
A Cryptosystem Based on the Composition of
Reversible Cellular Automata

Adam Clarridge and Kai Salomaa

Technical Report No. 2008-549
Queen’s University, Kingston, Canada
{adam, ksalomaa}@cs.queensu.ca

Abstract. We present conditions which guarantee that a composition
of marker cellular automata has the same neighbourhood as each of the
individual components. We show that, under certain technical assump-
tions, a marker cellular automaton has a unique inverse with a given
neighbourhood. We use these results to develop a working key genera-
tion algorithm for a public-key cryptosystem based on reversible cellular
automata originally conceived by Kari. We conclude with a discussion
on security and practical considerations for the cryptosystem and give
several ideas for future work.

Key words: public-key, cryptography, encryption, reversible, invertible,
cellular automata, composition

1 Introduction

Cryptography has been a part of our everyday lives for some time now. Most
widely-used public-key encryption algorithms rely on advanced number theoretic
results to achieve a high level of security, such as RSA, whose security is believed
to rely on the hardness of the integer factorization problem. These systems tend
to have relatively slow implementations [12], and since we will always want more
efficient and secure encryption algorithms, it makes sense to consider alternate
techniques. Cellular automata (CA) as a medium for encryption is an attractive
idea in theory because most CA can be implemented on very fast hardware [4,
5, 14], hence a CA-based scheme may have the potential to encrypt and decrypt
messages faster than existing techniques.

Most investigations into CA-based cryptosystems have been aimed at tra-
ditional secret-key systems [2, 6, 7, 10, 11, 13]. There appear to be very few CA-
based public-key cryptosystems in the literature; one is the Finite Automata
Public-Key Cryptosystem, or Tao-Chen cryptosystem [12], although it uses non-
homogeneous CA. Kari’s paper [8] outlines an idea for a public-key cryptosystem
based on reversible cellular automata, and poses the question of how to imple-
ment the key generation algorithm. We now review this paper in some detail, as
it is the main reference for our work.

The general objective of a public-key cryptosystem based on reversible cellu-
lar automata is to design an RCA that is very hard to invert without some secret

2 Adam Clarridge and Kai Salomaa

knowledge. That way, the RCA can be published and its inverse can be kept as
the private key. Kari emphasizes the importance that the RCA be at least two-
dimensional, since there exist algorithms to invert any one-dimensional RCA [1],
and also because of the following theorem.

Theorem 1. [9] It is undecidable if a given two-dimensional CA is reversible.
This is true even when restricted to CA using the von Neumann neighbourhood.

This theorem provides a sound theoretical basis for the security of Kari’s public-
key cryptosystem [8]. The basic idea outlined in the paper was to compose to-
gether several simple and reversible ’marker’ CA (which we define in Section 2)
in order to form a more complex cellular automaton

C = Cn ◦ Cn−1 ◦ · · · ◦ C1,

with inverse
C−1 = C1

−1 ◦ C2
−1 ◦ · · · ◦ Cn

−1.

Encryption occurs by encoding the message as the initial configuration of the
CA, then evolving the composed CA for some k generations to obtain the
ciphertext. The inverse automaton does not need to be computed explicitly;
one need only apply each component of the composition in succession. The in-
verse is then applied for k iterations to decrypt the ciphertext. The composition
Cn◦Cn−1◦· · ·◦C1 is the public key, and each of the inverse automata of the com-
position (C1

−1, C2
−1, . . . , Cn

−1) are kept as the private key. A well-constructed
public key should be very hard to invert without knowledge of the components
C1, C2, . . . , Cn because the neighbourhood size of the inverse automaton would
be quite large.

The paper [8] includes an example of a marker RCA composition with a
2-dimensional neighbourhood of 4 cells, and whose inverse has a 2-dimensional
neighbourhood of 9 cells. The composition is made up of 5 very simple reversible
marker CA. This is of course just an illustrative example, and Kari points out
that longer and more complex (more states and a less restricted form) compo-
sitions would be needed in order to ensure security against brute force attacks.
However, a public key with s states and neighbourhood size n requires sn entries
in its local rule table, so it is essential to try to keep n small so that the public
key can be stored in reasonably sized memory.

The main issue preventing the practical implementation of Kari’s cryptosys-
tem is the question of how to choose (or randomly generate) reversible marker
CA such that the neighbourhood size of the composition remains small. In this
paper, we give one possible answer to this question and investigate the resulting
working cryptosystem.

We will state some preliminary assumptions and definitions before discussing
our results concerning the composition of a class of marker CA in Sections 2 and
3. We give an algorithm1 for generating public and private keys in Section 4,
and discuss practical implementation issues, security considerations, and ideas
for future research in Section 5.
1 Email the first author for a working software prototype.

A Cryptosystem Based on Composition of RCA 3

2 Preliminaries

In this paper we assume that in a cellular array containing M1M2 · · ·Md cells,
where Mi is the number of cells of each dimension for i = 1, . . . , k, the neigh-
bours of cells near the edge of the cellular array are determined by adding the
component indices cyclically (modulo Mi). This is simply the toroidal boundary
condition.

