

Queen’s University

School of Computing

Depth Area: Software Testing

Depth Topic: Web Applications Testing

Supervisory committee: Dr. J.R. Cordy, Dr. T.R. Dean and Dr. S. Knight

Prepared by

Ben Kam

Student Number: 5285549

February 28, 2007

 ii

Abstract

A study from the Business Internet Group San Francisco (BIG-SF) [2, 3] found

approximately 70% of websites contain bugs and suffer some kind of failure; not only

commercial websites but also US government managed websites. These faults reside in

both static pages and dynamic pages. In this survey paper, we review how the existing

web application testing methods test static and dynamic pages. It is our objective to

better understand why testers are unable to reveal these faults. As a result, we suggest

a novel approach for web applications testing.

 iii

Table of Contents

Chapter One ... 1

1.0 Introduction ... 1

Chapter Two .. 3

2.0 Scope and Motivation ... 3

Chapter Three .. 6

3.0 Software testing overview ... 6

3.1 Potential Web Application Problems .. 7

3.2. Website Taxonomies .. 10

3.3. Industrial Web application testing ... 10

Chapter Four .. 11

4.0 Anatomy of web application testing ... 11

4.1 Formal Methods .. 11

4.1.1 TestUml Model ... 11

4.1.2 State-base web browser testing ... 13

4.2 Object-Oriented Method ... 16

4.2.1 Agent-Based Testing ... 16

4.2.2. Object-based Data Flow Testing .. 17

4.2.3. Object-Oriented Web Test Model Testing ... 19

4.3 Statistical Method ... 21

4.4 UML Method .. 24

4.5 WebApp Slicing Method .. 26

4.5.1 Nesting/Control dependences .. 27

4.5.2 Data dependences .. 27

4.5.3 Call/parameter-in dependences ... 28

4.6 User Session Data Method .. 29

Chapter Five .. 34

5.0 Overall evaluation ... 34

Chapter Six .. 39

6.0 Contribution and Future work ... 39

Chapter Seven .. 41

7.0 Conclusion .. 41

Appendix A (provided by the „Glossary Working Party‟ ISTQB) .. 42

References: .. 50

 iv

List of Figures

Figure 1: A simple web application operation [11] ... 3

Figure 2: WebUml tool architecture [5] .. 12

Figure 3: Four states of web browser buttons and the aggregated state transitions ... 14

Figure 4: The flattened statechart and state transition tree .. 15

Figure 5: Control Flow Graph ... 17

Figure 6: Page navigation diagram and Navigation test .. 19

Figure 8: Web usage model, uniform transition probabilities, and non-uniform transition probabilities 22

Figure 9: The meta model of a web application, and instance of the meta model with frames and form 25

Figure 10: A SDG for nesting/control dependences .. 27

Figure 11: A SDG for data dependences ... 27

Figure 12: A SDG for data dependences from HTML code to server side code ... 28

Figure 13: Captured log and replayed individual user session sequentially .. 30

Figure 14: Test cases generation demonstration .. 32

Figure 15: Group 1 and Group 4 relationships .. 39

List of Tables

Table 1: Categorization of existing web application testing methods ... 5

Table 2: Suggested alternative view of Table 1 ... 7

Table 3: Potential Problems ... 9

Table 4: Baseline test cases ... 15

Table 5: Supplementary test cases ... 16

Table 6: Unified and UML Markov models summary .. 23

Table 7: Six groups testing methods summary .. 35

 1

Chapter One

1.0 Introduction

In 1990, the first web browser Nexus was born. At that time, no one considered web application

testing, perhaps because of simplicity and very limited application features. A web application is an

application that is accessed via a web browser using the Hypertext Transfer Protocol (HTTP) over a

network such as the Internet or intranet. To be more precise, HTTP is a stateless request and

response protocol between clients and servers. An HTTP client (the browser) makes an initial

request to an HTTP server (the web server) via Transmission Control Protocol (TCP) establishing a

connection on port 80 by default. An HTTP server listens to this port and sends the request message

(application) to the HTTP client.

Nowadays, web applications have become more sophisticated and complicated than ever

before. Many legacy software systems have also been migrated to web-based systems. Web

applications tend to change more rapidly with shorter development times (time-to-market concerns)

than traditional software. The short lifecycle of web application software is normally three to six

months [24].

According to a study from the Business Internet Group San Francisco (BIG-SF), of forty-one

web sites under US government management, twenty-eight (68.29%) contained bugs that caused

web application failures [2]. These faults reside in the web documents (static pages and dynamic

pages). The failures are the file not found error and incorrect data responses. Have these websites

been tested before being put on the web server? As government managed websites, time-to-market

constraint should be less than for commercial business websites. Does this mean that the failure rate

of commercial websites are better or worse? The answer to this question was revealed on

November 22, 2002, the biggest shopping day of the year – the day after Thanksgiving. The Black

Friday report [3] stated consumers spent $196 million online shopping. This report also stated that

72.5% of the websites suffered some kind of failure. If it were not for such a high percentage of

website failures, would consumers have spent more than $196 million on this day?

A web application is nothing more than a file with a program (web page) written in

programming languages such as HTML, PHP, JSP, VBScript, etc. Why then do websites have such

 2

high percentages of failures? If the web application is tested before delivery to market, then why

are there still so many errors? In this survey paper, we present and analyze several web application

testing methods and explain why traditional software does not have the high failure rate that web

applications incur. The ultimate goal is to find a robust testing technique to improve the

performance of web application testing.

In next chapter, we define the scope and motivation of this paper. The software testing

overview, taxonomic web applications, and potential problems originating from static and dynamic

pages will be addressed in Chapter 3. Chapter 4 investigates six groups of web application testing

methodologies. Individual testing method will be discussed and compared. Chapter 5 contains an

overall evaluation of these six group of testing methods. Chapter 6 will answer questions posed in

Chapter 2. Finally, the conclusion will be drawn in the last chapter.

 3

Chapter Two

2.0 Scope and Motivation

The problem of web application failure is twofold. First, there are a significant high percentage

of failures [2, 3] reflecting web application implementation. Second, why were software testers

unable to reveal these faults? This brings forth the question, how do test engineers conduct web

application testing? How effective are the testing methods?

The operation of a simple web application [9] is illustrated in Figure 1. The discussion of this

survey paper will focus on the circle (as these faults originate from the static and dynamic pages)

and how the existing web application testing methods test the correctness of static and dynamic

web pages. The existing testing methods will be categorized, and we will discuss, evaluate, and

summarize each taxonomic group‟s approach. As a result, we can differentiate the strengths and

weaknesses of the majority of existing web application testing techniques.

Figure 1: A simple web application operation [9]

In order to help understand the web application testing problems, we also aim to answer the

following questions;

1. What are the similarities between traditional software testing and web application testing

approaches?

Database

Server

Scripts &

Application

Server

Web

Server

Client

Browser

Request

Respond

(Static page)

Respond

(Dynamic page)

Request for

page generation

Dynamically
generated page

SQL Command

Result Set

[Finish generating dynamic page]

 4

2. What are the differences between traditional software testing and web application testing

approaches?

Then based on the answers, we will address the open question;

3. Can we apply traditional software testing methods to perform web application testing?

Consequently, we will suggest a complete and robust web application testing methodology.

After a survey of existing web application testing methods, we have categorized these testing

methods as shown in Table 1. (Table 1 shows the categorization of existing web application testing

methods.) There are a total number of six groups. Each group contains the testing models, testing

methods, testing criteria, and testing targets. Using notations and symbols to model software

systems is common practice for traditional software development. This can also be applicable to

web applications. Some models can be used for requirements validation and the others can be used

for specifications verification (model-based testing techniques). For example, the formal method

group contains two testing models, TestUML and State Chart. The models represent the web

application structures and use for test case generation. The testing methods describe the testing

mechanism; white box or black box approach. The testing criteria show the coverage requirement

(data and/or control flow). The testing targets describe the functional or non-functional

requirements of the software to be tested.

For the sake of consistency, four confusing words in software testing will be defined here for

their use throughout this paper.

Fault – an actual fragment of code in the program that causes failure

Failure – a function of the program is performed incorrectly

Bug – an informal name for failure and fault

Error – a mistake made by a programmer

 5

Model

Testing Methods Testing Criteria Testing Targets

References White Box Black Box Control flow Data flow Functional Non-functional

F
o

rm
a
l M

e
th

o
d

TestUml x x x [4, 5]

Stated-base x x x [22, 23]

O
b

je
c
t-o

rie
n

te
d

Agent-Based x X x x [26]

Object-Based x x x [20, 21]

OO Web Test x x x [17]

S
ta

tistica
l

Markov Chain x X x
[6, 7, 14,

15, 43]

U
M

L

ReWeb/TestWeb x x x
[29, 30,

31,34,36,37]

S
licin

g

WebApp slicing x x x [32, 35]

U
ser

 S
e
ssio

n

User Session Data x X x x
 [9, 10, 38,

39, 40]

Table 1: Categorization of existing web application testing methods

 6

Chapter Three

3.0 Software testing overview

Software testing plays important role in traditional software development. Software testing

must be conducted thoroughly before we can deploy or deliver it to clients. The software testing

and web application testing process should consist of at least two activities: validation and

verification [13]. Validation ensures that the software has a correct implementation (in agreement

with the user requirements). Verification checks that the software has been implemented correctly

(in accordance with its specifications). In other words, we want to make sure the implemented

software is what the client wants and is flawless (if possible) before delivery.

The process of software verification can be achieved by formal or informal testing. High

security and human life related software should be tested using formal methods. However, formal

testing requires deep professional knowledge to model and to prove the system‟s correctness. For

example, the denotational semantics method uses mathematical objects to represent functions and

prove its correctness. This approach is not commonly used for industrial software development; it

is especially not suitable for the ever changing, time-to-market constrained web application

software.

Informal testing is widely accepted by industry. One of the reasons is that it is relatively easier

to master these informal testing techniques compared to formal testing methods. However, a

drawback of informal testing techniques is often the tedious and confusing software testing jargon.

Different testing teams may test a program with the same approach but call the testing method

different names. For example, “complete testing” and “exhaustive testing” are understood to have

the same meaning. We can easily find more than a hundred technical testing names in the glossary

(appendix A). International Software Testing Qualification Board [47] has sought the views of

different parties (industries, organizations, and government agencies) and attempted to standardize

the glossary of terms used in software testing. Consequently, most terms in the glossary are widely

accepted.

Test engineers commonly use black box and/or white box approaches to conduct testing. It is

because most testing originates from these two fundamental methods. In order to achieve black box

testing, there are several major methods that can be used, such as equivalence partitioning on the

 7

input and output domains, and analysing the boundaries and extreme values. As a result, three

testing methods (equivalence partitioning testing, boundary value testing, and extreme value

testing) originate from black box testing. As for white box testing, the basic approach is to find test

cases that can execute the code differently, in other words, looking at different criteria of code

coverage. Therefore, white box testing yields condition testing, decision testing, path testing,

statement testing, and so on. In short, black box and white box testing are only the starting point to

determine whether the source code is needed for testing. We have suggested an alternative view of

Table 1 which is shown in Table 2. (Table 2 suggests an alternative view of Table 1.)

 Model

 Formal Object-Oriented Statistical UML Slicing User Session

Testing Methods Test State Agent Object
OO
Web Markov ReWeb WebApp User Session

Uml Based Based Based Test Chain TestWeb Slicing Data

Data Flow testing   

Functional testing  

Maintainability testing 

Path testing   

Performance testing 

Robustness testing       

Reliability testing 

Regression testing 

State transition testing 

Statistical testing 

Syntax testing 

Structural testing      

Both testing approaches have advantages and disadvantages concerning performance in terms

of effectiveness and efficiency. Thus, many researchers focus on finding a way to maximize the

thoroughness of testing while minimizing the processing time as an ultimate research goal. This

goal also applies to web application testing.

3.1 Potential Web Application Problems

Browsing websites can be considered daily routine activities. Based on the popularity of

websites, the web contents are ever changing and have short time-to-market constraints; thus fast-

paced web application development is a natural necessity. Therefore, an efficient and effective

testing method should be in demand. Testing plays important role for software development.

However, web applications testing falls by the wayside because developers consider the web

application testing time consuming and lack significant payoff [12].

Table 2: Suggested alternative view of Table 1

 8

Web applications can be very complex. It is more than just navigating the websites by clicking

the link provided by the web page and the web server will deliver the corresponding the page to the

user‟s computer screen. Indeed, web application interprets the users input data and based on session

cookies, server state and database state, generates a dynamic page to the user. If we know what

potential problems could occur from the static and dynamic pages, then we can better strategically

perform web application testing. In this sub-section, we list as many potential problems of web

applications as possible arising from the static and dynamic pages.

The first problem is the static link problem. Sometimes a web page provides some links which

link to other static pages. When users click these provided links, the message “404 file not found”

is displayed on their screen. This kind of failure is caused by the broken link is a common fault,

which often occurs when navigating websites. The main reason for this problem is the

corresponding page or target objects cannot be found at the target location, such as missing

pictures, clips, and/or files.

The second problem is the dynamic link problem. When a dynamic link (or button) is used, this

link triggers software possibly written in JavaScript or VB Script to perform the task. This kind of

action does not require the user to input any data, unlike a form link. A possible reason for this

problem is programming error.

The third problem is a form link problem. A form link application is often encountered by the

user, an example is online purchasing. This problem is more complex than the dynamic link

situation as described above because in addition to programmer errors, users might provide with

special characters that exercise the robustness of the application may also cause web application

failure.

