
Model-Based Testing of Distributed
Systems

Technical Report 2008-548

Ahmad Saifan, Juergen Dingel

School of Computing
Queen’s University

Kingston, Ontario, Canada
{saifan,dingel}@cs.queensu.ca

September 2008

Abstract

This paper provides an overview of Model-Based Testing (MBT) and its
activities. A classification of MBT based on different criteria is also presented.
Furthermore, several difficulties of MBT are highlighted in this paper. A survey
that provides a detailed description of how MBT is effective in testing different
quality attributes of distributed systems such as security, performance, reliabil-
ity, and correctness is given. A comparison between different MBT tools based
on the classification is also given at the end of this paper.

Contents

Contents ii

List of Figures iv

List of Tables iv

1 Introduction 1
1.1 Organization of Paper . 2

2 Model-Based Testing 2
2.1 The Model . 2
2.2 Software Modeling Notations . 3
2.3 Choosing the Software Modeling Notation 3
2.4 Activities of MBT . 4

2.4.1 Build the Model . 6
2.4.2 Generate Test Cases . 9
2.4.3 Execute the Test Cases . 11
2.4.4 Checking Conformance . 12

2.5 Classification of MBT . 12
2.6 Potential Problems in MBT . 14

3 Testing Distributed Systems 16
3.1 Distributed Systems . 16
3.2 Difficulties of Testing Distributed Systems 17

4 Using MBT to Improve Different Quality Attributes in DSs 19
4.1 Performance . 19
4.2 Security . 23

4.2.1 Security Functional Testing 24
4.2.2 Security Vulnerability Testing 26

4.3 Correctness . 28
4.3.1 Avoid Deadlock . 28
4.3.2 Checking Conformance . 30

4.4 Reliability . 33

ii

5 MBT Tools for Testing Distributed Systems 36
5.1 Spec Explorer . 36
5.2 TorX . 38
5.3 AETG . 39
5.4 Conformiq Qtroniq . 39
5.5 LTG . 39
5.6 JUMBL . 40
5.7 A Comparison Between Different MBT Tools Based on the Classification 40

6 Conclusion 43
6.1 Future Work . 43

References 45

iii

List of Figures

1 Model-Based Testing activities [5]. 5
2 FSM model for simple phone system [5]. 7
3 Process of building a reasonably complete and coherent model according to [14] 9
4 A test case generated from the FSM model of simple phone system adapted from Fig.2 11
5 Executable test script . 11
6 A sample use case for the Duke’s Bank [31] 22
7 Test Automation Framework (TAF) [24]. 25
8 Test constraints and remote calls of Arbiter system [25]. 29
9 Examples of arbiter system presented as finite automata [25] 30
10 Examples of specification and implementations [49] 32
11 Two finite automata [57] . 32
12 SpecTest tool components [50] . 35
13 Steps of Spec Explorer tool [27] . 36

List of Tables

1 Selection of software modelings notations 4
2 The general procedure to build a model as presented by Whittaker [79] 8
3 The approach of testing performance of DSs as presented by [31] . . . 20
4 Performance parameters [31] . 21
5 Some of commercial and academic MBT tools based on the classification 42

iv

Acknowledgments

I would like to express my gratitude to all those who gave me the possibility to
complete this depth paper. I am deeply indebted to my supervisor Dr. Juergen Dingel
whose help, by stimulating suggestions and encouragement helped me all the time in
writing this paper. I would like to give my special thanks to my parents, my wife,
and my son whose patient love enabled me to complete this work. Special thanks to
my brother Amjad for helping me in editing this paper. Also a special thanks to my
friend Jonathan.

v

1 Introduction

Software quality is an important issue that all developers of software systems want
to achieve. It currently attracts a lot of attention since software is everywhere and
affects our lives on a daily basis. It is used for example in airplanes, telecommuni-
cation systems, consumer products, financial systems, administration systems, etc.
So it is almost impossible to go through a day without coming in contact with soft-
ware. Moreover, the size and complexity of software systems is growing dramatically,
especially of distributed systems software, which typically consists of a number of
independent components running concurrently on different machines that are inter-
connected by a communication network.

Testing plays an important role in improving the quality of software systems. It
is used to check several quality attributes that are of growing concern such as cor-
rectness, performance, security, reliability of software systems.

Because of the increasing size and complexity of software, people have started to
use models for many years to facilitate the development of complex software. For
example, they have used models in the requirements elicitation and analysis to help
understand the requirements and allow for a more detailed specification of how the
system should behave. For instance, Broy et al [22], presented a method to develop
models systematically from requirements. Furthermore, developers use models in the
design phase, for example in his book, Gomaa [36] shows how to design concurrent,
distributed, and Real-Time applications using UML. Liu et al [53] use models to de-
sign complex control systems. In addition, others use models to generate code, for
example, the Altoval UModelr 2008 tool [6] is used to create Java, C], or VB.NET
from UML models. In general, developers have largely applied models to selected el-
ements of the development process, particularly structural and behavioral aspects in
the design phase and model checking and verification in the testing phase. In general,
there are at least three benefits to using models:

• Facilitate communication: Often, models are useful as a means of communi-
cation between the developers and the customer and between the developers
themselves.

• Enable Abstraction: Models allow certain aspects and details of the system to
be highlighted while others are ignored through abstraction.

1

• Enable Analysis : If the semantics of the model is clear, analysis can be per-
formed; sometimes tools can be implemented to perform analysis automatically.

Additional advantages can be gained when the model is described in a formally de-
fined language. Formal models have an unambiguously defined semantics that is more
difficult to misinterpret. Also formal models allow validation of the system early. This
means you can find the defects in the system as they are being developed rather than
during system test, when it is in general much more costly to find and correct them.
In addition, formal models can be verified mathematically, i.e it can be proved that
they have or lack certain properties. Z [70], B [7], VDM [56] are examples of formal
specification languages. Model-Based Testing is an attempt to leverage these models
to improve software quality by detecting defects more efficiently.

The first part of this paper provides an introduction to the activities of Model-Based
testing (MBT), and it also describes a classification and the limitations of MBT. The
second part of this paper provides an overview of the difficulties of testing distributed
systems, and also provides a detailed description of how MBT is effective in test-
ing different quality attributes of distributed systems such as security, performance,
reliability, and correctness.

1.1 Organization of Paper

This paper is organized as follows: Section 2 briefly describes Model-Based Testing
(MBT) and its activities; in addition, this section provides a classification and some
limitations of MBT. A brief description of distributed systems and their characteristics
that make the process of testing them so difficult will be presented in section 3. Section
4 discusses some quality attributes of distributed systems that MBT has been used
for. Section 5 presents some MBT tools. Section 6 presents conclusions and future
work.

2 Model-Based Testing

2.1 The Model

El-Far and Whittaker [33] define Model-Based Testing (MBT) as an “approach in
which common testing tasks such as test case generation and test result evaluation
are based on a model of the application under test”. During the software testing

2

process the testers use a model that is built from the requirements of the system
in order to describe the application behaviors. Moreover, they use the model to
automatically generate test cases. As described in DACS (The Data and Analysis
Center for Software) [5], this model can be presented in terms of, e.g., the input
sequences accepted by the system, the actions, and the outputs performed by the
system. Since the model is a description of the application behavior, the model
should be understandable by all testers, even if they do not have any experience or
knowledge in the application domain, or they do not know what the system does.
Moreover, the model should be precise, clear, and should be presented in a formal
way. Section 2.4.1 will explain the process of building a model in more detail.
In general, one advantage of using models in testing as presented by Robinson [63] is
that once the models have been built and assuming tools are available, the testing of
the application can be performed more quickly and automatically. Another advantage
is that, when the application and the test evolve, it is often sufficient to update the
model incrementally with the corresponding changes.

2.2 Software Modeling Notations

In software testing there are several techniques to model the application behavior.
In other words, there are several notations to describe the behavior of a system as a
model. In [33], the authors present the most appropriate notations for testing. Some
of these notations are: Finite State Machines (FSM) [18], Statecharts [40], UML [4],
Markov chains [48], and Petri nets [62]. Table 1 presents these notations and in
which kinds of applications they are suitable as suggested by El-Far and Whittaker
[5]. Furthermore, the table describes the advantages and disadvantages of all of these
notations. For more information about these models, see [33, 82]. Additional software
modeling notations will be listed in Section 2.5.

2.3 Choosing the Software Modeling Notation

Before starting the process of MBT, the tester needs to make a decision which software
modeling notation is suitable for testing the system. Or which kinds of software
modeling notations are appropriate for testing the system. Today, there is no software
model that fits all purposes and intents. El-Far and Whittaker [33] present several
issues that the tester should be aware of when choosing a model to test an application.
The first issue is the system type. For example, as we can see from Table 1 if the
system to be tested has individual components and they can be modeled using state

3

Software
Modeling
Notation

Kind of applica-
tion suggested to
model

Advantage Disadvantage

FSM State-rich systems (e.g.,
telephony systems)

-Easy to use
-Easy to generate test cases from
the model because there are several
graph traversal algorithms

Nontrivial to construct complex sys-
tems which have large state spaces

Statecharts -Parallel systems with
individual components
capable of being mod-
eled by state machines
-Few states, systems
with transitions caused
by external conditions,
or user inputs

-Easier to read than FSM
-Allow state machine to be specifed
in hierarchical way
-Its structure involves external condi-
tions that effect whether a transition
takes place from a particular state
which reduces the size of model in
many situations

Nontrivial to work with, and modeler
need time training upfront

Sequence
Diagram

Suitable for modeling a
real time systems, OO
systems

-Modeling complex sequences of in-
teraction between entities
-Permit a lot of useful information to
be shown at the same time

-Produced only with dynamic analysis,
cannot be used for evaluating the ade-
quacy of testing
-Cannot cover all possible aspects of
interactions

Markov
chains

Used with systems that
need statistical analysis
of failure

It can support estimation measures
such as reliability and mean time to
failure

-Require many mathematic opera-
tions, and also require a knowledge of
probability theory

Petri Net Suitable for concurrent
as well as asynchronous
behavior

Intuitive, mature notation with lots
of tool support

-Poor support for modeling large and
complete systems
-Lack of support for hierarchy

Table 1: Selection of software modelings notations

machines, then statecharts are a reasonable solution for modeling. The second issue is
the level of expertise of the people who will work with the models and the availability
of tools that support MBT activities. The third issue has to do with the use of
models during other part of the development. Sometimes organizations use a model
to specify and design the requirements of the system, so it is better to use this kind
of model also for testing, so that all teams understand the model, which makes the
communication between all teams and testers easier.

2.4 Activities of MBT

In MBT there are several activities to test the System Under Test (SUT) see Figure
1. We will talk about these activities in more detail in the following subsection.

The process begins by building an abstract model from the requirements (see

4

Figure 1: Model-Based Testing activities [5].

Section 2.4.1), and describing it by, for instance, one of software modeling notations
presented in Table 1. The second activity is generating test cases from the model
(see Section 2.4.2). The specification of test cases may include the expected outputs.
Other expected outputs come from the test oracle 1. The third activity of MBT is to
run the test against the implementation of the system (see Section 2.4.3). So after
generating test cases, they have to be translated into executable test scripts. These
should be written in a very efficient way, since they can be used for as long as the
software needs more testing. The last step, which is most important and difficult in
MBT, is conformance testing (see Section 2.4.4). This activity is used to compare
the actual outputs with the expected outputs. Bugs are identified in the system from
the failures of the test cases. After that, the tester should decide whether to generate
more test cases, modify the model, or stop testing, etc.