A ’marker’ CA is defined by a permutation φ of the state set, and a finite
collection of patterns P1, P2, . . . , Pk around the origin, where each Pi is a map-
ping from a finite subset Xi of Zd into the state set. For each cell c, the local
rule of the marker CA checks if any of the patterns P1, P2, . . . , Pk is present as
the neighbourhood of c. If so, the permutation φ is applied to c, and if not, then
c’s state does not change. Marker CA are also known as ’marker automorphisms
of the one-sided d-shift’ [3] in the dynamical systems literature.

We define a ’fixed-domain’ marker cellular automaton (or FDM CA) to be a
five-tuple (d,S,N ,A,f) with dimension d, state set S, neighbourhood vector

N = (n̄1, n̄2, . . . , n̄k), n̄i ∈ Zd for i = 1, 2, . . . , k,

acting set A ⊆ Sk with entries corresponding to the positions defined by N , and
a function f : S → S. The local rule of an FDM CA acts on a cell c (in state s)
in the following simple way: if the neighbours of c are in a state configuration
corresponding to an element of A, then the state of c on the next generation is
f(s). Otherwise, the state of c does not change. An FDM CA is just a special
type of marker CA where all of the patterns are mappings from N to S, hence
the term ’fixed-domain’. Note that, conversely, an arbitrary marker CA can be
represented as an FDM CA by choosing N to be sufficiently large.

In the next section we give necessary and sufficient conditions characterizing
change in neighbourhood size of compositions of FDM CA. For this purpose
we do not need to assume that f is one-to-one, however, when the FDM CAs
are required to be reversible, it is necessary (though not sufficient to guarantee
invertibility) for f to be one-to-one.

In this paper, we use the terms ‘invertible’ and ‘reversible’ interchangeably
when referring to cellular automata. Also we define compositions of cellular
automata in the following way: for any two cellular automata C1 and C2 acting on
the same cellular grid, one generation of the CA C2 ◦C1 refers to the application
of one generation of C1 followed by one generation of C2.

3 Theoretical Results

3.1 Neighbourhood Size of Compositions

As we have noted above, for implementing a public-key cryptosystem based on
compositions of RCAs, a desireable property is that the composition should have
a small neighbourhood size. Here we give necessary and sufficient conditions that
characterize the effect on neighbourhood size of composing an FDM CA with an

4 Adam Clarridge and Kai Salomaa

arbitrary CA. For readability, we give the result first for a very restricted type of
CA with a single cell neighbourhood. The underlying idea used for the general
case (in Proposition 2) is similar but the notation is more complicated.

Let B be a CA with dimension d = 1, state set S, neighbourhood N = (−1)
(the cell to the left), and arbitrary transition function.

The state changes of B can be described by a function hB : S × S → S. If s
is the state of a cell c at time t, then at time t+ 1 the state of c will be hB(s′, s),
where s′ is the state of the left neighbour of c at time t.

For s ∈ S we denote

next stateB(s) = {hB(s′, s) | s′ ∈ S}.

The set next stateB(s) consists of all possible states that a state s may directly
transition into (depending on the left neighbour of s).

We want conditions which guarantee that the composition of B with an FDM
CA that has the same dimension, state set, and neighbourhood as B has the same
neighbourhood as B.

Proposition 1. Let B be an arbitrary CA with dimension d = 1, state set S, a
neighbourhood N = (−1) (the cell to the left) and transition function hB. Let D
be an FDM CA (d,S,N ,AD,fD).

The composition D ◦B has neighbourhood N if and only if for all s ∈ S,

(∃s′ ∈ S) : fD(hB(s, s′)) 6= hB(s, s′)⇒ next stateB(s) ⊆ AD or
next stateB(s) ∩AD = ∅ (1)

Proof. Suppose that condition (1) holds. Consider two consecutive cells c1 and
c2 that are in states s and s′ respectively. We have to show that when apply-
ing the composition D ◦ B, the next state of c2 depends only on s and s′. If
fD(hB(s, s′)) = hB(s, s′), D ◦ B maps the state of c2 always to hB(s, s′). Next
assume that fD(hB(s, s′)) 6= hB(s, s′). Now according to (1), next stateB(s) is
either a subset of AD or it is disjoint with AD. In the former case, indepen-
dently of the state of the left neighbour of c1, D ◦ B maps the state of c2 to
fD(hB(s, s′)). In the latter case, again independently of the left neighbour of c1,
D ◦B maps the state of c2 to hB(s, s′). Thus, we can compute the transition of
D ◦B at cell c2 knowing just the current states of c1 and c2.

Conversely, assume that (1) does not hold. This means that there exist
s, s1, s2 ∈ S such that

hB(s1, s) ∈ AD and hB(s2, s) 6∈ AD,

and that there exists an s′ ∈ S such that fD(hB(s, s′)) 6= hB(s, s′).
Consider three consecutive cells c1, c2, c3 that at time t are in states s1, s, s′.

