
An improved cellular automata based
algorithm for the 45-convex hull problem

Adam Clarridge and Kai Salomaa

Technical Report No. 2008-547
Queen’s University at Kingston

Ontario, Canada
{adam,ksalomaa}@cs.queensu.ca

July 2008

Abstract

We give a cellular automaton algorithm for solving a version of
the convex hull problem. The algorithm is based on the one presented
by Torbey, which requires a global transition rule change in order to
complete its operation. By introducing several new states and giving a
simpler set of transition rules, we lift the requirement for a global rule
change in between the previous algorithm’s shrinking and expanding
stages. The algorithm uses several communication states to explicitly
detect when the first (shrinking) stage has ended, and relying only on
local state information the cellular automaton is able to begin the next
(expanding) stage of the computation in such a way that correctness
is ensured.

1



1 Introduction

Given a set of planar points, the two-dimensional convex hull problem is
to find the convex polygon with the smallest possible area which completely
contains all of the points. This problem has been solved efficiently using stan-
dard methods, and an O(n log h) algorithm exists [2], where n is the number
of points and h is the number of vertices of the convex hull. We present a
cellular automata algorithm to solve a version of the convex hull problem
which can be represented exactly on a finite grid like a two-dimensional cel-
lular automaton. It is known as the 45-convex hull problem: the polygon
forming the convex hull must be composed of only horizontal lines, vertical
lines, or 45 degree perfect diagonals.

Our algorithm is based on the cellular automaton algorithm described
in the paper by Torbey [5]. They solve the 45-convex hull problem using a
3-state, Moore neighbourhood cellular automaton with semi-totalistic tran-
sition rules. The algorithm requires a global transition rule change after a
certain number of generations, which depends on the size of the grid. The
process is thereby separated into two distinct stages, and so the algorithm
technically does not solve the problem with a standard two-dimensional cel-
lular automaton. We define several additional states and transition rules that
enable us to be certain that the first stage has finished, and hence we do not
require a global rule change to transition to the next stage of the algorithm.
We also define simpler transition rules for the first stage of the algorithm
that correct errors that occurred with certain special types of input in the
prototype algorithm [5].

We give a very brief introduction to cellular automata and provide some
references on the subject before describing our algorithm in detail.

2 Cellular Automata

A cellular automaton can be described as a lattice of individual cells, each
cell having a set of ’neighbour’ cells which are usually in close proximity to
it. The two standard radius 1 (r = 1) neighbourhoods in a two-dimensional
cellular grid are shown in Figure 1.

The cellular automaton starts at time t = 0 with each of the cells in one
of their n possible states, where n is fixed (not dependent on time or grid
size). This starting configuration is known as the initial condition. All cells

1



Figure 1: Radius-1, two-dimensional Von Neumann neighbourhood (left) and
Moore neighbourhood (right)

have their own state transition function, whose input is their state and the
states of each of their neighbours, and output is one of the possible states.
When the CA advances from time step t to t + 1, all of the cells consult
their state transition functions using input from time step t, and the output
of the function is their new state at time t + 1. The entire CA updates
synchronously in this fashion.

The boundary conditions are the CA rules which apply at the edges of a
finite cellular array, which may be different from the rest of the transition
rules. A CA is said to be uniform if all of its cells evolve using the same tran-
sition rule, and totalistic if the input to each cell’s state transition function
is only dependent on the sum of the states of its neighbours.

For more information on cellular automata in general, see [3, 4, 6–8].

3 The Algorithm

In this section we will discuss the specifics of the proposed algorithm. The
algorithm has three main facets or stages:

• Using 4 states and starting with a CA that has black cells marking the
input points and grey cells everywhere else with a white cell border,
the grey area shrinks so that it is completely contained within the 45-
convex hull of the black cells.

• Using 18 additional communication states, the algorithm identifies a
point in time where it can be sure that the grey area has finished
shrinking.

2



• Using a slightly modified version of the technique proposed by Adamatzky [1],
the shrunken grey area expands to the 45-convex hull of the input
points.