1
an oracle could be, for example, a competing product or a previous version of the software

5

2.4.1 Build the Model

Building the model is the most important step in MBT, because all the next activities
of MBT depend on the model. The more complete the model is, the more effective
the test cases will be generated from that model. In other words, once we have an
adequate model for the system, the test cases that are generated from this model
will be more effective. To develop an adequate model for the application behavior,
the tester needs to understand the system and its environment. Different guidelines
that can be used to improve understanding of the system under test are suggested
in [33, 32, 69], for example, determine the components of the system, explore target
areas in the system, gather relevant useful documentation, etc. See [33, 32, 69] for
more guidelines. Building the models is not easy. It needs skill, experience, and
imagination from the tester in order to build a good model. Before we talk about
how to build the model, we have to know what the characteristics of a good model
are. El-Far [32] presents the properties that the model in general should have to be
a good model. These are:

• The models should be as abstract as possible without missing important infor-
mation. Prenninger et al in [60] presented different abstraction techniques that
are applied in the literature on MBT. These techniques are functional, data,
communication, and temporal abstractions. For more information see [60].

• The models should not contain information that is redundant or not related to
the purpose of testing.

• The models should be readable to all testers.

• It should be easy to add, delete, and modify model information.

As an example of a simple model, Figure 2 presents an FSM model for a simple phone
system. The nodes are the states of the system such as, On-Hook, Busy, Dial Tone,
etc. Arcs are the actions that the user can perform or the inputs of the system such
as, Hang Up, Pick Up, Dial/Party Ready, etc. The initial state of this system is
On-Hook, and the final state is also On-Hook.

Whittaker [79], presents the general procedure to build the model, see Table 2. This
procedure is suitable for many kinds of software models, such as a FSM or a Markov
chain.

There are many notations used to express models in the literature see Table 1.
These models are used for different purposes. For example, UML Statecharts have

6

Figure 2: FSM model for simple phone system [5].

been used to generate test cases, e.g. [52, 41, 68]. Bochmann and Petrenko [16] use
FSMs to specify the SUT, its implementation, and the conformance relation between
the specification and the implementation. Tretmans [74] presents two algorithms for
test case generation from labeled transition system (LTS) specifications. Graubmann
and Rudolph[37] apply Message Sequence Charts (MSC) for the specification of test
cases. Briand and Labiche[20] use Sequence Diagrams(SDs) to derive test cases, test
oracle, and test driver. However, Bertolino et al [14] say that the existing approaches
for building models still have some difficulties and problems. These problems are
related to reducing the effort of testing, and the accuracy of the approaches. For
example, state machine-based approaches2 are generally accurate, but need expertise
and effort. Also, scenario-based approaches3 are easier to apply, but provide only
partial results, since SDs cannot cover all possible aspects of interaction. However,
there are other approaches that try to integrate two approaches in order to generate
a complete and consistent model. For example, Bertolino et al [14] use both sequence
diagrams and state diagrams in order to take the advantages from both kinds of
diagrams. By combining these diagrams, a more complete and consistent model for

2
like UML statecharts, FSM, LTS, etc.

3
like MSC, and SD

7

1. List all inputs.

2. For each input, list the situations in which the input can be applied and the
situations in which the input cannot be applied.

3. For each input, list the situations in which the input causes different behaviors
or outputs, depending on the context in which the input is applied.

Table 2: The general procedure to build a model as presented by Whittaker [79]

testing is built, and more accurate test cases are specified without extra efforts (test
cases will be discussed in the next section). The result of this approach is a sequence
diagram that contains information from both the original sequence diagrams and
state diagrams. Figure 3 represents the steps for this approach. At the beginning, the
authors assume that sequence diagrams (SEQ) and state diagrams (ST) are available.

• In step 1, ST diagrams are translated into sequence diagrams (SEQ’) through
a synthesis process, then SEQ’ and SEQ are combined together to generate a
more complete model (SEQ”), since it contains information from both sequence
diagrams and state diagrams.

• In step 2 an automated tool LTSA is applied to synthesize ST’ from SEQ”
(many tools have been proposed to synthesis state machines from scenarios such
as UBET [2], and LTSA - MSC Analyzer [76]). This step is used to ensure that
SEQ” does not contain implied scenarios4.

• If ST’ contains implied scenarios, then this means that ST and SEQ are inac-
curate, so in step 3 SEQ” is modified to refine and disambiguate SEQ”. Keep
doing step 3 until ST’ does not have any implied scenarios.

• At this point the SEQ” model represents the reasonably complete and coherent
model. In step 4 the SEQ” is called SEQrc which contains information from
both ST and SEQ. After this step, the Use Interaction Test (UIT) [12] (a method
used to automatically drives test cases for the integration testing phase, it uses
UML sequence diagrams as a reference model) method is applied to generate
test cases from SEQrc.

4
scenarios present sets of behaviors that do not appear in the system behaviors

8

Figure 3: Process of building a reasonably complete and coherent model according to
[14]

2.4.2 Generate Test Cases

The model that has been generated in the previous activity is used to create the
test cases. Before creation is possible, the tester typically also has to specify or
provide information about criteria or the purpose of the test cases, the inputs and
sometimes the expected outputs of the system. The difficulties of generating these test
cases depend on the model. As mentioned above, the more complete the model, the
more effective test cases will be generated. Moreover, more precisely defined models
make it more likely that automatic generation of test cases is possible. Without the
automation, it is difficult and sometimes impossible to generate test cases for complex
systems such as distributed systems. When the SUT is complex, it often means that
the number of test cases is very large or even infinite. However, to improve the quality
of the system, we need to select good test cases that will help the tester find as many
as possible the failures in the system at an acceptable cost (cheap to derive and cheap
to execute). There are several model coverage criteria in the literature that help the
tester control the test generation process. Utting et al [77] discuss the most commonly
used criteria. These criteria are:

9

1. Structural model coverage criteria: these criteria depend on the structure of the
model, for example, if pre-post conditions are used to describe the model, then
cause effect coverage is a common criterion. For transition-based models, cover-
age criteria could be for instance “all nodes”, “all transitions”, “all transitions
pair” 5, or “all cycles”.

2. Data coverage criteria: data values are partitioned into different sets. At least
one representative from each set is used for a test case.

3. Requirements-based coverage criteria: requirements can be coverage criteria,
when the elements of a model are associated with the informal requirements,
i.e., when there is traceability.

4. Test case specification: if the test case specifications were written formally, then
they could be coverage criteria.

5. Random and stochastic criteria: these criteria are suitable for environment
models. The environment model represents the behavior of the environment of
the SUT. Test cases are generated using probabilistic models. In other words,
test cases are generated based on the probabilities that are assigned to the
transitions.

6. Fault-based criteria: the most common fault-based criterion is mutation cover-
age [8]. In this coverage, the model is mutated. Then tests are generated to
distinguish between the original and mutated model.

There are two types of test case generation: Offline and online test generation.
Offline test generation means that test cases are generated and stored for example in
a file before running them, so that they can be executed many times. In online test
generation, test cases are generated while the system is running, because test case
generation depends on the actual outputs of the SUT.

Figure 4, presents an example of a test case generated from the model presented
in Figure 2. This test case presents the sequences of inputs, the states of the sys-
tem after performing the actions, and the outputs of the system. The test coverage
criterion used to generate this test case is “all nodes”.

5
A test set T satisfies the transition pair coverage criterion if and only if for each pair of adjacent transitions Si : Sj and Sj : Sk

in a statechart, there exists t in T such that t causes the pair of transitions to be traversed in sequence.

10

Figure 4: A test case generated from the FSM model of simple phone system adapted
from Fig.2

2.4.3 Execute the Test Cases

In order to execute the test cases that we have previously generated from the model,
we need to translate them into an executable form. Since these executable test cases
can be used for as long as the software needs more testing, they should be written
in a very efficient way. Figure 5 presents an executable test script for the test case
presented in Figure 4. The translation will be more efficient if it is done in an
automatic way. After that we apply these executable test cases to the SUT to produce
the actual outputs of the system.

Figure 5: Executable test script

11

2.4.4 Checking Conformance

After executing the test cases and getting the actual outputs of the system, we have
to evaluate and analyze the results. In checking conformance, a comparison between
the actual outputs of the SUT with the expected outputs provided by the test cases
is done. Ideally, this comparison is performed automatically. The outcomes of this
activity are: pass, fail, and inconclusive. A test is passed when the actual outputs
conform to the expected outputs. It fails if they do not conform. If we cannot make
a decision at this time, the test is inconclusive. After this activity, the tester should
decide whether to generate more test cases, modify the model, or stop testing and
release a software system. To support this decision, the tester can, for instance,
compute the reliability of the system. Reliability will be discussed in Section 4.4.
However, checking conformance is the most difficult activity in MBT. This is because
it is not easy to find an automatic way for determining expected outputs (also called
test oracles), especially for complex systems. The difficulty of finding a test oracle
depends on the size and complexity of the system. However, the need and importance
of test oracle also increases as the system becomes more complex. This problem is
known as “oracle problem”. Several conformance relations will be discussed in Section
4.3.2.

2.5 Classification of MBT

In 2006, Utting et al [77] presented a taxonomy of MBT approaches. Four of the
classification criteria used are related to the model (Model subject, Model redun-
dancy level, Model characteristics, and Model Paradigm), two to the test generation
process (Test selection criteria, and Test generation technology), and one to test ex-
ecution (Online or Offline). A comparison between several MBT tools based on the
classification will be presented in Section 5.3. The classification criteria are:

• Model subject: Model could be used to present the behavior of the SUT, or
its environment. A model of the SUT acts as oracle of the SUT, and is used
to automatically generate test cases. The model of the environments is used
to restrict the possible number of inputs to the model (acts as test selection
criterion). Typically, both of these models should be abstracted. Different
abstraction techniques are presented in [60, 77].

• Model redundancy level: Different scenarios of applying MBT may differ in
the level of redundancy between modeling for test and/or for implementation.
In the first scenario, the model can be used to generate test cases and code.

12

In this scenario there is no redundancy. However, it is not suitable for test
generation, because to generate code, the model should be more detailed, but
for test generation the model should be as abstract as possible. In the second
scenario, the model is generated from a formal specification, and the system is
implemented manually from informal requirements, so there is a redundancy.

• Model characteristics: Models could be nondeterministic such as most mod-
els for reactive systems. It could also incorporate timing information such as
models for real-time systems. Another characteristic of a model is whether it is
continuous, discrete, or a hybrid. These characteristics affect the notation used
to describe the model, test selection criteria, and how test cases are generated
and executed.

• Model Paradigm: This dimension represents the notation that is used to
describe the model. Several notations are presented in [77]:

– State-based (Pre/Post condition) notation: The model is a set of states
that represent snapshots of the execution of the system. Each state binds
variables to values. A set of operations is used to modify the variables.
Each operation is defined by a precondition and a postcondition. The B
notation [7] is an example of this kind of model.

– Transition-based notation: A FSM is used in which the model is a collection
of nodes representing the most relevant states of the system, and a set of
transitions representing the operations of the system.

– Trace-based notation: The systems is modeled by describing the allowable
traces of model behavior over time. The representation of time could be
discrete, continuous, interval, etc. MSCs are an example of this kind of
model.

– Functional notation: The system is described by a set of mathematical
functions. This kind of model is not widely used in MBT since it is difficult
to write.

– Operational notation: the system is described by a set of executable pro-
cesses executed in parallel. Petri nets are an example of this kind of model.

– Stochastic notation: The system is described by a model containing prob-
abilities which capture the likelihood of, e.g, the occurrences of certain
events, input values or transitions. This kind of model is suitable to model

13

the environment of the system. Markov Chains are an example of this kind
of model.

– Data flow notation: The flow of data is described. Examples are Lustre
[39] and the block diagrams as used, for instance, in Matlab Simulink [?].

• Test selection criteria: MBT tools can be classified according to which test
selection criteria they support. These criteria are used to control the process
of generating test cases, which cover the SUT. Section 2.4.2 presents these test
criteria.

• Test generation technology: This classification represents the technology
that tools use to generate test cases from the model and the test case speci-
fication. Test cases can be generated randomly, by a dedicated graph search
algorithm (using, e.g, Chinese postman algorithm), through model checking,
symbolic execution, or deductive theorem proving.

• Online or offline test generation: This dimension represents the relative
timing between test generation and test execution. Online testing means that
test case generation acts on the actual outputs of the SUT (test cases are gen-
erated and executed while the system is running), where offline testing means
that test cases are generated before system execution.