The forth problem is the dynamic page creation problem. The dynamic page generation

involves database state and/or server state. Many web applications have a dynamically created web

page to reply to users requests. For example, a dynamic page creation may depend on the database

server processing an SQL query and format the result in a page. It is worth mentioning that the

server state may incur errors under some circumstances. For example, the page contains a time

sensitive greeting. If a user logs on to a particular server before noon, then the dynamic created

greeting page will display good morning! However, if a user logs on to the same server also before

 9

noon but at different geographic region, then a failure could occur because of the time zone

difference.

The fifth problem is an uncontrolled flow transaction problem. This kind of problem may cause

an inconsistent web page rendering result even though the web application code is flawless.

Navigating a website can be done by clicking the provided links from the web application and/or

pressing the control buttons (back, forward, refresh) provided by the web browser. In addition,

some advanced users might change the URL information from the URL address bar to arbitrarily

jump from one web page to another. There are also many inconsistent cases when rendering web

page. One example, after reading a given email and then using the back button to return to the

inbox page, the inbox shows that the email message has not been opened yet (MSN Hotmail)!

Another example, a web application provides web-based user interface for editing inventory. The

JavaScript OnInit() function will retrieve the data from the database that is displayed in a form

which can then be updated and submitted back to the database. If information is updated without

clicking the submit button and the back button is utilized to return to the previous page, followed

by the forward button to arrive at the updating page, all the changed data previously entered will be

missing and the old data is reloaded onto the form again!

The sixth problem is the syntax error problem. For the HTML code, the common syntax error is

missing the closed bracket. For example, <h1>Advanced

Search</h1>, if we omit the </h1> closing bracket, the most updated web browsers would

still be able to render the “Advanced Search” with the text size “h1”. However, if we are missing

too many closing brackets, then the rendered page will have the anomaly situation especially if are

rendered tables.

Finally, other problems associated with software connections

such as the database connectivity problem (JDBC, ODBC etc),

migration of legacy software components, web services, security

problems, etc. These problems are outside the shaded circle (Figure

1) which is beyond the scope of this paper. Table 3 lists the

potential problems already discussed and occur within the shaded

circle.

 Potential Web Application Problems

1 Static link

2 Dynamic link

3 Form link

4 Dynamic page creation

5 Uncontroled flow transaction

6 Syntax error

Table 3: Potential Problems

 10

3.2. Website Taxonomies

The complexity of web application testing depends on the class of the website. There are three

classes of websites [42]. Class 1 is the “brochure-ware” type. This kind of website is static and

provides very limited functionality with no user interactivity. This class of website is the easiest to

develop, maintain and test. Class 2 websites provide client side interaction. It contains client side

script languages like JavaScript, which makes them more difficult to test and analyze than the Class

1 website. Class 3 websites contain the same capabilities as Class 1 & 2 with the additional

dynamic contents that are supplied by the database server via database connectivity. This class is

the most complicated to design, implement, test and deploy. This paper will focus on the web

application testing of Class 3 websites.

3.3. Industrial Web application testing

Although there are many industrial web application testing tools in existence, they primarily

focus on testing non-functional requirements rather than functional requirements. For example,

some of the tools address the compatibility of web applications for different browsers, usability,

portability, syntax, broken link detection, page properties and handling large amount of concurrent

users‟ request. There are more than 300 web-testing tools that can be found at

www.softwareqatest.com at the present time. However, less than 15% of web application tools

target the testing functional requirements.

 11

Chapter Four

4.0 Anatomy of web application testing

In this section, we will discuss each group of testing methods listed in Table 1. Within a group,

we will discuss individual methods in detail and compare their testing approaches, testing target,

and coverage criteria. Consequently, strengths and weaknesses among methods within the same

category will be evaluated.

4.1 Formal Methods

In this group, two testing models use formal methods to conduct web application testing. The

first method is the TestUml model. The second model is the statechart model. The statechart is the

extension of the finite state machines of its states-transition diagrams (state diagram for short) by

David Harel [11].

4.1.1 TestUml Model

Bellettini et al developed the tools WebUml [5] and TestUml [4] for web application testing.

WebUml generates class and state diagrams via static and dynamic analysis of web applications in

the Unified Model Language (UML). TestUml uses the generated models from WebUml to

perform the web application testing.

An automatic design recovery tool, WebUml, can construct a class and state model by analysing

source code and interacting with the web server. This tool focuses on static, active, and dynamic

web page analysis. A static page is a simple HTML page. An active page is a client page that

contains client side scripting languages such as Javascript. A dynamic page is a page that executes

server side code.

WebUml consists of three phases to construct web application models. The three phases are

analysis and information extraction, model construction, and model visualization. Figure 2 shows

the WebUml architecture. The class diagram constructor uses a meta class model similar [8] to

define a generic web application structure and generate class models represent as a UML class

diagrams (the structure and components of the web application). The state diagram constructor

requires a live connection with the web server hosting the application and takes the class diagrams

 12

WebUml

Class diagram

constructor
State diagram

constructor

Information
archive

User

File system

user

Web server

data, source code and the user input setting information to generate state diagrams [5] to create the

UML model. This model consists

of web application components,

behaviours and navigational

structure. Information archive

contains common information of

the web application for both

conductors to analyze. Diagrams

are saved in XMI (XML Metadata

Interchange) format and can be visualized by ArgoUML and/or MagicDraw.

TestUml takes the set of WebUml generated UML models to define test cases and chooses test

paths based on random walk analysis. Random walk testing [18] ensures arbitrary path selection

with the same probability to be chosen. The user also prepares the input data, expected output and

the coverage criteria. The input data can also be obtained from the web server log file (user

sessions) by TestUml. The expected output is used as an oracle to validate the correctness of the

output. The coverage criteria are the number of web pages, objects, transition states, functions and

so forth.

A strength of TestUml is the use of UML and statecharts together to generate the UML model

for testing. TestUml can potentially be a complete testing method to perform fully automatic V&V

processes. UML is a de facto standard modeling language that models the system, validates the user

requirements (i.e. to check the system whether or not implementing user‟s intent to fulfill the

process of validation) and is widely accepted by industry. Statechart is a formal method. Formal

methods are often used to describe the system development [41] and can fulfill the process of

verification. Also, TestUml does not require documentation because WebUml uses reverse

engineering to extract class models.

One weakness is the coverage criteria lacks a code coverage metric. If there is dead code or a

Trojan horse program residing in the web application, it will not be revealed according to their

coverage criteria (page coverage, object coverage, etc). TestUml requires the availability of the

source code. In addition, TestUml cannot test problems such as uncontrolled flow transaction and

syntax error from (5 & 6 in Table 2).

Figure 2: WebUml tool architecture [5]

 13

4.1.2 State-base web browser testing

Di Lucca et al [22, 23] are concerned that users navigating the website using the control buttons

(back, forward, and refresh buttons) instead of using the actions or events (links, form submission

etc) provided by web application itself could cause failures. They propose modeling the web

browser behaviour using a statechart. This model would then be used for testing. The refresh

button normally does not cause errors while reloading, it will reload the page as it should. The

exception is if the reloading page requires user information such as a password and the login

session has expired, then the desired page will not reload successfully. For this situation, whether or

not this is considered an error, we would need to consult the web application documentation.

Therefore, Di Lucca et al suggested the removal of this reload link from the transition tree to

reduce test cases.

A user clicks links or buttons provided by the web application to navigate the website. The web

browser renders and displays the requested page according to the request order and builds a

sequential history of visited pages. The back and forward buttons will enable or disable depending

on the sequence position of the page rendered by the browser. The refresh button is always enabled.

Therefore, the web browser has a total number of four states for these buttons. The first state is both

back and forward buttons are disabled (BDFD). This state occurs when a user opens the web

browser and the default home page is displayed. The rendering page position in the visited pages

sequence is 1 and the length of the sequence is N = 1. The second state is the back button enabled

and the forward button disabled (BEFD). This state occurs when a user clicks links to visit pages

and the rendering page position is at the end of the sequence. The length of visited pages sequence

is N where N > 1. The third state is the back button disabled and forward button enabled (BDFE).

This state occurs when a user uses the back button to go back to the first page of a sequence. The

length of the visited sequence is N > 1. The last state is both back and forward buttons are enabled

(BEFE). This state is shown when a user uses the back button to go back to a previous page. The

rendering page position has to be in between the first and the last pages of the sequence. The length

of the visited sequence is N > 2. Figure 3a shows the states of the back and forward buttons

according to the rendering page at different positions of the sequence.

 14

P1

P2 Pn

P2

P1

BDFD

<<link>>

<> [RP=2, n>2]

<<F>>

BEFD

BDFE P1 P2 Pn

P1

<<link>>

<>

<<F>>

BEFE Pn Pn-1
<<F>>

BEFD BDFD

BEFE BDFE

<<link>>

<<reload>> <<link>>

<<F>> [RP=1, n>2]

<<reload>>

<> [RP=n, n=2] <> [RP=n, n>2]

<<link>>

<<link>>

<>

<<F>>

<<reload>>

<<F>> [RP=n-1, n>2]

<<reload>>

<<F>> [RP=1, n=2]

RP

RP

RP RP

RP

Legends:
BD (back button disabled) FD (forward button disabled) <<link>> link clicked
BE (back button enabled) FE (forward button enabled) <<reload>> reload button clicked
P1 – the first visited page with the length sequence 1
Pn – the nth visited page with the length sequence n
RP – the rendering page position at the sequence
[] – condition e.g. [RP=1, n=2] means the RP position at 1
 and the length of sequence is 2

<> back button clicked

<<F>> forward button clicked

A second diagram is formed by
concatenating the dot line picture with
the solid line picture (for saving space
purpose)
Note: only 1 RP in sequence

Figure 3a: Four states of the web browser buttons Figure 3b: The aggregated state transitions

Among these four states, the BDFD is a special starting state. Once a transition from this state

to another state is made, this state cannot be reached again. Figure 3b is the aggregated state

transitions diagram which displays changing states due to a user‟s action such as clicking links or

buttons. It is worth mentioning that if a user clicks a link to visit a new page at the BEFE state, then

the chain of forwarding pages is terminated and the new page will be the last page of the chain.

Then the browser state will change from BEFE to BEFD. In addition, if a user clicks a link and a

new window pops up, then a new instance of statechart will be instantiated. As a result, a composite

statechart will be used to join the interaction between the old statechart and the new statechart.

This web browser testing cannot be utilized alone, it needs to be integrated with the other

testing techniques. This means that web browser testing itself is not a complete testing method.

This web browser testing method creates supplementary test cases for web application testing.

Suppose we are going to test the function provided by the web application for user login. The Login

page provides two input boxes (UserId and password) and one submit button. If the user identity

Figure 3: Four states of web browser buttons and the aggregated state transitions

 15

BEFD

<<reload>>

B A

A

B

<<link>>

[correct input]

BEFD

<<reload>>

<<reload>>

<<reload>>

<<link>>

[correct input]
<<link>>

BEFD

A

<<F>>

BDFD

A

BDFE

<>

BDFD

<<reload>>

BDFE

<>

<<link>>

[wrong input]

<<F>>

<<F>>

BEFD

A

C

B A

<<link>>

[correct input]
BDFD

<<reload>> <>

<<link>>

[wrong input]

<<reload>>

<<link>>

[correct input]

BDFE
B

B

BEFD
BEFD

 Figure 4a: The flattened statechart Figure 4b: State transition tree

and password are both correct, then the LoggedPage will be displayed. Otherwise, a

LoginErrorPage will be displayed. In order to choose test cases, we need to flatten the statechart of

these three pages and build a state transition tree. Figure 4a shows the flattened statechart of these

three pages and the transition tree for the correct input. The LoginPage, LoggedPage, and

LoginErrorPage are represented by A, B and C, respectively.

As mention before, web browser testing needs to be integrated with another testing method. The

other method generates test cases is called baseline test

cases. For example, to test the LoginPage, Table 4 shows

the baseline test cases. From Table 4, there is only one test

case (9) that should allow the user to login successfully.

Indeed, we can expand this test case for more thorough

testing by using the web browser testing method to generate

more test cases that are obtained from the state transition

tree (Figure 4b). Table 5 shows the supplementary test cases

for testing the LoginPage. Test case generation can be based on the testing coverage criteria; all

states, all transitions, all transition k-tuples, and all round-trip paths.

A strength of State-base web browser testing is extending the existing testing methods to

generate more test cases for thorough testing. It can test whether or not there are any side effects

Figure 4: The flattened statechart and state transition tree

Test cases
Input variables

Results
UserID Password

1 empty any thing LoginError Page

2 empty correct LoginError Page

3 empty empty LoginError Page

4 any thing any thing LoginError Page

5 any thing empty LoginError Page

6 any thing correct LoginError Page

7 correct empty LoginError Page

8 correct any thing LoginError Page

9 correct correct LoggedPage

Table 4: Baseline test cases

 16

caused by users using the back, forward, and refresh/reload control buttons to navigate the website.

Consequently, this method is good for testing uncontrolled flow transaction (Problem 5 in Table 3).

The weakness of this testing method is its integration with other testing methods. Besides, the

transition tree will be large (lots of test

cases) when more pages are tested. The

remedy is to prune the reload path

branches to eliminate redundancy

(suggested by the author) because

refreshing the page will reload the same

page. However, this is not always the case. If we don‟t test the reload button, the security of time

sensitive expiration pages (financial and email accounts) are overlooked.

