Moreover, late software architecture

evaluation handles more concrete quality requirements than early software archi-

tecture evaluation. We have used triple ’*’ for early and late software architectural

styles or design patterns evaluations. The triple ’*’ indicates that these categories

of evaluation is more difficult compared to early and late software architecture

evaluations as they involve controlled experiments which require much time and

efforts.

In the following Table 11, we summarize our findings for the four categories of software

architectural evaluations.

9 Open Problems

In this paper, we have presented and analyzed four categories of software architectural

evaluations. We now summarize open problems that are required to be solved in this

area. We also briefly discuss some solutions that partially address these problems.

One of the open problems in software architecture evaluation is that it is hard to

assess coverage of scenarios. Scenario coverage means that to what extent the scenarios

can address quality of a software system. There is no particular number of scenarios, the

execution of which guarantees scenario coverage optimally. No method offers systematic

methodologies that help elicit such important scenarios. However, coming up with such

methodologies are challenging. These methodologies require to determine a complete

set of factors that should include all aspects relevant to the importance of scenarios.

Different steps have been taken to address this problem.

68

Table 11: Comparison among Four Categories of Software Architectural Eval-
uations

Comparison
Criteria

Early Software Archi-
tecture Evaluation

Late Software Ar-
chitecture Evalu-
ation

Early Software
Architectural
Styles or De-
sign Patterns
Evaluation

Late Software
Architectural
Style or De-
sign Patterns
Evaluation

Implementation-
oriented data

Scenario-based evalua-
tion methods do not
need data measured
from implementation,
but some Mathemati-
cal model-based evalu-
ation methods do

Utilize data mea-
sured on the ac-
tual software im-
plementation

Same as software
architecture eval-
uation

Require empir-
ically validated
data

Metrics usage not always mostly not always not always
Types of meth-
ods

Scenario-based evalu-
ation, Mathematical
model-based evalua-
tion, Simulation and
Experience-based

Metrics based
and tool-based

scenario-based,
mathematical
model-based
and controlled
experiments

Controlled
experiment

Participation of
stakeholder?

Required not always re-
quired

required required

Difficulty level ** * *** ***
Tool-support Usually no tool sup-

port except SAAM and
ATAM and Mathemat-
ical model-based evalu-
ation

Most of the meth-
ods have tool sup-
port

Some methods
have tools

No tool support

For example, SAAMCS has introduced a two dimensional framework that offers a

measurement instrument. The measurement instrument employs a number of generic

classes of possibly complex scenarios and three factors that define the complexity of

scenarios. This measurement instrument can determine limitations or boundary condi-

tions of a software architecture by exposing implicit assumptions. Thus, it helps find

important scenarios, missing of these scenarios may turn architectural evaluation results

meaningless. However, further research should focus on finding more classes of com-

plex scenarios. Future study also requires verification that the factors that have been

determined in SAAMCS are the ones that cause the complexity of scenarios. Moreover,

stakeholders with enough domain knowledge and expertise are required to elicit such

complex scenarios. Therefore, future study should attempt to determine how domain

knowledge and degree of expertise affect the coverage of selected scenarios.

Another technique helping to overcome this scenario coverage problem is Quality

Function Deployment (QFD) [37, 38]. This technique helps elicit the scenarios that

69

can optimally address software quality. This technique generates a series of matri-

ces to show the relative importance of quality attributes with respect to stakeholder’s

objectives. Two methods SAEM (Software Architecture Evaluation Model) [39] and

SAAMER (Architecture Analysis Method for Evolution and Reusability) [87], use this

QFD technique to resolve this scenario coverage problem.

Another problem with architectural evaluation methods is a lack of educated ma-

terials. These methods are not also self-explanatory. To understand different aspects

of a method properly, practitioners need to go through other resources. Future work is

needed to present the architectural evaluation methods in handbooks, where not only

the methods activities but also the effects of their various usage should be explained.

The book written by Clements et al. [32] is a good step towards documenting ar-

chitectural evaluation methods. However, this book only covers three scenario-based

software architecture evaluation methods. It can be extended to cover more varieties

of evaluation methods. A handbook of ABASs can be also a promising solution for

understanding aspects of architectural evaluation.