Now in D ◦B, the B automaton changes the states of c2 and c3 to hB(s1, s) and
hB(s, s′) respectively. Now since hB(s1, s) ∈ AD, the D automaton changes the
state of c3 to fD(hB(s, s′)). So given the configuration s1, s, s

′ at time t, D ◦ B
maps the state s′ to fD(hB(s, s′)) at time t+ 1.

A Cryptosystem Based on Composition of RCA 5

On the other hand, if the states of c1, c2, c3 at time t are s2, s, s′, in D ◦B,
the B automaton changes the states of c2 and c3 to hB(s2, s) and hB(s, s′)
respectively. Since hB(s2, s) 6∈ AD, we know that the D automaton will not
change the new state of c3. So given the configuration s2, s, s

′ at time t, D ◦ B
maps the state s′ to hB(s, s′) at time t+ 1.

Since hB(s, s′) 6= fD(hB(s, s′)), this means that the CA D ◦B does not have
neighbourhood N , since there is a dependency on the neighbour two cells to the
left. ut

We now address the more general case, where B is an arbitrary cellular
automaton with state set S, neighbourhood NB = (n̄1, n̄2, . . . , n̄k), n̄i ∈ Zd, d ≥
1, and local transition function hB : Sk → S (hB maps the neighbourhood of a
cell to its next state).

Denote the set of all possible states of the neighbourhoodNB = (n̄1, n̄2, . . . , n̄k)
of a cell c by

SNB
(c) = {(sn̄1 , sn̄2 , . . . , sn̄k

) | sn̄i
∈ S for i = 1, . . . , k},

where each sn̄i
refers to the state of the cell in position n̄i. A k-tuple of SNB

(c)
determines, according to the local transition function hB , the state of the cell c
at the next time step.

The neighbourhood of the neighbourhood of a cell c contains any cell that is
a neighbour to one of c’s neighbours. Let us refer to this set as the second order
neighbourhood of c. We will assume without loss of generality that each cell is a
neighbour to itself, so each cell in the neighbourhood of c belongs to its second
order neighbourhood as well.

Denote the collection of all second order neighbourhoods of a cell c with
neighbourhood s = (sn̄1 , sn̄2 , . . . , sn̄k

) ∈ SNB
(c) by

S̄NB
(s) =

tn̄1+n̄1 tn̄1+n̄2 . . . tn̄1+n̄k

tn̄2+n̄1 tn̄2+n̄2 . . . tn̄2+n̄k

...
tn̄k+n̄1 tn̄k+n̄2 . . . tn̄k+n̄k

 ∈ Sk×k ∀n̄ ∈ NB , tn̄ = sn̄

 .

The rows of each matrix in S̄NB
(s) are the neighbourhoods of each of the

cells in s. The states in positions n̄1, n̄2, . . . , n̄k are fixed (they are the states of
s), while the rest of the second order neighbourhood is arbitrary.

The automaton B’s neighbourhood state changes for a cell c with neighbour-
hood s can be described by a function

h̄B : S̄NB
(s)→ SNB

(c)

which maps a second order neighbourhood to the next neighbourhood of c. The
second order neighbourhood contains all the information needed in order to
determine the next neighbourhood of c.

For the neighbourhood s ∈ SNB
(c) we denote the set of all possible next

neighbourhoods by

next neighbourhoodB(s) = {h̄B(r̄) | r̄ ∈ S̄NB
(s)}.

6 Adam Clarridge and Kai Salomaa

Now we can extend the result of Proposition 1.

Proposition 2. Let B be an arbitrary CA with dimension d, state set S, neigh-
bourhood NB, and transition function hB. Let D be an FDM CA (d,S,NB,AD,fD).

The composition D ◦ B has neighbourhood equal to NB if and only if for all
s ∈ SNB

(c),

fD(hB(s)) 6= hB(s)⇒ next neighbourhoodB(s) ⊆ AD or
next neighbourhoodB(s) ∩AD = ∅ (2)

Proof. Suppose that condition (2) holds. We want to show that for all s ∈
SNB

(c), where c is some cell, we do not need any more information than the
neighbourhood s to compute the transition of D ◦ B. For neighbourhoods s ∈
SNB

(c) such that the left hand side of condition (2) is false, D always maps
hB(s) to itself. Clearly in this case D does not create a dependence on a larger
neighbourhood. Now consider neighbours s ∈ SNB

(c) such that both sides of
the implication (2) are true. The right side of (2) means that all next possible
neighbourhoods of s must either be contained in the acting set of D, or com-
pletely separate from the acting set of D. So the particular neighbourhood that
s actually gets mapped to by B is not important, since D already knows from s
whether or not it will act. If next neighbourhoodB(s) ⊆ AD, then D will apply
fD to hB(s), and if next neighbourhoodB(s) is disjoint from AD, then D will
apply the identity map to hB(s). Thus, we can compute the transition of D ◦B
at a cell c knowing just the current states of its neighbours, s.