4.2 Object-Oriented Method

4.2.1 Agent-Based Testing

Agent-based framework for web application testing is based on the BDI formalism [27] and

uses the UML to create web testing models [16]. BDI architecture consists of beliefs (B), desires

(D), and intentions (I) with agents. Beliefs are the agents to observe the environment and

communicate with other agents. Desires are the goals or targets to be achieved. Intentions are the

planning of the actions in order to achieve the goals. The web testing model, any artifacts to be

tested, the functional requirements and specifications, and the test results are modeled as the

agent‟s beliefs. Agents take charge of their own task and complete the testing with other agent‟s co-

operation. The test criteria or requirements, such as the percentage of requirements coverage for

black box testing and code coverage for white box testing are desired goals. An example of

intentions would be the necessary actions/activities required to improve statement coverage from

70% to the goal of 90%.

Qi et al [26] use data flow testing incorporated with agent-based framework for web application

testing. Their testing approach analyzes the data flow information of the web application and

performs four levels of testing on the web applications (function level, function cluster level, object

level, and web application level). A different agent handles each level of testing. A high level test

agent can create a set of low level test agents to perform the low level testing. Consequently, the

Table 5: Supplementary test cases

Precondition &
Current Page User Action

Next page &

starting state resulting state

BDFD LoginPage test case 9, <<link>> LoggedPage, BEFD

BEFD LoggedPage <<back>> LoginPage, BDFE

BEFD LoggedPage <<reload>> LoggedPage, BEFD

BDFE LoginPage <<reload>> LoginPage, BDFE

BDFE LoginPage <<F>> LoggedPage, BEFD

BDFE LoginPage test case 9, <<link>> LoggedPage, BEFD

 17

p-use(x,(5,6))

p-use(x, (5,7))

1: fooA()

2: {
3: x=read();

4: if(x>0)

5: x=fooB(x)
6: print x;

7: }

2-4

4-6

1-3

3-5

def(x,1)

p-use(x,(2, 3))

p-use(x, (2, 4))

5-3

6-4 7-6

1: fooB()

2: {

3: if(x>5)
4: return 5;

5: else

6: return x;
7: }

c-use(x, 7)

c-use(x, 3)

c-use(x, 4)

fooA()

fooB()
Enter

Enter

Exit

Exit

testing is completed by co-operation of agents. Test cases are obtained from the def-use chain and

the criteria to stop testing require a minimum of 80% of def-use pair coverage. Details about data

flow testing and def-use will be discussed in subsection 4.2.2.

The strength of the Agent-based framework is that it can effectively model and analyze

complicated real world systems. This will be suitable for testing complicated web applications

(built on Internet, open standard technologies, heterogeneous, dynamic behaviours, html/xml

documents as variable, etc). The weakness is this method of testing relies on other testing methods.

In other words, agent-based web application testing is only a framework that uses BDI formalism to

steer testing; agent-based testing itself has no testing methods.

4.2.2. Object-based Data Flow Testing

Liu et al [20, 21] use traditional data flow testing for web application testing. In this test

approach, named Web Application Testing Model (WATM), all components of the web application

are modeled as objects and the approach uses flow graphs to capture the data flow information of

the web application.

Data flow testing [28, 44] uses a control flow graph (CFG), to obtain test sets. Nodes in a CFG

annotate variable information and edges

represent the control flow between blocks of

statements. The program variable in a node

will be marked by either def-p-use

(predicate-use) or def-c-use (computation-

use) so that the def-use chain can be yielded

from a graph. Control flow graphs can be

extended to an inter-procedural control

graph, an object control graph, and a

composite control flow graph. Figure 5

shows CFG extended to an inter-procedural graph. All new introduced variables will be marked as

def(variable-name, node-number). For example in fooA(), variable x appears for the first time at

Line 3 (x=read()) so it is marked as def(x,1). Later, when the variable reappears in the code, it will

have an annotation associated with its role of use. In the diagram, the node labelled “2-4” refers to

Figure 5: Control Flow Graph

 18

the second node of the graph and line 4 of the source code. The annotation at node 2 is p-use(x,

(2,3)) because node 2 refers to the if statement at line 4 and the (2,3) is associated with nodes 2 and

3. Therefore, def-use chains can be obtained from the flow graphs. For example, the chain for c-

use(x,7) is (1-3)->(2-4)->(3-5)->(5-3)->(7-6).

In WATM, there are three types of objects (client page, server page, and component). Client

page is HTML documents and client side scripts. Server page is a page with server side code. A

component can be a java applet or ActiveX control that interacts with client pages, server pages or

other components. The relationship between the objects are classified into seven types, which are

inheritance, aggregation, association, request, response, navigation and redirect. An Object Relation

Diagram (ORD) is a directed graph representing the objects relationships. The directed graph ORD

= (V, E), where V is a set of nodes and E  VxV is a set of edges connecting some nodes to

establish objects relationships (each node is an object).

The data flow through the system can occur within the intra-object, inter-object, and/or inter-

client. The WATM extracts test cases from these objects at five different levels. First, function

level testing tests individual functions. Second, function cluster level testing tests a set of functions

that interact within an object. Third, object level testing tests functions invocation sequences.

Fourth, object cluster level testing tests messages passing between objects within a cluster. Fifth,

application level testing tests application scope variables. Function level, function cluster level, and

object level test cases can be obtained by extracting def-use chains from an intra-object. Object

cluster level and application level test cases yield from inter-object and inter-client respectively.

The strength of this testing method stems from the idea of their inside-out approach. A change

in state for software depends on the value of its variables. Data flow testing precisely tests all

possible data flows in the system, which tests for errors within the objects. In addition, data flow

testing tests for errors outside the objects, like side effects caused by different invocation sequences

and the application level problem. This addresses problems 2, 3, and 4 in Table 3.

The weakness of this testing method is that test engineers must have the source code and

documentation. Otherwise, it is impossible to model the control flow graphs precisely to yield def-

use chains. There is also no mention about how to set the testing criteria (when and how to stop

testing).

 19

Page A

Page B

Page D

Page E

Page C

Page F

[var = d1] url-B

 url-D

 url-D

 url-E
 url-E url-F

 url-F

 url-F

 url-E

 url-A

[var = d2] url-C

Page A

Page B Page D

Page E

Page C

Page F

[var = d1] url-B

 url-D

 url-E url-E
 url-F

 url-D

 url-F url-E

 url-A

Page E

Page F Page E

Page F Page D Page A

[var = d1] url-C

 url-F

Figure 6a: Page Navigation Diagram [17] Figure 6b: The Navigation test[17]

e

Remark: url-B = url-C

4.2.3. Object-Oriented Web Test Model Testing

Kung et al [17] use Object-Oriented Web Test Model (WTM) to support web application

testing. WTM deploys forward and reverse engineering tools to extract static and dynamic test

artifacts from a web application to create a WTM instance for testing. The forward engineering

tools obtain the related test artifacts from the requirement specifications. The reverse engineering

tools capture the test artifacts from the source code. Both processes can be done automatically.

In the WTM, the structural and behavioural test artifacts of a web application have three

aspects; the object, the behaviour and the structure perspectives. The object perspective shows the

structural relationships of a web application in object-oriented fashion by using an Object Relation

Diagram (ORD). According to the ORD, test engineers can easily understand the relationships

among objects. The WATM mentioned in subsection 4.2.2 is a WTM differing only in name.

The behaviour perspective consists of page navigation behaviour and state-dependent

behaviour. Kung et al use the Page Navigation Diagram (PND) to depict the page navigation

behaviour. PND is a finite state machine and each state represents a client page. Transitions among

states represent hyperlinks and are labelled with URL. In addition, the same link may transit to

different pages. To handle this kind of situation, an extra annotation (a guard condition) will be

marked within the square brackets. Figure 6a shows an example of PND. In Figure 6a, the same

hyperlink in Page A can visit Page B or Page C depending on the user input value under the guard

condition. Page C can visit Page D and Page F by following two different links url-D and url-F.

PND helps to generate a navigation test tree which is shown in Figure 6b. As a result, test cases for

testing page navigation behaviour can be extracted from this test tree. Any path, from root to any

branch, can be a test case.

Figure 6: Page navigation diagram and Navigation test

 20

transfer,

T.get

TransBalance server page OSD: S

1. idle 2. process

3. wait

Redirect/A.auth

transfer/T.get

get

response/

C.recv_response

1. idle 2. accept

3. wait

 reset

reset input

Submit/S.get
Submit/S.get

 input

recv_response

1. idle 2. process

auth

response/

C.recv_response

4. update 2. retrieve

3. process

get

compute

exit/

S.response

Return/

S.response

1. idle

set

update_error

retrieve_error

5. handle

exception

process_error

TransBalance client page OSD: C

Auth server page OSD: A

TransBalance component OSD: T

Figure 7a: An example of OSD and COSD [17]

(C1:S1:T1:A1)

(C3:S1:T1:A1)

(C2:S1:T1:A1)

(C1:S1:T1:A1)

(C2:S1:T1:A1) (C3:S2:T1:A1) (C1:S1:T1:A1)

(C1:S1:T1:A1) (C3:S3:T5:A1)

(C3:S3:T5:A1) (C1:S1:T1:A1)
(C3:S3:T4:A1)

(C1:S1:T1:A1) (C3:S3:T5:A1) (C3:S3:T3:A1)

(C3:S1:T1:A2) (C3:S3:T2:A1)

Figure 7b: COSD test tree [17]

submit

update_error return, S.response,

C.recv_response

set process_error exit, S.response,

C.recv_response

compute retrieve_error
response,

C.recv_response

redirect,

A.auth

input

Submit,S.get

reset

input

reset

An object state diagram (OSD) can represent the state-dependant behaviour of the objects in a

web application. OSD is similar to statecharts. It can also represent concurrent communication

between objects by using the composite object state diagram (COSD). Figure 7a and 7b shows an

example of OSD and COSD. Figure 7a documents the primary interacting objects performing the

transfer balance for a web banking application. The OSD C, T, S, A represent the TransBalance

client page, TranBalance component, TransBalance server page, and Auth server page respectively.

The OSD C has three states (idle, accept, and wait), T has five states, S has three states, and A only

has 2 states. When there is no input at the client page, the states of all four OSDs are idle i.e.

(C1:S1:T1:A1). If an input is accepted by the TransBalance client page, then the state of C is C2 and

the others still remain idle i.e. (C2:S1:T1:A1). When a user clicks the submit button, it triggers the

other OSDs to change their states and the COSD diagram depicts the concurrent communication

among objects. For example, after submission, TransBalance client page will be at state 3, waiting

for the TransBalance server page response. In the TransBalance server page, the OSD S will change

its state from idle to process and the others remain at the idle state i.e. (C3:S2:T1:A1). Since the OSD

S is at the process state it can get information from TransBalance component or redirect to Auth

server page; therefore, the subsequent state changes would be from (C3:S2:T1:A1) to, (C3:S3:T2:A1)

or (C3:S1:T1:A2). Consequently, a COSD test tree can be built based on the COSD. Then we can

obtain test cases from the test tree for testing object state dependant behaviour. In Figure 7b, the

nodes of test tree flatten the objects concurrent communication. In order to test the correctness of

their interaction behaviour, test cases can yield from the root to any nodes of the tree. Testing the

behaviour (navigation and state-dependant) of a web application has already been discussed. The

Figure 7: An example of OSD and COSD, and COSD test tree

 21

remaining perspective aspect is to test the web application structures. The original paper mentions

using a Block Branch Diagram [17] to create a test model, the idea of choosing test cases is similar

to data flow testing. Therefore, there is no need to repeat the discussion at this section.

The strength of WTM testing is that it not only tests the correctness of code implementation;

but it also tests the navigation and state-dependant behaviours of a web application. This is a very

thorough testing method. It can test Problems 1, 2, 3 and 4 from Table 3.

On the contrary, this testing method has no obvious weaknesses. Its weakness is the common

weakness of white box testing methods that requires the availability of the source code. On the

other hand, they have not mentioned the coverage criteria to stop testing. It is important to know

the type of coverage criteria to stop testing in order to yield optimal performance of the testing

system.

Throughout the discussion of this group, we find that Agent-based testing is merely a testing

framework and WATM model is considered a subset of WTM. Therefore, it can be concluded that

WTM is the best method for Object-oriented approach.

4.3 Statistical Method

There are three groups of researchers that use a statistical testing method for web application

testing [6, 7, 14, 15, 43]. Coincidently, all of them use the Markov chain model for statistical

testing. However, their ways of creating a usage model of the web application and finding errors

are slightly different. The Markov chain is a discrete-time stochastic process model with a

memoryless property (Markov properties). This means state transitions from a current state to

another given state is primarily dependent on the current state and is not related to the history of

transitions. Contrastingly, modelling card games to predict card players‟ next move cannot use the

Markov chain model because the memory of each card drawn from the deck influences the player‟s

decision. Before we further discuss statistical testing using the Markov model for web application

testing, we need to determine if the Markov chain model is suitable for web application testing. Li

et al [19] answered this question affirmatively. They set up two web usage models (history

independent and history dependent) for statistical testing. The history dependent usage model

contained users using search engines to find the starting page then from the starting page

 22

 Figure 8a: the web usage model Figure 8b: uniform transition probabilities Figure 8c: non-uniform transition probabilities

Page A

Page D

Page C Page B

 Exit

Page A

Page D

Page C Page B

 Exit

1/2

1/2

1/2

1/2
1/3

1/3
1/3

1

1/2

1/2

Page A

Page D

Page C Page B

 Exit

3/7
2/7

2/7

1/5

1

3/5

g

2/5 1/4

3/4

4/5

transitioning to another page of information. The probability of arriving at a designated webpage

using either history dependent out-links or history independent (Markov chain) out-links is similar.