2.6 Potential Problems in MBT

MBT has successfully been used for many different applications such as graphical
user interfaces (e.g.,[65]) (the approach gives a reasonable coverage at a very low
cost), testing phone systems (e.g,[9]), and also highly programmable systems that
implement intelligent telephony services in the U.S. telephone network [30] (the test
cases revealed numerous defects that were missed by traditional approaches, and the
test cases are generated at low cost). Even though MBT has many advantages, it has
many difficulties and drawbacks, for example:

• Skills required: The testers in MBT should have certain skills. For example, the
tester should be familiar with the notation that is used to model the SUT. The
modeling notation may also require that they are familiar with mathematical
logic and discrete mathematics. Furthermore, they should have experience with
tools, scripts, and programming languages that are used to perform the MBT
tasks.

14

• Time required: MBT is a process consisting of several tasks, such as selecting
the notation of model, partitioning system functionality into multiple parts of
a model, and building the model. Each task can be very laborious and time
intensive.

• State space explosion: When we have a complex system, it often means that
the number of states, grammatical rules, or variable-value combinations will be
very large. In addition, there will be a risk of an explosion in the size of the test
cases generated from the model. Different techniques have been suggested in the
literature [79] to solve this problem, e.g. optimization techniques such as: use
of multiple small models, abstraction (merge complex data into a single, simple
structure), exclusion (dropping information from the model without effecting
the test results). However, these techniques do not always work.

• Oracle automation: as we mentioned above it is not easy to find an automatic
mechanism to generate test oracles from the model (that are used to verify
that the application has behaved correctly), especially for complex systems. So
when the size of the system increases, the need for automation also increases.
Therefore the need for automation increases the difficulty of using test oracles.

• Choice of modeling notation: As we have seen in Table 1, the author in [5]
suggested guidelines for determining which notations are suitable for which
kind of application. But still we need to invent a way to fit specific software
models to specific application domains.

Moreover, more suitable and comprehensive theories for MBT still need to be
developed. At a Dagstuhl Seminar in 2004, Brinksma et al [21] concluded the seminar
with MBT research challenges. Some of these challenges are:

• It is unclear how to specify the purpose of model-based test case generation.
Moreover, it is unclear how to control and guide the generation of tests.

• Additional work is needed for merging different kinds of models (Modeling no-
tations) to build a model that allows the testers to generate test cases which
cover most aspects of SUT behavior.

• Most of the theories and tools of MBT have been used to test the functional
properties of the SUT. Testing with non-functional properties such as security,
reliability, usability, performance, etc is still an interesting field for research.

15

• Integration, of techniques such as MBT, model checking, static analysis, ab-
stract interpretation, theorem proving, etc, may be useful to be able to choose
for every task the best combination of techniques.

In 2003, Robinson [64] presents different obstacles of using MBT in an industrial
environment. These obstacles are:

• In most companies, software testers have less technical knowledge than the
software developers. Moreover, testers are not involved in developing the system
until the system has been designed and coded.

• Since the testers are involved after the system has been designed and coded,
the testers only have short time to find bugs and test cases which means that
they will be under pressure and they do not have enough time to build models
and generate test cases etc, which could be more cost effective.

• Most software development companies do not represent the requirements for-
mally; however, most of the developments companies use natural languages that
are inherently ambiguous.

3 Testing Distributed Systems

3.1 Distributed Systems

There are several definitions of what a distributed system is. For example, Coulouris
et al [29] define a distributed system as “a system in which hardware or software
components located at networked computers communicate and coordinate their ac-
tions only by message passing”. Tanenbaum et al [72] define it as “a collection of
independent computers that appear to the users of the system as a single computer”.
Lamport says, “a distributed system is one on which I cannot get any work done
because some machine I have never heard of has crashed”. Basically, this is not a
definition but it characterizes the challenges that developers of distributed systems
face.

Distributed systems (DSs) consist of a number of independent components running
concurrently on different machines that interact with each other through communi-
cation networks to meet a common goal. In other words, in DSs the components
are autonomous, i.e, they possess full control over their parts at all times. The

16

components, however, have to take into account that they are being used by other
components and have to react properly to requests.

There are multiple points of failure in a DS. DSs could fail because a component
of the system has failed. Moreover, network communication is not always successful
(transmission errors) and sometimes it is not on time (delay in transmission). In
real-time systems, for example, if the deadlines of the operations are not met, serious
consequences may occur. Moreover, when many network messages are transmitted
over a particular network, the performance of the communication may deteriorate. All
of these challenges and others in DSs could affect its quality, so we need a technique
to make sure that the DS is working properly without errors or failures. Testing
or specifically MBT is a suitable technique. But before we talk about how MBT is
effective in testing different quality attributes of DSs, Section 3.2 will give an overview
of the difficulties of testing DSs in general.

3.2 Difficulties of Testing Distributed Systems

Testing DSs is a difficult and challenging task. It is much more difficult to test a DS
than to test a sequential program. For sequential programs, we can say that the pro-
gram is correct when its inputs produce correct outputs according to its specification.
However, in DSs correctness of the input-output relationship alone cannot determine
the correctness of DSs behavior, because the system could enter an improper state
even if each process has the correct input-output relationship. Moreover, there is
more nondeterminism in DSs, e.g., the delays in the message communications or the
occurrence order of the events is unknown.

There are many other characteristics of DSs that make testing of these kind of systems
more difficult. Typically, DSs are heterogeneous in terms of communication networks,
operating systems, hardware platforms and also the programming language used to
develop individual components. This means that the system should be able to run
over a wide variety of different platforms and access different kinds of interfaces. More-
over, the size and complexity of DSs is growing dramatically. DSs currently attract a
lot of attention and become more important in our life. DSs have been used in differ-
ent critical applications in banks, hospitals, businesses, offices, etc. Furthermore, the
components of DS communicate with each other through messages. Typically, these
messages should arrive within a specific time window. But they could be delayed for
some reason, which means messages not arrive in the same order they have been sent

17

(out of order delivery).

Gloshe et al [35] presented several issues that make the task of testing distributed
component-based systems more complicated. Some of these issues are:

• Scalability of the test adequacy criteria: in small programs, it is easy to find
adequate test coverage criteria that cover all the program behavior, such as
control flow, or data flow coverage criteria. However, in complex systems such
as DSs, it is not cost effective to use these criteria to test a DS. This is because
of the explosion in the number of possible paths that could be taken to cover
all the behaviors of the system. Moreover, sometimes it is difficult to develop
the test case generation techniques for the test criteria.

• Test data generation: in order to make the set of test cases adequate with respect
to coverage criteria, we need to generate test data that cover all the system
behavior. However, since the number of possible paths increases exponentially
in DSs, it is difficult to generate the test data that will execute all paths.

• Redundant testing during integration of components: before we test the whole
system, system components are tested separately by using some adequate test
criteria. However, often the same criteria to test the entire system are used,
which means retesting of the components. So if the components were already
tested separately, we need to know how much of extra testing is needed during
integration.

• Monitoring and control mechanism in distributed software testing: since a DS
is a collection of computers connected through networks, the amount of data
collected for monitoring and control will be large. For this reason we need to
design distributed data collection and storage mechanisms in an efficient and
reliable way.

• Reproducibility of events: due to concurrent processing, asynchronous com-
munication, and the lack of full control over the environment in DSs, specific
execution behavior is often hard to reproduce.

• Deadlocks and race conditions: it is not easy to detect race conditions and
deadlocks in DS. For example, harmful effect of race conditions can be hard to
describe and therefore, hard to test for.

18

• Testing for system scalability and performance: one way of improving the per-
formance of the system is to implement it using multiple threads. However, the
system may not work when it is re-implemented with multiple threads even if it
had worked when the system was implemented by a single thread that has been
tested. In addition, stress testing should be done to make sure that the system
performs well under high load factors. Because the system could perform very
well under small loads, but fail under high loads.

• Testing for fault tolerance: to be able to test fault tolerance effectively. all
circumstances in which faults can be triggered must be known. Determining all
these circumstances can be very difficult

4 Using MBT to Improve Different Quality At-

tributes in DSs

As we have seen in the first part, MBT is an efficient way to test the functional
properties of the SUT. But what about testing non-functional properties? Often, the
system behaves correctly, i.e., it meets its functional requirements, but it violates
one of its non-functional requirements. For example, it is not secure, suffers from
performance degradation, deadlock, or is not robust to, e.g., unexpected user inputs,
or changes in its operating environment. In this section, we will discuss how MBT
activities that we have discussed in Section 2.4, can be used for in testing different
quality attributes (non-functional properties) in DSs. Some of these attributes are
performance, security, correctness, and reliability.

4.1 Performance

During performance testing, the tester should consider all performance characteristics
to make sure that the DS meets the performance requirements of its users. These
characteristics are: latency, throughput, and scalability. Scott Barber [11] identifies
performance testing as “an empirical, technical investigation conducted to provide
stakeholders with information about the quality of the product or service under test
with regard to speed, scalability and/or stability characteristics”. There is also other
information we need to measure when evaluating performance of a particular system,
such as resource usage, and queue lengths representing the maximum number of tasks
waiting to be serviced by selected resources.

19

Testing non-functional properties of the system is different from testing functional
properties. A lot of research in the literature has focused on building performance
models (the first and the most important step in MBT) [58, 13, 59, 10]. Various
approaches have been proposed to derive different types of performance models from
software architectures (which describe the main system components and their interac-
tions) mostly presented using different types of UML diagrams. For example, in [58],
UML class diagrams and UML sequence diagrams of the software architecture are
transformed into Layered Queuing Networks (LQNs) which are an extension of the
Queuing Network model (QN) presented in (e.g.[51]). Stochastic Petri Nets (SPNs)
are another performance model . For example in [13], statecharts and sequence dia-
grams are automatically transformed into generalized SPN. Stochastic Process Alge-
bra (SPA) is another example of a performance modeling notation. For example, in
[59], collaboration and statecharts diagrams are systematically transformed to SPA.
A comparison of proposed approaches for transforming UML models of software ar-
chitectures into performance models can be found in [10].

As an example of using MBT to test the performance of distributed systems, in
[31], the authors present an approach in which the architecture design of the dis-
tributed system is used to generate performance test cases. These test cases can
be executed on the middleware that was used to build the distributed application.
The approach is used for early performance testing of distributed applications and
proceeds as presented in Table 3.

1. Select the performance test cases (use-cases) from the given architecture de-
signs of the distributed application.

2. Expressing use-cases in terms of operations on the middleware.

3. Generate stubs that are needed in the generation process of use-cases for those
components that are available in the early stages of the development.

4. Execute the test cases, then analyze the results.

Table 3: The approach of testing performance of DSs as presented by [31]

The design of test cases in performance testing is different from the design of

20

test cases in functional testing. In functional testing for example, the actual values
of the inputs are very important. However, in performance testing, this is not very
important. To design the performance relevant test cases for distributed applications,
the authors of [31] presented several performance parameters. Table 4, shows these
parameters.

Workload Number of clients.
Client request frequency.
Client request arrival rate.
Duration of the test

Physical Resources Number and speed of CPUs.
Speed of disks.
Network bandwidth

Middleware Configu-
ration

Thread pool size.
Database connection pool size.
Application component cache size.
JVM heap size.
Message queue buffer size.
Message queue persistence.

Application specific Instructions with the middleware
- use of transaction management.
- use of the security service.
- component replication.
- component migration.
Interactions among components
- remote method calls.
- asynchronous message deliveries.
Interactions with persistent data
- database accesses.