Conversely, assume that (2) does not hold. This means that for some s ∈
SNB

(c) there exist r̄1, r̄2 ∈ S̄NB
(s) such that

h̄B(r̄1) ∈ AD and h̄B(r̄2) 6∈ AD,

and that fD(hB(s)) 6= hB(s). Recall that r̄1 and r̄2 agree on the states of s,
and that h̄B denotes that function that maps a second order neighbourhood to
a neighbourhood of B.

Consider a collection of cells in the configuration of r̄1. When we apply D◦B,
the B automaton changes the states of s to a neighbourhood which is in AD.
The D automaton is then applied. So the next state of the cell c is fD(hB(s)).

On the other hand, consider a collection of cells in the configuration of r̄2.
When we apply D ◦B, the B automaton changes the states of s to a neighbour-
hood which is not in AD. The D automaton applies the identity map. So the
next state of the cell c is hB(s).

Since fD(hB(s)) 6= hB(s), this means that the CA D ◦ B cannot have the
neighbourhood NB , since it depends on one or more of the states of r̄1 and r̄2

which differ and are outside of NB . ut

The condition of Proposition 2 can be used to inductively define a sequence of
FDM CAs C1, C2, . . . , Cn such that C1◦C2◦· · ·◦Cn has the same neighbourhood
as each of its components.

One interesting property of FDM CAs is that a carefully chosen composition
can represent any cellular automaton.

A Cryptosystem Based on Composition of RCA 7

Proposition 3. Every cellular automaton C with neighbourhood NC of size k
and state space S can be represented as a composition of |S|k +1 FDM CAs with
the same neighbourhood, if the FDM CAs are allowed |S|+ |S|k states.

Proof. We give a proof by direct construction. Consider a cellular automaton C
with neighbourhood NC of size k. The automaton has a state transition function
for updating the state of a cell c,

fC : Sk → S

with |S|k inputs. Enumerate all of these inputs by m1,m2, . . . ,mn, where n =
|S|k, and let mi[0] refer to the state of c in input mi. Define |S|k new states by
p1, p2, . . . , pn. The FDM CAs with neighbourhood NC of size k that will form
the composition will use state space S ∪ {p1, p2, . . . , pn}, where the p states will
be used to temporarily refer to states in S.

We now describe the composition of the n+1 FDM CAs Dn+1 ◦Dn ◦ · · · ◦D1

that will emulate C. The first automaton in the composition, D1, has acting
set equal to the singleton m1, and maps m1[0] to the state p1. Let m2 =
(m1

2,m
2
2, . . . ,m

k
2). Then the next automaton in the composition, D2, has act-

ing set

AD2 =
{

(s1, s2, . . . , sk) ∈ (S ∪ {p1})k ∀i :
si = p1 ⇒ mi

2 = m1[0] and
si ∈ S ⇒ si = mi

2

}
and maps all states of S to p2. Note that the composition D2 ◦ D1 has the
same neighbourhood NC of size k; if the neighbourhood of a cell of C is in
the configuration of m2, then by our choice of D2’s acting set, we know we are
guaranteed that D1 will map this configuration to an element of AD2 . Also, if
the neighbourhood of a cell is not in the configuration of m2, then we know
that D1 will not map the neighbourhood anywhere in D2’s acting set. So the
condition of Proposition 2 holds, and we have that D2 ◦D1 has neighbourhood
NC .

The next cellular automata in the composition up to Dn have similar form.
Let mj = (m1

j ,m
2
j , . . . ,m

k
j), then for all j up to n, Dj has acting set

ADj
=

(s1, . . . , sk) ∈ (S ∪ {p1, . . . , pj−1})k ∀i :

si = p1 ⇒ mi
j = m1[0] and

si = p2 ⇒ mi
j = m2[0] and
...

si = pj−1 ⇒ mi
j = mj−1[0] and

si ∈ S ⇒ si = mi
j

and maps always to pj . In this way, Dj performs the jth state transition, re-
gardless of other cells in the neighbourhood which are changed by other state
transitions, since they are changed to members of the temporary set of p states.

8 Adam Clarridge and Kai Salomaa

The composition Dn◦Dn−1◦· · ·◦D1 has neighbourhood NC , since each automa-
ton which is added to the composition has an acting set which guarantees that
the condition of Proposition 2 holds. The last automaton in the composition,
Dn+1, has acting set equal to (S∪{p1, p2, . . . , pn})k (it always acts), and applies
the following mapping to the state s of a cell:

fDn+1(s) =
{
fC(mi) if for some i, s = pi

s otherwise

The automaton Dn+1 maps the temporary p states back to the original state
space S. The result is that the composition Dn+1 ◦ Dn ◦ · · · ◦ D1 mimics the
behaviour of the C automaton exactly for inputs which are from S∗, because of
the use of temporary states which store state transition information in a way
that does not interfere with other state transitions. ut

The upper bounds of Proposition 3 are not meant to be tight at all in terms
of the number of cellular automata required in the composition or the number
of extra states required. An extension to this work could be to create an algo-
rithm which, for a given cellular automaton, automates this construction and
approximates or finds exactly the minimal number of automata and extra states
required.