With the exception of SAAM and ATAM, software architectural evaluation methods

require more validation. Most are validated by their creators using limited case studies.

However, this kind of validation is not enough to convince practitioners about the

effectiveness of an evaluation method. Therefore, future work is needed to validate the

evaluation methods in different industrial cases.

Another open problem in architectural evaluation methods is that they have a lack

of tool-support. Most are executed by human beings. These methods are difficult to

apply in a complex and large software systems as they involve significant manual works.

Although there are some tools available for evaluating software architecture, none of the

tools supports the complete evaluation process. Therefore, a comprehensive research is

required to move towards automating software architectural evaluation methods.

10 Conclusion

In this paper, we have surveyed the state of art of software architectural evaluation

methods using a taxonomy. The taxonomy shows the architectural evaluation methods

and techniques into the four categories: early software architecture evaluation methods,

late software architecture evaluation methods, early software architectural styles or

design patterns evaluation methods, and late software architectural styles or design

patterns evaluation methods.

The results of this study may serve as a roadmap to the software developers and

70

architects in helping them select the right method or technique for their interests.

We hope it may also assist in identifying remaining open research questions, possible

avenues for future research, and interesting combinations of existing techniques.

71

References

[1] G. Abowd, L. Bass, P. Clements, Rick Kazman, L. Northrop, and A. Zarem-
ski. Recommended Best Industrial Practice for Software Architecture Evalua-
tion (CMU/SEI-96-TR-025). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 1996.

[2] F. Andolfi, F. Aquilani, S. Balsamo, and P. Inverardi. Deriving QNM from MSCs
for Performance Evaluation of SA. In the Proceedings on 2nd International Work-
shop on Software and Performance, pp. 2000

[3] ANSI/IEEE, ”Standard Glossary of Software Engineering Terminology”, STD-
729-1991, ANSI/IEEE, 1991

[4] F. Aquilani, S. Balsamo, P. Inverardi.Performance Analysis at the software ar-
chitecture design level. Technial Report TRSAL- 32, Technical Report Saladin
Project.

[5] F. Aquilani, S. Balsamo, and P. Inveradi. Performance analysis at the software
architectural design level. Performance Evaluation, vol. 45 , no. 2-3, pp. 147-178,
2001.

[6] M. A. Babar, L. Zhu and R. Jeffery. A Framework for Classifying and Compar-
ing Software Architecture Evaluation Methods. In the Proceedings on Australian
Software engineering, pp. 309-318, 2004.

[7] M. A. Babar and I. Gorton. Comparison of Scenario-Based Software Architecture
Evaluation Methods. In the Proceedings on Asia-Pacific Software Engineering
Conference, pp. 584-585, 2004.

[8] F. Bachmann, L. Bass, G. Chastek, P. Donohoe and F. Peruzzi. The Architec-
ture Based Design Method. CMU/SEI-200-TR-001 ADA375851. Pittsburg, PA:
Software Engieering Institute, Carnegie Mellon University, 2000.

[9] S. Balsamo, P. Inverardi and C. Mangano. An approach to performance evaluation
of software architectures. In the Proceedings on 2nd International Workshop on
Software and Performance, pp. 178-190, 1998

[10] J. Baragr and K. Reed. Why We Need A Different View of Software Architecture.
In the Proceedings of the Working IEEE/IFIP Conference on Software Architec-
ture, pp. 125-134, 2001.

[11] M. R. Barbacci, M. H. Klein and C. B. Weinstock. Principles for Evaluating
the Quality Attributes of a Software Architecture (CMU/SEI-96-TR-036 ESC-
TR-96-136). Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, 1997.

[12] V. R. Basili, G. Caldiera, and D. H. Rombach. The Goal Question Metric Ap-
proach. Encyclopedia of Software Engineering, vol. 2, pp. 528-532, 1994.

72

[13] L. Bass, B.E John, and J. Kates. Achieving Usability Through Software Ar-
chitecture. Carnegie Mellon University/Software Engineering Institute Technical
Report No. CMU/SEI-TR-2001-005, 2001.