The initial configuration is all grey cells except for a white cell outer
boundary and any number of black cells, which are the input points. Note
that the white cells at the boundary could be simulated by standard CA
rules that are applied at the edges of the (finite) cellular array. Having white
states at the boundary spares us the trouble of defining separate boundary
conditions for the simulations.

The first and third stages of the algorithm actually work toward finding
the 45-convex hull: the first stage contracts the grey area so that it is com-
pletely contained within the 45-convex hull of the black cells in such a way
that the third stage expands the shrunken grey region to the exact 45-convex
hull. The only function of the second stage is to detect that the first stage is
in fact complete. It runs in parallel with the first, and uses a set of commu-
nication states (which do not interfere with the operation of the first stage)
in order to verify that the first stage is complete.

Our implementation has longer running time on average and uses many
more states than the one proposed by Torbey, but does not require a global
rule change at any time. Also, our algorithm addresses the problem of a set
of special cases which Torbey’s algorithm does not solve correctly.

3.1 Stage 1

There are initially only white, grey and black cells on the grid for this stage.
An example input is depicted in Figure 3. The black cells represent the
points for which we are trying to find the 45-convex hull. In this stage we
want to ’shrink’ the grey area (make grey cells transition to white cells) in
such a way that the grey area is completely contained within the 45-convex
hull of the input points. Later on, in the third stage of the algorithm, the
grey area expands to cover exactly the 45-convex hull.

The challenge is to come up with a set of simple local rules for the CA
so that the grey area shrinks smaller than the 45-convex hull of the set of
input points, but stays connected. In the algorithm by Torbey, a complex set
of pseudo-totalistic (meaning that the input to the state transition function
depends on the sum of certain subsets of the neighbour set, not the entire
neighbour set) transition rules almost achieved correct behaviour in all cases.

3



We found that a much more simply represented set of rules achieves the same
result: all rotations and reflections (mirror images) of the two rules shown in
Figure 2 cause the first stage to be completed correctly in almost all cases.
We must note that this stage of the algorithm treats the states introduced in
the second stage of the algorithm (Finder state, Communication states) as if
they were the white state, since they do not affect the grey area’s shrinking.
In Figure 3, one can see these rules in action.

Figure 2: Rules for transitioning from the grey state (G) to the white state (W).
All reflections and 90 degree rotations of these rules apply. GB means the cell can
be either grey or black. Blank cells mean that the state of that cell is irrelevant
to the rule.

However, there are some extreme special cases usually involving a very
small number of input points where using just these rules can cause a discon-
nected grey area. A local cell configuration depicting this problem is given
in Figure 4.

The algorithm proposed by Torbey has the same problem. We resolve
this issue by introducing a fourth state, which we will refer to as the yellow
state. This state is best understood as an intermediate state between grey
and white. Yellow states exist in order to signify a temporary lack of local
knowledge as to whether a particular grey cell should transition to white or
stay grey, so a cell in the yellow state will either transition to the white state
or the grey state on the next generation. If a grey cell has neighbouring
states corresponding to any rotation/reflection of the rule in Figure 5, then
it will transition to the yellow state. Note the white cell in the bottom right
corner; this is the only way that the situation in Figure 4 can occur.

The transition rules for yellow cells are shown in Figure 6. These rules
contain a tie-breaking protocol so that if two yellow cells are adjacent to
each other, one will turn white (topmost or leftmost) and the other grey
(bottommost or rightmost). It should be clear that in cases where two yellow
cells are adjacent to each other, it does not matter which one turns white and

4



Figure 3: An example of the first stage of the algorithm in action - the grey area
is contracted around the black cells.

which one turns grey since the grey area will definitely stay connected, and
both cells in question must be inside the 45-convex hull of the input points.

The problem shown in Figure 4 is resolved by the yellow states, as shown
in Figure 7.

5



Figure 4: A problem with using only the rules in Figure 2. Two of the grey cells
will both turn white in the next generation, disconnecting the grey area. Note
that there is a white cell boundary around the CA which is not shown.