Table 4: Performance parameters [31]

To check the feasibility of performance testing in the early stages of software
development and the efficacy of their approach, the authors [31] performed an exper-
iment based on Duke’s Bank application6 [17, Chapter 18]. In this experiment, the
authors tried to compare the latency of the real implementation of the application

6
an application presented in the J2EE tutorial, consists of 6,000 lines of Java code

21

with the latency of the test version of the same system (which is made out of the
early available components) based on specific use case, while varying the number of
clients. In the first phase of the approach, a sample use-case relevant to performance
from the software architecture that describes the transfer of funds between two bank
accounts (see Figure 6) is selected. In order to map the use case to the middle-
ware, in the second phase, the use case with some necessary information is manually
augmented. For example, “the transfer service is invoked as a synchronous call and
starts a new transaction for the interaction between the client and the application.
As for the interaction between the application and the database, we specify the four
invocations (update the balances of the two accounts and recording the details of the
corresponding transactions) are synchronous calls that take place in the context of
a single transaction and embed the available SQL code; the database connection is
initialized for each call” [31].

Figure 6: A sample use case for the Duke’s Bank [31]

In the third phase the test version of the Duke’s Bank application is developed by
implementing the needed stubs in order to realize the interactions for the use cases.
After that, the real implementation of the system and the test version were executed
to measure the latency of the test cases. To execute these systems, a workload with
increasing number of the clients starting from 1 to 100 (presenting the performance
parameter of test cases) is generated. A workload generator is implemented and
the persistent data is initialized in the database. The workload generator is able
to activate a number of clients at the same time and takes care of measuring the
average response time. For persistent data, a case was considered in which a client
withdraws money from his account and deposits it in another account which is the
same for all clients. Both the implementation and the test version are executed for

22

the increasing number of clients and measured the average response time for the test
cases. Each experiment is repeated 15 times. As a result, the authors of [31] found
that latency times of the application and the test version are very similar. The result
of this experiment suggests that this approach is suitable for performance testing of
distributed application in the early stages of software development. However, more
experiments using other distributed applications need to be conducted before the
general viability of this approach can be concluded. In particular, experiments using
different use cases and different kinds of middleware and databases are necessary.

4.2 Security

The second quality issue of DSs that we are discussing is security. The use of the in-
ternet to exchange critical and personal information has increased the need for secure
systems. There are different meanings of security as specified in [78]. Some people re-
fer to security in terms of computer viruses or hackers attempting a denial-of-service
attacks over the Internet. Others refer to security in terms of authentication, au-
thorization, or encryption. As has been described in [45], taking security concerns
into consideration during the early stages of software development (e.g., design and
requirement phases) not only can save a lot of effort, but might even be necessary for
building a secure system.

A lot of research in the literature has focused on building security models. There
are various approaches extending UML diagrams to specify or to model the security
requirements of the system. For example, Jürjens presents UMLsec as an exten-
sion of UML diagrams to specify the security requirements [46, 47]. These security
requirements are inserted into the UML diagrams as stereotypes with tags and con-
straints. UMLsec is also used to check whether or not the security requirements are
met by an implementation. Moreover, it can be used to find violations of security
requirements in the UML diagrams. Hussein and Zulkernine present a framework
for specifying intrusions in UML called UMLintr [44, 45]. In this framework UML
diagrams are extended to specify security requirements (intrusion scenarios). One of
the big advantages of using this framework is that the developers do not need to learn
a separate language to specify the attack scenarios. Lodderstedt et al [54] presented
a modeling language for the model-driven development of secure distributed systems
as an extension of UML called secureUML. This language is based on Role Based
Access Control (RBAC). RBAC is a model that contains five types of data: users,
roles, objects, operations, and permissions. SecureUML can be used to automatically

23

generate complete access control infrastructures.

There are two categories for testing security in general as presented by Mouli [24]:

1. Security Functional Testing (testing to establish the conformance): used to test
the conformance between the security function specification expressed in the
security model and its implementation.

2. Security Vulnerability Testing (testing to find violations): identification of flaws
in the design or implementation that can cause violations of security properties.

An example for both security functional testing and security vulnerability testing will
be given in Section 4.2.1 and Section 4.2.2 respectively.

4.2.1 Security Functional Testing

Blackburn et al [15] developed a model-based approach to automate security func-
tional testing called Test Automation Framework (TAF). The model is used for testing
the functional requirements of centralized systems. However, the authors said that the
model is extensible enough to be used for distributed systems. In private communica-
tion, one of the authors said “it would be fairly straightforward to model distributed
system relationships in TTM (T-VEC Tabular Modeler) and generate vectors that
could test those relationships, provided you had a testbed/test environment designed
to set up, control, and record your distributed systems environment in the manner
of the test vectors that would result from such an approach.” The approach involves
the following steps (Figure 7 shows these steps) :

1. Build the model of security function specifications using a tabular specification
language called SCR (Software Cost Reduction) [42].

2. Translate SCR specifications to T-VEC Test Specifications automatically.

3. Automatically generate test vectors (i.e., test cases) from T-VEC test specifi-
cations and perform coverage analysis.

4. Develop test driver schemas and object mappings for the target test environ-
ment.

5. Automatically generate test drivers, execute tests, and generate test report.

24

Figure 7: Test Automation Framework (TAF) [24].

In this approach, a part of Oracle8 security document [28] is used to build a
functional specification model using SCR. More specifically, the security function of
“Granting Object Privilege Capability (GOP)” is expressed in an SCR model. GOP
as defined in Oracle8 security document [28] is “A normal user (the grantor) can
grant an object privilege to another user, role or PUBLIC (the grantee) only if: a)
the grantor is the owner of the object; or b) the grantor has been granted that object
privilege with the GRANT OPTION.”

The SCR model is a table-based model, representing the system input variables,
output variables, and intermediate values as term variables. Term variables are used
to decompose the relationship between inputs and outputs of the system. Once these
variables are identified, the behavior of the system can be modeled.
In step 2 of this approach, the SCR tables are translated into a test case specification
called T-VEC. For the GOP requirements, about 40 test specification paths were
generated. In step 3, the test cases (test vectors) are generated from T-VEC test
specification using particular coverage criteria called domain testing theory (which
is similar to boundary testing). In order to generate test drivers that are executed
against the system, the test driver generator needs the test driver schema, user-defined
object mappings, and test vectors. So in step 4, test schemas are generated manu-
ally. These test schemas represent the algorithm for the test execution in the specific

25

test environment. In the object mapping, the authors also manually map the object
variables of the model to the interface of the implementation (for Oracle 8.0.5 the in-
terfaces are JDBC Commands, SQL Commands and Oracle Data Dictionary Views).
After that in step 5, test drivers are automatically generated using the test driver
generators by repeating the execution steps that are identified in the test schema for
each test vector.

For the evaluation of their approach, two different test driver schemas are used
(one for an Oracle test driver and another for an Interbase test driver), object mapping
description, and the GOP model to test two different test environments. They found
that the model executed without failure in the Oracle database driver schema, and
result in test failures when using the Interbase database schema. But as described in
the Interbase documentation, the failures are associated with restrictions on granting
roles.

4.2.2 Security Vulnerability Testing

As an example of using MBT to test the system for security vulnerabilities of dis-
tributed systems, Wimmel [81] presents a new approach to find test sequences for
security-critical systems. These test sequences are used to detect possible vulnerabil-
ities that violate system requirements.

In this approach, the AUTOFOCUS tool is used to automatically generate test se-
quences. More specifically, mutation of the system specification and the attacker
scenario is used to automatically generate the test sequences that are likely to lead
to violations of the security requirements. In this approach, AUTOFOCUS is used
to describe the structure and the interface of the system by using System Structure
Diagrams (SSDs). An SSD presents the interaction between the system components
(similar to UML component diagrams). Each component has two ports: source and
destination for receiving and sending messages. These ports are connected via di-
rected channels. Furthermore, AUTOFOCUS is used to express the behavior of the
components by using State Transition Diagrams (STDs). In addition, the threat sce-
narios and security requirements are included to the specification of the system to
generate a security-critical model. Threat scenarios represent the capability of the
attacker; these scenarios are generated automatically by AUTOFOCUS based on the
security attributes assigned to SSDs and STDs. There are five types of security at-
tributes that are associated with components and channels in SSDs. These attributes

26

have the following meaning:

• Critical (for components or channels): security-critical information is pro-
cessed in the component or transmitted via the channel.

• Public (for channels): the messages can be accessed and manipulated by the
attacker.

• Public (for components): the attacker has access to all secrets contained in
the component.

• Replace (for components): the component can be replaced by an attacker
not knowing the secrets of the component (e.g., the attacker tries to simulate
the behavior of the component without having access to it).

• Node (for components): the component is an encapsulated component, to
whose internals an attacker has no access.

The security attribute “critical” is also associated to the transitions and states of
the STDs as appropriate. After generating the security-critical model, the authors in
[81] use this model to generate test sequences in order to test the implementation of
the system. These test sequences should cover all possible violations of the security
requirements. In order to generate test sequences from the security-critical model,
first the structure coverage criteria is needed. State or transition coverage is not suit-
able, because it does not take into account the security requirements. So a mutation
testing approach is used. In this approach, the authors introduce an error into the
specification of the behavior of the system, then the quality of test suites is given by
its ability to kill mutants (distinguish the mutants from the original program).

During mutation testing, one of the critical transitions (t) of the STD of the com-
ponent to be tested is chosen and then a mutation function is applied; mutation
functions can be used to modify, for example, the precondition or post-condition of a
transition (replace t to t′) in order to determine a set of mutated STDs. Next, threat
scenarios are automatically generated from the mutated version of the component to
be tested in order to obtain the mutated system model Ψ′. After that each of the
system requirements Φi is taken, to compute a system run that satisfies Ψ′ ∧ ¬Φi

using test sequence generator. If it is successful, then mutating t into t′ introduced a
vulnerability with respect to Φi and the traces show how it can be exploited. In this
technique, the original specification of the components are used as an oracle (i.e, it is

27

used to determine the expected result).

Note that test sequences are used to test the security-critical model and not its
implementation. To test the actual implementation, the test sequences should be
translated to concrete test data. Concrete test data is generated from the abstract
sequences by using an algorithm presented in [81]. This concrete test data is executed
by the test driver that passes inputs to the component to be tested, and then check
whether or not the actual outputs satisfy the expected outputs.

4.3 Correctness

Checking the correctness of systems is the main purpose of testing and it is the
minimal requirement of most software. To check whether the system behaves correctly
or not, the testers need some type of oracle. As mentioned in Section 3, correctness of
input-output relationship in DS does not mean that the system behaves correctly. For
example, the system may enter an improper state such as deadlock, process collision,
out of order message delivery, or delays in the message communications. Section
4.3.1 gives an example of using models to check an important issue in DS which
is deadlock. Section 4.3.2 will describe several criteria that are used to define the
conformance relation proposed for conformance testing of DSs.

4.3.1 Avoid Deadlock

We could not find papers that use MBT activities as specified in Section 2.4 for
deadlock detection. Instead, we will describe the use of models to ensure the deadlock
free execution of a DS. For example, Chen [25] provides a control strategy to control
the execution order of synchronization events and remote calls. This test control
strategy is used to ensure deadlock free execution of a distributed application that
consists of a set of processes (which have one or more Java thread) communicating
through CORBA. All synchronization events that could lead to deadlock are sent to a
central controller first which permits or defers the event based on the control strategy.
Synchronization events considered in Chen paper [25] are: remote method invocation
and its completion, and access to a shared object and its completion.
The following steps are used by the author [25] to construct the test control strategy:

1. Build the test constraints using static analysis. These test constraints express
the partial order of synchronization events. In general, an event is represented
by the name of the process and the thread this event comes from, the target

28

process, the name of the object on which we a call a method, the event name,
the number of appearances of this event in the thread and the process, and the
type of the event. Figure 8 shows the test constraints with the remote calls of
arbiter system.

Figure 8: Test constraints and remote calls of Arbiter system [25].

2. Choose the thread model: in the CORBA middleware, there are three thread
models: thread-per-request, thread pool, and thread-per-object. If thread-per-
request is used, there is no deadlock, because for every request, a separate thread
is created to handle the request. So we just choose thread pool or thread-per-
object as a thread model for this technique.