[14] L. Bass, R. Nord, W. Wood and D. Zubrow. Risk Themes Discovered Through Ar-
chitecture Evaluations (CMU/SEI-2006-TR-012 ESC-TR-2006-012). Pittsburgh,
Pa.: Software Engineering Institute, Carnegie Mellon University, 2006.

[15] L. Bass, P. Clements and R. K. Kazman. Software Architecture in Practice. SEI
Series in Software Engineering. Addison-Wesley, 1998. ISBN 0-201-19930-0.

[16] L. Bass and B. John. Linking Usability to Software Architecture Patterns through
General Scenarios. The Journal of Systems and Software, 66 (2003) 187-197.

[17] P. Bengtsson and J. Bosch. Scenario Based Software Architecture Reengineering.
In the Proceedings of International Conference of Software Reuse, pp. 308-317,
1998.

[18] P. Bengtsson, J. Bosch. Architecture Level Prediction of Software Maintenance.
In the Proceedings on 3rd European Conference on Software Maintenance and
Reengineering, pp. 139-147, 1999.

[19] P. Bengtsson. Towards Maintainability Metrics on Software Architecture: An
Adaptation of Object-Oriented Metrics. In the Proceedings on 1st Nordic Work-
shop on Software Architecture, pp. 638-653, 1998.

[20] P. Bengtsson, N. Lassing, J. Bosch, and H. V. Vliet. Architecture-Level Modifia-
bility Analysis. Journal of Systems and Software, vol. 69, 2004.

[21] J. K. Bergey, M. J. Fisher and L. G. Jones and R. Kazman. Software Architecture
Evaluation with ATAMSM in the DoD System Acquisition Context. CMU/SEI-
99-TN-012. Pittsburg, PA: Software Engieering Institute, Carnegie Mellon Uni-
versity, 1999.

[22] K. Bergner, A. Rausch, M. Sihling and T. Ternit. DoSAM - Domain-Specific
Software Architecture Comparison Model. In the Proceedings of the International
Conference on Quality of Software Architectures, pp. 4-20, 2005.

[23] B. W. Boehm, J. R Brown, and M. Lipow. Quantitative evaluation of software
quality. In the Proceedings on 2nd International Conference on Software Engineer-
ing, pp. 592 - 605, 1976.

[24] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. McLeod, and M. Merritt.
Characteristics of Software Quality, North Holland, 1978.

[25] J. Bosch and P. Molin. Software architecture design: Evaluation and transforma-
tion. IEEE Engineering of Computer Based Systems Symposium. IEEE Computer
Based Systems, pp. 4-10, 1999.

73

[26] H.de Bruijn, and H. van Vliet. Scenario-based generation and evaluation of soft-
ware architectures. Lecture Notes in Computer Science 2186: 128-139, 2001.

[27] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal Pattern-
Oriented Software Architecture: A System of Patterns (POSA), Wiley and Sons,
493 p. 1996

[28] S. A. Butler. Security attribute evaluation method: a cost-benefit approach. In the
Proceedings on International Conference on Software Engineering, pp. 232-240,
2002.

[29] R. H. Campbell and S, Tan. µChoices: An Object-Oriented Multimedia Operating
System. In proceedings of Fifth Workshop on Hot Topics in Operating Systems,
1995.

[30] R. C. Cheung. A user-oriented software reliability model. IEEE Trans. on Software
Engineering, vol. 6, pp. 118-125, 1980.

[31] C.G. Chittister and Y.Y. Haimes. Systems integration via software risk manage-
ment. Systems, Man and Cybernetics, Part A, IEEE Transactions on, vol. 26, pp.
521-532, 1996.

[32] P. Clements and R. K. Kazman, M. Klein. Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley Professional; 2002. ISBN 0-201-
70482X

[33] P. Clements, L. Bass, R. Kazman, and G. Abowd. Predicting Software Qual-
ity by Architecture-Level Evaluation. In the proceedings of Fifth International
Conference on Software Quality, 1995.

[34] P. Clements. Active Reviews for Intermediate Designs (CMU/SEI-2000-TN-009),
Software Engineering Institute, Carnegie Mellon University.

[35] V. Cortellessa and R. Mirandola. Deriving a Queueing Network based Perfor-
mance Model from UML Diagrams. In the Proceedings on 2nd International Work-
shop on Software and Performance, pp. 58-70, 2000.