3.2 Reversibility

We now discuss the reversibility of FDM CA. In the following text we use the
notation s[0] to refer to the state in the ‘zero’ position of a neighbourhood vector
s ∈ SN .

Lemma 1. Let C = (d, S,N,AC , f) be an FDM CA, and assume the cell itself
is part of N (0 ∈ N) without loss of generality. Denote

B = {a ∈ AC | f(a[0]) 6= a[0]}.

Then (d, S,N,B, f) is equivalent with C.

Proof. The proof is immediate because tuples of AC not in B do not affect the
computation in any way. ut

We say that an FDM CA C with active set AC is reduced if for every a ∈ AC ,
f(a[0]) 6= a[0]. By Lemma 1, without loss of generality we can assume that an
arbitrary FDM CA is reduced.

We now generalize some of the definitions from Proposition 2 for an arbitrary
FDM CA C=(d,S,N ,AC ,f).

Let an arbitrary neighbourhood be denoted by N ′. Then let the (N,N ′)-
neighbourhood of a neighbourhood s ∈ SN be the configuration containing the
N neighbours of each of the elements in the N ′ neighbourhood. Let the set
of all (N,N ′)-neighbourhoods of s be denoted by S̄(N,N ′)(s). Note that an N -
neighbourhood of an N ′-neighbourhood is the same as an N ′-neighbourhood of

A Cryptosystem Based on Composition of RCA 9

Fig. 1. An example of an (N, N ′)-neighbourhood mapping to an N ′ neighbourhood.

an N -neighbourhood, which can be more formally stated as follows. Let r be a
vector in S̄(N,N ′)(s) and let rN ′ be the ‘restriction’ of r to the neighbourhood
N ′, that is, rN ′ is an N ′-neighbourhood around the zero-position. Then the
(N ′, N)-neighbourhood of rN ′ equals r.

Let the transition function of C from (N,N ′)-neighbourhoods to N ′ neigh-
bourhoods be denoted by h̄C , which takes an (N,N ′)-neighbourhood configu-
ration and the neighbourhood N ′ as input, and outputs C’s action with that
configuration on the neighbourhood of size N ′. An illustration of an (N,N ′)-
neighbourhood and how it maps to an N ′ neighbourhood is given in Figure
1.

Let the transition function from neighbourhoods to sets of possible output
neighbourhoods be denoted by

next neighbourhoodC(s, N ′) = { h̄C(r̄, N ′) | r̄ ∈ S̄(N,N ′)(s) }.

The following result characterizes when a given FDM CA with neighbourhood
N has an FDM CA inverse with neighbourhood N ′.

Proposition 4. Let C be a reduced FDM CA (d,S,N ,AC ,f). Denote

X =
⋃

a∈AC

next neighbourhoodC(a, N ′). (3)

Then C has an FDM CA inverse with state set S and neighbourhood N ′ if and
only if

(∀ a /∈ AC) f(a[0]) 6= a[0]⇒ next neighbourhoodC(a, N ′) ∩X = ∅. (4)

Proof. Assume condition (4) holds. Let us choose C−1 = (d, S,N ′, AC−1 , f−1)
where AC−1 = X, and show that it inverts C. Consider an arbitrary r̄ ∈
S̄(N,N ′)(a) of a neighbourhood a ∈ SN , such that h̄C(r̄, N ′) = b (∈ SN ′). If

10 Adam Clarridge and Kai Salomaa

a ∈ AC , then we know that b ∈ AC−1 so C−1 will map b[0] to f−1(b[0]) = a[0].
Now consider the case where a /∈ AC . In this case we know that a[0] = b[0].
If f(a[0]) = a[0](= b[0]), then C−1 correctly maps b[0] back to itself since
f−1(b[0]) = b[0]. On the other hand, if f(a[0]) 6= a[0], then from (4) we know
that b /∈ AC−1 , and again C−1 must map b[0] to itself.

Conversely, assume that C has an inverse FDM CA D with neighbourhood
N ′ and let AD be the active set of D. Since D must correctly ‘map back’ all
states where C applied the function f , it is clear that X (as defined in (3)) is a
subset of AD.

It remains to show that (4) holds. For the sake of contradiction assume that
b = h̄C(r̄, N ′) ∈ X, where r̄ is an (N,N ′)-neighbourhood of a neighbourhood
a 6∈ AC , and f(a[0]) 6= a[0]. Since a 6∈ AC , we know that a[0] = b[0]. Since D is
an inverse of C, the function used by D must be f−1. Since b ∈ X ⊆ AD, the
FDM CA D applies the function f−1 to b[0], but the result cannot be a[0] since
that would imply f(a[0]) = b[0] = a[0], a contradiction. This means that D is
not the inverse of C. ut

The following corollary addresses the uniqueness of FDM CA inverses.