3. Build the test model (M) using the test constraints and the thread model from
the previous 2 steps. M is a finite state automaton describing the sequence of
events (e.g., see Figure 9(a)). In M, there are two assumptions: the process
p2 should obtain the server object o2 before process p1 and p3, and the thread
pool size is 2.

4. Find and remove deadlock states from M to get M′ (e.g., see Figure 9(b), s2 is
a deadlock state here).

5. Controller uses the deadlock free model M′ to avoid leading the execution of
the application into a deadlock state. The test controller should decide which
remote calls at each moment should be executed.

An optimization technique is also presented in [25], this optimization technique is
used to optimize the test model when the distributed application becomes too large.
However, the approach described in [25] has the following limitations:

29

(a) Finite automata for Ar-
biter example with dead-
lock M

(b) Finite automata for Ar-
biter example without dead-
lock M ′

Figure 9: Examples of arbiter system presented as finite automata [25]

• In this technique, 2 different thread models are allowed. According to the
author, these thread models may not be appropriate anymore when e.g., message
passing is used instead of remote method invocation using CORBA.

• The approach relies on a partial order relation of events. If this relation is
incomplete, then possible deadlocks may be overlooked.

• The approach will only avoid deadlocks due to the exchange of synchronization
events. Deadlocks due to other reasons will not be found.

• The approach concentrated only on the part of system behavior (test synchro-
nization events) not the whole system behavior.

4.3.2 Checking Conformance

MBT is a way used to check the correctness of systems by executing test cases that
have been generated automatically from the model that represent the behavior of the
system. So after executing the test cases, we have already seen in the previous sections
that one way to compare an implementation with a specification is to compare actual
outputs (produced by the implementation) with expected outputs (as described by
the specification). In this section, we will briefly present some of the conformance
relations that have been defined formally in the literature. All these definitions make
the simplifying assumption that both the implementation and the specification are
described using some kind of labeled transition system.
The formal theory of MBT presented by Frantzen and Tretmants [34] uses labeled

30

transition systems7 for modeling and an implementation relation called input-output
conformance“ioco” to check the conformance relation between the implementation
under test (IUT) and its specification. The conformance relation ioco expresses that
“an IUT conforms to its specification if the IUT never produces an output that can-
not be produced by the specification” [34]. In ioco theory, the implementation of the
system is modeled as input-output labeled transition systems8. To check the con-
formance between the implementation and its specification, test cases are generated
from the labeled transition systems using, for instance, a specific algorithm presented
by Tretmants [75]. These test cases are also modeled as input-output labeled transi-
tion systems. As presented in [34], “these test cases then executed by putting them
in parallel with the IUT, where inputs of the test case synchronize with the outputs
of the implementations, and vice versa. An implementation passes a test case if and
only if all its test runs lead to a pass state of the test case”. For instance, the tool
TorX [73] is using ioco theory to check the correctness of systems.

Timed input-output conformance relation (tioco) is an extension of ioco theory pre-
sented in [49]. E conforms to F w.r.t tioco, if for any input α of F, any possible
output of E after α (including a delay) is also a possible output of F after α. So the
extension is including time delays in the set of the outputs. Figure 10(a) represents
the specification of a system, where output b is produced no earlier than 2 and no
later than 8 time units after receiving input a. As we can see from Figure 10(b)
the implementation produces b exactly 5 time units after reception of a. So Imple-
mentation 1 in Figure 10(b) conforms to the specification in Figure 10(a). In Figure
10(c), the implementation may produce the output b after 1 time unit, which is too
early. So Implementation 2 in Figure 10(c) does not conform to the specification in
Figure 10(a). Algorithms are proposed to generate two types of tests: analog-clock
tests which measure real-time precisely and digital-clock tests which count how many
“ticks” of a periodic clock have occurred between two events.

In [57], Peled discusses additional criteria used to compare the implementation
with its specification. The criteria are:

• Trace Equivalence: the implementation E is trace equivalent to specification
F when a set of traces of E is equal to the set of traces of F.

• Failure Equivalence: E is failure equivalent to F when the set of failures of

7
structure with states and transitions, states representing the system states and the transitions representing the actions that the

system may perform
8
it is a labeled transition system where all input actions are enabled in any reachable state

31

(a) Specification (b) Implementa-
tion 1

(c) Implementa-
tion 2

Figure 10: Examples of specification and implementations [49]

E is equal to the set of failures of F. Failure equivalence is a refinement of trace
equivalence. Figure 11(a) and Figure 11(b) are trace equivalent but not failure
equivalent since in Figure 11(a) we can always perform γ after executing α but
in Figure 11(b) if we choose the left α branch then we cannot perform γ.

(a) An automa-
ton always per-
form γ after α

(b) An automaton where
left α branch cannot per-
form γ

Figure 11: Two finite automata [57]

• Simulation Equivalence: Simulation equivalence ensures that every behav-
ioral pattern in the implementation is present in the specification, and vice
versa.
Formally, E can simulate automaton F when:

1. there exists a binary relation R between E and F such that

2. if E′ R F′ and E′
α−→ E′′, then there exists some F′′ such that (F′

α−→ F′′)
and E′′ R F′′.

32

If E can simulate F using R relation and F simulate E using Q relation (Q does
not have to be equal to R−1), then the two automaton are simulation equivalent.

• Bisimulation and Weak Bisimulation Equivalence: bisimulation equiva-
lence is a symmetric relation, which means the same simulation relation should
be used (Q=R−1).

Formally, E is bisimulation equivalent to F iff there exist binary relation R
satisfying the following:

1. E R F

2. for any pair of E′ and F′ and an action α the following hold:

– if E′ R F′ and E′
α−→ E′′, then there exists some F′′ such that (F′

α−→
F′′) and E′′ R F′′.

– if E′ R F′ and F′ α−→F′′, then there exists some E′′ such that (E′ α−→E′′)
and E′′ R F′′.

If E can simulate F using relation R and F can simulate E using R−1 relation,
then the two automata are bisimulation equivalent. Bisimulation equivalence is
a proper refinement of simulation equivalence, and it also refinement of failure
equivalence.
Weak bisimulation equivalence is defined the same as bisimulation equivalence,
but with a modified transition relation =⇒ that allows for the occurrences of
invisible actions. E is weakly bisimulation equivalent to F when there is relation
R between them such that:

1. E R F

2. for any pair of E′ and F′ and an action α, where α ∈ action ∪{ε} the
following hold:

– if E′ R F′ and E′ α
=⇒ E′′, then there exists some F′′ such that (F′ α

=⇒
F′′) and E′′ R F′′.

– if E′ R F′ and F′
α

=⇒ F′′, then there exists some E′′ such that (E′
α

=⇒
E′′) and E′′ R F′′.

4.4 Reliability

The last quality issue of DSs that we are going to discuss is reliability. According
to ANSI (American National Standards Institute) [3], Software Reliability is defined

33

as: “the probability of failure-free software operation for a specified period of time
in a specified environment”. The question here is how to use MBT to evaluate or to
estimate the reliability of DSs. In the following, we will describe two approaches.

Guen et al[38], present an improved reliability estimation for statistical usage
testing based on Markov chains. Statistical usage testing is used to test a software
product from a user’s point of view (usage model). The usage model represents
how the user uses the system. In [38], Markov chains are used to represent the
usage model. Markov chains usage models consist of states representing states of use
and transitions labeled with usage events (stimuli). Moreover, probabilities are also
assigned to all the transitions that reflect how likely a transition is to occur. The
new measure of estimating reliability presented in [38] improves on the two standard
reliability measures proposed by Whittaker et al. [80] and Sayre et al. [66]. It has
also been implemented together in a tool named MaTeLo (Markov Test Logic). The
input of the MaTeLo tool is the usage model to the software. So before using this
tool, the tester should develop the usage models. MaTeLo accepts models in three
different notations. These notations are: MSC (Message Sequence Chart), UML
sequence diagrams, or a statecharts. However, if the tester chooses one of the first
two notations, the tool converts it to a statechart. After that, the probabilities of
the transitions between states are assigned using a Markov usage editor component,
in order to get the design of the usage models. These probabilities can be calculated
automatically based on a pre-defined distribution or can be manually specified by the
user. For more information about how to calculate the probabilities of the transitions,
see [80],[66], and [38]. Next, the tool checks the correctness of the usage models (e.g.
the probabilities are arranged between 0 and 1, or terminal states have no outgoing
transitions, etc) and then converts it into test cases. Test cases are then automatically
generated based on several test generation algorithms. These algorithms are based
for example on the probability of the transitions, the test cases that have minimal
test steps, or on randomization. The test cases that have been generated can be
represented in the formats TTCN-3 or XML. After the generation of the test cases,
they are executed against the system under test and then the results are recorded.
The results of the test are analyzed to estimate the reliability probability of the usage
model obtained from the test runs. In [38], the authors use the following formula to
calculate the reliability of the system based on the above definition:

R(t) = (Pu)
µt

where Pu is the usage probability that no failure occurs during the software execution,
and µ denotes the number of activation during a time period.

34

As another example of using MBT to test the reliability of systems, the author
in [50], describes a tool named SpecTest. SpecTest implements and automates a
model-based statistical testing methodology. This methodology uses statistical usage
testing to evaluate software system reliability of complex systems using MBT. Figure
12 shows the components of the SpecTest tool.

Figure 12: SpecTest tool components [50]

In SpecTest, the model specification module automatically creates a Markov chain
usage model based on the system requirements. When using the SpecTest tool, the
model is in the form of a table composed of states, transitions, and probabilities for
each transition. To check the correctness of the usage models, a model analyzer is
used. A test generation module is used to automatically generate test cases from the
Markov chain model. The test generation algorithm supports state coverage and arc
coverage. Test cases are described by a sequence of transitions where each transition is
described using a restricted English grammar. The SpecTest tool uses the translation
module to convert these test cases to executable test scripts in the test environment
for the system under test. Some of these executable test scripts are automatically
executed in the system under test using the test execution module. The results of
these test cases (whether the test case is pass or fail) are evaluated manually. This
data is used to evaluate the reliability of the system. According to the author, the

35

tool has been successfully applied to the US Army’s Mortar Fire Control System
(MFCS), a Windows XP-based application for defining and managing all aspects of
an artillery mission.

5 MBT Tools for Testing Distributed Systems

In this section, MBT tools are discussed in detail and the summary of a detailed
comparison of 7 different MBT tools is provided. TAF tool is discussed in Section
4.2.1.

5.1 Spec Explorer

Spec Explorer [23] is the second generation of MBT technology developed by Mi-
crosoft. The first generation was released in 2003, and Spec Explorer was generated
in 2004. People in Microsoft are using Spec Explorer for testing e.g. operating system
components, reactive systems, and other kinds of systems. Figure 13 illustrates the
use of the Spec Explorer tool.

Figure 13: Steps of Spec Explorer tool [27]

In the first step of Spec Explorer, the tester builds the model program of the
the system. The model program specifies the desired behavior of the system. It

36

can be written in any high level programming language such as Spec], C], or VB.
The model program is not the implementation of the system. Typically it is more
abstract than the implementation. In other words, the model program just focuses
on the aspects of the system that are relevant for the testing effort. Furthermore, it
represents the constraints that a correct implementation must follow. More precisely,
the model program declares a set of action methods, a set of state variables, and the
preconditions of these states.

In the second step of this tool, Spec Explorer explores all the possible runs of the
model program and represents them as a FSM, named model automaton. A state in
this automaton corresponds to a state of the model program, and transitions represent
the method invocations that satisfy their preconditions. This automaton can have
a very large number of transitions. To solve this problem several techniques for
selectively exploring the transitions of the model program are used. These techniques
as specified by the authors [23] are:

• Parameter selection: This technique limits the exploration of the model program
to a finite but representative set of parameters for the action methods.

• Method restriction: This technique removes some transitions based on user
provided criteria such as invocations of specific methods.

• State filtering: This technique prunes away states that fail to satisfy a given
state based predicate.

• Directed search: This technique examines finite sequences of transitions with
respect to user provided priorities, where the states and transitions that are not
visited are pruned away.