Figure 5: Rule for going from the grey state to the yellow state. This rule applies
in the situation where we are not sure whether or not a grey cell should turn white
or stay grey. Again, all reflections and 90 degree rotations of this rule apply, and
blank cells mean that the state of that cell is irrelevant to the rule.

3.2 Stage 2

We want to make sure that there are no grey areas still shrinking before
the third stage of the algorithm begins. If we can construct ’Communicator’
states which travel in one direction (counterclockwise, say) along the edge of
a grey area only if it is not shrinking, and can somehow detect when they
have traveled once around a stationary grey area, then this detection is the
signal to begin the third stage of the algorithm. We should note that we
require some room for the communication cells to propagate along; therefore
we impose the restriction that no black cells (input points) be placed along
the outer edge of the grey cells.

In order to facilitate this communication and detection, we want to start
communicating counterclockwise from some cell that is guaranteed to be on
the grey cell boundary when it has finished shrinking. Any of the outer
black cells meet this requirement. However, we do not want to impose the
restriction that one must designate one of the outer black cells as this com-

6



Figure 6: Rules for transitioning from the yellow state to the white or grey state.
Y means the yellow state. Blank cells mean that the state of that cell is irrelevant
to the rule.

Figure 7: The yellow states in action, allowing the grey area to stay connected in
the same situation as was shown in Figure 4.

munication starter cell (let us refer to it as the Anchor cell). We construct
the algorithm to automatically ’find’ one of the black cells that is on the edge
of the grey area and designate it as the Anchor cell.

We introduce a ’Finder’ state which travels counterclockwise along the
edge of a (possibly shrinking) grey cell boundary. Finder states always tran-
sition to white cells. White cells which are adjacent to Finder states change
to Finder states in such a way that there can be at most one Finder state
in the automaton at any given generation. The Finder state’s propagation
along the grey boundary stops when it is adjacent to any black cell, since
when this happens it means that a suitable Anchor cell has been found. The

7



transition rules for white cells changing to the Finder state are shown in
Figure 8.

Figure 8: Rules for transitioning from the white state to the Finder state. All 90
degree rotations of these rules apply, but their reflections do not, since we only
want the Finder state to move in a counterclockwise direction. F means the cell
must be in the Finder state. Blank cells mean that the state of that cell is irrelevant
to the rule.

We must note that there are two ’dummy’ states required to facilitate
the initialization of the Finder state; the first dummy Finder state starts
in the top left corner of the grid on the first generation, and on the next
two generations it transitions to the second dummy state and then to the
Finder state. This was just a simple way to have the Finder state start on
the third generation in the top left corner, where it will still be able to follow
the shrinking grey area while not affecting the shrinking process in any way.
The first dummy state (part of the initial configuration) appears as a grey
cell to its neighbours and the second dummy state appears as a white cell to
its neighbours, so the behaviour of the first stage of the algorithm does not
change. The first dummy state could be obtained from the CA boundary
conditions applied at the upper left corner and hence this behaviour can be
achieved on a standard two-dimensional CA.

When the Finder state is directly adjacent to a black cell, the black cell
changes to the Anchor cell state. The conditions for this occurrence are
shown in Figure 9. Note the tie-breaking rule; a black cell may see a Finder
state directly above it, yet it will not claim itself the Anchor cell if the Finder
state has another black cell to its immediate left or right. So in tie-breaking
situations, the left and right cells ’win’ the Anchor state. The white cells
around this interaction also notice that a Finder is adjacent to a black cell
and do not continue the Finder state’s propagation (this behaviour is implied
by the previously mentioned rules of Figure 8). Note that it is impossible
for a Finder state to ever be in between two black cells (i.e. to have a black
cell on its left and right, or top and bottom) since a grey cell must be in

8



such a location, and grey cells never transition to the Finder state. A small
example of the Finder state successfully ’finding’ an Anchor cell is given in
Figure 10.