Corollary 1. Let C and X be as defined in Proposition 4, and let C have some
inverse C−1 with neighbourhood N ′. Then C−1 is the only reduced FDM CA
with neighbourhood N ′ that inverts C.

Proof. Any inverse of C must have function f−1. Assume for the sake of con-
tradiction that there exists an FDM CA D with neighbourhood N ′ that inverts
C and has acting set AD 6= X. In the proof of Proposition 4 we have observed
that X must be a subset of AD. Thus it is sufficient to show that there cannot
be an element b ∈ AD with b /∈ X.

Let b = h̄C(r̄, N ′), where r̄ ∈ S̄(N,N ′)(a), a /∈ AC since b /∈ X. Then D
cannot be the inverse of C because C maps a[0] to itself, but D maps b[0] = a[0]
to f−1(b[0]), which cannot be equal to b[0] since b ∈ AD and D is reduced. ut

4 A Public-Key Cryptosystem

We want to use the idea of composing together many simple RCAs to form a
complex RCA that is hard to invert, as outlined in the paper by Kari [8]. In
order to make this idea work, we need to have some way to randomly generate
a sequence of simple CAs such that the neighbourhood size of their composition
remains small (or constant), and each CA in the composition is reversible.

We will demand that the neighbourhood size of each cellular automaton
in the composition is the same, and that the entire composition has the same
neighbourhood as any of the components. The components will all be FDM CAs.
Note that a composition of FDM CAs is not necessarily an FDM CA. Since the
neighbourhood, state set, and dimension are fixed, we must design an algorithm
which generates acting sets and transition functions for each of the n components

A Cryptosystem Based on Composition of RCA 11

C1, C2, . . . , Cn. From the theory in the previous section, we can now state some
requirements for such an algorithm.

To maintain neighbourhood size during composition, the FDM CA Cj must
have an acting set Aj and transition function fj such that the composition
Cj ◦ (Cj−1 ◦Cj−2 ◦ · · · ◦C1) has the same neighbourhood, for all j ∈ {2, . . . , n}.
Referring to the condition from Proposition 2, we need to guarantee that for
each neighbourhood, the next neighbourhood set of Cj−1 ◦ Cj−2 ◦ · · · ◦ C1 is
either completely contained in Aj or is disjoint from Aj . Denote by T ⊆ S the
“change set”, that is, the set of all states that the composition Cj−1 ◦Cj−2 · · · ◦
C1 can possibly change. One way we can be sure to retain neighbourhood size
during composition is by setting Aj equal to the set of all neighbourhoods which
contain a state in T . The condition from Proposition 2 is satisfied since all
neighbourhoods containing states in T will certainly be mapped (by Cj−1 ◦
Cj−2 ◦ · · · ◦ C1) to neighbourhoods which also contain states in T (assuming
f1, f2, . . . , fj−1 are one-to-one mappings), and neighbourhoods which do not
contain any states in T will clearly be mapped to neighbourhoods which do not
contain any states in T . We use a less restricted version of this principle (which
still satisfies the neighbourhood size preservation condition) in our algorithm to
determine the acting set of each FDM CA in a composition.

The need for each of the FDM CAs in the composition to be invertible puts
additional restrictions on their form. In order to be sure that the FDM CA is
invertible, the set T which is used to find the acting set of each FDM CA must
contain all states that the function f can change. The functions f1, f2, . . . , fn

must also be permutations (one-to-one mappings). We discuss the key generation
algorithm in more detail in Section 4.1.

Once the component FDM CAs are generated, the public key is determined
by sequentially applying C1, C2, . . . , Cn to each possible neighbourhood (using
the neighbourhood as the starting configuration). The final state of the cell is
recorded, and the public key is this mapping of neighbourhoods to states. The
private key is not calculated explicitly; the CAs C−1

1 , C−1
2 , . . . , C−1

n are simply
applied sequentially for decryption. The message is encoded in a d dimensional
grid and is evolved for a fixed number of iterations of the public key to produce
the ciphertext. The ciphertext and number of iterations are sent as the encrypted
message.

4.1 The Key Generation Algorithm

Our key generation scheme is given in Algorithm 1. We should note that in this
algorithm, the random element function returns a random element from a given
set, the random function returns a floating point number between 0.0 and 1.0,
the random permutation function returns a random permutation mapping of a
given set, and the random binary function returns a random binary string of a
given length. Also, the get all possible neighbourhoods function returns all
possible neighbourhoods given a state set S and neighbourhood N .