• State grouping: This technique selects representative examples of the states
from user provided equivalence classes.

The graph of the FSM can be viewed in different ways in step 3, e.g. based on
how to group the similar states. In step 4, test cases are generated from the model
automaton. There are two different kinds of testing in this tool: offline testing and
online testing. Test cases are generated using traversal algorithms based on different
test criteria. The test criteria are: random walk by specifying bound of the walk,
transition coverage, or using the shortest path between the initial and an accepting
state.

In step 5, test cases are executed against the system under test. To do that,
an API driver can be used. The API driver (which is a program written in C] or

37

VB) does whatever is necessary in order to invoke the individual actions of the test
suites in the implementation under test (step 6). In other words, the corresponding
methods and classes of the API driver should be mapped to the model. This process
is called object binding. We have to note here that the implementation under test
uses the same names of the action methods in the model program. In step 7, the ioco
conformance relation is used to compare the expected outputs of the model with the
actual outputs of the implementation.

5.2 TorX

TorX [73] is one of the main achievements of the Côte de Resyste project [1]. Côte de
Resyste is a research and development project aimed at improving the testing process
using formal methods. It focusses on testing the behavior of reactive systems. The
purpose of the TorX tool is to implement ioco (input output conformance) theory, as
specified in Section 4.3.2.

In TorX there are four main phases that are provided automatically in an on-the-
fly manner. The phases are: test case generation from the specification of the system
under test, test implementation (translate the test cases into executable test scripts),
test execution, and test analysis (checking the conformance between the actual out-
puts and the expected outputs).

In the first step of TorX, the behavior of the system under test is specified using
labeled transition systems. TorX contains several explorers to explore the labeled
transition system defined by specifications given in different formal notations such as
LOTOS, PROMELA, or LTSA. TorX implements a test derivation algorithm that
is used to generate test cases from the labeled transition systems. Test cases are
generated randomly based on a walk through the state space of the specification. To
maximize the chance of finding errors in the system under test, two kinds of test
coverage criteria are used. Heuristic criteria provide some assumptions about the
behavior of the system under test such as the length of the test case. Additionally,
TorX allows the test purpose criterion, that is, of a particular part of the behavior of
the system. If the test purpose is given, the test case generation algorithm guaran-
tees that generated test cases will exercise that part of the system. In TorX, the test
generation and test execution phases are integrated into one phase since test cases
are generated on-the-fly during the test execution. Also, offline test case generation
is available in TorX.

38

In TorX, there is a component called adapter, this component is used to translate
the input actions of the test case that have been generated from the specification to
be readable by the real implementation of the system under test. It is also used to
translate the outputs that are produced by the implementation back to the output
action of the test case. Then the ioco relation is used to check the conformance
between the actual outputs of the real implementation and the expected outputs of
the test cases.

5.3 AETG

The Automatic Efficient Test Generation (AETG) [26] is a tool used to generate
efficient test cases from user defined test requirements. The main contribution of this
tool is to reduce the number of test data needed for the input test space. It also
supports n-way testing (n parameter values are covered in the test cases). However,
the oracle of the test cases should be provided manually by the user. AETG has been
used to generate test cases for different kinds of applications such as an ATM network
performance monitoring system, and in telephone systems.

5.4 Conformiq Qtroniq

Conformiq Qtroniq [43] is founded in 1998, Finland. It is a product of Conformiq
Software Ltd. It is used to automatically derive functional test cases from the system
model. The model in Conformiq Qtronic is expressed as a collection of Statecharts
diagrams with blocks of Java and C]. In this tool test cases can be generated online
or offline by using a symbolic execution algorithm. The test cases are presented as a
sequence of timed messages. Then, the test cases are mapped into TTCN-3 format.
There are various coverage criteria available in this tool in order to generate test
cases such as state coverage, arc coverage, condition coverage, requirements coverage,
etc. The expected outputs of the test cases are also automatically generated from the
system model.

5.5 LTG

LEIRIOS Test Generator (LTG) [19] is an industrial tool developed in the laboratory
of computer science of the University of Franche-Comte’ (LIFC). It focuses on testing
the functional behavior of smart card applications.

39

In LTG, the functional behavior of the application under test can be specified
with Statecharts, the B notation, and UML class and state diagrams. This functional
model is validated by simulating its execution using the LTG model animator. After
that, test cases are automatically generated using symbolic execution of the model or
by using a search algorithm. There are different coverage criteria that can be used
in this tool to generate test cases. For example, if the model is presented in UML
diagrams then for example all the transitions, all transition pairs criterion can be
used. If B notation is used as a model of the system, then all-effect, all pair of effect
can be used as a test coverage criterion. After that, test cases are automatically
translated into test scripts. Each of the test cases includes its expected outputs, so
the conformance is automatically computed.

5.6 JUMBL

J Usage Model Builder Library (JUMBL) [61] has been developed by the software
Quality reliability Laboratory of the University of Tennessee. JUMBL uses statistical
usage testing to evaluate the reliability of DSs. The tool does not have a usage model
editor. However, it allows the user to specify the model in a variety formats e.g. The
Model Language (TML), and Common Separated Value (CSV). The tool uses the
Chinese post man algorithm to generate test cases from the usage model. In JUMBL
test cases are presented using Test Case Markup Language (TCML) (an extension of
XML). In this tool, test oracles provided by the user. The tool has been applied to
scientific application software in [71, 67].

5.7 A Comparison Between Different MBT Tools Based on
the Classification

In general, in MBT there are 4 main phases. These phases are:

1. Build the model.

2. Generate test cases.

3. Execute the test cases.

4. Check conformance.

In [77], Utting et al specify several criteria for the classification of MBT. Four of these
criteria are related to phase 1, two criteria to phase 2, and one criterion to phase 3.

40

The classification is used to compare different MBT tools.
In [77], the authors’ classification does not include a criterion for phase 4. Moreover,
the classification does not include the purpose of testing. In addition, the test case
notation does not used as a criterion for phase 3. Therefore, three other criteria
will be added to the classification. Moreover, other tools are added to the tools that
Utting et al mentioned in their paper. To summarize, the new three criteria are:

• Checking conformance: This criterion is used to classify how different MBT
tools check the conformance between the actual and the expected outputs of
the system under test. In other words, how the tools determine whether a
test case is pass or fail. There are different ways to check conformance, for
example, some tools use conformance relation theory. For example, TorX and
Spec Explorer use ioco conformance relation. Other tools use test oracles to
check conformance. Test oracle can be generated automatically by the tool or
they can be provided manually by the user. Moreover, conformance can be
decided by the human.

• The purpose of testing: As we have seen in the previous sections, systems
can be tested for different purposes. For example:

– Testing the functional properties of the system: The model in this kind of
testing represents the behavior of the main functions of the system under
test.

– Testing non-functional properties of the system: As we have seen in the
previous sections, we can test the performance, security, reliability, etc
properties of the system. For example if we are going to test the security
of the system, then the model will represent the security requirements of
the system under test.

• Test case paradigm: This criterion is used to describe the notation of the
test cases. There are different notations that can be used to describe the test
cases e.g. FSM, sequence of operations, input output labeled transition systems,
TTCN-3, etc.

Table 5 compares different MBT tools based on Utting et al’s modified classification.
Also, three other tools are added to the tools presented in Utting et al paper [77],
these tools are: Spec Explorer [23], Conformiq Qtronic [43], and TAF [15].

41

︷
︸︸

︷
ph

a
se

1a
︷

︸︸
︷

ph
a
se

2b
︷

︸︸
︷

ph
a
se

3c
︷

︸︸
︷

ph
a
se

4d

M
B

T
to

o
l

A
c
a
d
e
m

ic
/

c
o
m

m
e
r-

c
ia

l
M

B
T

to
o
l

P
u
rp

o
se

o
f

T
e
st

-
in

g
e

S
u
b
je

c
t

o
f

th
e

m
o
d
e
l

M
o
d
e
l

re
-

d
u
n
d
a
n
c
y

le
v
e
l

M
o
d
e
l

c
h
a
ra

c
te

r-
is

ti
c
s

M
o
d
e
l

p
a
ra

d
ig

m
T
e
st

se
le

c
ti

o
n

c
ri

te
-

ri
a

T
e
st

g
e
n
-

e
ra

ti
o
n

te
c
h
n
o
lo

g
y

T
e
st

c
a
se

p
a
ra

d
ig

m
O

n
li
n
e
/

o
ffl

in
e

C
h
e
c
k
in

g
c
o
n
fo

rm
a
n
c
e

T
o
rX

[7
3
]

A
c
a
d
e
m

ic
F

S
U

T
b
e
h
a
v
-

io
r

m
o
d
e
l

w
it

h
so

m
e

e
n
v
ir

o
n
-

m
e
n
ta

l
a
sp

e
c
ts

D
e
d
ic

a
te

d
te

st
in

g
m

o
d
e
l

N
o
n
d
e
te

rm
in

is
ti

c
,

u
n
ti

m
e
d
,
d
is

c
re

te
In

p
u
t

O
u
t-

p
u
t

L
a
b
e
le

d
T
ra

n
si

ti
o
n

S
y
st

e
m

A
W

a
lk

(d
o
n
e

ra
n
d
o
m

ly
o
r

b
a
se

d
o
n

te
st

p
u
rp

o
se

)
th

ro
u
g
h

st
a
te

sp
a
c
e

o
f
th

e
m

o
d
e
l

O
n
-t

h
e
-fl

y
st

a
te

sp
a
c
e

e
x
p
lo

ra
ti

o
n

in
p
u
t

o
u
tp

u
t

tr
a
n
si

ti
o
n

sy
st

e
m

s

B
o
th

io
c
o

re
la

ti
o
n

L
T

G
[1

9
]

C
o
m

m
e
rc

ia
l

F
S
U

T
b
e
h
a
v
-

io
r

m
o
d
e
l

D
e
d
ic

a
te

d
te

st
in

g
m

o
d
e
l

D
e
te

rm
in

is
ti

c
,

u
n
ti

m
e
d
,

d
is

c
re

te
,

a
n
d

fi
n
it

e

U
M

L
st

a
te

m
a
-

c
h
in

e
s,

B
n
o
ta

ti
o
n

F
o
r

S
ta

te
m

a
c
h
in

e
s:

st
a
te

c
o
v
e
ra

g
e
,

a
ll

tr
a
n
si

ti
o
n
s,

a
ll

e
x
-

te
n
d
e
d

tr
a
n
si

ti
o
n
s,

a
n
d

a
ll

tr
a
n
si

ti
o
n
s

p
a
ir

s.
F
o
r

B
n
o
ta

-
ti

o
n
:

a
ll

e
ff
e
c
ts

,
a
n
d

a
ll

p
a
ir

e
ff
e
c
ts

S
y
m

b
o
li
c

e
x
e
-

c
u
ti

o
n
,

se
a
rc

h
a
lg

o
ri

th
m

S
e
q
u
e
n
c
e

o
f

o
p
e
ra

ti
o
n

O
ffl

in
e

E
x
p
e
c
te

d
o
u
tp

u
ts

a
ss

ig
n
e
d

w
it

h
e
a
c
h

te
st

c
a
se

J
U

M
B

L
[6

1
]

A
c
a
d
e
m

ic
R

B
e
h
a
v
io

r
e
n
v
ir

o
n
m

e
n
t

m
o
d
e
l

D
e
d
ic

a
te

d
te

st
in

g
m

o
d
e
l

U
n
ti

m
e
d
,
a
n
d

d
is

-
c
re

te
M

a
rk

o
v

c
h
a
in

u
sa

g
e

m
o
d
e
ls

R
a
n
d
o
m

a
n
d

st
a
ti

s-
ti

c
a
l
c
ri

te
ri

a
S
ta

ti
st

ic
a
l

se
a
rc

h
a
lg

o
ri

th
m

T
e
st

c
a
se

m
a
rk

u
p

la
n
g
u
a
g
e

O
ffl

in
e

T
e
st

o
ra

c
le

p
ro

v
id

e
d

b
y

u
se

r
n
o
t

th
e

to
o
l

A
E
T

G
[2

6
]