[36] B. Cukic. The Virtues of Assessing Software Reliability Early. IEEE Software,
vol. 22, pp. 50-53, 2005.

[37] R. Day. Quality Function Deployment. Linking a Company with Its Customers.
Milwaukee, Wisc.: ASQC Quality Press, 1993.

[38] L. Dobrica and E. Niemela. A Survey on Software Architecture Analysis Methods.
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 638-653, July
2002.

[39] J.C. Duenas, W.L. de Oliveira, and J.A. de la Puente. A Software Architecture
Evaluation Model. In the Proceedings of Second International ESPRIT ARES
Workshop, pp. 148-157, 1998.

74

[40] W. W. Everett. Software Component Reliability Analysis. In the Proceedings on
IEEE Symposium on Application - Specific Systems and Software Engineering
and Technology, pp. 204-211, 1999.

[41] W. Farr. Software Reliability Modeling Survey. Handbook of Software Reliability
Eng., M.R. Lyu, ed. pp. 71-117, McGraw-Hill, 1996.

[42] W. Farr. Software Reliability Modeling Survey. Handbook of Software Reliability
Engineering, M.R. Lyu, ed., pp. 71-117, 1996.

[43] R. Fielding and R. N. Taylor. Principled design of the modern Web architecture.
In the Proceedings of International Conference on Software Engineering, 2000.

[44] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. Ph.D. Dissertation, 2000.

[45] R. Fiutem , and G. Antoniol. Identifying design-code inconsistencies in object-
oriented software: a case study. In the Proceedings of the International Conference
on Software Maintenance, pp. 94-102, 1998.

[46] R. Fiutem , and G. Antoniol. Identifying design-code inconsistencies in object-
oriented software: a case study. In the Proceedings of the International Conference
on Software Maintenance, pp. 94-102, 1998.

[47] E. Folmer and J. Bosch. Architecting for usability: a survey. Journal of systems
and software, Elsevier, pp. 61-78, , 2002

[48] E. Folmer, J. v. Gurp, and J. Bosch. Scenario-Based Assessment of Software
Architecture Usability. In the Proceedings of Workshop on Bridging the Gaps
Between Software Engineering and Human-Computer Interaction, ICSE, 2003.

[49] E. Folmer, J. Gurp and J. Bosch. Software Architecture Analysis of Usability. In
the Proceedings on 9th IFIP Working Conference on Engineering Human Com-
puter Interaction and Interactive Systems, pp. 321-339, 2004.

[50] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns elements of
reusable object oriented software. Reading, MA: Addison Wesley, 1994.

[51] D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural Description of
Component-Based Systems. Foundations of Component-Based Systems, Leavens,
G.T., and Sitaraman, M. (eds). Cambridge University Press, pp. 47-68, 2000.

[52] D. Garlan and M. Shaw. An introduction to software architecture. Ambriola &
Tortola (eds.), Advances in Software Engineering & Knowledge Engineering, vol.
II, World Scientific Pub Co., pp. 1-39, 1993.

[53] D. Garlan. Software Architecture: A Roadmap. In the Proceedings on The Future
of Software Engineering, pp. 93-101, 2000.

75

[54] D. Garvin. What Does “Product Quality” Really Mean?. Sloan Management
Review, pp. 25-45, 1984.

[55] S. Gokhale, W. E. Wong, K. Trivedi, and J. R. Horgan. An analytical approach
to architecture based software reliability prediction. In the Proceedings of 3rd

International Computer Performance & Dependability Symp., pp. 13-22, 1998.

[56] S. S. Gokhale and K. S. Trivedi. Reliability Prediction and Sensitivity Analy-
sis Based on Software Architecture. In the Proceedings of the 13th International
Symposium on Software Reliability Engineering, pp. 64-75, 2002

[57] S. S. Gokhale. Architecture-Based Software Reliability Analysis: Overview and
Limitations. IEEE Transactions on Dependable and Secure Computing, vol. 4,
pp. 32-40, 2007

[58] E. Golden, B.E. John and L. Bass. The value of a usability-supporting archi-
tectural pattern in software architecture design: a controlled experiment. In the
Proceedings on 27th international conference on Software engineering, pp. 460-
469, 2005.