Initially T is a set T ⊆ S of two random elements of S. The FDM CAs in the
composition are then constructed in order from C1 to Cn. During the generation

12 Adam Clarridge and Kai Salomaa

Input: State space S, Neighbourhood N , Number of FDM CA n, 0 < p, q < 1
Output: Set of reversible FDM CAs C1, C2, . . . , Cn

Initialization
T ←− ∅
T.add (random element (S))
T.add (random element (S−T))
all possible neighbourhoods ←− get all possible neighbourhoods (S,N)

for i← 1 to n do
The following code determines fi
if random () < p and T 6= S then

T.add (random element (S−T))
end
fi ←− random permutation (T)

The following code determines Ai

binary string ←− random binary (|N |)
Ai ←− ∅
for neighbourhood ∈ all possible neighbourhoods do

unchanging neighbourhood ←− True
for j ← 1 to |N | do

if neighbourhood [j] ∈ T then
unchanging neighbourhood ←− False
if binary string [j] = 1 then

Ai.add (neighbourhood)
break

end

end

end
if unchanging neighbourhood = True and random () < q then

Ai.add (neighbourhood)
end

end
Ci ←− { S,N ,Ai,fi }

end
Algorithm 1: The public-key generation algorithm, discussed in Section 4.1.

A Cryptosystem Based on Composition of RCA 13

of each Ci, with probability p a new element from S is added to the set T , and
otherwise T stays the same. The function f is chosen for each FDM CA to be
a random permutation of the set T , and f applies the identity map to states in
S − T . We should note that one should choose n to be sufficiently large so that
T = S at some point (i.e. no states are left completely unchanged), but we will
discuss this more later.

The only remaining task is to select the acting set. For each FDM CA in
the composition, a random binary string of length |N | is chosen. Every possible
neighbourhood is then considered as a candidate element of the acting set. If
the candidate neighbourhood has a state which is an element of T and is also
in a position corresponding to a ‘1’ of the binary string, then it is added to
the acting set. Also, if the neighbourhood contains only states which are not in
T , then the neighbourhood is added to the acting set with probability q. For
example, consider the case where S = {a, b, c}, N = {−1, 1}, T = {a, b}, and
the random binary string is 01. Then the neighbourhood ca is a member of the
acting set while ac is not, and cc is a member of the acting set with probability
q. Note that if the neighbourhood N contains the zero element, then clearly the
case where the neighbourhood is added to the acting set with probability q is
irrelevant since not even the state of the cell can change.

We now discuss the correctness of this algorithm, and begin by showing
that the condition for constant neighbourhood size during composition holds.
Assume we are attempting to determine the acting set of the ith FDM CA in
the composition, Ai, and let us first consider neighbourhoods which have at
least one state in T . If a neighbourhood is in Ai, then at least one element
of T occurring in the neighborhood corresponds to a ‘1’ in the binary string.
Since Ci ◦Ci−1 ◦ · · · ◦C1 is T -invariant (states in T are mapped to states in T),
the neighbourhood will certainly be mapped to a neighbourhood in Ai. On the
other hand, if a neighbourhood is not in Ai, then all occurrences of states in T
correspond to ‘0’ elements of the binary string. This neighbourhood is mapped to
a neighbourhood where states in T also correspond to ‘0’ elements of the binary
string, and hence it is mapped to a neighbourhood which is not in Ai. Finally, if
we consider a neighbourhood which contains no elements of T , then clearly the
condition of Proposition 2 is satisfied regardless of whether the neighbourhood
is in Ai, or whether N contains the zero element, since the neighbourhood must
map to itself.

It remains to show that the condition for FDM CA reversibility holds for each
Ci. Rather conveniently, the previous conditions actually allow (or demand) that
Ai is also the acting set of the inverse FDM CA. Since any addition to the set T
during the construction of each FDM CA happens before we choose Ai, we are
guaranteed that elements of Ai will be mapped to elements of Ai, and elements
not in Ai will not be mapped to Ai. So the condition from Proposition 4 also
holds. Note that we could not be sure of this if Ai was constructed with some T
that did not correspond with the states that fi changes.

14 Adam Clarridge and Kai Salomaa

4.2 Security Concerns and Practical Considerations

Since the FDM CA compositions follow a specific form and are not general two-
dimensional RCA, we cannot directly use Kari’s result [9] to justify the security
of the system, and hence the security of this cryptosystem is largely unknown
to us. However, we do not believe that straightforward brute force attacks will
work. If one attempted to guess at a composition of FDM CAs which resulted in
the same public key, there are many choices for each CA and there are n! ways
to arrange the rules, since n is the number of rules in the composition. One could
also attempt to keep track of all global inputs and outputs for a fixed grid size
in order to invert the composed CA. In this case the number of possible global
configurations is |S|(g) where g is the number of grid cells, so as long as the grid
(the message) is relatively large this method will not work.

We also do not believe that the private key C−1
1 ◦C

−1
2 ◦· · ·◦C−1

n can be guessed
very easily. Although we do not calculate it explicitly, this CA must have a fairly
large neighbourhood because for each composition in the sequence, the condition
from Proposition 2 does not hold in general. Each time T changes during the
generation of the FDM CA, the inverse automaton’s neighbourhood size may
increase, and this can happen at most |S| − 2 times. So there is a computable
upper bound for the neighbourhood size of the inverse, given C1, C2, . . . , Cn, but
for reasonably large S and d > 1 this probably does not pose a security threat.