We should also note at this point that it is impossible for the grey area to
shrink faster than the Finder state can follow it. This is because the Finder
state always moves to be directly adjacent to grey cells, and any grey cell
that turns white can turn to the Finder state on the next generation since
it will have both the Finder cell and the grey cell as neighbours. One of the
latter two rules of Figure 8 will apply.

Figure 9: Rules for transitioning from the black state to the Anchor state. ’ !B’
means that the cell can be in any state except for the black state, and F denotes
the Finder state. Blank cells mean that the state of that cell is irrelevant to the
rule.

Once the Anchor cell is found, the communication begins. The goal of
the communication is to send a signal counterclockwise around the edge of
the grey area, and this signal may only propagate if the grey edge it is
travelling along is not in the process of shrinking. The Anchor cell changes
to one of 8 states based on the white cells around it (the Finder state is
considered a white cell as well, since it will be turning white on the next
generation anyway). Each of these states defines a different transmitter and
receptor, as shown in Figure 11. The transmitter and receptor labels are
not states - they are simply there to clarify the mechanism for starting and
stopping communication. The T and R labels just signify that white cells
who notice one of T1-T8 in a certain location in their neighbourhood will
recognize themselves as the transmitter or receptor and will therefore abide
by different state transition rules. That is, when a cell D is in the white
state and the cell to the lower right of D is in state T1, the cell D transitions
to the communication state. The same happens if the state to the left of D
is in state T2, and so on. Figure 11 attempts to explain the intuitive idea
behind the construction, since if written out in full, the rules are slightly
more complicated. The behaviour of our cellular automaton guarantees that

9



Figure 10: The first few generations of a small test case showing the Finder state
identifying a particular black cell as the Anchor state. Note that the outer bound-
ary of white cells (part of the initial configuration) is not shown. F1 and F2 refer
to the two ’dummy’ finder states.

any configuration can have only one occurrence of the states T1-T8, however,
formally the rules for the white cell D need to define what happens in cases
where more than one of the neighbours of D is in states T1-T8.

It does not matter which of the 8 states the Anchor cell chooses to tran-
sition to, as long as both the transmitter and receptor cells are white. So as
soon as the Anchor state is found, it transitions to one of the T1-T8 states.
We should note at this point that the algorithm prototype includes an ex-
plicit rule for transitioning to each of the T1-T8 states: the Anchor cell will
transition to T1 if the top-left and top cells of its neighbourhood are in the
white state, but if this is not the case then it will transition to T2 if the

10



Figure 11: T1-T8 are the possible states that the Anchor cell may transition to. T
and R refer to transmitter and receptor, which are not states, simply cells which
must be in the white state in order for the transition to occur, and whose behaviour
after the transition changes.

left and top-left cells of its neighbourhood are in the white state. That is,
the rule transitioning into T2 requires that the top cell is not white, and
the top-left and left cells are both white. Otherwise it will try to transition
to T3, etc. Because of the way the grey area shrinks, we are guaranteed to
always be able to transition to at least one of T1-T8, since there will always
be at least two adjacent white cells in the neighbourhood of the Anchor cell.

Depending on which state the Anchor cell changes to, the white cells
around it know if they are supposed to start the transmission. The white
cell who notices that it is the transmitter (say, if its top-right neighbour is in
state T3) changes to the Communication state on the next generation. An
example is given in Figure 12, which shows the next two generations of the
computation continued from Figure 10.

The Communication state always changes to a state which corresponds to
the sum of the grey and black neighbours it can count in its neighbourhood
(the T1-T8 states count as a black state in this sum). From this state, if
the number of grey or black (GB) neighbours has changed, it transitions to
the white state. Otherwise, it transitions back to the Communication state.
This ensures that Communication states cannot continue to propagate along
a grey area that is still in the process of shrinking, because there will be
changes in the number of GB neighbours along the edge. So the states
involved in communication are constantly flipping back and forth between
their ’GB sum’ state and the communication state.