In order to conduct statistical testing for web applications using a Markov chain, test engineers

need to prepare the web usage model. Each state of the model represents the possible navigation of

the web application. Figure 8a shows the simple web usage model (the Exit state indicates a user

visiting pages at other websites). After building the usage model, each state‟s out going edge has to

be labelled with its transition probability. If there is no usage information available, then the

transitions probabilities will be uniformly distributed (shown in Figure 8b). If the usage information

is known, then it is most likely that the transition probabilities will not be uniform. For example,

many web servers record user navigation activities on the website into a log file. After extracting

the information from the log file (3 times from Page A to Page B, 2 times from Page A to Page C, 2

times from Page A to Page D …), the probability is obtained by normalizing the count of usage

frequencies into relative frequencies. When the transitions probabilities are established (shows on

Figure 8c), the Markov chain is completely defined with a best estimate of a real usage model.

The usage of statistical testing can be applied to different aspects, for example, the most

frequent failures in practical use early in the test period can be revealed. We can analyze users

navigation habits or predict the length of time required to finish testing to comply with time-to-

market requirements. More precisely, if the Markov chain is stationary and we want to know the

probability of a user visiting Page D from Page B, then we can obtain the stationary probability of

Page B to Page D by solving a set of equations: j = ∑i iUij. The stationary probability j accounts

for the asymptotic appearance rate of state j, where the Page B and Page D are i and j, respectively.

The Uij is the transition probability from i to j (Page B to Page D). Details and some useful

equations can be found at [45].

Among the three groups of researchers, the procedures and purposes of conducting statistical

Figure 8: Web usage model, uniform transition probabilities, and non-uniform transition probabilities

 23

testing for web application are pretty much the same, such as finding broken links, reliability

measure, realistic evaluation of system performance, and mean time to failure for the software

certification. Test case generation are obtained by randomly choosing a Markov chain, using

probability thresholds (e.g. if threshold is 0.1, then the test case from Figure 8c will be Page B to

Page A to Page D since 1/4 times 2/7 less than 0.1), and/or utilizing the real usage patterns from the

log file. As for the criteria of stop testing, the occurrence of failures or percentage of states

coverage can cause testing to halt. Although their procedures and purposes are similar, there are

slight differences in their models and consideration of failures.

Chang et al [6, 7] use Microsoft FrontPage to build a navigation map of a website to create a

Markov chain model and use ToolCertify from Q-Lab [25] to generate test cases, perform statistical

analysis and provide the test report. We are unable to get information from this tool‟s user guide;

therefore, nothing more can be addressed here. Kallepalli et al [14] use FastStats [46] log file

analyzer to produce the hyperlink tree of the website structure. Then they use this structure to create

a Markov chain model named Unified Markov Models. The only failure consideration of their

method are errors present in the log file such as file not found or permission denied. Tonella et al

use UML to capture the dynamic aspects of a web application to create a Markov chain model.

Therefore, they can test errors beyond the static failure information logged in the log files.

However, this requires the tester to manually determine the correctness of the dynamic generated

pages. Table 6 shows summary their methods.

The strength of web

application statistical testing is

the use of statistical techniques

to unfold realistic problems in

the website being tested, such

as mean time to failure, users

navigation habits etc. This method is very good for website maintenance; to maintain the high

standards of the website. Between the Unified Markov model and the UML Markov model, the

latter can also test the correctness of dynamic generated pages. This method can handle problems 1,

2, 3 and 4 defined earlier in this paper (Table 3).

 The weakness of this method are the difficulties modelling the Markov chain properly and

Model

Testing

Methods Testing Problems Coverage Criteria

Black
box

White
box 1 2 3 4 5 6 Failures

Probability
threshold

State
transitions

Unified

Markov x x x x x

UML

Markov x x x x x x x x x

Table 6: Unified and UML Markov models summary

 24

finding the eigenvector () of the transition matrix U with the eigenvalue of 1 ( = U); which

requires proper training in stochastic problem solving and strong mathematics skills, respectively.

It may not be widely adopted by industries. In addition, we do not have real transition probabilities

to test the first hand copy of the web application before deployment. Therefore, it may not

accurately unfold realistic situations (user navigation habits, mean time to failure, etc), except

perhaps finding the broken links.

4.4 UML Method

Ricca et al use ReWeb and TestWeb tools to support web application testing. ReWeb and

TestWeb [29, 30, 31, 33, 34, 36] perform their operations (analysis and testing) based on the

abstraction of the web application. ReWeb uses the Unified Modeling Language (UML) to build

this abstraction model.

Basically, ReWeb is a design recovery tool. It consists of three components, which are a

spider, an analyzer, and a viewer. A spider downloads all pages from a given URL. For any

interested dynamic pages, users have to provide input values before the spider starts downloading

the page(s). Any page(s) related to the given URL but outside the website host, the spider will not

download. An analyzer uses a website UML model and all the downloaded pages to conduct web

application analysis. A website UML model is a meta model of a web application. This will be

discussed in more detail in the next paragraph. A viewer facilitates the view of the structure and the

system of the web application and the textual reports in a GUI.

The core entity of the web server is the web pages. There are four levels of web page

classification [33]. Level 0 is a static page without frames. Level 1 is a static page containing

frames. Level 2 is a dynamic page with no data input from a client. Level 3 is a dynamic page with

data input from a client. A website UML model is a meta model of a web application. Figure 9a

shows the meta model of a web application. Figures 9b and 9c show two instances of this meta

model which are a web page with frames and a web page with form. In Figure 9b, p1 is a web page

containing two frames and the two edges e1 and e5 indicate p1 is split into f1 and f2. The link e2

between f1 and p2 represents the initial page is loaded to p2 and the same explanation applies to the

link e6 between with f2 and p3. The link e7 between p3 and p5 is a normal navigation connection

 25

0..*

split into

LoadPageIntoFrame

{optional}

f: Frame

Form

Input: Set<var>

DynamicPage

Use: Set<var>

ConditionalEdge

{optional}

{only from

DynamicPage}

c: Condition<Var>

StaticPage

WebPage
Frame

0..*

0..*

0..1 initial page

in
clu

d
e

split into

link

0..*

1

submit

split into

LoadPageIntoFrame

{optional}

f: Frame

f1: Frame

p1: WebPage

f2: Frame

p2: Webpage p3: Webpage

p4: Webpage

p5: Webpage

split into

e1
e5

initial page e2

link e3

link e4

initial page e6

link e7

p1: StaticPage

input = (x1,x2)

:Form

e1 include

use = (x1)

p2:DynamicPage

e2 submit

p3: StaticPage p4: StaticPage

e4 link
e3

link

C
o
n
d
itio

n
alE

d
g
e

c=
(x

1
=

”m
o
v
ies”)

C
o
n
d
itio

n
alE

d
g
e

c=
(x

1
=

”b
o
o
k
s”)

 Figure 9a: the meta model of a web application [28] Figure 9b: instance of the meta model with frames [28] Figure 9c: instance of the meta model with form [28]

between HTML pages and the same explanation applies to the e4 between p4 and p5. As for the

link e3, if the data member of the association class LoadPageIntoFrame f:Frame is f2, then the p4

will be forced to load at f2. In Figure 9c, a static page contains a form for a user to input two

variables (x1 and x2). The dynamicPage will generate a static page either p3 or p4 based on the

value of x1.

TestWeb consists of two modules (the test cases generator and the executor). The test cases

generator generates test cases from the instance of the web application UML model. The generator

uses the method of path expression (algebraic representation of the paths in a graph) [1] to compute

the testing path from the web application UML model. Paths are the edges and variables are the

labels such as e1, e2, etc in a graph. Variables can be combined together with two operators („+‟ or

„*‟). The „+‟ and „*‟ operators represent selection and loop, respectively. The path is the test case

and should be a linearly independent path (at least one edge has not been traversed before). An

example of a test case obtained from Figure 9b is e1e2e3e4 + e5e6e7 (from page 1 to page 5) and

from Figure 9c is e1e2(e3 + e4) i.e. the initial page starts at p1 and reaches to p2, then makes a

selection at p2 to either p3 or p4. In the case where loops exist in a graph (Figure 9c), we can use

„*‟ to represent loops. For example, if p3 and p4 have a connection back to p1, then the test case

will be (e1e2(e3 + e4))*.

A strength of ReWeb/TestWeb is that it not only validates the user requirements by using

UML to model the web application but it also verifies the correctness of the code implementation.

In addition, ReWeb also provides anomaly detection (like syntax check), monitors the history of

website changes and analyzes the website structure to provide restructuring information to increase

the maintainability of the website. The coverage criteria can be pages, hyperlinks, data flow, among

Figure 9: The meta model of a web application, and instance of the meta model with frames and form

 26

a few. It handles problems 1, 2, 3, 4 and 6.

The weakness of ReWeb/TestWeb is the ReWeb can only fully handle level 0 to level 1. The

test generator is unable to distinguish between static and dynamic pages and requires tester

intervention. Otherwise, ReWeb/TestWeb can be considered an adequate tool for web application

testing.

4.5 WebApp Slicing Method

Ricca et al introduce the novel method of Web application slicing [32, 35] to perform web

application testing. Web application slicing is more complex than slicing traditional software. It is

because the data flows in the web application system are not limited to passing variables from

statement to statement. The web application can generate a web page dynamically and embed the

variables into the generated code of the new page. The dynamic generated code can also pass along

these variables to another dynamic page.

The definition of traditional program slicing is to reduce the size of a given program while

preserving the original behaviour of the given program so that testers can focus on this part of

interest for testing. This definition also holds for web application slicing. In traditional program

slicing, control dependence and data dependence are the ingredients for slicing the program. An

individual program is represented by a program dependence graph (PDG). In order to handle a

program that contains more than one procedure, we need to first build a PDG for each procedure.

Second, we add an extra “call node” to the graph to connect the actual arguments to the formal

arguments. The resulting graph is called a system dependence graph (SDG). A SDC is used for

interprocedural slicing. Ricca et al simply use a System Dependence Graph (SDG) explicitly

displaying all kinds of dependencies. In the following subsection we will discuss how to model a

SDG for control dependence, data dependence, and call/parameter-in dependence applies to web

application slicing. For other dependences, details can be referenced from the original papers [32,

35].

 27

cd.php

1 7

2

3 4

8 9

cd.php:

1: <?

2: If($x == “xx”){

3: $y = “yy”;

4: $z = “zz”;

5: }

6: ?>

7: <FORM method=”POST”

 action=”aa.php”>

8: <INPUT TYPE=”Text”

 NAME=”w”

 VALUE=”ww”>

9: <INPUT TYPE=”Submit”>

10: </FORM>

dd.php:

1: <?

2: $x = $z;

3: If($x == “a”){

4: $y = “1”;

5: }else{

6: $y = “2”;

7: }

8: ?>

9: <FORM method=”POST”

 action=”aa.php”>

10: <INPUT TYPE=”Text”

 NAME=”w”

 VALUE=”<?print $y?>”>

11: <INPUT TYPE=”Submit”>

12: </FORM>

dd.php

1

2 3

9

11

6
4

10

4.5.1 Nesting/Control dependences

Control dependences take place at the conditional statement and loop statement of traditional

programs. The instruction of execution depends on the truth value of the predicate. This is also true

for server side script of the web application. Moreover, an additional kind of control dependence

(nesting) is found in the HTML code because HTML code can be nested with scripting languages

and HTML, or HTML statements itself e.g. <TABLE><TBODY> <TR> <TD

></TD></TR></TBODY><TABLE>. The browser can interpret the HTML page correctly if all

enclosing tags are available. Control dependence is depicted by the SDG in Figure 10. A snippet of

cd.php contains a total number of 10

lines of code. Each line of statement

will be represented by a node in the

SDG. This SDG will not contain

lines 5, 6, and 10 because there are

no statements related to them.

Considering line 2, if the value of

$x is “xx”, then lines 3 and 4 will be executed and the variables $y and $z will be assigned a new

value. Therefore, control dependences exist for lines 3 and 4 based on the truth value of the

predicate “if” at line 2. As for line 7, regardless of the truth value of the predicate, it will be

executed anyway. Therefore, the line 7 does not have any dependence. It is for this reason that line

7 is the starting node of a new sub-tree in a SDG. Lastly, the lines 8 and 9 nest between line 7 and

line 10; therefore, they are dependent on the line 7.

4.5.2 Data dependences

The definition of data dependences in

tradition program is if B is data dependent on

A, then A declares or modifies a variable that

B references for its value and there exists a

clear path (no redefinition of A) from A to B.

This also applies to web applications when the

data flow occurs within the server side code or

from the server side code statements to HTML

statements. On the contrary, if the data flow occurs from HTML code to the server side code, then it

Figure 10: A SDG for nesting/control dependences

Figure 11: A SDG for data dependences

 28

1

aa.asp

2 5

4

7 6

10 11

12

bb.asp

aa.asp:

1: <%

2: z = „aa‟

3: %>

4: <FORM method=”POST”

action=”bb.asp”>

5: <INPUT TYPE=”Submit”>

6: <INPUT TYPE=”Text”

 NAME=”x” VALUE=z>

7: <INPUT TYPE=”Text”
 NAME=”y” VALUE=z>

8: </FORM>

bb.asp

9: <%

10: dim a, b

11: a = Request.Form(“x”)

12: b = Request.Form(“y”)

13: %>

must be propagated through other dynamic pages as a submission parameter. These situations will

be discussed in sub section 4.5.3 (call dependence condition). Figure 11 shows a SDG to model

data dependences. In Figure 11, there are two kinds of data dependences (within the script code and

from script to HTML code). The straight line with arrow head represents the control dependences

and the curve line with arrow head represents the data dependences.