[59] H. Gomaa and D.A. Menascé. Design and Performance Modeling of Component
Interconnection Patterns for Distributed Software Architectures. In the Proceed-
ings on 2nd International Workshop on Software and Performance, pp. 117-126,
2006.

[60] G. Y. Guo, J. M. Atlee and R. Kazman .A Software Architecture Reconstruction
Method. In the Proceedings of IFIP Conference, pp. 15-34, 1999.

[61] W.G. Griswold and D. Notkin. Architectural Tradeoffs for a Meaning-Preserving
Program Restructuring Tool. IEEE Transactions on Soflware Engineering, vol. 21,
pp. 275-287, 1995.

[62] J. E. Henry and J.P. Cain. A Quantitative Comparison of Perfective and Cor-
rective Software Maintenance. Journal of Software Maintenance: Research and
Practice, John Wiley & Sons, Vol 9, pp. 281-297, 1997.

[63] Recommended practice for architectural description. IEEE Standard P1471, 2000

[64] M.T. Ionita, D. K. Hammer and H. Obbink. Scenario-Based Software Architecture
Evaluation Methods: An Overview. Workshop on Methods and Techniques for
Software Architecture Review and Assessment at the International Conference on
Software Engineering, 2002.

[65] ISO, International Organization for Standardization, ISO 9126-1:2001, Software
engineering - Product quality, Part 1: Quality model, 2001.

[66] ITU. Criteria for the Use and Applicability of Formal Description Techniques,
Message Sequence Chart (MSC). International Telecommunication Union, 1996.

76

[67] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use vol. 1, Springer-Verlag, 2nd corrected printing 1997. ISBN: 3-540-60943-1.

[68] S. Junuzovic and P. Dewan. Response times in N-user replicated, centralized and
proximity-based hybrid collaboration architectures. In the Proceeding on 20th
Anniversary Conference on Computer Supported Cooperative Work, pp. 129-138,
2006.

[69] N. Juristo, M. Lpez, A. M. Moreno, and M. Isabel Snchez. Improving software
usability through architectural patterns. In the Proceedings ICSE 2003 Workshop,
pp. 12-19, 2003.

[70] T. Kauppi. Performance analysis at the software architectural level. Technical
report, ISSN: 14550849, 2003.

[71] R. Kazman, J. Asundi and M. Klein. Quantifying the Costs and Benefits of Archi-
tectural Decisions. In the Proceedings on 23rd International Conference on Soft-
ware Engineering, pp. 297-306, 2001.

[72] R. Kazman, G. Abowd, and M. Webb. SAAM: A Method for Analyzing the
Properties of Software Architectures. In the Proceedings on 16th International
Conference on Software Engineering, pp. 81-90, 1994.

[73] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere.
The Architecture Tradeoff Analysis Method. In the Proceedings on ICECCS, pp.
68-78, 1998.

[74] R. Kazman. Tool Support for Architecture Analysis and Design. In the Proceedings
of the 2nd International Software Architecture Workshop, pp. 94-97, 1996.

[75] P. A. Keiller, and D. R. Miller. On the Use and the Performance of Software
Reliability Growth Models. Software Reliability and Safety, Elsvier, pp. 95-117,
1991.

[76] N. L. Kerth and W. Cunningham. Using patterns to improve our architectural
vision. IEEE Software, 14(1), pp. 53-59, 1997.

[77] M. H. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci and H. Lipson.
Attribute-Based Architectural Styles. In the Proceedings on First Working IFIP
Conference on Software Architecture, pp. 225-243, 1999.

[78] S. Krishnamurthy and A. P. Mathur. On the estimation of reliability of a software
system using reliabilities of its components. In the Proceedings of 8th Int’l Symp.
Software Reliability Engineering, pp. 146-155, 1997.

[79] P.B. Krutchen. The 4+1 View Model of Architecture. IEEE Software, pp. 42-50,
November 1995.

[80] P. Kubat. Assessing reliability of modular software. Operation Research Letters,
8:35-41, 1989.

77

[81] Stephan Kurpjuweit. Ph.D. Thesis. A Family of Tools to Integrate Software Ar-
chitecture Analysis and Design. 2002.