A user must choose the parameters of our algorithm with some care in order
to prevent these brute force attacks and also to be able to encrypt and decrypt
within a reasonable amount of time on a normal computer. One such setup might
be N = {(0, 1), (1, 0)} (the top and the right neighbours), |S| ≈ 25, grid size
g ≈ 500, number of FDM CA in the composition n ≈ 100, p = q = 0.5, and
number of iterations ≈ 100. These sizes can probably be increased significantly if
the algorithm were implemented on specialized parallel hardware (especially the
grid size and number of iterations). We should note that the expected number
of CA needed in the composition to just achieve T = S is (|S| − 2) · 1/p, and
so n should be chosen so that it is significantly larger than this quantity. If n is
too small, then the composition will only change states in T , and all elements
in S − T that occur in the original message will occur in the same places in the
ciphertext.

One security issue related to the last point is that with our key generation
algorithm as written, it is very easy for an attacker to determine which state
was last added to T . The public key will map this state to some other state
regardless of the neighbourhood. Not much can be immediately done with this
information, but perhaps it could be a starting point for a clever cryptanalytic
algorithm to find each of the FDM CA in the composition in backwards order.

5 Conclusion and Future Work

We presented conditions which guarantee that compositions of fixed-domain
marker cellular automata have the same neighbourhood as each of the individ-
ual components. We showed that, under certain technical assumptions, an FDM

A Cryptosystem Based on Composition of RCA 15

CA has a unique inverse with a given neighbourhood. We used these results to
design, present, and show the correctness of a working key generation algorithm
for a public-key cryptosystem originally conceived by Kari [8]. We also provided
some preliminary cryptanalysis and gave some practical implementation notes.

This work provides several avenues for further research. We have given per-
haps a more manageable definition of marker cellular automata, which could
facilitate or help with additional theoretical development in related areas. The
security of the cryptosystem presented in this work is currently unknown, and
serious cryptanalysis is needed before more can be said in this regard. Also, there
may be some alternate or more general way to choose the acting sets of each CA
in the composition, which could result in a more secure or efficient system. If the
cryptosystem does not break easily then it would make sense to try to design an
optimal hardware implementation and to do a corresponding feasibility analysis
for real-world applications.

References

1. Amoroso, S., Patt, Y.: Decision Procedures for Surjectivity and Injectivity of Par-
allel Maps for Tesselation Structures. J. Comput. System Sci. 6, 448–464 (1972)

2. Anghelescu, P., Ionita, S., Sofron, E.: Block Encryption Using Hybrid Additive
Cellular Automata. 7th Int. Con. on Hybrid Intelligent Systems, 132–137 (2007)

3. Ashley, J.: Marker automorphisms of the one-sided d-shift, Ergodic Theory Dynam.
Systems 10, No. 2, 247-262 (1990)

4. Charbouillot, S., Perez, A., and Fronte, D.: A Programmable Hardware Cellu-
lar Automaton : Example of Data Flow Transformation. 13th IEEE International
Conference on Electronics, Circuits and Systems. 1232–1235 (2006)

5. Franti, E., Slav, C., Balan, T., and Dascalu, M.: Design of cellular automata hard-
ware for cryptographic applications. CAS 2004 Int. Semiconductor Conference Vol.
2, 463–466 (2004)

6. Gutowitz, H.: Cryptography with Dynamical Systems. In: Cellular Automata and
Cooperative Phenomena, Eds: E. Goles and N. Boccara, 237–274. Kluwer Academic
Press (1993)

7. Gutowitz, H.: Method and Apparatus for Encryption, Decryption, and Authenti-
cation using Dynamical Systems, U.S. Patent 5365589 (1994)

8. Kari, J.: Cryptosystems based on reversible cellular automata. Manuscript (1992)
9. Kari, J.: Reversibility and Surjectivity Problems of Cellular Automata. J. Comput.

System Sci. 48, 149–182 (1994)
10. Seredynski, M., and Bouvry, P.: Block cipher based on reversible cellular automata.

New Gen. Comput. 23, 3 245–258 (2005)
11. Srebrny, M., and Such, P.: Encryption using two-dimensional cellular automata

with applications. In Artificial intelligence and Security in Computing Systems,
203–215. Kluwer Academic Publishers (2003)

12. Tao, R. and Chen, S.: On finite automaton public-key cryptosystem. Theoretical
Computer Science 226 No.1-2, 143-172 (1999)

13. Wolfram, S.: Random sequence generation by cellular automata. Advances in Ap-
plied Mathematics 7 No.2, 163–169 (1986)

14. Zheng, Y., and Imai, H.: A cellular automaton based fast one-way hash function
suitable for hardware implementation. In Public Key Cryptography, number 1431
in Lecture Notes in Computer Science, pp.217-234, 1998.