11



Figure 12: An example of a white cell starting the counterclockwise communica-
tion. It notices that the T3 state is its upper-right neighbour, and so it transitions
to the Communication state.

The communication goes counterclockwise from the transmitter cell. The
rule shown in Figure 13 defines the conditions under which a cell in the white
state will transition to one of the ’GB sum’ states, a state which corresponds
to the total number of a cell’s GB neighbours. Note that we only need 4 of
these ’GB sum’ states, since if a cell has more than 4 grey or black neighbours
it is clear that the first stage of the algorithm must not be complete, and
therefore communication must not continue (the cell in question transitions
to the white state). Also, if the cell has zero grey or black neighbours then
it is clear that again, the first stage of the algorithm is not complete and the
cell must transition back to the white state.

Figure 13: Rule for transitioning from the white state to a state corresponding to
the total number of grey or black states in a cell’s neighbourhood. All 90 degree
rotations of this rule apply. C refers to the communication state. Blank cells
mean that the state of that cell is irrelevant to deciding whether this rule should
be applied, but if the blank cells in this figure are in the grey or black state, then
clearly they will influence which ’GB sum’ state that the white state will transition
to.

12



Only four of these GB sum states are necessary, since a candidate commu-
nication cell must have at least one GB neighbour and at most 4 - any other
situation signifies a transition to the white state, cutting off communication
temporarily. If the GB sum stays the same on the next generation, then
the cell goes back to the communication state, allowing the communication
signal to propagate further while ensuring that the edge of the grey area is
not changing. If the GB sum changes at all on the next generation, the cell
will go from the GB sum state to the white state. Continuing the example
from Figures 10 and 12, the operation of the Communication and GB sum
states are shown in Figure 14.

Figure 14: An example of the communication states in action. Note that the
T3 state here counts as a black cell in the computation of the ’GB sum’ state
transition.

The total number of states needed for this stage is 17; 3 states to find an
Anchor cell (2 dummies and the actual Finder state), 9 states for the Anchor
cell (8 for the various possible positions of the transmitter and receptor, and
1 is the actual Anchor state), and 5 communication states (1 Communication
state, and 4 ’grey/black sum’ states).

13



3.3 Stage 3

Once the communication makes it all the way around the static grey area,
the Anchor cell (which is in one of states T1-T8) notices that its receptor
cell has changed to the Communication state, and so it changes to a ’De-
tect’ state. All cells which are either grey or black that have a detect state
anywhere in their neighbourhood also turn into the Detect state. Commu-
nication type cells change to the white state if there is a Detect state in
their neighbourhood. White cells in the presence of Detect states follow the
rules outlined in the expanding stage of the algorithm discussed in Torbey’s
paper [5] - Adamatzky’s method with a slight modification. The basic rule is
that any white cell with 4 or more neighbours in the Detect state will tran-
sition to the Detect state. The modification to this scheme is simply that
all rotations/reflections of the rule in Figure 15 also call for a change to the
Detect state - this rule simply catches the special cases where the grey area
is connected only by a thin ’thread’ of cells on a diagonal.

Figure 15: A rule for changing from the white state to the Detect state. All
rotations/reflections apply.

It should be clear that it is irrelevant to the correctness of the algorithm
that the Detect states propagate outwards from a certain point instead of
occurring all at once, globally. An example of this expansion of the grey area
to the 45-convex hull is given in Figure 16.

3.4 Time Complexity

Our algorithm has introduced many additional states to the algorithm by
Torbey [5]. We briefly compare the time complexity of the two algorithms.

In the following analysis we are assuming the input is given as a square
grid having edges of length m. In this case the time used by the algorithm
from [5] is at most 3.5m.

14



Figure 16: An example of the third stage of the algorithm working. The com-
munication states are not shown here. Detect states are the same colour as the
black state for simplicity. In this example the detection occurred at the bottom
left black cell.