C
o
m

m
e
rc

ia
l

F
D

a
ta

e
n
-

v
ir

o
n
m

e
n
t

m
o
d
e
l

D
e
d
ic

a
te

d
m

o
d
e
l

fo
r

te
st

in
p
u
t

g
e
n
e
ra

ti
o
n

o
n
ly

U
n
ti

m
e
d
,
d
is

c
re

te
N

o
m

o
d
e
li
n
g

o
f
th

e
b
e
h
a
v
-

io
r,

ju
st

d
a
ta

D
a
ta

c
o
v
e
ra

g
e

c
ri

te
-

ri
a

N
-w

a
y

se
a
rc

h
a
lg

o
ri

th
m

T
a
b
le

o
f

in
p
u
ts

v
a
lu

e
s

O
ffl

in
e

T
e
st

o
ra

c
le

p
ro

v
id

e
d

b
y

u
se

r
n
o
t

th
e

to
o
l

S
p
e
c

E
x
-

p
lo

re
r

[2
3
]

C
o
m

m
e
rc

ia
l

F
S
U

T
b
e
h
a
v
io

r
m

o
d
e
l

w
it

h
e
n
v
ir

o
n
m

e
n
t

m
o
d
e
l

D
e
d
ic

a
te

d
te

st
in

g
m

o
d
e
l

N
o
n
d
e
te

rm
in

is
ti

c
,

U
n
ti

m
e
d
,
d
is

c
re

te
F
S
M

R
a
n
d
o
m

ly
,

sh
o
rt

e
st

p
a
th

,
tr

a
n
si

ti
o
n

c
o
v
-

e
ra

g
e

T
ra

v
e
rs

a
l

a
lg

o
ri

th
m

s
F
S
M

w
it

h
d
iff

e
re

n
t

v
ie

w
s

B
o
th

io
c
o

re
la

ti
o
n

C
o
n
fo

rm
iq

Q
tr

o
n
ic

[4
3
]

C
o
m

m
e
rc

ia
l

F
S
U

T
b
e
h
a
v
io

r
m

o
d
e
l

w
it

h
e
n
v
ir

o
n
m

e
n
t

m
o
d
e
l

D
e
d
ic

a
te

d
te

st
in

g
m

o
d
e
l

N
o
n
d
e
te

rm
in

is
ti

c
,

ti
m

e
d

U
M

L
st

a
te

m
a
-

c
h
in

e
s

w
it

h
b
lo

c
k
s

o
f

J
a
v
a

o
r

C
]

S
ta

te
c
o
v
e
ra

g
e
,

a
rc

c
o
v
e
ra

g
e
,

b
ra

n
c
h

c
o
v
e
ra

g
e
,

c
o
n
d
it

io
n

c
o
v
e
r-

a
g
e
,

re
q
u
ir

e
m

e
n
t

c
o
v
e
ra

g
e

S
y
m

b
o
li
c

e
x
-

e
c
u
ti

o
n

a
lg

o
-

ri
th

m

T
T

C
N

-3
B

o
th

E
x
p
e
c
te

d
o
u
tp

u
ts

a
re

a
u
to

-
m

a
ti

c
a
ll
y

g
e
n
e
ra

te
d

fr
o
m

th
e

m
o
d
e
l

T
A

F
[1

5
]

C
o
m

m
e
rc

ia
l

S
S
U

T
b
e
h
a
v
io

r
m

o
d
e
l

w
it

h
e
n
v
ir

o
n
m

e
n
t

m
o
d
e
l

D
e
d
ic

a
te

d
te

st
in

g
m

o
d
e
l

D
e
te

rm
in

is
ti

c
,

u
n
ti

m
e
d
,
h
y
b
ri

d
S
C

R
ta

b
le

c
o
n
v
e
rt

e
d

to
T

-V
E
C

D
o
m

a
in

te
st

in
g

th
e
-

o
ry

T
te

st
v
e
c
to

r
g
e
n
e
ra

ti
o
n

T
e
st

v
e
c
-

to
r

O
ffl

in
e

T
h
e

te
st

o
r-

a
c
le

is
th

e
m

o
d
e
l
it

se
lf

T
ab

le
5:

S
om

e
of

co
m

m
er

ci
al

an
d

ac
ad

em
ic

M
B

T
to

ol
s

b
as

ed
on

th
e

cl
as

si
fi
ca

ti
on

a
P
h
a
se

1
:

B
u
il
d

th
e

m
o
d
e
l

b
P
h
a
se

2
:

G
e
n
e
ra

te
te

st
c
a
se

s
c
P
h
a
se

3
:

E
x
e
c
u
te

te
st

c
a
se

s
d
P
h
a
se

4
:

C
h
e
c
k
in

g
c
o
n
fo

rm
a
n
c
e

e
F
:
F
u
n
c
ti

o
n
a
l,

S
:
S
e
c
u
ri

ty
,
R

:
R

e
li
a
b
il
it
y

42

6 Conclusion

During the MBT (Model-Based Testing) process the testers use a model that is built
from the requirements of the system and its environment in order to describe the
abstract behavior of the system under test. Then the model is used to automatically
generate test cases. These test cases are executed in the system. After that, a
comparison between the actual and expected outputs is done. We have described
these major activities of MBT. Moreover, several potential problems are presented in
this paper.

Distributed systems (DSs) consist of a number of independent components running
concurrently on different machines that interact with each other through communica-
tion networks to meet a common goal. Testing DSs is more difficult than centralized
systems. Difficulties of testing DSs are also highlighted in this paper.
Testing non-functional properties of DSs such as security, reliability, performance,
etc. using MBT technique is an interesting field for research. For example, a lot of
research has been done to specify the performance model of the system under test, but
still we do not have a tool used to evaluate the performance of DSs. Moreover, Dias
Neto et al [55], present that several types of non-functional qualify attributes of DSs
such as usability, maintainability, and portability have not been tested using MBT.
This paper summarizes how MBT can be used for testing different non-functional
properties of DSs such as performance, security, correctness, and reliability.
As we have seen in this paper, the classification of MBT proposed in [77] is suitable
to compare between different MBT tools. However, three new different criteria are
added to this classification in this paper. These criteria are: test purpose, test cases
paradigm, and the way the tool checks the conformance between the expected out-
puts and actual outputs. We have gathered information about 8 different MBT tools
and compared them (4 of them listed in [77]). Some of these tools are academic and
others are commercial. Moreover, some of them are used for testing the functional
properties of the system, others for testing the non-functional properties of the system
under test. This paper can be used to guide the reader to relevant publications in
MBT. Moreover, it highlights potential problems, and how MBT can be used to test
different non-functional properties of DSs. Furthermore, this research raises several
interesting questions suitable for future work.

6.1 Future Work

The following topics could be considered for future work:

43

• Most of the theories and tools of MBT have been used to test the functional
properties of the software under test. MBT for non-functional properties such
as security, reliability, usability, performance, etc is still an interesting field for
research.

• There is no technique that can be used to build different models for different
quality attributes of DSs. Maybe it is difficult to do that or impossible.

• In [32], El-Far presents some of the modeling notations and discusses in which
applications they are suitable as suggested based on his experience. But still
we do not have specific criteria to say this kind of notation of the model is the
best for this kind of system. Same remarks apply to the choice of test coverage
criteria to select the test cases.

• We need additional work for merging different kinds of models to build a model
that allows the testers to generate test cases which cover most aspects of soft-
ware under test behavior. In [14] sequence diagrams and state diagrams are
integrated to take the advantages from both kinds of diagrams.

• Detecting deadlock in DSs is difficult. We could not find a paper talking about
using the MBT activities to detect deadlock in DSs. In [25], we have seen how
to use models to avoid deadlock in a DS. So still we do not have a technique
that uses all the activities of MBT to detect deadlock in DSs.

44

References

[1] Côte de Resyste. Available at:http://fmt.cs.utwente.nl/CdR/.

[2] UBET. Available at:http://cm.bell-labs.com/cm/cs/what/ubet/index.html.

[3] IEEE standard glossary of software engineering terminology. Technical report,
1990.

[4] The Unified Modeling Language 2.0: Superstructure FTF convenience document
(ptc/04-10-02). Object Management Group, 2004. Available at:www.uml.org.

[5] DACS Gold Practice Document Series. Software Acquisition Gold
Practice, model-based testing. itt corporation, 2006. Available at:
https://www.goldpractices.com/practices/mbt/index.php.

[6] UModel-UML tool for software modeling and application development, 2008.
Available at: http://www.altova.com/products/umodel/uml tool.html.

[7] Jean-Raymond Abrial, Matthew K. O. Lee, David Neilson, P. N. Scharbach,
and Ib Holm Sørensen. The B-Method. In Søren Prehn and W. J. Toetenel,
editors, VDM Europe (2), volume 552 of Lecture Notes in Computer Science,
pages 398–405. Springer, 1991.

[8] Paul Ammann, Paul E. Black, and William Majurski. Using Model Checking to
Generate Tests from Specifications. In ICFEM, pages 46–54, 1998.

[9] Alberto Avritzer and Brian Larson. Load Testing Software Using Deterministic
State Testing. In ISSTA ’93, Proceedings of the 1993 International Symposium
on Software Testing and Analysis, pages 82–88, Cambridge, MA, USA, 1993.

[10] S. Balsamo and M. Simeoni. On transforming UML models into performance
models. In Proc. of Workshop on Transformations in the Unified Modeling Lan-
guage, ETAPS’01, 2001.

[11] Scott Barber. What is performance testing?, 2007. Available
at:http://searchsoftwarequality.techtarget.com/tip/0,289483,sid92 gci1247594,00.html.

[12] Francesca Basanieri, Antonia Bertolino, and Eda Marchetti. The cow suite ap-
proach to planning and deriving test suites in UML projects. In Jean-Marc

45

Jézéquel, Heinrich Hussmann, and Stephen Cook, editors, UML 2002 - The Uni-
fied Modeling Language. Model Engineering, Languages, Concepts, and Tools.
5th International Conference, Dresden, Germany, September/October 2002, Pro-
ceedings, volume 2460 of LNCS, pages 383–397. Springer, 2002.

[13] Simona Bernardi, Susanna Donatelli, and José Merseguer. From UML sequence
diagrams and statecharts to analyzable Petri net models. In WOSP ’02: Pro-
ceedings of the 3rd international workshop on Software and performance, pages
35–45, New York, NY, USA, 2002. ACM.

[14] Antonia Bertolino, Eda Marchetti, and Henry Muccini. Introducing a Reasonably
Complete and Coherent Approach for Model-based Testing. Electr. Notes Theor.
Comput. Sci., 116:85–97, 2005.

[15] Mark R. Blackburn, Robert D. Busser, Aaron M. Nauman, and Ramaswamy
Chandramouli, editors. Model-based Approach to Security Test Automation, pro-
ceding in Quality Week, June 2001.

[16] Gregor V. Bochmann and Alexandre Petrenko. Protocol testing: review of meth-
ods and relevance for software testing. In ISSTA ’94: Proceedings of the 1994
ACM SIGSOFT international symposium on Software testing and analysis, pages
109–124, New York, NY, USA, 1994. ACM.

[17] Stephanie Bodoff, Dale Green, Kim Haase, Eric Jendrock, Monica Pawlan, and
Beth Stearns. The J2EE Tutorial. Addison Wesley, 2002.

[18] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage user guide. Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1999.

[19] Fabrice Bouquet, Bruno Legeard, Fabien Peureux, and Eric Torreborre. Mas-
tering Test Generation from Smart Card Software Formal Models. In Procs. of
the Int. Workshop on Construction and Analysis of Safe, Secure and Interoper-
able Smart devices (CASSIS’04), volume 3362 of LNCS, pages 70–85, Marseille,
France, March 2004. Springer.