[82] J. C. Laprie. Dependability evaluation of software systems inoperation. IEEE
Trans. on Software Engineering, vol. 10(6), pp. 701-714, 1984.

[83] N. Lassing, D. Rijsenbrij, and H. v. Vliet. On Software Architecture Analysis of
Flexibility, Complexity of Changes: Size isn’t Everything. In the Proceedings of
2nd Nordic Software Architecture Workshop, 1999.

[84] W. Li and S. Henry. Object-Oriented Metrics that Predict Maintainability. Jour-
nal of Systems and Software, vol. 23, no. 2, pp. 111-122, November 1993.

[85] M. Lindvall, R. T. Tvedt and P. Costa. An empirically-based process for software
architecture evaluation. Empirical Software Engineering 8(1): 83Y108, 2003

[86] B. Littlewood. A Reliability Model for Markov Structured Software. In the Pro-
ceeding on International Conference Reliable Software, pp. 204-207, 1975.

[87] C.-H. Lung, S. Bot, k. Kalaichelvan, and R. Kazman. An Approach to Software
Architecture Analysis for Evolution and Reusability. In the Proceedings on CAS-
CON, 1997.

[88] A. D. Marco and P. Inverardi. Starting from Message Sequence Chart for Soft-
ware Architecture Early Performance Analysis. In the Proceedings on the 2nd

International Workshop on Scenarios and State Machines: Models, Algorithms,
and Tools, 2003

[89] J. McCall, P. Richards, and G. Walters. Factors in software quality. Vol I-III,
Rome Aid Defence Centre, Italy, 1997.

[90] N. Medvidovic, D.S. Rosenblum, J.E. Robbins, and D.F. Redmiles. Modeling
Software Architectures in the Unified Modeling Language, ACM Transactions on
Software Engineering and Methodology, vol. 11, pp. 2-57, 2002.

[91] N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework
for Software Architecture Description Languages. IEEE Transactions on Software
Engineering, 26(1): 70-93, January 2000.

[92] G. Molter. Integrating SAAM in Domain-Centric and Reuse-based Development
Processes. In Proceedings of the 2nd Nordic Workshop on Software Architecture,
1999

[93] R.T. Monroe, A. Kompanek, R. Melton and D. Garlan. Architectural Styles,
Design Patterns, and Objects. IEEE Software, vol. 15, no. 7, pp. 43-52, January
1997.

[94] G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: bridging
the gap between source and high-level models. In the Proceedings of the 3rd ACM
SIGSOFT symposium on Foundations of software engineering, pp. 18 - 28, 1995.

78

[95] E. Di Nitto and D. Rosenblum. Exploiting ADLs to specify architectural styles in-
duced by middleware infrastructures. In Proceedings on International Conference
on Software Engineering, pp. 13-22, 1999.

[96] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12), Dec. 1972, pp. 1053-1058.

[97] D.E. Perry and A.L.Wolf. Foundations for the Study of Software Architecture.
In the Proceedings on Software Engineering Notes, ACM SIGSOFT, pp. 40-52,
October 1992.

[98] D. Petriu, C. Shousha, and A. Jalnapurkar. Architecture-Based Performance
Analysis Applied to a Telecommunication System. IEEE Transactions on Soft-
ware Engineering, vol. 26, no.11, pp. 1049-1065, 2000.

[99] D. Petriu and X. Wang. From UML descriptions of High-Level Software Architec-
tures to LQN Performance Models. In the Proceedings on Inernational Workshop
on Applications of Graph Transformations with Industrial Relevance, pp. 47-62,
1999.

[100] M. Pinzger, H.Gall , J. F. Girard, J. Knodel, C. Riva, W. Pasman, C. Broerse
and Jan G. Wijnstra. Architecture Recovery for Product Families. Book Chapter:
Software Product-Family Engineering, LNCS, Springer, vol. 3014, 2004.

[101] K. Goseva-Popstojanova, K. Trivedi, and A. P. Mathur. How different architec-
ture based software reliability models are related? In the Proceedings of 11th

International Symposium on Software Reliability Engineering, pp. 25-26, 2000.