The shrinking phase of the algorithm from [5] uses time at most 2.5m. In
order to deal with the discussed problematic inputs, our algorithm sometimes

15



uses yellow intermediary states when deciding whether to transition from a
grey state to a white state. So using a very conservative estimate, the running
time of Stage 1 is upper bounded by 5m.

Stage 2 of the algorithm sends a communication signal around the grey
area that is possibly still shrinking. Note that if the grey area continues
shrinking, this disrupts the communication signal and potentially increases
the time bound. But since we know that the shrinking must have stopped af-
ter 5m steps, when estimating the time needed for the communication phase,
without loss of generality we can assume that the grey area has stopped
shrinking. The length of the outer edge of the grey area is upper bounded
by 4m which means that the communication signal takes time at most 8m.
(The signal alternates between the communication state and ’GB sum’ states
which means that it travels one cell in two cycles.) However, the communica-
tion signal travels slowest along diagonals (since it does not travel diagonally,
only horizontally and vertically) so we must consider the case where there
are two input points in opposing corners, causing the maximum amount of
diagonal travel. In this case the algorithm would also take at most 8m cycles
to communicate around the diagonal. There is one last issue to consider for
this stage: the Finder state may not find an Anchor cell by the time the first
stage has finished. Experimental evidence as well as intuition seem to indi-
cate that this can only happen if the first stage of the algorithm finishes very
quickly, and hence this case would not change our upper bound for Stage 2.
If any counterexample were to exist though, it would take time at most m
for the Finder state to find an Anchor cell. We conclude that Stage 2 of our
algorithm takes time at most 9m.

Finally, Stage 3 of our algorithm is very similar to the expanding stage
in [5] which is completed in time m. The only difference is that our algo-
rithm may take at most an additional m cycles to distribute the Detect state
throughout the grid.

By combining the above estimates, we note that the total running time
of our algorithm is upper bounded by 16m. Here we have just wanted to
establish that the running time remains linear in m. By using a more detailed
analysis, the upper bound estimate could clearly be improved. For example,
the upper bound for Stage 1 corresponds to a situation where the grey area
initially shrinks to be very small, whereas the upper bound estimate for the
next two stages uses a worst case example where, even after the shrinking
has stopped, the grey area remains relatively large.

16



4 Conclusion

In summary, the two-stage algorithm proposed by Torbey [5] has been modi-
fied so that it does not require a global rule change to transition between the
two stages, has simpler rules for shrinking the grey area in the first stage,
and keeps the grey area connected in a not-so-obvious special case. A mech-
anism has been described for finding an anchor point (a point on the edge
of the grey area), communicating around the grey area in such a way as to
ensure that it has not changed, and detecting this successful communication
to enable a smooth transition to the last stage of the algorithm.

17



References

[1] Andrew Adamatzky. Automatic programming of cellular automata: iden-
tification approach. Kybernetes: The International Journal of Systems
and Cybernetics, pages 26(2):126–135, 1997.

[2] Timothy M. Chan. Optimal output-sensitive convex hull algorithms
in two and three dimensions. Discrete and Computational Geometry,
16:361–368, 1996.

[3] Howard Gutowitz. Cellular Automata: Theory and Experiment. MIT
Press/Bradford Books, Cambridge Mass., 1991.

[4] Tommaso Toffoli and Norman Margolus. Cellular automata machines: a
new environment for modeling. MIT Press, Cambridge, MA, USA, 1987.

[5] S. Torbey and S.G. Akl. An exact and optimal local solution to the two-
dimensional convex hull of arbitrary points problem. To appear in the
International Journal of Cellular Automata.

[6] Stephen Wolfram. Cellular Automata and Complexity. Addison-Wesley,
1994.

[7] Stephen Wolfram. A New Kind of Science. Wolfram Media, January
2002.

[8] Andrew Wuensche and Mike Lesser. The Global Dynamics of Cellular
Automata. Addison-Wesley, 1992.

18


	Introduction
	Cellular Automata
	The Algorithm
	Stage 1
	Stage 2
	Stage 3
	Time Complexity

	Conclusion