[20] Lionel Briand and Yvan Labiche. A UML-Based Approach to System Testing.
In Martin Gogolla and Cris Kobryn, editors, UML 2001 - The Unified Modeling
Language. Modeling Languages, Concepts, and Tools. 4th International Confer-
ence, Toronto, Canada, October 2001, Proceedings, volume 2185 of LNCS, pages
194–208. Springer, 2001.

46

[21] Ed Brinksma, Wolfgang Grieskamp, and Jan Tretmans, editors. Perspectives of
Model-Based Testing, 5.-10. September 2004, volume 04371 of Dagstuhl Seminar
Proceedings. IBFI, Schloss Dagstuhl, Germany, 2005.

[22] Manfred Broy and Oscar Slotosch. From Requirements to Validated Embedded
Systems. In EMSOFT ’01: Proceedings of the First International Workshop on
Embedded Software, pages 51–65, London, UK, 2001. Springer-Verlag.

[23] Colin Campbell, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte, Niko-
lai Tillmann, and Margus Veanes. Model-Based Testing of Object-Oriented Re-
active Systems with Spec Explorer. Technical report, Microsoft Research, Red-
mond, May 2005.

[24] Ramaswamy Chandramouli and Mark Blackburn. Model-based Automated
Security Functional Testing. In OMGs Seventh Annual Workshop On DIS-
TRIBUTED OBJECTS and COMPONENTS SECURITY, Baltimore, Mary-
land, USA, April 2003.

[25] Jessica Chen. On Using Static Analysis in Distributed System Testing. In EDO
’00: Revised Papers from the Second International Workshop on Engineering
Distributed Objects, pages 145–162, London, UK, 2001. Springer-Verlag.

[26] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C.
Patton. The AETG System: An Approach to Testing Based on Combinatiorial
Design. Software Engineering, 23(7):437–444, 1997.

[27] Microsoft Corporation. Spec Explorer Reference, 2005.

[28] Oracle Corporation. Oracle8 Security Target Release 8.0.5, April 2000.

[29] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems:
Concepts and Design (4th Edition) (International Computer Science). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[30] S. Dalal, A. Jain, N. Karunanithi, J. Leaton, and C. Lott. Model-based testing of
a highly programmable system. In Proceedings of the 1998 International Sympo-
sium on Software Reliability Engineering (ISSRE 98), pages 174–178. Computer
Society Press, November 1998.

47

[31] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. Early performance
testing of distributed software applications. SIGSOFT Softw. Eng. Notes,
29(1):94–103, 2004.

[32] Ibrahim K. El-Far. Enjoying the perks of model-based testing. In Proceedings
of the Software Testing, Analysis, and Review Conference (STARWEST 2001),
October/November 2001.

[33] Ibrahim K. El-Far and James A. Whittaker. Model-Based Software Testing.
Encyclopedia of Software Engineering (edited by J. J. Marciniak). Wiley, 2001.

[34] Lars Frantzen and Jan Tretmans. Model-Based Testing of Environmental Con-
formance of Components. In F.S. de Boer and M. Bonsangue, editors, Formal
Methods of Components and Objects – FMCO 2006, number 4709 in Lecture
Notes in Computer Science, pages 1–25. Springer, 2007.

[35] S. Ghosh and A. Mathur. Issues in testing distributed component-based sys-
tems. In Proceedings of the First International ICSE WorkshopTesting Dis-
tributed ComponentBased Systems 1999., Los Angeles, CA, May 1999.

[36] Hassan Gomaa. Designing Concurrent, Distributed, and Real-Time Applications
with Uml. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[37] Peter Graubmann and Ekkart Rudolph. HyperMSCs and Sequence Diagrams
for Use Case Modelling and Testing. In UML, volume 1939 of Lecture Notes in
Computer Science, pages 32–46, 2000.

[38] Helene Le Guen, Raymond Marie, and Thomas Thelin. Reliability Estimation
for Statistical Usage Testing using Markov Chains. In ISSRE ’04: Proceedings
of the 15th International Symposium on Software Reliability Engineering, pages
54–65, Washington, DC, USA, 2004. IEEE Computer Society.

[39] N. Halbwachs. A tutorial of Lustre. 1993.

[40] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8(3):231–274, June 1987.

[41] Jean Hartmann, Claudio Imoberdorf, and Michael Meisinger. UML-Based inte-
gration testing. In ISSTA ’00: Proceedings of the 2000 ACM SIGSOFT interna-
tional symposium on Software testing and analysis, pages 60–70, New York, NY,
USA, 2000. ACM.

48

[42] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Automated
consistency checking of requirements specifications. ACM Trans. Softw. Eng.
Methodol., 5(3):231–261, 1996.

[43] Antti Huima. Implementing conformiq qtronic. In TestCom/FATES, pages 1–12,
Tallinn, Estonia, June 2007.

[44] Mohammed Hussein and Mohammad Zulkernine. UMLintr: A UML Profile for
Specifying Intrusions. In 13th Annual IEEE International Conference and Work-
shop on Engineering of Computer Based Systems (ECBS 2006), 27-30 March
2006, Potsdam, Germany, pages 279–288. IEEE Computer Society, 2006.

[45] Mohammed Hussein and Mohammad Zulkernine. Intrusion detection aware
component-based systems: A specification-based framework. The Journal of
Systems and Software, 80(5):700–710, 2007.

[46] Jan Jürjens. Towards Development of Secure Systems Using UMLsec. In Heinrich
Hußmann, editor, Fundamental Approaches to Software Engineering, 4th Inter-
national Conference, FASE 2001, Genova, Italy, April 2-6, 2001, Proceedings,
volume 2029 of Lecture Notes in Computer Science, pages 187–200. Springer,
2001.

[47] Jan Jürjens. Secure Systems Development With UML. Springer-Verlag, 2005.

[48] J. G. Kemeny and J. L. Snell. Finite Markov chains. Springer-Verlag, New York,
USA, 2nd edition, 1976.

[49] Moez Krichen and Stavros Tripakis. Black-Box Conformance Testing for Real-
Time Systems. In SPIN, pages 109–126, 2004.

[50] Peter B. Lakey. SPECTEST: A Model-Based Statistical Testing Implementation
Tool. In ISSRE ’07: presented at 18th International Symposium on Software
Reliability Engineering (ISSRE), Trollhattan, Sweden, 2007.

[51] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sev-
cik. Quantitative system performance: computer system analysis using queueing
network models. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1984.

[52] Liuying Li and Zhichang Qi. Test Selection from UML Statecharts. In TOOLS
1999: 31st International Conference on Technology of Object-Oriented Languages
and Systems, pages 273–281, Nanjing, China, 1999. IEEE Computer Society.

49

[53] Xiaojun Liu, Jie Liu, Johan Eker, and Edward A. Lee. Heterogeneous Modeling
and Design of Control Systems, chapter 7, pages 105–122. Wiley-IEEE Press,
New York , USA, April 2003. Chapter in Software-Enabled Control: Information
Technology for Dynamical Systems.

[54] Torsten Lodderstedt, David A. Basin, and Jürgen Doser. Secureuml: A uml-
based modeling language for model-driven security. In UML ’02: Proceedings
of the 5th International Conference on The Unified Modeling Language, pages
426–441, London, UK, 2002. Springer-Verlag.

[55] Arilo Claudio Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guil-
herme Horta Travassos. Characterization of Model-based Software Testing Ap-
proaches. Technical Report ES-713/07, PESC-COPPE/UFRJ, 2007.

[56] Graeme I. Parkin. Vienna Development Method Specification Language (VDM-
SL). Comput. Stand. Interfaces, 16(5–6):527–530, 1994.

[57] Doron A. Peled, David Gries, and Fred B. Schneider, editors. Software reliability
methods. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001.

[58] Dorina C. Petriu, Christiane Shousha, and Anant Jalnapurkar. Architecture-
based performance analysis applied to a telecommunication system. Software
Engineering, 26(11):1049–1065, 2000.

[59] R. Pooley. Using UML to derive stochastic process algebra models. In Proceedings
of the 15th UK Performance Engineering Workshop (UKPEW), pages 23–33,
1999.

[60] Wolfgang Prenninger and Alexander Pretschner. Abstractions for Model-Based
Testing. Electronic Notes in Theoretical Computer Science, 116:59–71, 2005.

[61] S. J. Prowell. JUMBL: A Tool for Model-Based Statistical Testing. In HICSS
’03: Proceedings of the 36th Annual Hawaii International Conference on System
Sciences (HICSS’03) - Track 9, page 337.3, Washington, DC, USA, 2003. IEEE
Computer Society.

[62] Wolfgang Reisig. Petri Nets: An Introduction. Springer-Verlag New York, Inc.,
New York, NY, USA, 1985.

50

[63] Harry Robinson. Using Pre-Oracled Data in Model-Based Testing. White
paper originally appeared internally at Microsoft, 1999. Available at:
http://www.geocities.com/harry robinson testing/pre-oracled.htm.

[64] Harry Robinson. Obstacles and opportunities for model-based testing in an
industrial software environment. In Proc. 1st European Conference on Model
Driven Software Engineering, pages 118–127, December 2003.

[65] S. Rosaria and Harry Robinson. Applying models in your testing process. Infor-
mation & Software Technology, 42(12):815–824, 2000.

[66] Kirk Sayre and Jesse Poore. A reliability estimator for model based software
testing. In ISSRE ’02: Proceedings of the 13th International Symposium on
Software Reliability Engineering (ISSRE’02), page 53, Washington, DC, USA,
2002. IEEE Computer Society.

[67] Kirk Sayre and Jesse H. Poore. Automated Testing of Generic Computational
Science Libraries. In HICSS, page 277. IEEE Computer Society, 2007.

[68] D. Seifert, S. Helke, and T. Santen. Conformance testing for statecharts. Tech-
nical Report 2003/1, Technical University of Berlin, 2003.

[69] Ian Sommerville and Pete Sawyer. Requirements Engineering: A Good Practice
Guide. John Wiley & Sons, Inc., New York, NY, USA, 1997.

[70] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International,
2nd edition, 1992.

[71] W. Thomas Swain and Stephen L. Scott. Model-Based Statistical Testing of
a Cluster Utility. In International Conference on Computational Science (1),
pages 443–450, 2005.

[72] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles
and Paradigms. Prentice Hall, 2002.

[73] G. J. Tretmans and H. Brinksma. Côte de Resyste – Automated Model Based
Testing. In M. Schweizer, editor, Proceedings of the 3rd PROGRESS workshop on
Embedded Systems, Veldhoven, The Netherlands, pages 246–255, Utrecht, 2002.
STW Technology Foundation.

51

[74] Jan Tretmans. Conformance testing with labelled transition systems: implemen-
tation relations and test generation. Comput. Netw. ISDN Syst., 29(1):49–79,
1996.

[75] Jan Tretmans. Testing concurrent systems: A formal approach. In CONCUR
’99: Proceedings of the 10th International Conference on Concurrency Theory,
pages 46–65, London, UK, 1999. Springer-Verlag.

[76] S. Uchitel, J. Magee, and J. Kramer. LTSA-MSC Analyser Implied Scenario
Detection. Available at:http://www.doc.ic.ac.uk/ su2/Synthesis/.

[77] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based testing.
Technical Report 04/2006, Department of Computer Science, The Universiy of
Waikato(New Zealand), 2006.

[78] David White. Distributed systems security. DBMS, 10(12):44–ff., 1997.

[79] James A. Whittaker. Stochastic software testing. Ann. Softw. Eng., 4:115–131,
1997.

[80] James A. Whittaker and Michael G. Thomason. A markov chain model for
statistical software testing. IEEE Trans. Softw. Eng., 20(10):812–824, 1994.

[81] Guido Wimmel and Jan Jürjens. Specification-Based Test Generation for
Security-Critical Systems Using Mutations. In ICFEM ’02: Proceedings of the
4th International Conference on Formal Engineering Methods, pages 471–482,
London, UK, 2002. Springer-Verlag.

[82] Li Ye. Model-Based Testing Approach for Web Applications. Master’s thesis,
University of Tampere, Department of Computer Science, June 2007.

52