4.5.3 Call/parameter-in dependences

Interprocedural data dependences in traditional program has a calling context problem

(difficult to keep track of the data flows associated with different call sites). This problem also

exists within the server side code but the client code to the server side code does not suffer. This is

because the client page invokes the server side program, passes the execution control to the server

side program and the invocation never returns to the calling page. Figure 12 depicts the variable

flow from client code to the server side code. In this

graph, the call dependence occurs at line 5 (aa.asp)

and bb.asp. The values of parameters (x and y) from

aa.asp will be assigned to the local variable „a‟ and

„b‟ in bb.asp. Therefore, the parameter-in

dependences exist between nodes 6 and 11, and nodes

7 and 12. The dotted line with arrowhead represents

the call dependence.

Based on the nature of the slicing method, it slices out a small piece of the program for

comprehension and correction. Test engineers are not distracted by a huge amount irrelevant code.

It is well fit for debugging, maintenance (what is the consequence to change a couple lines of code),

integration (add new methods), and testing.

On the other hand, what are the benefits of slicing to test an initial copy of a program? If we

test all the slices and find no errors, do we still need to test the whole program again? If yes, why

would we use the slicing method to test an initial copy of a program? The slicing method will have

sliced such that all possible test cases would have been covered – but the program as a whole has

still not been run once, only bits and pieces of it. The original paper did not mention how test cases

are chosen (maybe test all the slices), and the criteria for stop testing. In my opinion, slicing should

Figure 12: A SDG for data dependences from HTML code to server side code

 29

be used for special purposes of testing as described above but not for validating and verifying an

initial copy of software, including web applications. This illustrates a weakness of the slicing

methodology.

4.6 User Session Data Method

Elbaum et al introduce an inexpensive User Session Data method [9, 10] for web application

testing. Sprenkle et al suggest other ways of test cases generation for user session testing [38, 39,

40] to overcome the problem created by the role of state in web application while replaying the user

session. Sprenkle et al‟s approach explains why Elbaum et al‟s multi-user data session test cases is

unable to reveal more faults than single user session test cases.

User session based testing is an inexpensive testing method. It can obtain test cases on-the-fly

with minimal effort from the instrumented web server. The instrumented web server logs user‟s

URL and name-value into a log file, then applies heuristics to generate test cases. This is

completely unlike other methods that require building an expensive static model from the code

inspection followed by obtaining the test cases from this model. There is nothing interesting about

how they log the user‟s information. We are interested in how they extract test cases from the log

file and how they replay these user sessions in different ways to yield different testing results.

Elbaum et al suggest three approaches of replaying user sessions. Let U = {u1, u2, u3, ……… um}

is a set of user sessions, each ui consists a total number, n, requests r1, r2, r3, ……… rn and each request

ri has a user URL and name-value pair. The first approach is the most straightforward one. It is to

replay an individual user‟s sessions sequentially. The technique is ∀ui ∈ U transformed to a test

case by formatting each of its requests r1, r2, r3, ……… rn into a HTTP request. Consequently, each

session has one test case and the test suite will have a total number of m test cases. This approach is

a constrained version (only captures the URL and name-value pairs of the entire session) of a

capture-replay tool. The second approach is to replay different combinations of users sessions. The

purpose is to expose errors that are caused by different users providing conflicting data. The

algorithm to generate the test case is as follows:

1. select an unused session ua, where ua ∈ U

2. copy a total number of i requests (1 to i) from ua, where i is a random number and 1 < i < n

 30

Captured Log Deployed Behavior

User1 index.jsp Enter bookstore site

User2 addBook.jsp Add Steve Martin‟s Pure Drivel to database

User1 search.jsp List Steve Martin‟s books

User1 buy.jsp Buy Pure Drivel

 Figure 13a: Captured Log [37]

Replayed Log Replayed Behaviour

User1 index.jsp Enter bookstore site

User1 search.jsp List Steve Martin‟s books (does not include

Pure Drivel)

User1 buy.jsp ERROR: Attempt to buy Pure Drivel, a non-

 Existent title in database

User2 addBook.jsp Add Steve Martin‟s Pure Drivel to database

Figure 13b: Replayed individual user session sequentially [37]

3. select session ub randomly, where ub ∈ U and b ≠ a, then search for any rj in ub with the same URL as ri

4. if no matching URL is found in ub, then go back to step 3. If no more session remain, then use ua as a test case

5. if a matching URL is found in ub, then append all the requests following rj from ub to ri to make a test case

6. mark ua as “used”, then repeat the process until all sessions in U are used.

The third approach is to reuse user session with Form modifications. This method can be

achieved by random deletion of some characters in a string, associated with the name-value pairs.

The algorithm is below:

1. select an unused session ua, where ua ∈ U

2. select unused ri from ua, if no more unused ri from ua, then use ua as a test case

3. if ri does not have any name-value pair, mark it as used and repeat previous step

4. if ri has name-value pair(s), then modify by deleting characters randomly to create test cases

5. mark ua as used and repeat the same process until there are no more unused sessions available in U

Elbaum et al conducted an empirical study to measure the effectiveness of this user session

testing technique. Their empirical study used three different approaches (white box, user session,

and hybrid) to generate test cases to test a mutated E-commerce site by seed faulting. They

extracted the white box test cases from a static model, which was built based on Ricca et al‟s idea

with some assumptions. The hybrid test cases were a mix of white box testing requirements and

user sessions data i.e. obtaining a test path from a static

model followed by translation into a URL sequence, if

this sequence matches any user sessions, then the

matched session is selected to be a test case. In this

paper, we do not discuss which kind of test case is

better. We are interested in why the second approach

(combining different users‟ sessions) of user session test

case generation cannot reveal more faults. The primary

reason for this situation stems from ignoring the role of

state in the web application while replaying the users‟ sessions data. Sprenkle et al address this

situation and provide a new way of generating test cases.

Sprenkle et al found that mixing different user session test cases lost the application state

dependencies. For example, referring to Elbaum et al‟s first algorithm to generate a user session

Figure 13: Captured log and replayed individual user session sequentially

 31

test case is to replay an individual user session sequentially. If the server logs the user‟s requests as

shown in Figure 13a, and the test cases for the test run is based on replaying the individual user

session sequentially, then arises the problem caused by mismatching the state of real usage of the

web application and the replay state. Figure 13b shows the individual user session sequentially

replayed and the problem caused by this first algorithm. In Figure 13b, User1 made a request to buy

a book after browsing the site and the error occurred because this desired book did not exist in the

database. In fact, User1 did buy the book! This reflects that the replayed test cases are unable to

reflect the real time usage situation because of the loss of state dependency. In order to overcome

this situation, they suggest three new automatic test case generation methods; partition the full log

by fixed time blocks, server inactivity threshold, and augmented user sessions. Figure 14 is an

example of a captured thirty-six minute server run log used to demonstrate Sprenkle et al‟s three

methods of test cases generation. The three methods are summarized as follows;

Fixed-Time Blocks

The first method is simply partitioning the web server log into fixed-time blocks.

Figure 14c shows the full log broken down into smaller time blocks of ten-minute

intervals. This approach can lower the chance of losing state dependency

compared to replaying the user sessions test cases sequentially. In addition, the

test case is a multi-user test case rather than a single user test case. Therefore, the

test cases can closely reflect the real usage situation. Also, smaller test logs are

easier to debug than a full log. The main disadvantage of Fixed-time Block is the

logical user session may be split into different test cases by stringent partitioning

of the log into a fixed time length.

Server Inactive Threshold

In order to maintain a high level of multi-user test cases and to reduce the number

of logical sessions split across into different test cases, they propose partitioning

the log based on a threshold of a server idle time. Figure 14d shows this method

using a four-minute threshold of idle time to create a total number of three test

cases.

Augmented User Sessions

Splitting logical user sessions into different test cases can also be overcome by

 32

Time Test case 1 Test case 1 Test case 1 Test case 1 Test case 3

00:00 user1:home.jsp 00:00 user1:home.jsp 00:00 user1:home.jsp 00:00 user1:home.jsp 00:00 user1:home.jsp 00:05 user3:home.jsp

00:02 user1:browse.jsp 00:02 user1:browse.jsp 00:02 user1:browse.jsp 00:02 user1:browse.jsp 00:02 user1:browse.jsp 00:09 user2:browse.jsp

00:03 user2:home.jsp 00:04 user1:shop.jsp 00:03 user2:home.jsp 00:03 user2:home.jsp 00:03 user2:home.jsp 00:18 user4:home.jsp

00:04 user1:shop.jsp 00:30 user1:login.jsp 00:04 user1:shop.jsp 00:04 user1:shop.jsp 00:04 user1:shop.jsp 00:22 user3:browse.jsp

00:05 user3:home.jsp 00:05 user3:home.jsp 00:05 user3:home.jsp 00:05 user3:home.jsp 00:23 user3:shop.jsp

00:09 user2:browse.jsp Test case 2 00:09 user2:browse.jsp 00:09 user2:browse.jsp 00:09 user2:browse.jsp 00:29 user4:browse.jsp

00:18 user4:home.jsp 00:03 user2:home.jsp 00:18 user4:home.jsp 00:30 user1:login.jsp

00:22 user3:browse.jsp 00:09 user2:browse.jsp Test case 2 Test case 2 00:22 user3:browse.jsp 00:31 user3:login.jsp

00:23 user3:shop.jsp 00:32 user2:browse.jsp 00:18 user4:home.jsp 00:18 user4:home.jsp 00:23 user3:shop.jsp

00:29 user4:browse.jsp 00:33 user2:shop.jsp 00:22 user3:browse.jsp 00:29 user4:browse.jsp

00:30 user1:login.jsp Test case 3 00:23 user3:shop.jsp 00:30 user1:login.jsp

00:31 user3:login.jsp Test case 3 00:22 user3:browse.jsp

00:32 user2:browse.jsp 00:05 user3:home.jsp 00:23 user3:shop.jsp Test case 3 Test case 2 Test case 4

00:33 user2:shop.jsp 00:22 user3:browse.jsp 00:29 user4:browse.jsp 00:29 user4:browse.jsp 00:03 user2:home.jsp 00:18 user4:home.jsp

00:35 user4:shop.jsp 00:23 user3:shop.jsp 00:30 user1:login.jsp 00:04 user1:shop.jsp 00:22 user3:browse.jsp

00:36 user4:login.jsp 00:31 user3:login.jsp Test case 4 00:31 user3:login.jsp 00:05 user3:home.jsp 00:23 user3:shop.jsp

 00:30 user1:login.jsp 00:32 user2:browse.jsp 00:09 user2:browse.jsp 00:29 user4:browse.jsp

 Test case 4 00:31 user3:login.jsp 00:33 user2:shop.jsp 00:18 user4:home.jsp 00:30 user1:login.jsp

 00:18 user4:home.jsp 00:32 user2:browse.jsp 00:35 user4:shop.jsp 00:22 user3:browse.jsp 00:31 user3:login.jsp

 00:29 user4:browse.jsp 00:33 user2:shop.jsp 00:36 user4:login.jsp 00:23 user3:shop.jsp 00:32 user2:browse.jsp

 00:35 user4:shop.jsp 00:35 user4:shop.jsp 00:29 user4:browse.jsp 00:33 user2:shop.jsp

 00:36 user4:login.jsp 00:36 user4:login.jsp 00:30 user1:login.jsp 00:35 user4:shop.jsp

 00:31 user3:login.jsp 00:36 user4:login.jsp

 00:32 user2:browse.jsp

 00:33 user2:shop.jsp

(a) Captured Log (b) User Sessions (c) Fixed-time Blocks (d) Server Inactive

 Time interval (10 mins) Threshold (4 mins) (e) Augmented User Session

using augmented user sessions approach. The test case is extracted from one

user‟s request as a starting point and ending when the same user has no more

requests. Figure 14e shows test cases generated by augmented user sessions.

Comparing the user session testing with different ways of test cases generation by Elbaum et

al and Sprenkle et al, the former method is unable to reflect multi-users usage of the web

application and the test cases lose the web application state dependency. Among Sprenkle et al‟s

three methods, Fixed-time Block requires careful choice of the right time interval. If the time

interval is too long, then it becomes harder to debug when bugs are found. On the other hand, if the

time interval is too short, it will increase the number of logical sessions split across test cases. As a

result, redundant testing process occurs and degrades the testing performance. The success of

Server Inactive Threshold method is dependent on choosing the appropriate threshold (idle time).

In my opinion, this method is not applicable for any busy servers. Some busy servers never have

idle time! Apparently, the Augmented User Sessions do not have any problems but enlarge the test

case size, thus slowing down the testing process.

User session testing generates virtually costless test cases. This method does not have a tight

coupling relationship with the web application protocols. In the other words, whenever web

application technologies change, this method of test case generation will not be affected. On the

other hand, if the generation of test cases is based on a static model, then the model may not be

compatible with new changes in technologies. These are the strengths of the user session testing

Figure 14: Test cases generation demonstration

 33

method, enabling it to address problems 2, 3 and 4 in Table 3.

The weakness is that we do not have initial user session data to test the initial copy of the web

application. This means we can only use this method for regression testing.