[102] K. Goseva-Popstojanova, A.P. Mathur, K.S. Trivedi. Comparison of architecture-
based software reliability models. Proceedings. 1n the Proceedings on 12th Inter-
national Symposium on Software Reliability Engineering, pp 22-31, 2001.

[103] K. Goseva-Popstojanova and K. Trivedi. Architecture-based approach to reliabil-
ity assessment of software systems. Journal of Performance Evaluation, vol. 45,
no. 2-3, pp. 179-204, 2001.

[104] L. Prechelt, B. Unger, W. F. Tichy, P. Brssler and L. G. Votta. A Controlled
Experiment in Maintenance Comparing Design Patterns to Simpler Solutions.
IEEE Transactions on Software Engineering, vol. 27, pp. 1134-1144, 2001.

[105] R. S. Pressman. Software Engineering A Practitioner’s Approach. McGraw Hill.
2005. ISBN 0-07-283495-1

[106] R. Roshandel, A. van der Hoek, M. Mikic-Rakic, and N. Medvidovic. Mae - A
System Model and Environment for Managing Architectural Evolution. ACM
Transactions on Software Engineering and Methodology, vol. 13, no. 2, pp. 240-
276, 2002.

79

[107] R. Roshandel, S. Banerjee, L. Cheung, N. Medvidovic, and L. Golubchik. Esti-
mating Software Component Reliability by Leveraging Architectural Models. In
the Proceeding on 28th International Conference on Software Engineering, pp. 853
- 856 2006.

[108] R. Roshandel. Calculating Architectural Reliability via Modeling and Analysis.In
the proceedings on 26th International Conference on Software Engineering, pp.
69-71, 2004.

[109] K. Sandkuhl and B. Messer. Towards Reference Architectures for Distributed
Groupware Applications. In the Proceeding on 8th Euromicro Workshop on Par-
allel and Distributed Processing, pp. 121-135, 2000.

[110] R. W. Schwanke. An intelligent tool for reengineering software modularity. In the
Proceedings of the 13th International Conference on Software Engineering, pp.
83-92, 1991

[111] J.C. Dueas, W.L. de Oliveira and J.A. de la Puente. A Software Architecture
Evaluation Method. In the Proceedings on Second International ESPRIT ARES
Workshop, pp. 148-157, 1998.

[112] M. Sefika, A.Sane and R. H. Campbell. Monitoring compliance of a software sys-
tem withits high level design models. In the Proceedings of the 18th International
Conference on Software Engineering (ICSE), pp. 387-397, 1993.

[113] M. Sefika, A. Sane, and R. H. Campbell. Monitoring compliance of a software
system with its high-level design models. In the Proceedings on the International
Conference on Software Engineering, pp. 387396, 1996.

[114] SEI: http://www.sei.cmu.edu/

[115] SEI-ATAM: http://www.sei.cmu.edu/news-at-sei/features/2001/2q01/

feature-4-2q01.htm

[116] SEI-SAAM: http://www.sei.cmu.edu/architecture/scenario_paper/

ieee-sw2.htm

[117] M. Shaw. Comparing architectural design styles. IEEE Software, 12(6), Nov. 1995,
pp. 27-41.

[118] M. Shaw and P. Clements. A field guide to boxology: preliminary classification of
architectural styles for software systems. In the Proceeding on 21st COMPSAC,
1997.

[119] M. Shaw. Toward higher-level abstractions for software systems. Data and Knowl-
edge Engineering, 5, 1990, pp. 119-128.

[120] M. Shooman. Structural models for software reliability prediction. In the Pro-
ceedings of 2nd International Conference on Software Engineering, pp. 268-280,
1976.

80

[121] C.U. Smith and L.G. Smith. Performance Solutions: A Practical Guide to Cre-
ating Responsive, Scalable Software. Addison-Wesley, Boston, 510 p., 2002.

[122] C.U. Smith and L.G. Williams. Software Performance Engineering: A Case Study
Including Performance Comparison with Design Alternatives. IEEE Transaction
on Software Engineering, vol. 19, no. 7, pp. 720-741, 1993.

[123] C. U. Smith. Performance Engineering of Software Systems. Addison- Wesley,
Massachusetts, 570 p., 1990.