 34

Chapter Five

5.0 Overall evaluation

In this section, we start with a brief review of what each testing group can and cannot achieve in

order to evaluate their overall performances. In such a way, we are hoping to find one testing

method that can address all the potential problems presented in Table 3 of this paper.

Group 1 - Formal methods

TestUml tests static links, dynamic links, form links, and dynamic page creation

problems. The state-base web browser tests uncontrolled flow problems.

Group 2 - Object-oriented methods

Agent-based testing itself is not a testing tool. Object-based data flow testing can

handle dynamic links, form links, and dynamic page creation. Object-oriented

web test model tests static links, dynamic links, form links, and dynamic page

creation problems.

Group 3 - Statistical methods

Unified Markov only tests the static links. UML Markov tests static links,

dynamic links, form links, and dynamic page creation problems.

Group 4 – UML methods

Reweb/TestWeb tests static links, dynamic links, form links, dynamic page

creation problems, and syntax error problems.

Group 5 – Slicing methods

Slicing can handle dynamic links, form links, and dynamic page creation

problems.

Group 6 – User Session Data methods

User session testing addresses dynamic links, form links, and dynamic page

creation problems.

In order to reflect each groups overall properties, we proposed an algorithm to work out an

individual group‟s capabilities. The algorithm is counting number of edges formed at the binary

relation of M and P (mRp). Where M is a set of testing group and the elements of M will be the

testing methods in this group i.e. M = {mi | i ≥ 1}. P is a set of testing problems and the elements of

 35

P = {pi | 1 ≤ i ≤ 6} where p1, p2, p3, p4, p5, p6 are static link problem, dynamic link problem, form link

problem, dynamic page creation problem, uncontrolled flow transaction problem, and syntax error

problem. Once the edge is formed by the element of mi with the element of pj, then one star will be

awarded to this group and the element of pj will be removed out of the set P. The algorithm is

below:

1. select an unused session ua, where ua ∈ U

2. select unused ri from ua, if no more unused ri from ua, then use ua as a test case

3. if ri does not have any name-value pair, mark it as used and repeat previous step

4. if ri has name-value pair(s), then modify by deleting characters randomly to create test cases

5. mark ua as used and repeat the same process until there are no more unused sessions available in U

 For example, Statistical methods contain Unified Markov testing method and UML Markov

testing method; therefore, M = {mi | i ≥ 1} where m1 = Unified Markov testing method and m2 =

UML Markov testing method.

 we use an introduce a formula {G = MiTp  MjTq  … | p ≠ q ≠ … & i  1} to calculate

individual group capabilities. G and Mi represent a group name and testing methods available in a

group respectively. Tp represents the testing problems, which are static link, dynamic link, form

link, dynamic page creation, uncontrolled flow transaction, and syntax error. For example, if group

G has methods i and j that can test static link and form link, respectively, then we can treat this

group‟s capability as testing both static link and form link. Table 7 compares the capability of six

groups of testing methods to test different kinds of faults of web applications by using this formula

{G = MiTp  MjTq  … | p ≠ q ≠ … & i  1}.

After using the proposed formula to determine the capabilities of each individual group, we

 Testing Problems

Group Method
Static

link

Dynamic

link

Form

link

Dynamic

page

creation

Uncontrolled

flow

Syntax

error

Scores

Formal x x x x x

Object oriented x x x x

 Statistical x x x x

 UML x x x x x

 Slicing x x x

 User Session x x x

Table 7: Six groups testing methods summary

 36

summarized each group‟s capabilities in Table 7. The right most column (Scores) visually

illustrates the tally of the capabilities of each group. One star is rewarded to a method if it can test

one particular testing problem. (In Table 7, one star is rewarded to a method if it can test one

particular testing problem.) The highest score obtained is shared by the Formal methods (Group 1)

and UML methods (Group 4). Both of them score five stars out of six, still not a perfect score (six

stars)! No single group was found that could test all the potential problems associated with the

shaded area in Figure 1. Interestingly, all groups were able to handle the problems related to

dynamic links, form links, and dynamic page creation. This suggests that these are the core features

of web applications. However, a good web application testing method at minimum, should be able

to test all the potential problems listed in this paper. As no single group can handle all the potential

problems defined in Table 3 of this paper, we suggest creating a new robust testing architecture by

choosing appropriate methods from different groups in combination to form a new testing tool.

Details will be discussed in Section 6 Contributions and future work.

After careful evaluation, it can be concluded that no single group can comprehensively test all

the potential problems listed in this paper nor does one group dominate the testing scores.

However, all groups can test the core problem features of web applications. With regard to the

aspect of testing performance (efficiency and effectiveness), we are unable to set up a controlled

experiment to empirically study this performance.

Elbaum et al attempted to compare their user session testing method with Ricca et al‟s

ReWeb/TestWeb. However, the conclusion drawn did not accurately reflect performance because

they made assumptions when building Ricca‟s testing model. Similarly, Sprenkle et al compared

their way to generate user session test cases (e.g. Fixed-Time Block) to Elbaum et al‟s User

Session. Their comparison was based on code coverage, which is not strong enough to claim

superiority. Since comparing the performance of individual methods requires careful controlled

experimental setup (not a trivial task) and the testing method resources (which we lack), the

evaluation of each method is therefore based on its capabilities not performance.

After surveying different groups of web application testing, we better understand the difficulty

of web application testing. We are able to answer the questions posed at the beginning of this paper

(Q1 and Q2) and address the open question (Q3).

 37

Q1. What are the similarities between traditional software testing and web application testing

approaches?

When we test a traditional program or web application, there are two fundamental common

testing methods; white box testing and black box testing. White box testing requires the

availability of the source code. We use the source code to comprehend the program‟s structure,

and build the test model to obtain test cases. Testing criteria for example, can be based on the

path coverage of the test model (path coverage) or the source code (code coverage). All these

steps can be applied to both traditional software testing and web application testing. Another

similarity involves state dependency. Although HTTP is a stateless protocol, the state

dependency of the web application must be maintained by the system. Web applications also

allow concurrent invocation by user(s). This parallels the multi-threading traditional programs

and thus, both traditional software testing and web application testing must consider state

dependency. As for black box testing, traditional software testing and web application testing

both require input domain, expected output, pre-condition and post-condition information for

each targeted function(s) with no exceptions.

Q2. What are the differences between traditional software testing and web application testing

approaches?

In traditional software development, a tested program would never contain syntax errors in the

code. It is because syntax errors would be detected in the earliest stage of compilation.

Therefore, traditional software will not suffer syntax errors. HTML code and client side

scripting languages in the web document do not require pre-compilation and thus syntax errors

go undetected. Fortunately, most web browsers can handle some degree of malformed HTML

code (missing close tags). However, this can lead to behavioural anomalies, in the web

document, associated with the undetected syntax errors when the web browser renders the web

page. This translates to less attention paid to syntax errors by the test engineers. In addition,

the control flow of traditional software is predictable but the web application control flow

could be nondeterministic (could be changed by web browser‟s control buttons). Also, web

applications run under uncontrolled environments.

Q3. Can we apply traditional software testing methods to perform web application testing?

Among the six groups of web application testing, all testing methods originate from traditional

software testing techniques but there are other traditional testing techniques that have not yet

 38

been used for web application testing e.g. random testing. Basically, web application

techniques are only a subset of traditional software testing techniques. Therefore, the answer to

whether or not we can apply traditional software testing methods to perform web application

testing is affirmative.

In summary, we found (1) testing web applications is very similar to testing traditional

software, (2) syntax check is often ignored or neglected by test engineers, (3) the control flow of

web applications are nondeterministic, and (4) no single testing method is capable of addressing all

the problems outlined in Table 3. And we have determined that traditional software testing methods

can be applied to test web applications.

So, why is there a greater failure percentage associated with web applications? According to

the information we have obtained, failures should stem from the lack of a complete testing method

to test ever changing, short time-to-market web applications. Therefore, the contribution of this

survey paper will be to suggest a new robust web application testing method by choosing some

appropriate methods from the different groups and combining them to form a new testing tool.

 39

 static link

dynamic link

form link

dynamic page

creation

uncontrolled

flow
syntax error

Group 1 Group 4

Chapter Six

6.0 Contribution and Future work

The first consideration when developing software is to create according to user requirements.

The correctness of implementation then follows. The features of the new testing tool are based on

these two premises. A new testing architecture should include three properties. First, it should help

the software developer understand the client‟s problems so that they can validate the user

requirements i.e. the process of validation of requirements. Second, the tool should have a low-in-

cost and high-in-value testing mechanism to ensure that the software developer provides correct

solutions to the client i.e. the process of verification of specifications. Third, the tool should

provide maintenance services for the system for future modifications and integration of new

components. We will now discuss choosing candidate methods to create this new testing tool, the

Validation-Verification-Maintenance (VVM) testing method.

Candidate(s) for fulfilling Validation

The most appropriate candidate for fulfilling this task is the Group 4- UML

method. UML is a de facto standard modeling language used to model systems

that is widely accepted by industries. The UML diagram depicts the system‟s

structure. The UML diagram can validate correctness by comparing it to the

documentation obtained from the client. It checks whether the system

implements the user‟s intent.

Candidate(s) for fulfilling Verification

In Table 6, Group 1 and Group 4 obtained the highest score; therefore, we

choose these two groups as a starting point. In order to pick the right

candidate(s) from these two groups, we need

to analyze the similarities and differences

between these two groups. Figure 15 is a set

theory diagram showing their capabilities. In

Figure 15, the set Group 1 intersects the set

Group 4, clearly showing that the uncontrolled

flow and syntax error are mutually exclusive.

Neither one of these groups possess both testing capabilities (uncontrolled flow

Figure 15: Group 1 and Group 4 relationships

 40

and syntax error). Interestingly, Group 4‟s ReWeb/TestWeb can test not only

the core features but also the syntax error. However, no single method in

Group 1 can test both the core features and the uncontrolled flow problem.

Between the two methods in Group 1, the state-base web browser testing

method specifically tests the uncontrolled flow problem. Intuitively, this

method must then be integrated with another testing method. Therefore, the

candidate for fulfilling verification is Group 1‟s state-base web browser testing

method combined with Group 4‟s ReWeb/TestWeb.

Candidate(s) for fulfilling Maintenance

In order to choose the right candidate for this task, we need to consider what

the software developer does when performing web application maintenance. If

we add a new application to the system or remove an out-dated web application

from the system, then regression testing must be conducted to ensure the

changes do not affect the other (unchanged) parts of the system. Therefore, we

need to prepare enough test cases for regression testing. Preparing test cases is

a tedious and time-consuming task. Ideally, if we can reuse test cases, then it

will save a tremendous amount of time. Group 6‟s User session testing method

is the most suitable candidate for fulfilling maintenance. It generates test cases

on-the-fly at virtually no cost. Although Group 3‟s statistical testing method

can also apply to web application maintenance (such as which page gets the

most hits, mean time to failure etc.,), it is less important because the cost of test

cases generation outweighs its benefits.

As a result, the new testing tool, VVM, should combine the Ricca et al‟s ReWeb/TestWeb with

Di Lucca et al‟s State-base web browser testing method for validation and verification, and

Sprenkle et al‟s User Session testing method for maintenance of web application systems. We are

not implying that the suggested idea is the best approach but currently, we have no single testing

tool that addresses the problems associated with the shaded area completely in Figure 1. The

principle focus of future work should be tackling the problems presented in Table 3. After which,

improving testing performance (effectiveness and efficiency) for any new proposed testing tools

would then follow.

 41

Chapter Seven

7.0 Conclusion

Web application testing is more challenging than traditional software testing. Simply, web

application software is tested in an uncontrolled environment because of the nature of the web

system itself and the complexity of the internet. Practically, we don‟t house all servers (web server,

application server, mail server, and database server) in one box. This implies that the web system

may consist of multiple platforms sub-systems. For example, a web server may run in a windows

platform, a mail server in a Linux box, and a database server in Mac. Also, we have no control over

the kinds of computers used to access the web system. Despite its challenges, we can still apply

many traditional testing techniques to web applications and create new ones to test problems that

traditional techniques cannot, like nondeterministic control flow problems.

The new proposed VVM testing tool encompasses all three aspects of testing vectors

(validation, verification, and maintenance), from the beginning of the web application design to the

end of its implementation, and beyond for system maintenance, thus following through the web

application life cycle. It ensures that the web application is implemented correctly without flaws. It

also provides web application maintenance on-the-fly. Importantly, it stops error propagation

caused by a ripple effect from the early development stage to the later implementation stage or

maintenance. So far, we have not seen any existing web application testing method that can provide

all of these services. Although the VVM testing tool can handle the problems presented in Table 2,

this represents only a portion of a web application operation (shaded area of Figure 1). Errors may

still exist outside this shaded area, therefore web application testing research still has a long way to

go.

 42

Appendix A (provided by the „Glossary Working Party‟ ISTQB)

acceptance testing: Formal testing with respect to user needs, requirements, and business

processes conducted to determine whether or not a system satisfies the acceptance criteria

and to enable the user, customers or other authorized entity to determine whether or not to

accept the system. [After IEEE 610]

accessibility testing: Testing to determine the ease by which users with disabilities can use a

component or system. [Gerrard]

ad hoc testing: Testing carried out informally; no formal test preparation takes place, no

recognized test design technique is used, there are no expectations for results and

arbitrariness guides the test execution activity.

agile testing: Testing practice for a project using agile methodologies, such as extreme

programming (XP), treating development as the customer of testing and emphasizing the

test-first design paradigm. See also test driven development.

alpha testing: Simulated or actual operational testing by potential users/customers or an

independent test team at the developers‟ site, but outside the development organization.

Alpha testing is often employed for off-the-shelf software as a form of internal acceptance

testing.

arc testing: See branch testing.

back-to-back testing: Testing in which two or more variants of a component or system are

executed with the same inputs, the outputs compared, and analyzed in cases of

discrepancies. [IEEE 610]

beta testing: Operational testing by potential and/or existing users/customers at an external

site not otherwise involved with the developers, to determine whether or not a component

or system satisfies the user/customer needs and fits within the business processes. Beta

testing is often employed as a form of external acceptance testing for off-the-shelf software

in order to acquire feedback from the market.

big-bang testing: A type of integration testing in which software elements, hardware

elements, or both are combined all at once into a component or an overall system, rather

than in stages. [After IEEE 610] See also integration testing.

black-box testing: Testing, either functional or non-functional, without reference to the

internal structure of the component or system.

bottom-up testing: An incremental approach to integration testing where the lowest level

components are tested first, and then used to facilitate the testing of higher level

components. This process is repeated until the component at the top of the hierarchy is

tested. See also integration testing.

boundary value testing: See boundary value analysis.

branch condition combination testing: See multiple condition testing.

 43

branch testing: A white box test design technique in which test cases are designed to execute

branches.

business process-based testing: An approach to testing in which test cases are designed

based on descriptions and/or knowledge of business processes.

code-based testing: See white box testing.

compatibility testing: See interoperability testing.

complete testing: See exhaustive testing.

compliance testing: The process of testing to determine the compliance of the component or

system.

component integration testing: Testing performed to expose defects in the interfaces and

interaction between integrated components.

component testing: The testing of individual software components. [After IEEE 610]

concurrency testing: Testing to determine how the occurrence of two or more activities

within the same interval of time, achieved either by interleaving the activities or by

simultaneous execution, is handled by the component or system. [After IEEE 610]

condition combination testing: See multiple condition testing.

condition determination testing: A white box test design technique in which test cases are

designed to execute single condition outcomes that independently affect a decision

outcome.

condition testing: A white box test design technique in which test cases are designed to

execute condition outcomes.

configuration testing: See portability testing.

confirmation testing: See re-testing.

conformance testing: See compliance testing.

conversion testing: Testing of software used to convert data from existing systems for use in

replacement systems.

data driven testing: A scripting technique that stores test input and expected results in a table

or spreadsheet, so that a single control script can execute all of the tests in the table. Data

driven testing is often used to support the application of test execution tools such as

capture/playback tools. [Fewster and Graham] See also keyword driven testing.

data flow testing: A white box test design technique in which test cases are designed to

execute definition and use pairs of variables.

 44

data integrity testing: See database integrity testing.

database integrity testing: Testing the methods and processes used to access and manage the

data(base), to ensure access methods, processes and data rules function as expected and

that during access to the database, data is not corrupted or unexpectedly deleted, updated or

created.

decision condition testing: A white box test design technique in which test cases are

designed to execute condition outcomes and decision outcomes.

decision testing: A white box test design technique in which test cases are designed to

execute decision outcomes.

design-based testing: An approach to testing in which test cases are designed based on the

architecture and/or detailed design of a component or system (e.g. tests of interfaces

between components or systems).

development testing: Formal or informal testing conducted during the implementation of a

component or system, usually in the development environment by developers. [After IEEE

610]

dirty testing: See negative testing.

documentation testing: Testing the quality of the documentation, e.g. user guide or

installation guide.

dynamic testing: Testing that involves the execution of the software of a component or

system.

efficiency testing: The process of testing to determine the efficiency of a software product.

elementary comparison testing: A black box test design techniques in which test cases are

designed to execute combinations of inputs using the concept of condition determination

coverage. [TMap]

exhaustive testing: A test approach in which the test suite comprises all combinations of

input values and preconditions.

exploratory testing: An informal test design technique where the tester actively controls the

design of the tests as those tests are performed and uses information gained while testing to

design new and better tests. [After Bach]

field testing: See beta testing.

finite state testing: See state transition testing.

functional testing: Testing based on an analysis of the specification of the functionality of a

 45

component or system. See also black box testing.

functionality testing: The process of testing to determine the functionality of a software

product.

glass box testing: See white box testing.

incremental testing: Testing where components or systems are integrated and tested one or

some at a time, until all the components or systems are integrated and tested.

installability testing: The process of testing the installability of a software product. See also

portability testing.

integration testing: Testing performed to expose defects in the interfaces and in the

interactions between integrated components or systems. See also component integration

testing, system integration testing.

interface testing: An integration test type that is concerned with testing the interfaces

between components or systems.

interoperability testing: The process of testing to determine the interoperability of a

software product. See also functionality testing.

invalid testing: Testing using input values that should be rejected by the component or

system. See also error tolerance.

isolation testing: Testing of individual components in isolation from surrounding

components, with surrounding components being simulated by stubs and drivers, if needed.

keyword driven testing: A scripting technique that uses data files to contain not only test

data and expected results, but also keywords related to the application being tested. The

keywords are interpreted by special supporting scripts that are called by the control script

for the test. See also data driven testing.

link testing: See component integration testing.

load testing: A test type concerned with measuring the behavior of a component or system

with increasing load, e.g. number of parallel users and/or numbers of transactions to

determine what load can be handled by the component or system. See also stress testing.

logic-coverage testing: See white box testing. [Myers]

logic-driven testing: See white box testing.

maintenance testing: Testing the changes to an operational system or the impact of a

changed environment to an operational system.

 46

maintainability testing: The process of testing to determine the maintainability of a software

product.

migration testing: See conversion testing.

module testing: See component testing.

multiple condition testing: A white box test design technique in which test cases are

designed to execute combinations of single condition outcomes (within one statement).

mutation testing: See back-to-back testing.

N-switch testing: A form of state transition testing in which test cases are designed to execute

all valid sequences of N+1 transitions. [Chow] See also state transition testing.

negative testing: Tests aimed at showing that a component or system does not work.

Negative testing is related to the testers‟ attitude rather than a specific test approach or test

design technique, e.g. testing with invalid input values or exceptions. [After Beizer].

non-functional testing: Testing the attributes of a component or system that do not relate to

functionality, e.g. reliability, efficiency, usability, maintainability and portability.

operational profile testing: Statistical testing using a model of system operations (short

duration tasks) and their probability of typical use. [Musa]

operational testing: Testing conducted to evaluate a component or system in its operational

environment. [IEEE 610]

pair testing: Two persons, e.g. two testers, a developer and a tester, or an end-user and a

tester, working together to find defects. Typically, they share one computer and trade

control of it while testing.

partition testing: See equivalence partitioning. [Beizer]

path testing: A white box test design technique in which test cases are designed to execute

paths.

performance testing: The process of testing to determine the performance of a software

product. See also efficiency testing.

portability testing: The process of testing to determine the portability of a software product.

program testing: See component testing.

random testing: A black box test design technique where test cases are selected, possibly

using a pseudo-random generation algorithm, to match an operational profile. This

technique can be used for testing non-functional attributes such as reliability and

performance.

 47

recoverability testing: The process of testing to determine the recoverability of a software

product. See also reliability testing.

recovery testing: See recoverability testing.

regression testing: Testing of a previously tested program following modification to ensure

that defects have not been introduced or uncovered in unchanged areas of the software, as a

result of the changes made. It is performed when the software or its environment is

changed.

regulation testing: See compliance testing.

reliability testing: The process of testing to determine the reliability of a software product.

requirements-based testing: An approach to testing in which test cases are designed based

on test objectives and test conditions derived from requirements, e.g. tests that exercise

specific functions or probe non-functional attributes such as reliability or usability.

resource utilization testing: The process of testing to determine the resource-utilization of a

software product. See also efficiency testing.

re-testing: Testing that runs test cases that failed the last time they were run, in order to

verify the success of corrective actions.

risk-based testing: Testing oriented towards exploring and providing information about

product risks. [After Gerrard]

robustness testing: Testing to determine the robustness of the software product.

safety testing: Testing to determine the safety of a software product.

sanity test: See smoke test.

scalability testing: Testing to determine the scalability of the software product.

scenario testing: See use case testing.

security testing: Testing to determine the security of the software product. See also

functionality testing.

serviceability testing: See maintainability testing.

site acceptance testing: Acceptance testing by users/customers at their site, to determine

whether or not a component or system satisfies the user/customer needs and fits within the

business processes, normally including hardware as well as software.

smoke test: A subset of all defined/planned test cases that cover the main functionality of a

component or system, to ascertaining that the most crucial functions of a program work,

but not bothering with finer details. A daily build and smoke test is among industry best

 48

practices. See also intake test.

specification-based testing: See black box testing.

standards testing: See compliance testing.

state transition testing: A black box test design technique in which test cases are designed to

execute valid and invalid state transitions. See also N-switch testing.

statement testing: A white box test design technique in which test cases are designed to

execute statements.

static testing: Testing of a component or system at specification or implementation level

without execution of that software, e.g. reviews or static code analysis.

statistical testing: A test design technique in which a model of the statistical distribution of

the input is used to construct representative test cases. See also operational profile testing.

storage testing: See resource utilization testing.

stress testing: Testing conducted to evaluate a system or component at or beyond the limits

of its specified requirements. [IEEE 610] See also load testing.

structural testing: See white box testing.

syntax testing: A black box test design technique in which test cases are designed based upon

the definition of the input domain and/or output domain.

system integration testing: Testing the integration of systems and packages; testing

interfaces to external organizations (e.g. Electronic Data Interchange, Internet).

system testing: The process of testing an integrated system to verify that it meets specified

requirements. [Hetzel]

top-down testing: An incremental approach to integration testing where the component at the

top of the component hierarchy is tested first, with lower level components being simulated

by stubs. Tested components are then used to test lower level components. The process is

repeated until the lowest level components have been tested. See also integration testing.

traceability: The ability to identify related items in documentation and software, such as

requirements with associated tests. See also horizontal traceability, vertical traceability.

unit testing: See component testing.

usability testing: Testing to determine the extent to which the software product is

understood, easy to learn, easy to operate and attractive to the users under specified

conditions. [After ISO 9126]

use case testing: A black box test design technique in which test cases are designed to

 49

execute user scenarios.

user acceptance testing: See acceptance testing.

user scenario testing: See use case testing.

volume testing: Testing where the system is subjected to large volumes of data. See also

resource-utilization testing.

white-box testing: Testing based on an analysis of the internal structure of the component or

system.

 50

References:

1. Boris Beizer, Software testing techniques. Van Nostrand Reinhold Company, New York. 1990.

ISBN:0-442-24592-0

2. BIG-SF. Government Web Application Integrity. The Business Internet Group of San Francisco,

2003. http://www.tealeaf.com/news/press_releases/2003/0611.asp

3. BIG-SF. Black Friday Report on Web Application Integrity. The Business Internet Group of

San Francisco, 2003. http://www.tealeaf.com/news/press_releases/2003/0203.asp

4. Carlo Bellettini, Alessandro Marchetto, and Andrea Trentini, Web technologies and

applications (WTA): TestUml: user-metrics driven web applications testing, Proceedings of the

2005 ACM symposium on Applied computing SAC '05. March 2005

5. Carlo Bellettini, Alessandro Marchetto, and Andrea Trentini, WebUml: Reverse Engineering of

Web applications. 19
th

 Annual ACM Symposium on Applied computing. Web Technologies and

Applications track(Sac 2004), Nicosia, Cyprus. March 2004

6. Wen-Kui Chang, Shing-Kai Hon, and C. C. William Chu, A systematic framework for

evaluating hyperlink validity in Web environments, Quality Software, 2003. Proceedings. Third

International Conference on 6-7 Nov. 2003 Page(s):178 - 185

7. Wen-Kui Chang, Shing-Kai Hon, Assessing the quality of Web-based applications via

navigational structures, IEEE Multimedia, Volume 9, Issue 3, Jul-Sep 2002

8. Jim Conallen, Modeling web application architectures with UML, Communications of the

ACM, Volume 42 Issue 10, October, 1999

9. S. Elbaum, S. Karre, and G. Rothermel, Improving web application testing with user session

data, Software Engineering, 2003. Proceedings. 25th International Conference on 3-10 May

2003. Page(s):49 - 59

10. S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II, Leveraging user-session data to support

Web application testing, Software Engineering, IEEE Transactions on Volume 31, Issue 3,

March 2005. Page(s):187 – 202

11. David Harel, Statecharts: A visual formalism for complex systems, Science of Computer

Programming, Volume 8, issue 3 (June 1987) Pages: 231 – 274

12. E. Hieatt and R. Mee, Going faster: testing the Web application, Software, IEEE Volume 19,

Issue 2, March-April 2002. Page(s):60 - 65

13. IEEE Computer Society, IEEE Standard for Software Verification and Validation, IEEE

Standards, 3 Park Avenue, New York, NY 10016-5997, USA. 8 June 2005.

14. C. Kallepalli and J. Tian, Measuring and modeling usage and reliability for statistical Web

testing, Software Engineering, IEEE Transactions on Volume 27, Issue 11, Nov. 2001.