[124] Software Reliability. http://www.ece.cmu.edu/~koopman/des_s99/sw_

reliability/#reference

[125] The Shrimp. URL: http://www.thechiselgroup.org/shrimp.

[126] W.P. Stevens, G.J. Myers, and L.L. Constantine. Structured Design, IBM Systems
J., vol. 13, no. 2, pp. 115-139, 1974.

[127] C. Stoermer, F. Bachmann, C. Verhoef, SACAM: The Software Architecture
Comparison Analysis Method, Technical Report, CMU/SEI-2003-TR-006, 2003.

[128] M. Svahnberg, C. Wohlin, L. Lundberg, and M. Mattsson. A Method for Under-
standing Quality Attributes in Software Architecture Structures. In Proceedings
of the 14th International Conference on Software Engineering and Knowledge En-
gineering, 2002.

[129] SWAG: Software Architecture Group. URL: http://www.swag.uwaterloo.ca/
SWAGKit/.

[130] A. Tang, M. A. Babar, I. Gorton, and J. Han. A survey of architecture design
rationale. Journal of Systems and Software, vol. 79, issue 12, pp. 1792-1804, 2006.

[131] R. N. Taylor and N. Medvidovic. A Component- and Message-Based Architectural
Style for GUI Software. IEEE Trans. on Software Engineering, 22(6): 390-406,
1996.

[132] B. Tekinerdogan. ASAAM: aspectual software architecture analysis method. In
the Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA’04), June 2004, pp. 5-14.

[133] R.T. Tvedt, M. Lindvall, and P. Costa. A Process for Software Architecture Eval-
uation using Metrics. In the proceedings of 27th Annual NASA Goddard/IEEE,
pp. 191-196, 2002

[134] H. v. Vliet. Software Engineering: Principles and Practice, Wiley, 22 edition,
ISBN-10: 0471975087, 748 p., 2000.

[135] J.M. Voas. Software fault injection: inoculating programs against errors. Wiley,
New York, 1998.

81

[136] W. L. Wang, Y.Wu and M.H. Chen. An Architecture-Based Software Reliability
Model. In the Proceedings of the 1999 Pacific Rim International Symposium on
Dependable Computing, pp. 1-7, 1999.

[137] L.G. Williams and C.U. Smith. PASA: A method for the Performance Assessment
of Software Architectures. In the Proceedings of the Third International Workshop
on Software and Performance (WOSP ’02), pp. 179-189, 1990,

[138] L.G. Williams and C.U. Smith. Performance Engineering of Software Architec-
tures. In the Proceeding on Workshop Software and Performance, pp. 164 - 177,
1998.

[139] A. Wood. Software Reliability Growth Models: Assumptions vs. Reality. In the
Proceedings on Eighth International Symposium on Software Reliability Engineer-
ing, pp. 136-141, 1997.

[140] M. Woodside. Tutorial: Introduction to Layered Modeling of Soft-
ware Performance, 2003, URL:http://www.sce.carleton.ca/rads/lqn/

lqn-documentation/tutorialf.pdf.

[141] M. Xie and C. Wohlin.An Additive Reliability Model for the Analysis of Modular
Software Failure Data. In the Proceedings on IEEE 6th International Symposium
on Software Reliability Engineering, pp. 188-194, 1995.

[142] S. M. Yacoub, and H. Ammar. A methodology for architectural-level reliability
risk analysis. IEEE Transactions on Software Engineering 28: 529-547,2002

[143] S. Yacoub, B. Cukic, and H. Ammar. Scenario-based reliability analysis of
component-based software. In the Proceedings of 10th Int’l Symp. Software Reli-
ability Engineering, pp. 22-31, 1999.

[144] L. Zhu, M. Ali Babar, and R. Jeffery. Distilling Scenarios from Patterns for Soft-
ware Architecture Evaluation. In the Proceedings on 1st European Workshop on
Software Architecture, pp. 219-224, 2004.

[145] L. Zhu, M. Ali Babar, and R. Jeffery. Distilling Scenarios from Patterns for Soft-
ware Architecture Evaluation. In the Proceedings on 1st European Workshop on
Software Architecture, pp. 219-224, 2004.

82