Page(s):1023 - 1036

Grace%20Lee/Desktop/Depth/Depth/TestUml%20-%20user-metrics%20driven%20web%20applications%20testing.pdf
Grace%20Lee/Desktop/Depth/Depth/TestUml%20-%20user-metrics%20driven%20web%20applications%20testing.pdf
Grace%20Lee/Desktop/Depth/Depth/TestUml%20-%20user-metrics%20driven%20web%20applications%20testing.pdf
Grace%20Lee/Desktop/Depth/Depth/TestUml%20-%20user-metrics%20driven%20web%20applications%20testing.pdf
Grace%20Lee/Desktop/Depth/Depth/TestUml%20-%20user-metrics%20driven%20web%20applications%20testing.pdf
Grace%20Lee/Desktop/Depth/Depth/A%20systematic%20framework%20for%20evaluating%20hyperlink%20validity%20in%20Web%20environments.pdf
Grace%20Lee/Desktop/Depth/Depth/A%20systematic%20framework%20for%20evaluating%20hyperlink%20validity%20in%20Web%20environments.pdf
Grace%20Lee/Desktop/Depth/Depth/A%20systematic%20framework%20for%20evaluating%20hyperlink%20validity%20in%20Web%20environments.pdf
Grace%20Lee/Desktop/Depth/Depth/A%20systematic%20framework%20for%20evaluating%20hyperlink%20validity%20in%20Web%20environments.pdf
Grace%20Lee/Desktop/Depth/Depth/Modeling%20Web%20Application%20Architectures%20with%20UML.pdf
Grace%20Lee/Desktop/Depth/Depth/Improving%20web%20application%20testing%20with%20user%20session%20data.pdf
Grace%20Lee/Desktop/Depth/Depth/Improving%20web%20application%20testing%20with%20user%20session%20data.pdf
Grace%20Lee/Desktop/Depth/Depth/Leveraging%20user-session%20data%20to%20support%20Web%20application%20testing.pdf
Grace%20Lee/Desktop/Depth/Depth/Leveraging%20user-session%20data%20to%20support%20Web%20application%20testing.pdf
Grace%20Lee/Desktop/Depth/Depth/Leveraging%20user-session%20data%20to%20support%20Web%20application%20testing.pdf
Grace%20Lee/Desktop/Depth/Depth/Leveraging%20user-session%20data%20to%20support%20Web%20application%20testing.pdf
Grace%20Lee/Desktop/Depth/Depth/Going%20faster-testing%20the%20Web%20application.pdf
Grace%20Lee/Desktop/Depth/Depth/Measuring%20and%20modeling%20usage%20and%20reliability%20for%20statistical%20Web%20testing.pdf
Grace%20Lee/Desktop/Depth/Depth/Measuring%20and%20modeling%20usage%20and%20reliability%20for%20statistical%20Web%20testing.pdf

 51

15. C. Kallepalli and J. Tian, Usage Measurement for Statistical Web Testing and Reliability

Analysis, Seventh International softeare Metrrics Symposium (METRICS’01) p.148

16. D.C. Kung, An agent-based framework for testing Web applications, Computer Software and

Applications Conference, 2004. COMPSAC 2004. Proceedings of the 28th Annual International

Volume 2, 2004. Page(s):174 - 177 vol.2

17. D.C. Kung, Chien-Hung Liu, and Pei Hsia, An object-oriented web test model for testing Web

applications, Quality Software, 2000. Proceedings. First Asia-Pacific Conference on 30-31 Oct.

2000 Page(s):111 - 120

18. D. Lee, K. Sabnani, D. M. Kristol, and S. Paul. Conformance Testing of Protocols Specified as

Communicating Finite State Machines - a Guided Random Walk Based Approach. IEEE Trans.

on Communications, 1993.

19. Zhao Li and Jeff Tian, Testing the suitability of Markov chains as Web usage models,

Computer Software and Applications Conference, 2003. COMPSAC 2003. Proceedings. 27th

Annual International, Volume , Issue , 3-6 Nov. 2003 Page(s): 356 - 361

20. Chien-Hung Liu, D.C Kung, Pei Hsia, and Chih-Tung Hsu, Object-based data flow testing of

web application, The first Asia Pacific conference on quality software, October 2000. Hong

Kong, China

21. Chien-Hung Liu, D.C Kung, Pei Hsia, and Chih-Tung Hsu, Structural testing of Web

applications, Software Reliability Engineering, 2000. ISSRE 2000. Proceedings. 11th

InternationalSymposium on 8-11 Oct. 2000. Page(s):84 - 96

22. G.A. Di Lucca, A.R. Fasolino, F. Faralli, and U. De Carlini, Testing Web applications,

Software Maintenance, 2002. Proceedings. International Conference on 3-6 Oct. 2002.

Page(s):310 - 319

23. G.A. Di Lucca, and M. Di Penta, Considering browser interaction in Web application testing,

Web Site Evolution, 2003. Theme: Architecture. Proceedings. Fifth IEEE International

Workshop on 22 Sept. 2003 Page(s):74 - 81

24. S. Manley and M. Seltzer, Web Facts and Fantasy, In proceedings of the 1997 Usenix

Symposium on Internet Technologies and Systems, Monterey, CA, 1997.

25. Q-Labs, ToolCertify User Guide, Version 5.0, 2000

26. Yu Qi, David Kung, Eric Wong, An Agent-based Testing Approach for Web Applications,

Proceedings of the 29
th

 Annual International Computer Software and Applications Conference

(COMPSAC’05), 2005

27. A. Rao and M. Georgeff, BDI agents: From theory to practice, Proceedings of the First

International Conference on Multi-Agent Systems (ICMAS-95), San Francisco, pp 312-319

Grace%20Lee/Desktop/Depth/Depth/Measuring%20and%20modeling%20usage%20and%20reliability%20for%20statistical%20Web%20testing.pdf
Grace%20Lee/Desktop/Depth/Depth/Measuring%20and%20modeling%20usage%20and%20reliability%20for%20statistical%20Web%20testing.pdf
Grace%20Lee/Desktop/Depth/Depth/Measuring%20and%20modeling%20usage%20and%20reliability%20for%20statistical%20Web%20testing.pdf
Grace%20Lee/Desktop/Depth/Depth/An%20agent-based%20framework%20for%20testing%20Web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/An%20object-oriented%20web%20test%20model%20for%20testing%20Web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/An%20object-oriented%20web%20test%20model%20for%20testing%20Web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/Object-based%20data%20flow%20testing%20of%20web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/Object-based%20data%20flow%20testing%20of%20web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/Structural%20testing%20of%20Web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/Structural%20testing%20of%20Web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/Structural%20testing%20of%20Web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/Testing%20Web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/Considering%20browser%20interaction%20in%20Web%20application%20testing.pdf

 52

28. S. Rapps and J. Weyuker, Selecting software test data using data flow information, IEEE

transactions on software engineering, Vol. SE-11, NO.4, April 1985.

29. F. Ricca, Analysis, testing and re-structuring of Web applications, Software Maintenance, 2004.

Proceedings. 20th IEEE International Conference on 11-14 Sept. 2004 Page(s):474 - 478

30. F. Ricca and P. Tonella, Analysis and testing of Web applications, Software Engineering, 2001.

ICSE 2001. Proceedings of the 23rd International Conference on 12-19 May 2001 Page(s):25 -

34

31. F. Ricca and P. Tonella, Anomaly detection in Web applications: a review of already conducted

case studies, Software Maintenance and Reengineering, 2005. CSMR 2005. Ninth European

Conference on 21-23 March 2005 Page(s):385 - 394

32. F. Ricca and P. Tonella, Construction of the system dependence graph for Web application

slicing, Source Code Analysis and Manipulation, 2002. Proceedings. Second IEEE

International Workshop on 1 Oct. 2002 Page(s):123 - 132

33. F. Ricca and P. Tonella, Understanding and restructuring Web sites with ReWeb, Multimedia,

IEEE Volume 8, Issue 2, April-June 2001 Page(s):40 - 51

34. F. Ricca and P. Tonella, Visualization of web site history, In 2nd international workshop on

web site evolution, Zurich, Switzerland, March 2000

35. F. Ricca and P. Tonella, Web application slicing, Software Maintenance, 2001. Proceedings.

IEEE International Conference on 7-9 Nov. 2001 Page(s):148 – 157

36. F. Ricca and P. Tonella, Web site analysis: Structure and evolution, Software Maintenance,

2000. Proceedings. International Conference on 11-14 Oct. 2000 Page(s):76 - 86

37. F. Ricca, P. Tonella, and I.D. Baxter, Restructuring Web applications via transformation rules,

Source Code Analysis and Manipulation, 2001. Proceedings. First IEEE International

Workshop on 10 Nov. 2001 Page(s):150 - 160

38. Sara Sprenkle, Emily Gibson, Sreedevi Sampath, Lori Pollock, Automated Relay and Failure

Detection for Web Applications, Proceedings of the 20th IEEE/ACM International Conference

on Automated software engineering ASE '05. November 2005

39. Sara Sprenkle, Emily Gibson, Sreedevi Sampath, Lori Pollock, A case study of automatically

creating test suites from web application field data, Proceedings of the 2006 workshop on

Testing, analysis, and verification of web services and applications TAV-WEB '06

40. Sara Sprenkle, Sreedevi Sampath, Emily Gibson, Lori Pollock, Amie Souter, An empirical

comparison of test suite reduction techniques for user-session-based testing of Web

applications, Software Maintenance, 2005. ICSM'05. Proceedings of the 21st IEEE

International Conference on 26-29 Sept. 2005 Page(s):587 - 596

41. R. D. Tennent, Specifying software, Cambridge University press, ISBN 0-521-00401-2

Grace%20Lee/Desktop/Depth/Depth/Analysis,%20testing%20and%20re-structuring%20of%20Web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/Analysis%20and%20testing%20of%20Web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/Anomaly%20detection%20in%20Web%20applications-a%20review%20of%20already%20conducted%20case%20studies.pdf
Grace%20Lee/Desktop/Depth/Depth/Anomaly%20detection%20in%20Web%20applications-a%20review%20of%20already%20conducted%20case%20studies.pdf
Grace%20Lee/Desktop/Depth/Depth/Anomaly%20detection%20in%20Web%20applications-a%20review%20of%20already%20conducted%20case%20studies.pdf
Grace%20Lee/Desktop/Depth/Depth/Anomaly%20detection%20in%20Web%20applications-a%20review%20of%20already%20conducted%20case%20studies.pdf
Grace%20Lee/Desktop/Depth/Depth/Construction%20of%20the%20system%20dependence%20graph%20for%20Web%20application%20slicing.pdf
Grace%20Lee/Desktop/Depth/Depth/Construction%20of%20the%20system%20dependence%20graph%20for%20Web%20application%20slicing.pdf
Grace%20Lee/Desktop/Depth/Depth/Understanding%20and%20restructuring%20Web%20sites%20with%20ReWeb.pdf
Grace%20Lee/Desktop/Depth/Depth/Visualization%20of%20website%20history.pdf
Grace%20Lee/Desktop/Depth/Depth/Web%20application%20slicing.pdf
Grace%20Lee/Desktop/Depth/Depth/Web%20site%20analysis%20-%20structure%20and%20evolution.pdf
Grace%20Lee/Desktop/Depth/Depth/Restructuring%20Web%20applications%20via%20transformation%20rules.pdf
Grace%20Lee/Desktop/Depth/Depth/Restructuring%20Web%20applications%20via%20transformation%20rules.pdf
Grace%20Lee/Desktop/Depth/Depth/Automated%20Replay%20and%20Failure%20Detection%20for%20Web%20Application.pdf
Grace%20Lee/Desktop/Depth/Depth/Automated%20Replay%20and%20Failure%20Detection%20for%20Web%20Application.pdf
Grace%20Lee/Desktop/Depth/Depth/A%20case%20study%20of%20automatically%20creating%20test%20suites%20from%20web%20application%20field%20data.pdf
Grace%20Lee/Desktop/Depth/Depth/A%20case%20study%20of%20automatically%20creating%20test%20suites%20from%20web%20application%20field%20data.pdf
Grace%20Lee/Desktop/Depth/Depth/An%20empirical%20comparison%20of%20test%20suite%20reduction%20techniques%20for%20user%20session%20based%20testing%20of%20web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/An%20empirical%20comparison%20of%20test%20suite%20reduction%20techniques%20for%20user%20session%20based%20testing%20of%20web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/An%20empirical%20comparison%20of%20test%20suite%20reduction%20techniques%20for%20user%20session%20based%20testing%20of%20web%20applications.pdf

 53

42. Scott Tilley, Shihong Huang, Evaluating the Reverse Engineering Capabilities of Web Tools

for Understanding Site Content and Structure: A Case Study, 23rd International Conference on

Software Engineering (ICSE'01), p. 0514, 2001.

43. P. Tonella and F. Ricca, Dynamic model extraction and statistical analysis of web applications,

Web Site Evolution, 2002. Proceedings. Fourth International Workshop on 2 Oct. 2002

Page(s):43 - 52

44. J. Weyuker, More experience with data flow testing, IEEE transactions on software

engineering, Vol. 19, no.9, September 1993

45. J. A. Whittaker and M. G. Thomason, A Markov chain model for statistical software testing,

IEEE Trans. Software Eng., vol. 20, no. 10, pp.812-824, Oct. 1994

46. www.mach5.com

47. www.istqb.org

Grace%20Lee/Desktop/Depth/Depth/Dynamic%20model%20extraction%20and%20statistical%20analysis%20of%20Web%20applications.pdf
Grace%20Lee/Desktop/Depth/Depth/Dynamic%20model%20extraction%20and%20statistical%20analysis%20of%20Web%20applications.pdf

